JP2018014292A - Battery device - Google Patents

Battery device Download PDF

Info

Publication number
JP2018014292A
JP2018014292A JP2016144521A JP2016144521A JP2018014292A JP 2018014292 A JP2018014292 A JP 2018014292A JP 2016144521 A JP2016144521 A JP 2016144521A JP 2016144521 A JP2016144521 A JP 2016144521A JP 2018014292 A JP2018014292 A JP 2018014292A
Authority
JP
Japan
Prior art keywords
battery
solution
positive electrode
negative electrode
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016144521A
Other languages
Japanese (ja)
Inventor
雄造 川村
Yuzo Kawamura
雄造 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDEA RES KK
IDEA RESEARCH KK
Original Assignee
IDEA RES KK
IDEA RESEARCH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDEA RES KK, IDEA RESEARCH KK filed Critical IDEA RES KK
Priority to JP2016144521A priority Critical patent/JP2018014292A/en
Publication of JP2018014292A publication Critical patent/JP2018014292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery device by which a battery output can be obtained even with a relatively simple structure.SOLUTION: A battery device 2 comprises: a battery container main body 4 containing a battery solution 12 including an electrolyte solution and heavy water; a positive electrode 14 for electrolysis and a negative electrode 16 for electrolysis which are operable to electrolyze the battery solution; an accelerating positive electrode 18 and an accelerating negative electrode 20 which are arranged to accelerate charged ions in the battery solution; a positive electrode 22 for charge collection and a negative electrode 24 for charge collection which are arranged to collect an electric charge; a power supply device 38 for electrolysis for putting an electrolytic voltage between the positive electrode 14 for electrolysis and the negative electrode 16 for electrolysis; and an accelerating power supply device 40 for putting an acceleration voltage between the accelerating positive electrode 18 and the accelerating negative electrode 20. The battery device 2 is arranged such that, when the acceleration voltage is applied by the accelerating power supply device 40 after application of the electrolytic voltage by the power supply device 38 for electrolysis, positive charged ions flow from the accelerating positive electrode 18 toward the accelerating negative electrode, and a collected charge flows from the positive electrode 22 for charge collection toward the negative electrode 24 for charge collection so as to cancel out positive charged ions collected on the accelerating negative electrode 20, part of which is made a battery output.SELECTED DRAWING: Figure 1

Description

本発明は、電池溶液を利用して電池出力を得ることができる電池装置に関する。   The present invention relates to a battery device capable of obtaining a battery output using a battery solution.

電池装置として種々のもの提案され、その一つとして燃料を利用した燃料電池装置が実用に供されている(例えば、特許文献1参照)。この燃料電池装置は、燃料電池反応により発電する発電燃料電池本体と、燃料電池本体の酸化極側に空気を供給するための空気供給系と、この燃料供給本体の燃料極側に燃料ガスを供給するための燃料ガス供給系とを備えている。この燃料電池装置では、燃料として例えばメタノールが用いられ、燃料ガス供給系は、メタノールを加熱して気化させるための蒸発器と、気化されたメタノールを改質するための改質器と、改質器に改質された改質ガスに含まれる一酸化炭素を低下させるための一酸化炭素変成器を含んでいる。   Various battery devices have been proposed, and one of them is a fuel cell device using fuel (see, for example, Patent Document 1). This fuel cell device includes a power generation fuel cell body that generates power by a fuel cell reaction, an air supply system for supplying air to the oxidation electrode side of the fuel cell body, and a fuel gas to the fuel electrode side of the fuel supply body And a fuel gas supply system. In this fuel cell device, for example, methanol is used as the fuel, and the fuel gas supply system includes an evaporator for heating and vaporizing the methanol, a reformer for reforming the vaporized methanol, A carbon monoxide converter for reducing carbon monoxide contained in the reformed gas.

このような燃料電池装置では、燃料としてのメタノールは、燃料ガス供給系を通して送給される間に改質され、この改質ガスに含まれる一酸化炭素の濃度が低下された後に燃料電池本体の燃料極側に送給され、また空気(酸素を含む)が空気供給系を通して燃料電池本体の酸素極側に送給される。燃料電池本体では、燃料極側における酸化と空気極側における還元とによる燃料電池反応により、燃料ガスが有する化学エネルギーが直接的に電気エネルギーに変換される。   In such a fuel cell apparatus, methanol as fuel is reformed while being fed through the fuel gas supply system, and after the concentration of carbon monoxide contained in the reformed gas has been reduced, The fuel is supplied to the fuel electrode side, and air (including oxygen) is supplied to the oxygen electrode side of the fuel cell main body through the air supply system. In the fuel cell main body, the chemical energy of the fuel gas is directly converted into electric energy by the fuel cell reaction caused by the oxidation on the fuel electrode side and the reduction on the air electrode side.

特開平9−266005号公報JP-A-9-266005

しかしながら、上述した燃料電池装置では、燃料(メタノール)を気化させるための蒸発器、気化された燃料を改質するための改質装置、改質された改質ガスに含まれる一酸化炭素を低下させるための一酸化炭素変成器などを必要とし、装置全体が大型化するとともに、その製作コストが高くなる問題がある。   However, in the fuel cell device described above, an evaporator for vaporizing the fuel (methanol), a reforming device for reforming the vaporized fuel, and reducing carbon monoxide contained in the reformed reformed gas. A carbon monoxide transformer or the like is required to increase the size of the entire apparatus, and the manufacturing cost is increased.

本発明目的は、比較的簡単な構成でもって電池出力を得ることができる電池装置を提供することである。   An object of the present invention is to provide a battery device that can obtain a battery output with a relatively simple configuration.

本発明の請求項1に記載の電池装置は、電解液と重水とを含む電池溶液を収容した電池容器本体と、前記電池溶液を電解するための電解用正電極及び電解用負電極と、前記電池容器本体内に収容され、前記電池溶液中の電荷イオンを加速するための加速用正電極及び加速用負電極と、電荷を集電するための集電用正電極及び集電用負電極と、前記電解用正電極及び前記電解用負電極の間に電解電圧を付与するための電解用電源装置と、前記加速用正電極及び前記加速用負電極の間に加速電圧を付与するための加速用電源装置と、前記電池溶液を均一化するための均一化手段と、を備え、前記集電用正電極は前記加速用正電極の外側に配設され、前記集電用負電極は前記加速用負電極の外側に配設され、前記加速用正電極から前記加速用負電極に正電荷イオンが流れ、前記加速用負電極に集まった前記正電荷イオンを消すように前記集電用正電極から前記集電用負電極に集電電荷が流れ、前記集電電荷の流れの一部を電池出力として取り出すことを特徴とする。   The battery device according to claim 1 of the present invention is a battery container body containing a battery solution containing an electrolytic solution and heavy water, a positive electrode for electrolysis and a negative electrode for electrolysis for electrolyzing the battery solution, An accelerating positive electrode and an accelerating negative electrode for accelerating charged ions in the battery solution, and a current collecting positive electrode and a current collecting negative electrode for collecting electric charge; , An electrolysis power supply device for applying an electrolysis voltage between the electrolysis positive electrode and the electrolysis negative electrode, and acceleration for applying an acceleration voltage between the acceleration positive electrode and the acceleration negative electrode Power supply device and a homogenizing means for homogenizing the battery solution, wherein the current collecting positive electrode is disposed outside the acceleration positive electrode, and the current collecting negative electrode is the acceleration Arranged outside the negative electrode for acceleration, from the positive electrode for acceleration to the negative electrode for acceleration The collected charge flows from the current collection positive electrode to the current collection negative electrode so that the positive charge ions flow and the positive charge ions collected at the acceleration negative electrode disappear, and one of the flows of the current collection charges flows. Part is taken out as a battery output.

また、本発明の請求項2に記載の電池装置では、前記均一化手段は、前記電池容器本体の片端壁の外側に配設された溜め容器と、前記溜め容器を通して前記電池溶液を循環させる溶液循環流路と、前記溶液循環流路に配設された循環ポンプとを備え、前記電池容器本体内の前記電池溶液が前記溶液循環流路及び前記溜め容器を通して循環され、前記溶液循環流路を通して循環される前記電池溶液の流れによって、前記電池容器本体内の前記電池溶液が循環されることを特徴とする。   Further, in the battery device according to claim 2 of the present invention, the uniformizing means includes a reservoir container disposed outside one end wall of the battery container body, and a solution for circulating the battery solution through the reservoir container. A circulation channel and a circulation pump disposed in the solution circulation channel, wherein the battery solution in the battery container body is circulated through the solution circulation channel and the reservoir, and through the solution circulation channel. The battery solution in the battery container body is circulated by the flow of the circulated battery solution.

また、本発明の請求項3に記載の電池装置では、前記電解用正電極及び前記電解用負電極は前記溜め容器内に配設され、前記溜め容器内の前記電池溶液が電解され、前記溜め容器にて電解された前記電池溶液が前記溶液循環流路を通して前記電気容器本体内に送給されることを特徴とする。   In the battery device according to claim 3 of the present invention, the positive electrode for electrolysis and the negative electrode for electrolysis are disposed in the reservoir container, and the battery solution in the reservoir container is electrolyzed, and the reservoir The battery solution electrolyzed in a container is fed into the electric container body through the solution circulation channel.

