JP2003142142A - Operating method for vanadium redox flow battery - Google Patents

Operating method for vanadium redox flow battery

Info

Publication number
JP2003142142A
JP2003142142A JP2001341083A JP2001341083A JP2003142142A JP 2003142142 A JP2003142142 A JP 2003142142A JP 2001341083 A JP2001341083 A JP 2001341083A JP 2001341083 A JP2001341083 A JP 2001341083A JP 2003142142 A JP2003142142 A JP 2003142142A
Authority
JP
Japan
Prior art keywords
redox flow
electrode
flow battery
vanadium redox
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001341083A
Other languages
Japanese (ja)
Inventor
Seiji Ogino
誠司 荻野
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2001341083A priority Critical patent/JP2003142142A/en
Publication of JP2003142142A publication Critical patent/JP2003142142A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an operating method for a vanadium redox flow battery having a large rate of solution utilization and giving a high output. SOLUTION: The operating method is for the vanadium redox flow battery of high output operated in such a manner that an electrolytic solution is fed in circulation to an electrode and the discharge current density per unit area of electrode is made between 0.20 and 0.55 A/cm<2> , wherein the solution feeding amount per unit area of electrode of the electrolytic solution immediately before attaining the predetermined discharge ending voltage is made over 0.3 cc/ min×cm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レドックスフロー
電池の運転方法に関するものである。特に、液利用率が
大きく、高出力が得られるレドックスフロー電池の運転
方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for operating a redox flow battery. In particular, the present invention relates to a method for operating a redox flow battery that has a high liquid utilization rate and high output.

【0002】[0002]

【従来の技術】従来のレドックスフロー電池の運転方法
として、特開平4-12464号公報に記載の技術が知られて
いる。この公報は、電池内を流れる電流を検知する電流
検知手段と、この検出手段の検出信号に基づいてポンプ
の動力を加減し、電解液の送液量を制御する制御手段と
を具えるレドックスフロー電池を開示している。そし
て、電解液流量を変化させることで不要なポンプ動力を
低減し、刻々と変化する充放電電流値に対して、常に最
適な電解液流量が得られる運転方法を提案している。
2. Description of the Related Art As a conventional method for operating a redox flow battery, a technique described in Japanese Patent Laid-Open No. 4-12464 is known. This publication discloses a redox flow provided with a current detection means for detecting a current flowing in a battery and a control means for controlling the pumping amount of the electrolyte solution based on a detection signal of the detection means to control the amount of the electrolytic solution delivered. A battery is disclosed. Then, it proposes an operation method in which unnecessary pump power is reduced by changing the flow rate of the electrolytic solution, and an optimum electrolytic solution flow rate can always be obtained with respect to the charge / discharge current value which changes every moment.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のロード
レベリング用途の電池では、総合効率を70%程度にする
必要があり、出力アップすることができなかった。総合
効率とは、電解液循環に用いるポンプの動力やインバー
タおよび電池効率をも考慮した入力エネルギーに対する
出力エネルギーの比率である。一般に、出力アップする
と、電池効率が低下するため総合効率が低下し、また、
液利用率も小さくなる。この電池効率の低下を防ぐに
は、セル抵抗を下げることが効果的であるが、セル抵抗
を下げるためにセル厚を小さくすれば、電解液をセルに
透過させるためのポンプ動力を大きくしなければなら
ず、やはり総合効率が低下する。
However, in the conventional battery for load leveling, the total efficiency needs to be about 70%, and the output cannot be increased. The total efficiency is the ratio of output energy to input energy, which also takes into consideration the power of the pump used for electrolyte circulation and the efficiency of the inverter and battery. Generally, when the output is increased, the battery efficiency is decreased, and the overall efficiency is decreased.
The liquid utilization rate also decreases. To prevent this decrease in battery efficiency, it is effective to reduce the cell resistance, but if the cell thickness is reduced to reduce the cell resistance, the pump power for permeating the electrolytic solution into the cell must be increased. However, the overall efficiency will also decrease.

【0004】一方、瞬低・停電用途では、総合効率を多
少犠牲にしても高出力にして単位出力当りのコストを下
げたいというニーズがある。しかし、電流密度を上げて
高出力とした場合の評価、特に電流密度と液利用率につ
いては評価が行われておらず、高出力での液利用率が大
きい運転に関する明確な指針が無かった。
On the other hand, in the application of instantaneous voltage drop / power failure, there is a need to increase the output and reduce the cost per unit output even if the overall efficiency is sacrificed to some extent. However, no evaluation was made on the case where the current density was increased to a high output, particularly the current density and the liquid utilization rate, and there was no clear guideline for the operation with a high liquid utilization rate at a high output.