また。本発明の請求項4に記載の電池装置では、前記電池容器本体又は前記溜め容器に関連して、前記電池溶液の濃度を所定範囲に保つための溶液濃度調整手段が設けられ、前記濃度調整手段は、前記電解液を供給するための電解液供給手段と、前記重水を供給するための重水供給手段と、前記電池溶液本体内の前記電池溶液を排水するための排水手段とを含んでいることを特徴とする。   Also. In the battery device according to claim 4 of the present invention, a solution concentration adjusting means for keeping the concentration of the battery solution in a predetermined range is provided in relation to the battery container main body or the reservoir container, and the concentration adjusting means Includes an electrolyte supply means for supplying the electrolyte solution, a heavy water supply means for supplying the heavy water, and a drain means for draining the battery solution in the battery solution body. It is characterized by.

また、本発明の請求項5に記載の電池装置では、前記加速用電源装置は、前記加速電圧を調整するための加速電圧調整手段を含み、前記加速電圧調整手段は、前記集電用正電極及び前記集電用負電極間を流れる集電電荷による電池出力の電圧が前記加速用電源装置により印加される加速電圧よりも低くなるように調整することを特徴とする。   Moreover, in the battery device according to claim 5 of the present invention, the acceleration power supply device includes an acceleration voltage adjusting means for adjusting the acceleration voltage, and the acceleration voltage adjusting means includes the positive electrode for current collection. And adjusting the voltage of the battery output by the collected charge flowing between the collecting negative electrodes to be lower than the accelerating voltage applied by the accelerating power supply device.

更に、本発明の請求項6に記載の電池装置では、前記加速用正電極は、前記電池容器本体内にて前記加速用負電極に向けて間隔をおいて配設された複数の正電極部材から構成され、隣接する正電極部材は電気抵抗を介して電気的に接続されていることを特徴とする。   Furthermore, in the battery device according to claim 6 of the present invention, the positive electrode for acceleration is a plurality of positive electrode members disposed in the battery container main body at intervals toward the negative electrode for acceleration. The adjacent positive electrode members are electrically connected via an electric resistance.

本発明の請求項1に記載の電池装置によれば、電解用正電極及び電解用負電極間に電解電圧が付与され、また加速用正電極及び加速用負電極間に加速電圧が付与されるので、電池溶液中の正電荷イオンが加速電圧により加速されて加速用正電極から加速用負電極に流れ、この加速用負電極に正電荷イオンが集まるようになる。また、加速用電極の外側に集電用正電極が配設され、加速用負電極の外側に集電用負電極が配設されるので、加速用負電極に正電荷イオンが集まると、この正電荷イオンを消すように集電用正電極から集電用負電極に集電電荷が流れ、このように流れる集電電荷の一部を取り出すことによって電池出力を得ることができる。また、均一化手段が設けられているので、電池容器本体内の電池溶液の成分が均一化され、これによって、安定して電池出力を得ることができる。   According to the battery device of the first aspect of the present invention, an electrolytic voltage is applied between the positive electrode for electrolysis and the negative electrode for electrolysis, and an acceleration voltage is applied between the positive electrode for acceleration and the negative electrode for acceleration. Therefore, the positively charged ions in the battery solution are accelerated by the acceleration voltage and flow from the accelerating positive electrode to the accelerating negative electrode, and the positively charged ions gather at the accelerating negative electrode. In addition, since the positive electrode for collecting current is arranged outside the accelerating electrode and the negative electrode for collecting current is arranged outside the accelerating negative electrode, when positively charged ions gather on the accelerating negative electrode, The collected charge flows from the current collecting positive electrode to the current collecting negative electrode so as to eliminate the positive charge ions, and a battery output can be obtained by taking out a part of the collected current flowing in this way. In addition, since the uniformizing means is provided, the components of the battery solution in the battery container body are uniformed, whereby a battery output can be stably obtained.

また、本発明の請求項2に記載の電池装置によれば、均一化手段は、溜め容器を通して電池溶液を循環する溶液循環流路と、この溶液循環流路に配設された循環ポンプとを備えているので、電池容器本体内の電池溶液が溶液循環流路及び溜め容器を通して循環され、また溶液循環流路を通して循環される電池溶液の流れによって、電池容器本体内の電池溶液が循環され、これによって、電池容器本体内の電池溶液の組成の均一化を図ることができる。   In the battery device according to claim 2 of the present invention, the homogenizing means includes a solution circulation channel for circulating the battery solution through the reservoir, and a circulation pump disposed in the solution circulation channel. Since the battery solution in the battery container body is circulated through the solution circulation channel and the reservoir, the battery solution in the battery container body is circulated by the flow of the battery solution circulated through the solution circulation channel. Thereby, the composition of the battery solution in the battery container body can be made uniform.

また、本発明の請求項3に記載の電池装置によれば、電解用正電極及び電解用負電極が溜め容器内に配設されているので、この溜め容器内にて電池溶液が電解され、電解された電池容器が溶液循環流路を通して電池容器本体内に送給され、この電解電池溶液の流れによって電池容器本体内の電池溶液が循環される。   Further, according to the battery device according to claim 3 of the present invention, since the positive electrode for electrolysis and the negative electrode for electrolysis are arranged in the reservoir, the battery solution is electrolyzed in the reservoir, The electrolyzed battery container is fed into the battery container body through the solution circulation channel, and the battery solution in the battery container body is circulated by the flow of the electrolytic battery solution.

また、本発明の請求項4に記載の電池装置によれば、電池容器本体又は溜め容器に関連して、電池溶液の濃度を所定範囲に保つための濃度調整手段が設けられ、この濃度調整手段は電解液供給手段、重水供給手段及び排水手段を含んでいるので、重水の濃度が高くなったときには、排水手段によって電池容器本体内の電池溶液を排出した後に、電解液供給手段から電解液を供給するとともに、重水供給手段から重水を供給することにより、電池容器本体内の電池溶液の組成を所定範囲に維持することができる。   Further, according to the battery device of the fourth aspect of the present invention, the concentration adjusting means for keeping the concentration of the battery solution in a predetermined range is provided in relation to the battery container main body or the reservoir, and the concentration adjusting means. Includes an electrolyte supply means, a heavy water supply means, and a drainage means. When the concentration of heavy water increases, the battery solution in the battery container body is discharged by the drainage means, and then the electrolyte solution is discharged from the electrolyte supply means. By supplying heavy water from the heavy water supply means, the composition of the battery solution in the battery container body can be maintained within a predetermined range.

また、本発明の請求項5に記載の電池装置によれば、加速用電源装置は加速電圧を調整するための加速電圧調整手段を含み、この加速電圧調整手段は、集電用正電極及び集電用負電極間を流れる集電電荷イオンによる電池出力の電圧が加速用電源装置により印加される加速電圧よりも低くなるように調整するので、燃料電池の稼働を安定させた状態で電池出力を得ることができる。   According to the battery device of the fifth aspect of the present invention, the acceleration power supply device includes acceleration voltage adjusting means for adjusting the acceleration voltage, and the acceleration voltage adjusting means includes the current collecting positive electrode and the current collecting positive electrode. Since the voltage of the battery output due to the collected charge ions flowing between the negative electrode for electricity is adjusted to be lower than the acceleration voltage applied by the acceleration power supply device, the battery output can be adjusted while the operation of the fuel cell is stabilized. Can be obtained.

更に、本発明の請求項6に記載の電池装置によれば、加速用正電極は、電池容器本体内にて加速用負電極に向けて間隔をおいて配設された複数の正電極部材から構成され、隣接する正電極部材は電気抵抗を介して電気的に接続されているので、加速用正電極(複数の正電極部材)から加速用負電極に流れる正電荷イオンの量が多くなり、これにより、集電用正電極から集電用負電極に流れる集電電荷も多くなり、その結果、電池装置の電池出力を大きくすることができる。   Furthermore, according to the battery device according to claim 6 of the present invention, the accelerating positive electrode is formed of a plurality of positive electrode members disposed at intervals in the battery container body toward the accelerating negative electrode. Since the adjacent positive electrode members are electrically connected via electrical resistance, the amount of positive charge ions flowing from the acceleration positive electrode (a plurality of positive electrode members) to the acceleration negative electrode is increased, As a result, the collected charge flowing from the current collecting positive electrode to the current collecting negative electrode also increases, and as a result, the battery output of the battery device can be increased.

本発明に従う電池装置の第1の実施形態を示す断面図。Sectional drawing which shows 1st Embodiment of the battery apparatus according to this invention. 本発明に従う電池装置の第2の実施形態を示す断面図。Sectional drawing which shows 2nd Embodiment of the battery apparatus according to this invention. 本発明に従う電池装置の第3の実施形態の全体を簡略的に示すブロック図。The block diagram which shows simply the whole 3rd Embodiment of the battery apparatus according to this invention. 図3の電池装置における電池装置本体を簡略的に示す断面図。Sectional drawing which shows the battery apparatus main body in the battery apparatus of FIG. 3 simply.

以下、添付図面を参照して、本発明に従う電池装置の種々の実施形態について説明する。まず、図1を参照して、本発明に従う電池装置の第1の実施形態について説明する。図1において、図示の電池装置2は、電池出力を得るための電池容器本体4を備えている。この電池容器本体4は、横長の円筒状部材6と、この円筒状部材6の両端部に設けられた一対の蓋部材8,10とから構成されている。電池容器本体4は、例えば、図1に示すように斜めに傾斜した状態に取り付けられ、蓋部材8が下側に、蓋部材10が上側となるように装置フレーム(図示せず)に取り付けら、この電池容器本体4内に電池溶液12が収容される。   Hereinafter, various embodiments of a battery device according to the present invention will be described with reference to the accompanying drawings. First, a first embodiment of a battery device according to the present invention will be described with reference to FIG. In FIG. 1, the illustrated battery device 2 includes a battery container body 4 for obtaining a battery output. The battery case main body 4 includes a horizontally long cylindrical member 6 and a pair of lid members 8 and 10 provided at both ends of the cylindrical member 6. The battery container body 4 is attached to an apparatus frame (not shown) so that the lid member 8 is on the lower side and the lid member 10 is on the upper side, for example, as shown in FIG. The battery solution 12 is accommodated in the battery container body 4.

この電池装置2は、電池溶液12を電解するための電解用正電極14及び電解用負電極16と、電池溶液12中の電荷イオンを加速ための加速用正電極18及び加速用負電極20と、集電電荷を集電して電池出力として取り出すための集電用正電極22及び集電用負電極24とを備えている。   The battery device 2 includes an electrolysis positive electrode 14 and an electrolysis negative electrode 16 for electrolyzing the battery solution 12, an acceleration positive electrode 18 and an acceleration negative electrode 20 for accelerating the charge ions in the battery solution 12. And a current collecting positive electrode 22 and a current collecting negative electrode 24 for collecting the collected charge and taking it out as a battery output.

この実施形態では、電池容器本体4の一方の蓋部材8(片端壁を構成する)の外側に溜め容器26が配設され、この溜め容器26と電池容器本体4とが溶液循環流路28を介して連通されている。溶液循環流路28の上流側部30の一端側は、蓋部材8の上部を貫通して電池容器本体4内に連通され、その他端側は、溜め容器26の周側壁32の上部を貫通して溜め容器26の上部に連通されている。また、この溶液循環流路28の下流側部34の一端側は、蓋部材8の下部を貫通して電池容器本体4内に連通され、その他端側は、溜め容器26の周側壁32の下部を通して溜め容器26の下部に連通されている。また、この溶液循環流路28の下流側部34には循環ポンプ36が配設されている。尚、この循環ポンプ36は、溶液循環流路28の上流側部30に配設するようにしてもよい。   In this embodiment, a reservoir container 26 is disposed outside one lid member 8 (which constitutes one end wall) of the battery container body 4, and the reservoir container 26 and the battery container body 4 pass through the solution circulation channel 28. It is communicated through. One end side of the upstream side portion 30 of the solution circulation channel 28 passes through the upper part of the lid member 8 and communicates with the inside of the battery container body 4, and the other end side passes through the upper part of the peripheral side wall 32 of the reservoir container 26. The upper part of the reservoir container 26 communicates with the upper part. Further, one end side of the downstream side portion 34 of the solution circulation channel 28 passes through the lower portion of the lid member 8 and communicates with the inside of the battery container body 4, and the other end side is a lower portion of the peripheral side wall 32 of the reservoir container 26. It is communicated with the lower part of the reservoir 26 through. A circulation pump 36 is disposed on the downstream side portion 34 of the solution circulation channel 28. The circulation pump 36 may be disposed on the upstream side portion 30 of the solution circulation channel 28.

この形態では、電解用正電極14及び電解用負電極16が、相互に対向して溜め容器26内に配設されている。また、電解用正電極14及び電解用負電極16に電解電圧を印加するための電解用電源装置38が設けられ、電解用電源装置38の正側の端子が電解用正電極14に電気的に接続され、その負側の端子が電解用負電極16に電気的に接続されている。このような電解用正電極14及び電解用負電極16は、例えば、矩形状、円形状などのプレート状電極などから構成される。尚、電解用正電極18及び電解用負電極16は、溜め容器26内に代えて、電池容器本体4内に配設するようにしてもよく、この場合、電解用正電極14及び電解用負電極16は、後述する集電用正電極22の外側(この形態では、蓋部材8側)に配設される。   In this embodiment, the electrolysis positive electrode 14 and the electrolysis negative electrode 16 are disposed in the reservoir container 26 so as to face each other. Further, an electrolysis power supply device 38 for applying an electrolysis voltage to the electrolysis positive electrode 14 and the electrolysis negative electrode 16 is provided, and a positive terminal of the electrolysis power supply device 38 is electrically connected to the electrolysis positive electrode 14. The negative terminal is electrically connected to the electrolysis negative electrode 16. Such a positive electrode 14 for electrolysis and a negative electrode 16 for electrolysis are composed of, for example, rectangular or circular plate-like electrodes. It should be noted that the electrolysis positive electrode 18 and the electrolysis negative electrode 16 may be disposed in the battery container body 4 in place of the reservoir container 26. In this case, the electrolysis positive electrode 14 and the electrolysis negative electrode 16 The electrode 16 is disposed on the outside (in this embodiment, the lid member 8 side) of the positive electrode 22 for collecting electricity described later.

このように構成されているので、循環ポンプ36が作動すると、図1に矢印で示すように、電池容器本体4内の電池溶液12が溶液循環流路28及び溜め容器26を通して循環され、かく循環される電池溶液によって、電池容器本体4内の電池溶液が循環され、電池容器本体4内の電池溶液の組成の均一化が図られ、これら溜め容器26、溶液循環流路28及び循環ポンプ36が均一化手段として機能する。また、電解用電源装置38が作動すると、電解用正電極14及び電解用負電極16間に電解電圧が印加され、これら電解用正電極14及び電解用負電極16間にて電池溶液12の電解が行われ、電解された電池溶液が溶液循環流路28の下流側部34を通して電池容器本体4内に送給される。   With this configuration, when the circulation pump 36 is activated, the battery solution 12 in the battery container body 4 is circulated through the solution circulation channel 28 and the reservoir container 26 as shown by the arrows in FIG. The battery solution in the battery container body 4 is circulated by the battery solution to be made uniform, and the composition of the battery solution in the battery container body 4 is made uniform, and the reservoir container 26, the solution circulation channel 28 and the circulation pump 36 are provided. It functions as a uniformizing means. When the electrolysis power supply device 38 is operated, an electrolysis voltage is applied between the electrolysis positive electrode 14 and the electrolysis negative electrode 16, and the battery solution 12 is electrolyzed between the electrolysis positive electrode 14 and the electrolysis negative electrode 16. The electrolyzed battery solution is fed into the battery container body 4 through the downstream side portion 34 of the solution circulation channel 28.

加速用正電極18及び加速用負電極20は、電池容器本体4の長手方向(図1において右下から左上の方向)に相互に対向して配設され、電池溶液本体4内の電池溶液12に浸漬されている。加速用正電極18は、片方の蓋部材8の内側に配設され、加速用負電極20は、他方の蓋部材20の内側に配設されている。また、加速用正電極18及び加速用負電極20に加速電圧を印加するための電解用電源装置40が設けられ、加速用電源装置40の正側の端子が加速用正電極18に電気的に接続され、その負側の端子が加速用負電極20に電気的に接続されている。このような加速用正電極18は、例えば、リング状電極、網状電極などから構成され、また加速用負電極20は、例えば、リング状電極などから構成される。   The accelerating positive electrode 18 and the accelerating negative electrode 20 are disposed to face each other in the longitudinal direction of the battery container body 4 (from the lower right to the upper left in FIG. 1), and the battery solution 12 in the battery solution body 4 is disposed. Soaked in The acceleration positive electrode 18 is disposed inside one lid member 8, and the acceleration negative electrode 20 is disposed inside the other lid member 20. Also, an electrolysis power supply device 40 for applying an acceleration voltage to the acceleration positive electrode 18 and the acceleration negative electrode 20 is provided, and the positive terminal of the acceleration power supply device 40 is electrically connected to the acceleration positive electrode 18. The negative terminal is electrically connected to the accelerating negative electrode 20. Such an accelerating positive electrode 18 is composed of, for example, a ring electrode, a mesh electrode, and the like, and the accelerating negative electrode 20 is composed of, for example, a ring electrode.

この加速用電源装置40は、加速用正電極18及び加速用負電極20間に印加する加速電圧を調整するための加速電圧調整手段42を含んでいる。この加速電圧調整手段42は、後述する電池出力の電圧が加速用電源装置40により印加される加速電圧よりも低くなるように調整すし、かく調整することにより電池装置の作動状態を安定させることができる。   The acceleration power supply device 40 includes acceleration voltage adjusting means 42 for adjusting an acceleration voltage applied between the acceleration positive electrode 18 and the acceleration negative electrode 20. The accelerating voltage adjusting means 42 adjusts the voltage of the battery output, which will be described later, to be lower than the accelerating voltage applied by the accelerating power supply device 40, and thereby stabilizes the operating state of the battery device. it can.

このように構成されているので、加速用電源装置40が作動すると、加速用正電極18及び加速用負電極20間に加速電圧が印加され、加速用正電極18から加速用負電極20に向けて電荷イオンが流れ、この電荷イオンの流れを利用して電池出力を後述する如くして得ることができる。   With this configuration, when the acceleration power supply device 40 is operated, an acceleration voltage is applied between the acceleration positive electrode 18 and the acceleration negative electrode 20, and the acceleration positive electrode 18 is directed toward the acceleration negative electrode 20. Then, charged ions flow, and the battery output can be obtained as described later by using the flow of charged ions.