【0005】従って、本発明の主目的は、液利用率が大
きく、高出力が得られるレドックスフロー電池の運転方
法を提供することにある。
Therefore, a main object of the present invention is to provide a method for operating a redox flow battery, which has a high liquid utilization rate and a high output.

【0006】[0006]

【課題を解決するための手段】本発明は、電解液を電極
に循環供給し、電極単位面積当りの放電電流密度を0.20
A/cm2以上0.55A/cm2以下として運転する高出力のバナジ
ウムレドックスフロー電池の運転方法である。予め定め
た放電打切り電圧に達する直前に前記電解液の電極単位
面積当りの送液量を0.3cc/min・cm2以上にして運転する
ことを特徴とする。
According to the present invention, an electrolytic solution is circulated and supplied to an electrode so that a discharge current density per unit area of the electrode is 0.20.
A A / cm 2 or more 0.55 A / cm 2 higher output vanadium redox flow battery operating method of operating as follows. It is characterized in that the electrolyte is operated at a rate of 0.3 cc / min · cm 2 or more per unit area of the electrode immediately before reaching a predetermined discharge cutoff voltage.

【0007】従来、送液量を上げることで出力を上げる
ことは特開平4-12464号公報にも示唆されている。とこ
ろで、後述する試験例に示すように、電流密度を上げる
と液利用率が大きく低下する。液利用率とは、放電開始
前の充電深度から放電後の充電深度を引いた値のことで
ある。充電深度とは、バナジウム系レドックスフロー電
池の場合、正極では正極活物質中の5価のバナジウムイ
オン濃度(式1)、負極では負極活物質中の2価のバナ
ジウムイオン濃度(式2)のことを言う。 V(5価)/{V(5価)+V(4価)} V:濃度(mol/l) …式1 V(2価)/{V(3価)+V(2価)} V:濃度(mol/l) …式2
Conventionally, it has been suggested in Japanese Patent Laid-Open No. 12464/1992 that the output is increased by increasing the liquid sending amount. By the way, as shown in a test example described later, when the current density is increased, the liquid utilization rate is significantly reduced. The liquid utilization rate is a value obtained by subtracting the charge depth after discharging from the charge depth before starting discharging. In the case of a vanadium redox flow battery, the charge depth is the concentration of pentavalent vanadium ions in the positive electrode active material (Equation 1) for the positive electrode and the concentration of divalent vanadium ions in the negative electrode active material (Equation 2) for the negative electrode. Say V (5 values) / {V (5 values) + V (4 values)} V: Concentration (mol / l) ... Formula 1 V (2 values) / {V (3 values) + V (2 values)} V: Concentration (mol / l)… Equation 2

【0008】液利用率により必要となる電解液量が決ま
り、電解液量でタンク容量などシステムの大きさが決ま
る。つまり、液利用率を上げることができればコストを
削減することができる。
The amount of electrolyte required determines the amount of electrolyte used, and the amount of electrolyte determines the size of the system such as the tank capacity. That is, if the liquid utilization rate can be increased, the cost can be reduced.

【0009】本発明では、放電打切り電圧に達する直前
の電解液の送液量を制御することで、高い電流密度の出
力でも液利用率を高めることができ、より効率的な運転
を行うことができる。
According to the present invention, by controlling the amount of the electrolytic solution sent immediately before the discharge cutoff voltage is reached, the liquid utilization rate can be increased even with an output of high current density, and more efficient operation can be performed. it can.

【0010】ここで、放電打切り電圧とは、放電を終了
する際の電圧のことである。この打切り電圧は利用条件
によって異なるが、一般に0.9〜1.05V/セル程度であ
る。
Here, the discharge cutoff voltage is a voltage at the end of discharge. This cut-off voltage is generally 0.9 to 1.05 V / cell, though it depends on the usage conditions.