また、集電用正電極22は加速用正電極18の外側(この形態では、加速用正電極18と片方の蓋部材8との間)に配設され、集電用負電極24は加速用負電極の外側(この形態では、加速用負電極20と他方の蓋部材10との間)に配設され、上述の加速用正電極18及び加速用負電極20と同様に、電池溶液本体4内の電池溶液12に浸漬されている。集電用正電極22及び集電用負電極24は、例えば、リング状電極、プレート状電極などから構成される。   The current collecting positive electrode 22 is disposed outside the acceleration positive electrode 18 (between the acceleration positive electrode 18 and one lid member 8 in this embodiment), and the current collecting negative electrode 24 is used for acceleration. The battery solution body 4 is arranged outside the negative electrode (between the acceleration negative electrode 20 and the other lid member 10 in this embodiment) and is similar to the acceleration positive electrode 18 and the acceleration negative electrode 20 described above. It is immersed in the battery solution 12 inside. The current collecting positive electrode 22 and the current collecting negative electrode 24 are constituted by, for example, a ring electrode, a plate electrode, or the like.

この集電用正電極22及び集電用負電極24は出力接続ライン44を介して電気的に接続され、かかる出力接続ライン44に電力出力ライン46をして外部電力負荷48が電気的に接続される。この出力接続ライン44に可変抵抗50が配設され、この可変抵抗50に電気的に並列に電力出力ライン46が配設され、このように構成することにより、集電用正電極22から集電用負電極24に流れる集電電荷の一部を電池出力として取り出して外部電力負荷48で消費することができる。   The current collecting positive electrode 22 and the current collecting negative electrode 24 are electrically connected through an output connection line 44, and an external power load 48 is electrically connected to the output connection line 44 through a power output line 46. Is done. A variable resistor 50 is disposed in the output connection line 44, and a power output line 46 is disposed in parallel with the variable resistor 50. By configuring in this way, current collection from the current collecting positive electrode 22 is performed. A part of the collected charge flowing in the negative electrode 24 can be taken out as a battery output and consumed by the external power load 48.

この形態では、溜め容器26は、連通管52を介してガス分離容器54に接続され、このガス分離容器54の上壁56に排出管58が接続されている。このように構成されているので、電解用正電極14及び電解用負電極16による電解により溜め容器26内に発生したガスは、連通管52を通してガス分離容器54に流れ、このガス分離容器54にて電池溶液12から分離され、分離されたガスが排出管58を通してガス回収槽(図示せず)などに回収される。   In this embodiment, the reservoir container 26 is connected to the gas separation container 54 via the communication pipe 52, and a discharge pipe 58 is connected to the upper wall 56 of the gas separation container 54. Since it is configured in this way, the gas generated in the reservoir container 26 by electrolysis by the electrolysis positive electrode 14 and the electrolysis negative electrode 16 flows to the gas separation container 54 through the communication pipe 52, and enters the gas separation container 54. The separated gas is separated from the battery solution 12, and the separated gas is recovered through a discharge pipe 58 into a gas recovery tank (not shown) or the like.

また、電池容器本体4の端部(具体的には、斜めに配置された状態における上端部)には排気管60が設けられており、このように構成することにより、加速用正電極18及び加速用負電極20間に加速電圧を印加したときに発生するガスは、この排気管60を通してガス回収槽(図示せず)に回収される。   In addition, an exhaust pipe 60 is provided at an end of the battery case body 4 (specifically, an upper end in an obliquely arranged state). With this configuration, the acceleration positive electrode 18 and The gas generated when an acceleration voltage is applied between the accelerating negative electrodes 20 is collected in a gas collection tank (not shown) through the exhaust pipe 60.

このような電池装置2においては、電池出力を監視するために、例えば、電解用電源装置38に関連して、電解電力を計測するための電解電力計測器39が設けられ、加速用電源装置40に関連して、加速電力を計測するための加速電力計測器41が設けられ、また外部電力負荷48に関連して、外部電力(電池出力)を計測するための外部電力計測器49が設けられる。   In such a battery device 2, in order to monitor the battery output, for example, an electrolysis power measuring device 39 for measuring electrolysis power is provided in association with the electrolysis power supply device 38, and the acceleration power supply device 40. , An acceleration power measuring device 41 for measuring acceleration power is provided, and an external power measuring device 49 for measuring external power (battery output) is provided in connection with the external power load 48. .

この電池装置2においては、電池溶液12として電解液及び重水の混合液が用いられる。電解液としては、例えば、純水(又は蒸留水)に電解物質として水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶解させた溶液を用いることができ、純水(又は蒸留水)1リットル当たり0.005〜0.05モル(0.005〜0.05mol/l)程度(例えば、0.01mol/l)混合させ、また電池溶液として、この電解液に純水を30〜35重量%程度(例えば、34重量%)混合させることができる。   In the battery device 2, a mixed solution of an electrolytic solution and heavy water is used as the battery solution 12. As the electrolytic solution, for example, a solution obtained by dissolving sodium hydroxide, potassium hydroxide, sodium carbonate or the like as an electrolytic substance in pure water (or distilled water) can be used, and per 1 liter of pure water (or distilled water). About 0.005 to 0.05 mol (0.005 to 0.05 mol / l) (for example, 0.01 mol / l) is mixed, and as the battery solution, pure water is added to the electrolytic solution at about 30 to 35% by weight. (For example, 34% by weight) can be mixed.

次に、上述した電池装置2の電池動作について説明する。電池出力を取り出すには、まず、循環ポンプ36を作動させる。かく作動させると、電池容器本体4内の電池溶液12が溶液循環流路20及び溜め容器26を通して循環され、この電池溶液12の流れによって電池溶液本体4内の電池溶液4も循環され、これにより、電池溶液12の均一化が図られる。   Next, the battery operation of the battery device 2 described above will be described. In order to extract the battery output, first, the circulation pump 36 is operated. When operated in this manner, the battery solution 12 in the battery container body 4 is circulated through the solution circulation channel 20 and the reservoir container 26, and the battery solution 4 in the battery solution body 4 is also circulated by the flow of the battery solution 12. The battery solution 12 is made uniform.

次に、電解用電源装置38を作動させて電解用正電極14及び電解用負電極16間に電解電圧を印加する。電解用電源装置38により印加する電解電圧は、例えば2.5〜5V程度(例えば、3V)程度である。電解用正電極14及び電解用負電極16間に電解電圧を印加すると、溜め容器26内において電解反応が起こり、この電解反応により電池溶液12中に正電荷イオンが生じ、正電荷イオンを含む電池溶液12が溶液循環流路28の下流側部34を通して電池容器本体4に送給される。このとき、電池溶液12の電解反応によりガスが生じるが、発生したガスは、連通管52及びガス分離容器56及び排出管58を通して外部に排出される。   Next, the electrolysis power supply device 38 is operated to apply an electrolysis voltage between the electrolysis positive electrode 14 and the electrolysis negative electrode 16. The electrolytic voltage applied by the electrolysis power supply 38 is, for example, about 2.5 to 5 V (for example, 3 V). When an electrolysis voltage is applied between the positive electrode for electrolysis 14 and the negative electrode 16 for electrolysis, an electrolytic reaction occurs in the reservoir container 26, and this electrolytic reaction generates positively charged ions in the battery solution 12, and the battery contains positively charged ions. The solution 12 is fed to the battery container body 4 through the downstream side portion 34 of the solution circulation channel 28. At this time, gas is generated by the electrolytic reaction of the battery solution 12, but the generated gas is discharged to the outside through the communication pipe 52, the gas separation container 56, and the discharge pipe 58.

次いで、加速用電源装置40を作動させて加速用正電極18及び加速用負電極20間に加速電圧を印加させる。加速用電源装置40により印加する加速電圧は、例えば150〜500V程度(例えば、200V)程度である。加速用正電極18及び加速用負電極20間に加速電圧を印加すると、電池溶液12中の正電荷イオンが加速用正電極18から加速用負電極20に加速されて流れ、この加速用負電極20に集められるようになり、その結果、この加速用負電極20付近におけるエネルギー密度が高くなる。   Next, the acceleration power supply apparatus 40 is operated to apply an acceleration voltage between the acceleration positive electrode 18 and the acceleration negative electrode 20. The acceleration voltage applied by the acceleration power supply device 40 is, for example, about 150 to 500V (for example, 200V). When an accelerating voltage is applied between the accelerating positive electrode 18 and the accelerating negative electrode 20, the positively charged ions in the battery solution 12 are accelerated from the accelerating positive electrode 18 to the accelerating negative electrode 20 and flow. As a result, the energy density in the vicinity of the accelerating negative electrode 20 is increased.