【0011】打切り電圧に達する直前とは、セル内の電
解液が入れ替わるのに要する時間分だけ打切り電圧に達
した時点よりも以前の時間幅とすることが好ましい。こ
れにより、液利用率が高く高出力の運転を行うことがで
きる。実際の運転では、例えば、セル内の電解液が入れ
替わるのに要する時間T1がどの程度かを予め測定してお
く。次に、一度放電を行い、放電時間に対する放電電圧
を記録し、放電打切り電圧に達した時点よりも時間T1
け前の放電電圧V1を確認する。そして、再度放電する際
には、遅くとも放電電圧がV1に達した時点で送液量を変
化させれば良い。
It is preferable that the time immediately before the cutoff voltage is reached is a time width before the time when the cutoff voltage is reached by the time required to replace the electrolytic solution in the cell. As a result, it is possible to perform a high output operation with a high liquid utilization rate. In actual operation, for example, how long the time T 1 required for replacing the electrolytic solution in the cell is measured in advance. Next, discharge is performed once, the discharge voltage with respect to the discharge time is recorded, and the discharge voltage V 1 before time T 1 before the time when the discharge cutoff voltage is reached is confirmed. Then, when discharging again, the liquid transfer amount may be changed at the time when the discharge voltage reaches V 1 at the latest.

【0012】特に、放電打切り電圧に達する直前よりも
以前の運転における電極単位面積当りの送液量を0.3cc/
min・cm2未満にして運転することが好ましい。これによ
り、ポンプの動力を低減して一層効率の良い運転を行う
ことができる。
In particular, the amount of liquid fed per unit area of the electrode in the operation before the time immediately before the discharge cutoff voltage is reached is 0.3 cc /
It is preferable to operate at less than min · cm 2 . As a result, the power of the pump can be reduced and more efficient operation can be performed.

【0013】さらに、本発明は、電極単位面積当りの放
電電流密度を0.55A/cm2超0.58A/cm2以下として運転する
場合、予め定めた放電打切り電圧に達する直前の電解液
の電極単位面積当りの送液量を0.4cc/min・cm2以上にし
て運転することを特徴とする。
Furthermore, the present invention is, when driving the discharge current density per unit electrode area as follows 0.55 A / cm 2 ultra 0.58A / cm 2, the electrode unit of the electrolytic solution immediately before reaching the predetermined discharge censored voltage The feature is that the operation is performed with the liquid supply amount per area being 0.4 cc / min · cm 2 or more.

【0014】このような高出力で運転する場合も、送液
量を上記のように制御することで液利用率の高い運転を
実現することができる。この場合でも、放電打切り電圧
に達する直前よりも以前の運転における電極単位面積当
りの送液量は0.4cc/min・cm2未満にして運転することが
好ましい。
Even when operating at such a high output, it is possible to realize an operation with a high liquid utilization rate by controlling the liquid supply amount as described above. Even in this case, it is preferable that the amount of liquid fed per unit area of the electrode is 0.4 cc / min · cm 2 or less in the operation before immediately before the discharge cutoff voltage is reached.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。バナジウム系レドックスフロー電池を用い、電解
液の送液量と電流密度を変えて放電を行って、放電末期
における電流密度と液利用率との関係を調べてみた。試
験に用いた電池仕様、測定方法は次の通りである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. A vanadium redox flow battery was used to perform discharge by changing the amount of electrolyte fed and the current density, and the relationship between the current density and the liquid utilization rate at the end of discharge was investigated. The battery specifications and measurement methods used in the test are as follows.

【0016】<電池仕様> 電極面積:1570cm2×25セル 電解液:V;1.7(mol/l)、硫酸;2.6(mol/l)の電解液を
正負極で各0.15m3
<Battery specifications> Electrode area: 1570 cm 2 × 25 cells Electrolyte solution: V; 1.7 (mol / l), sulfuric acid; 2.6 (mol / l) electrolyte solution 0.15 m 3 each for positive and negative electrodes

【0017】<測定・評価方法>放電開始前の充電深度
を75%とし、電極の単位面積当たりの送液量を0.2〜0.8
0cc/min・cm2、電流密度を0.07〜0.6A/cm2として放電を
行い、各条件での液利用率の測定を行った。具体的に
は、放電を1回行い、その際に放電時間に対する放電電
圧を記録する。次に、放電打切り電圧に達する1分程度
前の放電電圧(V1)を確認する(例えばV1:1.05V)。放電
電圧がV1に達した時点で送液量を変化させる。放電打切
り電圧は1.0V/セルとした。従来の標準的な放電条件
は、送液量0.2cc/min・cm2、電流密度0.07A/cm2程度であ
る。従って、送液量0.2cc/min・cm2の場合における液利
用率に比べてどの程度液利用率がアップしたかを基準に
評価を行った。試験結果を表1および図1のグラフに示
す。
<Measurement / Evaluation Method> The depth of charge before the start of discharge was set to 75%, and the amount of liquid sent per unit area of the electrode was 0.2 to 0.8.
Discharge was performed at 0 cc / min · cm 2 and a current density of 0.07 to 0.6 A / cm 2 , and the liquid utilization rate under each condition was measured. Specifically, the discharge is performed once, and the discharge voltage with respect to the discharge time is recorded at that time. Next, the discharge voltage (V 1 ) about 1 minute before reaching the discharge cutoff voltage is confirmed (for example, V 1 : 1.05V). When the discharge voltage reaches V 1 , the liquid transfer rate is changed. The discharge cutoff voltage was 1.0 V / cell. The conventional standard discharge conditions are a liquid transfer rate of 0.2 cc / min · cm 2 and a current density of about 0.07 A / cm 2 . Therefore, the evaluation was made on the basis of how much the liquid utilization rate increased compared to the liquid utilization rate in the case of the liquid transfer rate of 0.2 cc / min · cm 2 . The test results are shown in Table 1 and the graph in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】表1と図1から次のことがわかる。The following can be seen from Table 1 and FIG.