このように加速用負電極20に正電荷イオンが集まると、この正電荷イオンを打ち消すように集電用負電極24に向けて集電電荷としての負の電荷が流れ、換言すると集電用正電荷22から集電用負電荷24に集電電荷(負電荷)が流れる。この集電電荷の流れの一部は、外部電力負荷48を通して流れ、この外部電力付加48において電池出力として取り出して消費することができる。   When positively charged ions are collected at the accelerating negative electrode 20 in this way, negative charges as collected current flow toward the current collecting negative electrode 24 so as to cancel the positively charged ions, in other words, The collected charge (negative charge) flows from the charge 22 to the collecting negative charge 24. A part of the flow of the collected charge flows through the external power load 48 and can be taken out and consumed as a battery output in the external power addition 48.

次に、図2を参照して、本発明に従う電池装置の第2の実施形態について説明する。尚、以下の実施形態において、上述の第1の実施形態と実質上同一のものには同一の参照番号を付し、その説明を省略する。   Next, a second embodiment of the battery device according to the present invention will be described with reference to FIG. In the following embodiments, the same reference numerals are assigned to substantially the same components as those in the first embodiment, and the description thereof is omitted.

この第2の実施形態においては、加速用正電極に改良が施されており、以下この改良点について説明する。図2において、この第2の実施形態の電池装置2Aにおける加速用正電極18Aは、複数(この形態では、4つ)の正電極部材72,74,76,78から構成され、これら正電極部材72〜78はリング状電極部材から構成されている。複数の正電極部材72〜78は、電池容器本体4内に長手方向(図2において左下から右上の方向)に加速用負電極20に向けて間隔をおいて配設されている。   In the second embodiment, the acceleration positive electrode is improved, and this improvement will be described below. In FIG. 2, the accelerating positive electrode 18A in the battery device 2A of the second embodiment is composed of a plurality (four in this embodiment) of positive electrode members 72, 74, 76, 78, and these positive electrode members. 72-78 are comprised from the ring-shaped electrode member. The plurality of positive electrode members 72 to 78 are disposed in the battery container body 4 at intervals in the longitudinal direction (the direction from the lower left to the upper right in FIG. 2) toward the accelerating negative electrode 20.

第1正電極部材72は、第1印加ライン80を介して加速用電源装置40の正端子側に電気的に接続され、第2正電極部材74は、第2印加ライン82及び電気抵抗84を介して第1印加ライン80に電気的に接続され、第3正電極部材76は、第3印加ライン86及び電気抵抗88を介して第2印加ライン82に電気的に接続され、第4正電極部材78は、第4印加ライン90及び電気抵抗92を介して第3印加ライン86に電気的に接続されている。第1〜第4正電極部材72〜78がこのように加速用電源装置40に接続されているので、第1〜第4正電極部材72〜78に印加される加速電圧は、その電圧値が異なり、第1正電極部材72に印加される加速電圧が最も大きく、第2正電極部材74、第3正電極部材76及び第4正電極部材78の順に印加される加速電圧が小さくなる。   The first positive electrode member 72 is electrically connected to the positive terminal side of the acceleration power supply device 40 via the first application line 80, and the second positive electrode member 74 includes the second application line 82 and the electric resistance 84. The third positive electrode member 76 is electrically connected to the second application line 82 via the third application line 86 and the electric resistor 88, and is connected to the first application line 80. The member 78 is electrically connected to the third application line 86 via the fourth application line 90 and the electric resistance 92. Since the first to fourth positive electrode members 72 to 78 are connected to the acceleration power supply device 40 in this way, the acceleration voltage applied to the first to fourth positive electrode members 72 to 78 has a voltage value thereof. In contrast, the acceleration voltage applied to the first positive electrode member 72 is the largest, and the acceleration voltage applied in the order of the second positive electrode member 74, the third positive electrode member 76, and the fourth positive electrode member 78 is reduced.

この実施形態では、第1印加ライン80に主スイッチ92が配設され、また第4印加ライン90に副スイッチ94が配設されている。従って、主スイッチ92がオン状態のときには、加速用電圧装置40から第1〜第4正電極部材72〜78に加速電圧を印加することができ、この主スイッチ92がオフ状態になると、これら正電極部材72〜78への加速電圧の印加が終了する。また、副スイッチ94がオン状態のときには、加速用電源装置40からの加速電圧を第1〜第4正電極部材72〜78の全てに印加することができ、またこの副スイッチ94がオフ状態になると、第4正電極部材78への加速電圧の印加が終了し、加速用電源装置40からの加速電圧の印加は、第1〜第3正電極部材72〜76となる。   In this embodiment, a main switch 92 is disposed on the first application line 80, and a sub switch 94 is disposed on the fourth application line 90. Therefore, when the main switch 92 is in the on state, an acceleration voltage can be applied from the acceleration voltage device 40 to the first to fourth positive electrode members 72 to 78. When the main switch 92 is in the off state, these positive voltages are applied. Application of the acceleration voltage to the electrode members 72 to 78 is completed. When the sub switch 94 is in the on state, the acceleration voltage from the acceleration power supply device 40 can be applied to all of the first to fourth positive electrode members 72 to 78, and the sub switch 94 is in the off state. Then, the application of the acceleration voltage to the fourth positive electrode member 78 is completed, and the application of the acceleration voltage from the acceleration power supply device 40 becomes the first to third positive electrode members 72 to 76.

このような副スイッチ94は、第2印加ライン82及び/又は第3印加ライン86にも設けることができ、第2印加ライン82に設けた場合、加速用電源装置40からの加速電圧の印加を第1正電極部材72と第2〜第4正電極部材74〜78とに分けて制御することができ、また第3印加ライン86に設けた場合、加速用電源装置40からの加速電圧の印加を第1及び第2正電極部材72,74と第3及び第4正電極部材76,78とに分けて制御することができる。この第2の実施形態の電池装置2Aのその他の構成は、上述した実施形態と実施上同一である。   Such a sub switch 94 can also be provided in the second application line 82 and / or the third application line 86. When the auxiliary switch 94 is provided in the second application line 82, the application of the acceleration voltage from the acceleration power supply device 40 is performed. The first positive electrode member 72 and the second to fourth positive electrode members 74 to 78 can be controlled separately, and when provided on the third application line 86, the acceleration voltage is applied from the acceleration power supply device 40. Can be controlled separately for the first and second positive electrode members 72, 74 and the third and fourth positive electrode members 76, 78. The other configuration of the battery device 2A of the second embodiment is the same as that of the above-described embodiment.

このような加速用正電極18Aを用いた場合、加速用電源装置40からの加速電圧は第1〜第4正電極部材72〜78に印加され、これら第1〜第4正電極部材72〜78から加速用負電極20に向けて正電荷イオンが加速されて流れるために、加速用負電極20に流れる正電荷イオンが多くなり、これによって、集電用正電極22から集電用負電極24に流れる集電電極を多くすることができ、その結果、電池装置2Aの電池出力を大きくすることができる。   When such an acceleration positive electrode 18A is used, the acceleration voltage from the acceleration power supply device 40 is applied to the first to fourth positive electrode members 72 to 78, and these first to fourth positive electrode members 72 to 78 are applied. Since positively charged ions are accelerated and flow toward the accelerating negative electrode 20, the number of positively charged ions flowing through the accelerating negative electrode 20 is increased, whereby the current collecting positive electrode 22 and the current collecting negative electrode 24 are increased. As a result, the battery output of the battery device 2A can be increased.

この電池装置においては、安定した電池出力を得るために、電池溶液の濃度(電解液と重水との混合割合)を所定範囲に維持するのが望ましく、そのために、電池容器本体又は溜め容器に関連して溶液濃度調整手段が設けられる。第3の実施形態の電池装置を示す図3において、この第3の実施形態の電池装置2Bにおいては、電池溶液が充填される電池容器本体4Bに関連して溶液濃度調整手段102が設けられる。この電池容器本体4Bの流入側には、重水を供給するための重水供給手段103と、電解液を供給するための電解液供給手段105とが設けられている。   In this battery device, in order to obtain a stable battery output, it is desirable to maintain the concentration of the battery solution (mixing ratio of the electrolytic solution and heavy water) within a predetermined range. For this reason, it is related to the battery container body or the reservoir container. Then, a solution concentration adjusting means is provided. In FIG. 3 showing the battery device of the third embodiment, in the battery device 2B of the third embodiment, a solution concentration adjusting means 102 is provided in association with the battery container body 4B filled with the battery solution. On the inflow side of the battery container body 4B, a heavy water supply means 103 for supplying heavy water and an electrolytic solution supply means 105 for supplying electrolytic solution are provided.

図示の重水供給手段103は、重水を溜める重水槽104と、重水槽104及び電池容器本体4Bを接続する重水供給ライン108とから構成され、重水槽104からの重水が重水供給ライン108を通して電池容器本体4Bに供給される。また、を介して電池容器本体4Bに供給され、電解液槽106に収容された電解液が電解液供給ライン110を介して電池容器本体4Bに供給される。尚、この電池容器本体4B及びこれに関連する構成は、図1に示す第1の実施形態又は図2に示す第2の実施形態と同様の構成でよい。   The illustrated heavy water supply means 103 includes a heavy water tank 104 that stores heavy water, and a heavy water supply line 108 that connects the heavy water tank 104 and the battery container body 4 </ b> B, and heavy water from the heavy water tank 104 passes through the heavy water supply line 108. It is supplied to the main body 4B. In addition, the electrolyte solution supplied to the battery container body 4B via and supplied to the electrolyte solution tank 106 is supplied to the battery container body 4B via the electrolyte solution supply line 110. In addition, this battery container main body 4B and the structure relevant to this may be the same structure as 1st Embodiment shown in FIG. 1, or 2nd Embodiment shown in FIG.