【0020】従来の標準的な送液量(0.2cc/min・c
m2)条件では、電流密度を上げると急激に液利用率が低
下する。
Conventional standard liquid transfer rate (0.2cc / min ・ c
Under the m 2 ) condition, the liquid utilization rate decreases rapidly when the current density is increased.

【0021】送液量を0.3cc/min・cm2以上とすること
で、0.08A/cm2以上0.55A/cm2以下の高出力であっても、
液利用率を約5%またはそれ以上も改善できる。特に0.2
〜0.5A/cm2の範囲において液利用率の改善程度が極めて
顕著である。
[0021] The liquid supply rate by a 0.3cc / min · cm 2 or more, even 0.08A / cm 2 or more 0.55 A / cm 2 or less of a high output,
The liquid utilization rate can be improved by about 5% or more. Especially 0.2
In the range of up to 0.5 A / cm 2, the degree of improvement in the liquid utilization rate is extremely remarkable.

【0022】送液量を0.4cc/min・cm2以上とすること
で、0.55A/cm2超0.58A/cm2以下の高出力であっても、液
利用率を約5%またはそれ以上も改善できる。
[0022] The liquid supply rate by a 0.4cc / min · cm 2 or more, even 0.55 A / cm 2 ultra 0.58A / cm 2 or less of a high output, the liquid utilization of about 5% or more Can be improved.

【0023】送液量を大きくすることはポンプ動力を
大きくすることであるから、放電打切り電圧の直前のみ
送液量を0.3cc/min・cm2以上に増大することで、全体と
して一層効率的な運転を行うことができる。
Since increasing the liquid supply amount means increasing the pump power, increasing the liquid supply amount to 0.3 cc / min · cm 2 or more only immediately before the discharge cutoff voltage makes the overall efficiency more efficient. You can perform various driving.

【0024】[0024]

【発明の効果】以上説明したように、本発明運転方法に
よれば、放電打切り電圧に達する直前の送液量を規定す
ることで、高出力で液利用率の高いレドックスフロー電
池の運転を行うことができる。
As described above, according to the operating method of the present invention, the redox flow battery having a high output and a high liquid utilization rate is operated by defining the liquid feed amount immediately before the discharge cutoff voltage is reached. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】電流密度と液利用率の関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between current density and liquid utilization rate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5H026 AA10 HH00 HH06 5H027 AA10 KK21 KK56 MM02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuyuki Tokuda             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F term (reference) 5H026 AA10 HH00 HH06                 5H027 AA10 KK21 KK56 MM02

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電解液を電極に循環供給し、電極単位面
積当りの放電電流密度を0.20A/cm2以上0.55A/cm2以下と
して運転するバナジウムレドックスフロー電池の運転方
法であって、 予め定めた放電打切り電圧に達する直前の前記電解液の
電極単位面積当りの送液量が0.3cc/min・cm2以上で運転
されることを特徴とするバナジウムレドックスフロー電
池の運転方法。
1. A method for operating a vanadium redox flow battery, comprising supplying an electrolytic solution to an electrode in a circulating manner and operating at a discharge current density per electrode unit area of 0.20 A / cm 2 or more and 0.55 A / cm 2 or less, which comprises: A method for operating a vanadium redox flow battery, which is characterized in that the electrolyte solution is operated at a rate of 0.3 cc / min · cm 2 or more per unit area of the electrode immediately before reaching a predetermined discharge cutoff voltage.
【請求項2】 放電打切り電圧に達する直前よりも以前
の運転における電極単位面積当りの送液量を0.3cc/min・
cm2未満にして運転することを特徴とする請求項1に記載
のバナジウムレドックスフロー電池の運転方法。
2. The amount of liquid sent per unit area of electrode in the operation before the discharge cutoff voltage is reached is 0.3 cc / min.
The vanadium redox flow battery operating method according to claim 1, wherein the vanadium redox flow battery is operated at a pressure of less than cm 2 .
【請求項3】 電解液を電極に循環供給し、電極単位面
積当りの放電電流密度を0.55A/cm2超0.58A/cm2以下とし
て運転するバナジウムレドックスフロー電池の運転方法
であって、 予め定めた放電打切り電圧に達する直前の前記電解液の
電極単位面積当りの送液量が0.4cc/min・cm2以上で運転
されることを特徴とするバナジウムレドックスフロー電
池の運転方法。
3. A circulating supplying an electrolytic solution to the electrode, a method of operating a vanadium redox flow battery to operate the discharge current density per unit electrode area as follows 0.55 A / cm 2 ultra 0.58A / cm 2, pre A method for operating a vanadium redox flow battery, which is characterized in that the electrolyte is operated at a rate of 0.4 cc / min · cm 2 or more per unit area of the electrode immediately before reaching a predetermined discharge cutoff voltage.
【請求項4】 放電打切り電圧に達する直前よりも以前
の運転における電極単位面積当りの送液量を0.4cc/min・
cm2未満にして運転することを特徴とする請求項3に記載
のバナジウムレドックスフロー電池の運転方法。
4. The amount of liquid fed per unit area of electrode in the operation before the time immediately before the discharge cutoff voltage is reached is 0.4 cc / min.
4. The vanadium redox flow battery operating method according to claim 3, wherein the vanadium redox flow battery is operated at a pressure of less than cm 2 .
JP2001341083A 2001-11-06 2001-11-06 Operating method for vanadium redox flow battery Pending JP2003142142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001341083A JP2003142142A (en) 2001-11-06 2001-11-06 Operating method for vanadium redox flow battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001341083A JP2003142142A (en) 2001-11-06 2001-11-06 Operating method for vanadium redox flow battery

Publications (1)

Publication Number Publication Date
JP2003142142A true JP2003142142A (en) 2003-05-16

Family

ID=19155185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001341083A Pending JP2003142142A (en) 2001-11-06 2001-11-06 Operating method for vanadium redox flow battery

Country Status (1)

Country Link
JP (1) JP2003142142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
KR101763044B1 (en) * 2015-12-31 2017-07-28 오씨아이 주식회사 Method for controlling operation of redox flow battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508384A (en) * 2011-02-08 2014-04-03 ユナイテッド テクノロジーズ コーポレイション Flow battery with low resistance film
KR101763044B1 (en) * 2015-12-31 2017-07-28 오씨아이 주식회사 Method for controlling operation of redox flow battery

Similar Documents

Publication Publication Date Title
JP4140691B2 (en) Operating method of redox flow battery
JP5422083B2 (en) Non-flow redox battery
JP5454556B2 (en) Fuel cell system and control method of fuel cell system
EP3087628B1 (en) Distribution of electrolytes in a flow battery
WO2015122097A1 (en) Fuel cell system and control method for fuel cell system
JP2006147374A (en) Method of operating vanadium redox flow battery system
US20050266280A1 (en) Electronic apparatus system, fuel cell unit and power supply control method
EP3054516B1 (en) Fuel cell system
JP2022166622A (en) Redox flow battery, and method for controlling redox flow battery
JP6378319B2 (en) Flow battery health maintenance method
JP5849579B2 (en) Fuel cell system
JP5864682B2 (en) Method for producing pasty vanadium electrolyte and method for producing vanadium redox battery
JP6408140B2 (en) Flow battery electrode regeneration
JP2003142142A (en) Operating method for vanadium redox flow battery
KR100711894B1 (en) Fuel Cell and Fuel Cell Battery Carging Contrl Method
JP4155745B2 (en) Operating method of redox flow battery
JP2010092635A (en) Storage battery
JP2003157884A (en) Charging method of vanadium redox flow battery
JP2018147615A (en) Fuel cell system
JP2005276552A (en) Operating method for fuel cell
JP2003208916A (en) Operating method of vanadium redox flow battery
JP6168819B2 (en) Liquid fuel cell control device
JP2018014292A (en) Battery device
WO2013137275A1 (en) Fuel cell system
JP2007294124A (en) Manufacturing method of lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204