この形態では、電解液槽108に関連して、電解物質(例えば、水酸化ナトリウム)を収容した電解物質容器110及び純水を収容した純水槽112が設けられ、電解物質容器110が電解物質供給ライン114を介して電解液槽108に接続され、純水槽112が純水供給ライン116を介して電解液槽108に接続されている。また、電解液槽108には、電解液を攪拌して均一化するための攪拌混合手段118が設けられている。このように構成されているので、電解物質容器110からの電解物質が電解物質供給ライン114を通して電解液槽106に供給されるとともに、純水槽112からの純水が純水供給ライン116を通して電解液槽106に供給され、供給された純水及び電解物質は、攪拌混合手段118により攪拌混合されて均一化される。   In this embodiment, an electrolytic substance container 110 containing an electrolytic substance (for example, sodium hydroxide) and a pure water tank 112 containing pure water are provided in association with the electrolytic solution tank 108, and the electrolytic substance container 110 supplies the electrolytic substance. The pure water tank 112 is connected to the electrolytic solution tank 108 via the pure water supply line 116. The electrolytic solution tank 108 is provided with a stirring and mixing means 118 for stirring and homogenizing the electrolytic solution. Thus, the electrolytic substance from the electrolytic substance container 110 is supplied to the electrolytic solution tank 106 through the electrolytic substance supply line 114, and the pure water from the pure water tank 112 is supplied to the electrolytic solution through the pure water supply line 116. The pure water and the electrolytic substance supplied to the tank 106 are agitated and mixed by the agitation / mixing means 118 and made uniform.

この電池容器本体4Bの排出側には、電池溶液を排出するための排出手段118が設けられ、図示の排出手段120は、排出された電池溶液を溜めるための排出槽12と、気体と液体とに分離するための気液分離装置122と、気液分離装置122にて回収された液体を回収するための液回収槽124と、気液分離装置122にて分離されたガスを所要の通りに処理するためのガス処理装置126と、液回収槽124からの電池溶液を所要の通りに処理するための液処理装置128とを含んでいる。   Discharge means 118 for discharging the battery solution is provided on the discharge side of the battery container body 4B. The illustrated discharge means 120 includes a discharge tank 12 for storing the discharged battery solution, a gas and a liquid. The gas-liquid separator 122 for separating the liquid, the liquid recovery tank 124 for recovering the liquid recovered by the gas-liquid separator 122, and the gas separated by the gas-liquid separator 122 as required. A gas processing device 126 for processing and a liquid processing device 128 for processing the battery solution from the liquid recovery tank 124 as required are included.

電池容器本体4Bと排出槽120とは排出ライン130を介して接続され、電池容器本体120内の電池溶液の組成成分などが変化したときには、電池容器本体4B内の電池溶液が排出ライン130を通して排出槽120に排出される。排出槽120と気液分離装置122とは気液ライン132を介して接続され、排出槽120からのガスは気液ライン132を通して気液分離装置122に送給される。気液分離装置122にて分離された液体(ガスに含まれた液体)は、液回収ライン134を通して液回収槽124に回収され、この液回収槽124に回収された液体は液戻しライン136を通して排出槽120戻される。また、気液分離装置122にて分離されたガスは、ガス排気ライン138を通してガス処理装置126に送給され、このガス処理装置126にて所要の通りに処理され、かく処理された後にガス排出ライン140を通してガス回収槽(図示せず)に回収される。また、排出槽120に溜まった電池溶液は、排水ライン142を通して液処理装置128に送給され、この液処理装置128にて所要の通りに処理され、かく処理された後に液排出ライン144を通して反応液回収槽(図示せず)に回収される。   The battery container body 4B and the discharge tank 120 are connected via the discharge line 130. When the composition component of the battery solution in the battery container body 120 changes, the battery solution in the battery container body 4B is discharged through the discharge line 130. It is discharged into the tank 120. The discharge tank 120 and the gas-liquid separator 122 are connected via a gas-liquid line 132, and the gas from the discharge tank 120 is sent to the gas-liquid separator 122 through the gas-liquid line 132. The liquid (liquid contained in the gas) separated by the gas-liquid separator 122 is collected in the liquid collection tank 124 through the liquid collection line 134, and the liquid collected in the liquid collection tank 124 passes through the liquid return line 136. The discharge tank 120 is returned. The gas separated by the gas-liquid separation device 122 is supplied to the gas processing device 126 through the gas exhaust line 138, processed as required by the gas processing device 126, and after being processed in this manner, the gas is discharged. It is recovered through a line 140 into a gas recovery tank (not shown). Further, the battery solution accumulated in the discharge tank 120 is fed to the liquid processing device 128 through the drainage line 142, processed as required by the liquid processing device 128, and then processed through the liquid discharge line 144 after being processed in this manner. It is recovered in a liquid recovery tank (not shown).

電池容器本体4B内の電池溶液の濃度が変化したときには、次のようにして電池溶液の濃度調整が行われ、上述した重水供給手段103、電解液供給手段105及び排水手段118が溶液濃度調整手段として機能する。電池溶液本体4Bの電池溶液12の成分割合が変化する(例えば、重水の混合割合が増加する)と、電池溶液本体4B内の電池溶液の一部が排出ライン130を通して排出槽120に排出され、排出槽120内に排出された電池溶液は上述したように処理される。   When the concentration of the battery solution in the battery container main body 4B changes, the concentration of the battery solution is adjusted as follows, and the above-described heavy water supply means 103, the electrolyte solution supply means 105, and the drain means 118 serve as the solution concentration adjustment means. Function as. When the component ratio of the battery solution 12 of the battery solution body 4B changes (for example, the mixing ratio of heavy water increases), a part of the battery solution in the battery solution body 4B is discharged to the discharge tank 120 through the discharge line 130, The battery solution discharged into the discharge tank 120 is processed as described above.

このようにして電池容器本体4B内の電池溶液が減少すると、重水槽104内の重水が重水供給ライン108を通して電池容器本体4Bに供給されるとともに、電解液槽106内の電解液が電解液供給ライン110を通して電池溶液本体4Bに供給され、供給された重水及び電解液は、均一化手段146の作用によって、電池容器本体4B内の電池溶液と均一となるように混合される。このとき、図示していないが、重水槽104からの重水の供給量と電解液槽106からの電解液の供給量が制御され、このように供給量を制御することによって、電池容器本体4B内の電池溶液の成分割合(重水と電解液との混合割合)が所定範囲に維持され、その結果、電池装置2Bの電池出力を安定させることができるとともに、この電池装置2Bの稼働時間を長くすることができる。   When the battery solution in the battery container body 4B decreases in this way, heavy water in the heavy water tank 104 is supplied to the battery container body 4B through the heavy water supply line 108, and the electrolyte solution in the electrolyte tank 106 is supplied to the electrolyte solution. The heavy water and electrolyte supplied to the battery solution body 4B through the line 110 are mixed with the battery solution in the battery container body 4B by the action of the homogenizing means 146. At this time, although not shown, the supply amount of heavy water from the heavy water tank 104 and the supply amount of the electrolyte solution from the electrolyte solution tank 106 are controlled. By controlling the supply amount in this way, the inside of the battery container body 4B is controlled. The component ratio of the battery solution (mixing ratio of heavy water and electrolyte solution) is maintained within a predetermined range. As a result, the battery output of the battery device 2B can be stabilized, and the operating time of the battery device 2B is lengthened. be able to.

本発明の効果を確認するために、次の通りの検証実験を行った。この実験に用いた電池装置の構成は、図4に示す通りであった。図4において、この電池装置の基本的構成は、均一化手段を備えていない点を除けば第1の実施形態のものと同様である。即ち、この電池装置は、電池溶液を収容する電池容器本体102を備え、この電池容器本体102内に相互に対向して加速用正電極104及び加速用負電極106を配設し、これら加速用正電極104及び加速用負電極106を加速用電源装置108に電気的に接続し、加速電圧及び加速電流を計測するために加速電圧計測器110及び加速電流計測器12を配設した。   In order to confirm the effect of the present invention, the following verification experiment was conducted. The configuration of the battery device used in this experiment was as shown in FIG. In FIG. 4, the basic configuration of this battery device is the same as that of the first embodiment except that no uniformizing means is provided. That is, the battery device includes a battery container body 102 that stores a battery solution, and an acceleration positive electrode 104 and an acceleration negative electrode 106 are disposed in the battery container body 102 so as to face each other, and these acceleration devices are arranged. The positive electrode 104 and the accelerating negative electrode 106 were electrically connected to the accelerating power supply device 108, and the accelerating voltage measuring device 110 and the accelerating current measuring device 12 were disposed in order to measure the accelerating voltage and the accelerating current.

また、加速用正電極104の外側に集電用正電極114を配設するとともに、加速用負電極106の外側に集電用負電極を配設し、これら集電用正電極114及び集電用負電極116を電気抵抗118と電気的に並列に配設された外部電力負荷120に電気的に接続し、外部電圧(出力電圧)及び外部電流(出力電流)を計測するために外部電圧計測器122及び外部電流計測器124を配設した。尚、外部電力負荷として200オーム(Ω)の電気抵抗を用いた。   In addition, a positive electrode for current collection 114 is disposed outside the positive electrode for acceleration 104, and a negative electrode for current collection is disposed outside the negative electrode for acceleration 106, and the positive electrode for current collection 114 and the current collector are collected. The external negative electrode 116 is electrically connected to an external power load 120 disposed in parallel with the electrical resistor 118, and external voltage measurement is performed to measure external voltage (output voltage) and external current (output current). A device 122 and an external current measuring device 124 are provided. An electric resistance of 200 ohm (Ω) was used as the external power load.

更に、電池容器本体102の外側に溜め容器126を設け、電池容器本体102と溜め容器126とを溶液循環流路128を介して接続するとともに、この溶液循環流路128に循環ポンプ130を配設し、電池容器本体102内の電池溶液が溶液循環流路128及び溜め容器126を通して循環されるようにした。また、溜め容器126内に相互に対向して電解用正電極132及び電解用負電極134を配設し、これら電解用正電極132及び電解用負電極134を電解用電源装置136に電気的に接続し、電解電圧及び電解電流を計測するために電解電圧計測器138及び電解電流計測器140を配設した。電解用正電極132及び電解用負電極134としてプレート状電極を用い、加速用正電極104及び加速用負電極106並びに集電用正電極114及び集電用負電極116としてリング状電極を用いた。   Furthermore, a reservoir container 126 is provided outside the battery container body 102, the battery container body 102 and the reservoir container 126 are connected via a solution circulation channel 128, and a circulation pump 130 is disposed in the solution circulation channel 128. The battery solution in the battery container main body 102 is circulated through the solution circulation channel 128 and the reservoir container 126. In addition, a positive electrode for electrolysis 132 and a negative electrode for electrolysis 134 are disposed in the reservoir 126 so as to face each other, and the positive electrode for electrolysis 132 and the negative electrode for electrolysis 134 are electrically connected to the electrolysis power supply device 136. In order to connect and measure the electrolysis voltage and the electrolysis current, the electrolysis voltage measuring instrument 138 and the electrolysis current measuring instrument 140 were arranged. Plate electrodes were used as the positive electrode 132 for electrolysis and the negative electrode 134 for electrolysis, and ring electrodes were used as the positive electrode 104 for acceleration, the negative electrode 106 for acceleration, the positive electrode 114 for current collection, and the negative electrode 116 for current collection. .

実験に際し、電池溶液本体102及び溜め容器126に電池溶液を充填し、電解用正電極132及び電解用負電極134、加速用正電極104及び加速用負電極106並びに集電用正電極114及び集電用負電極116を電池溶液に浸漬するようにした。   In the experiment, the battery solution body 102 and the reservoir 126 are filled with the battery solution, and the electrolysis positive electrode 132 and the electrolysis negative electrode 134, the acceleration positive electrode 104 and the acceleration negative electrode 106, the current collecting positive electrode 114 and the current collection electrode are collected. The electric negative electrode 116 was immersed in the battery solution.

電解液として純水1リットルに水酸化ナトリウムを0.01モルを溶解させたものを用い、用いた電解液のpHは8.5であった。また、電池溶液としてこの電解液に重水を混合させたものを用い、重水の混合割合は34重量%であった。   An electrolytic solution in which 0.01 mol of sodium hydroxide was dissolved in 1 liter of pure water was used, and the pH of the electrolytic solution used was 8.5. Moreover, what mixed this electrolyte solution with heavy water was used as a battery solution, and the mixing ratio of heavy water was 34% by weight.

このような電池溶液を充填した状態において、まず、電解用電源装置136により電解電圧を電解用正電極132及び電解用負電極134の間に印加して電池溶液を電解させた。このときの電解電圧及び電解電流を、電解電圧計測器138及び電解電流計測器140で計測したところ3V、3Aであった。   In the state filled with such a battery solution, first, an electrolysis voltage was applied between the positive electrode for electrolysis 132 and the negative electrode for electrolysis 134 by the electrolysis power supply device 136 to electrolyze the battery solution. The electrolysis voltage and electrolysis current at this time were 3 V and 3 A when measured by the electrolysis voltage measuring device 138 and the electrolysis current measuring device 140.

このような電解状態(電解用電源装置136より電解電圧を印加した状態)において、加速用電源装置108により加速電圧を加速用正電極104及び加速用負電極106間に印加し、電池溶液中の正電荷イオンを加速用正電極104から加速用負電極106に流れるようにした。このとき、加速用電源装置108により印加される加速電圧を加速電圧計測器110の値を見ながら120Vに設定した。そして、この状態における加速電流を加速電流計測器112で計測したところ0.01Aであった。また、この状態における出力電圧(外部電圧)及び出力電流(外部電流)を外部電圧計測器122及び外部電流計測器124で計測したところ60V、0.1Aであり、この外部電力負荷120(200Ωの電気抵抗)における出力電力は計算により2ワット(W)であることがわかる。   In such an electrolysis state (a state where an electrolysis voltage is applied from the electrolysis power supply device 136), an acceleration voltage is applied between the acceleration positive electrode 104 and the acceleration negative electrode 106 by the acceleration power supply device 108, and the Positively charged ions were allowed to flow from the acceleration positive electrode 104 to the acceleration negative electrode 106. At this time, the acceleration voltage applied by the acceleration power supply device 108 was set to 120 V while looking at the value of the acceleration voltage measuring device 110. And when the acceleration current in this state was measured with the acceleration current measuring device 112, it was 0.01A. Further, when the output voltage (external voltage) and the output current (external current) in this state were measured by the external voltage measuring device 122 and the external current measuring device 124, they were 60 V and 0.1 A, and this external power load 120 (200Ω) The output power at (electrical resistance) is calculated to be 2 watts (W).

次に、上述した状態において、加速用電源装置108により印加される加速電圧を加速電圧計測器110の値を見ながら200Vまで上昇させた。そして、この状態における加速電流を加速電流計測器112で計測したところ0.02Aであった。また、この状態における出力電圧(外部電圧)及び出力電流(外部電流)を外部電圧計測器122及び外部電流計測器124で計測したところ150V、0.5Aであり、この外部電力負荷120(200Ωの電気抵抗)における出力電力は計算により375ワット(W)であることがわかる。このことから、加速用電源装置108の入力電力よりも大きな出力電力が得られることが確認できた。   Next, in the state described above, the acceleration voltage applied by the acceleration power supply device 108 was increased to 200 V while looking at the value of the acceleration voltage measuring device 110. And when the acceleration current in this state was measured with the acceleration current measuring device 112, it was 0.02A. Further, when the output voltage (external voltage) and output current (external current) in this state were measured by the external voltage measuring device 122 and the external current measuring device 124, they were 150 V and 0.5 A, and this external power load 120 (200Ω) The output power at (electrical resistance) is calculated to be 375 watts (W). From this, it was confirmed that an output power larger than the input power of the acceleration power supply device 108 can be obtained.

2,2A,2B 電池装置
4,4A,4B,102 電池容器本体
12 電池溶液
14,132 電解用正電極
16,134 電解用負電極
18,18A,104 加速用正電極
20,106 加速用負電極
26 溜め容器
28 溶液循環流路
38,136 電解用電源装置
40,108 加速用電源装置
42 加速電圧調整手段
48 外部電力負荷
72,74,76,78 正電極部材
102 溶液濃度調整手段
103 重水供給手段
105 電解液供給手段
118 排出手段



2, 2A, 2B Battery device 4, 4A, 4B, 102 Battery container body 12 Battery solution 14, 132 Electrolytic positive electrode 16, 134 Electrolytic negative electrode 18, 18A, 104 Acceleration positive electrode 20, 106 Acceleration negative electrode DESCRIPTION OF SYMBOLS 26 Reservoir container 28 Solution circulation flow path 38,136 Electrolysis power supply device 40,108 Acceleration power supply device 42 Acceleration voltage adjustment means 48 External power load 72,74,76,78 Positive electrode member 102 Solution concentration adjustment means 103 Heavy water supply means 105 Electrolyte supply means 118 Discharge means



この加速用電源装置40は、加速用正電極18及び加速用負電極20間に印加する加速電圧を調整するための加速電圧調整手段42を含んでいる。この加速電圧調整手段42は、後述する電池出力の電圧が加速用電源装置40により印加される加速電圧よりも低くなるように調整し、かく調整することにより電池装置の作動状態を安定させることができる。 The acceleration power supply device 40 includes acceleration voltage adjusting means 42 for adjusting an acceleration voltage applied between the acceleration positive electrode 18 and the acceleration negative electrode 20. The acceleration voltage adjusting means 42, that the voltage of the battery output to be described later is adjusted to be lower than the acceleration voltage applied by the accelerating power supply 40, to stabilize the operation state of the battery device by adjusting write it can.

この電池装置2においては、電池溶液12として電解液及び重水の混合液が用いられる。電解液としては、例えば、純水(又は蒸留水)に電解物質として水酸化ナトリウム、水酸化カリウム、炭酸ナトリウムなどを溶解させた溶液を用いることができ、純水(又は蒸留水)1リットル当たり0.005〜0.05モル(0.005〜0.05mol/l)程度(例えば、0.01mol/l)混合させ、また電池溶液として、この電解液に重水を30〜35重量%程度(例えば、34重量%)混合させることができる。 In the battery device 2, a mixed solution of an electrolytic solution and heavy water is used as the battery solution 12. As the electrolytic solution, for example, a solution obtained by dissolving sodium hydroxide, potassium hydroxide, sodium carbonate or the like as an electrolytic substance in pure water (or distilled water) can be used, and per 1 liter of pure water (or distilled water). About 0.005 to 0.05 mol (0.005 to 0.05 mol / l) (for example, 0.01 mol / l) is mixed, and as the battery solution, about 30 to 35% by weight of heavy water is added to this electrolytic solution ( For example, 34% by weight) can be mixed.

本発明の請求項1に記載の電池装置によれば、電解用正電極及び電解用負電極間に電解電圧が付与され、また加速用正電極及び加速用負電極間に加速電圧が付与されるので、電池溶液中の正電荷イオンが加速電圧により加速されて加速用正電極から加速用負電極に流れ、この加速用負電極に正電荷イオンが集まるようになる。また、加速用正電極の外側に集電用正電極が配設され、加速用負電極の外側に集電用負電極が配設されるので、加速用負電極に正電荷イオンが集まると、この正電荷イオンを消すように集電用正電極から集電用負電極に集電電荷が流れ、このように流れる集電電荷の一部を取り出すことによって電池出力を得ることができる。また、均一化手段が設けられているので、電池容器本体内の電池溶液の成分が均一化され、これによって、安定して電池出力を得ることができる。 According to the battery device of the first aspect of the present invention, an electrolytic voltage is applied between the positive electrode for electrolysis and the negative electrode for electrolysis, and an acceleration voltage is applied between the positive electrode for acceleration and the negative electrode for acceleration. Therefore, the positively charged ions in the battery solution are accelerated by the acceleration voltage and flow from the accelerating positive electrode to the accelerating negative electrode, and the positively charged ions gather at the accelerating negative electrode. In addition, since the positive electrode for current collection is arranged outside the positive electrode for acceleration and the negative electrode for current collection is arranged outside the negative electrode for acceleration, when positively charged ions gather on the negative electrode for acceleration, The collected charge flows from the current collecting positive electrode to the current collecting negative electrode so as to eliminate the positive charge ions, and the battery output can be obtained by taking out part of the collected current flowing in this way. In addition, since the uniformizing means is provided, the components of the battery solution in the battery container body are uniformed, whereby a battery output can be stably obtained.

Claims (6)

電解液と重水とを含む電池溶液を収容した電池容器本体と、前記電池溶液を電解するための電解用正電極及び電解用負電極と、前記電池容器本体内に収容され、前記電池溶液中の電荷イオンを加速するための加速用正電極及び加速用負電極と、電荷を集電するための集電用正電極及び集電用負電極と、前記電解用正電極及び前記電解用負電極の間に電解電圧を付与するための電解用電源装置と、前記加速用正電極及び前記加速用負電極の間に加速電圧を付与するための加速用電源装置と、前記電池溶液を均一化するための均一化手段と、を備え、前記集電用正電極は前記加速用正電極の外側に配設され、前記集電用負電極は前記加速用負電極の外側に配設され、前記加速用正電極から前記加速用負電極に正電荷イオンが流れ、前記加速用負電極に集まった前記正電荷イオンを消すように前記集電正電極から前記集電用負電極に集電電荷が流れ、前記集電電荷の流れの一部を電池出力として取り出すことを特徴とする電池装置。   A battery container body containing a battery solution containing an electrolytic solution and heavy water, a positive electrode for electrolysis and a negative electrode for electrolysis for electrolyzing the battery solution, and contained in the battery container body; An accelerating positive electrode and an accelerating negative electrode for accelerating charged ions, a current collecting positive electrode and a current collecting negative electrode for collecting electric charge, the electrolysis positive electrode and the electrolysis negative electrode A power supply device for electrolysis for applying an electrolysis voltage therebetween, a power supply device for acceleration for applying an acceleration voltage between the positive electrode for acceleration and the negative electrode for acceleration, and for uniformizing the battery solution And the current collecting positive electrode is disposed outside the acceleration positive electrode, the current collecting negative electrode is disposed outside the acceleration negative electrode, and the acceleration positive electrode is provided. Positively charged ions flow from the positive electrode to the accelerating negative electrode. A collected charge flows from the current collecting positive electrode to the current collecting negative electrode so as to erase the positive charge ions collected in the battery, and a part of the collected charge flow is taken out as a battery output. apparatus. 前記均一化手段は、前記電池容器本体の片端壁の外側に配設された溜め容器と、前記溜め容器を通して前記電池溶液を循環させる溶液循環流路と、前記溶液循環流路に配設された循環ポンプとを備え、前記電池容器本体内の前記電池溶液が前記溶液循環流路及び前記溜め容器を通して循環され、前記溶液循環流路を通して循環される前記電池溶液の流れによって、前記電池容器本体内の前記電池溶液が循環されることを特徴とする請求項1に記載の電池装置。   The homogenizing means is disposed in a reservoir container disposed outside one end wall of the battery container body, a solution circulation channel for circulating the battery solution through the reservoir container, and the solution circulation channel. A circulation pump, and the battery solution in the battery container body is circulated through the solution circulation channel and the reservoir, and the battery solution is circulated through the solution circulation channel, thereby causing the battery solution in the battery container body to circulate. The battery device according to claim 1, wherein the battery solution is circulated. 前記電解用正電極及び前記電解用負電極は前記溜め容器内に配設され、前記溜め容器内の前記電池溶液が電解され、前記溜め容器にて電解された前記電池溶液が前記溶液循環流路を通して前記電気容器本体内に送給されることを特徴とする請求項1に記載の電池装置。   The electrolysis positive electrode and the electrolysis negative electrode are disposed in the reservoir, the battery solution in the reservoir is electrolyzed, and the battery solution electrolyzed in the reservoir is the solution circulation channel. The battery device according to claim 1, wherein the battery device is fed into the electric container body. 前記電池容器本体又は前記溜め容器に関連して、前記電池溶液の濃度を所定範囲に保つための溶液濃度調整手段が設けられ、前記濃度調整手段は、前記電解液を供給するための電解液供給手段と、前記重水を供給するための重水供給手段と、前記電池溶液本体内の前記電池溶液を排水するための排水手段とを含んでいることを特徴とする請求項1〜3のいずれかに記載の電池装置。   In relation to the battery container main body or the reservoir container, a solution concentration adjusting means for maintaining the concentration of the battery solution in a predetermined range is provided, and the concentration adjusting means supplies an electrolyte solution for supplying the electrolyte solution. 4. The apparatus according to claim 1, further comprising: means, heavy water supply means for supplying the heavy water, and drainage means for draining the battery solution in the battery solution body. The battery device described. 前記加速用電源装置は、前記加速電圧を調整するための加速電圧調整手段を含み、前記加速電圧調整手段は、前記集電用正電極及び前記集電用負電極間を流れる集電電荷による電池出力の電圧が前記加速用電源装置により印加される加速電圧よりも低くなるように調整することを特徴とする請求項1〜4のいずれかに記載の電池装置。   The acceleration power supply device includes an acceleration voltage adjusting means for adjusting the acceleration voltage, and the acceleration voltage adjusting means is a battery with a collected charge flowing between the current collecting positive electrode and the current collecting negative electrode. The battery device according to claim 1, wherein an output voltage is adjusted to be lower than an acceleration voltage applied by the acceleration power supply device. 前記加速用正電極は、前記電池容器本体内にて前記加速用負電極に向けて間隔をおいて配設された複数の正電極部材から構成され、隣接する正電極部材は電気抵抗を介して電気的に接続されていることを特徴とする請求項1〜5のいずれかに記載の電池装置。



The accelerating positive electrode is composed of a plurality of positive electrode members arranged at intervals in the battery container body toward the accelerating negative electrode, and the adjacent positive electrode members are connected via an electric resistance. The battery device according to claim 1, wherein the battery device is electrically connected.



JP2016144521A 2016-07-22 2016-07-22 Battery device Pending JP2018014292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016144521A JP2018014292A (en) 2016-07-22 2016-07-22 Battery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016144521A JP2018014292A (en) 2016-07-22 2016-07-22 Battery device

Publications (1)

Publication Number Publication Date
JP2018014292A true JP2018014292A (en) 2018-01-25

Family

ID=61021287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016144521A Pending JP2018014292A (en) 2016-07-22 2016-07-22 Battery device

Country Status (1)

Country Link
JP (1) JP2018014292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123667A1 (en) * 2017-12-21 2019-06-27 雄造 川村 Battery device
US11052754B2 (en) 2018-12-15 2021-07-06 Yachiyo Industry Co., Ltd. Fuel tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505364A (en) * 1989-05-19 1992-09-17 アクチボラゲット・テクニスク・ユトヴェックリング・エール Production of fusion energy
JPH10508372A (en) * 1993-12-03 1998-08-18 イー−クエスト サイエンシズ Method for generating heat
JP2015090312A (en) * 2013-11-06 2015-05-11 有限会社イデアリサーチ Cold nuclear fusion reaction method and apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04505364A (en) * 1989-05-19 1992-09-17 アクチボラゲット・テクニスク・ユトヴェックリング・エール Production of fusion energy
JPH10508372A (en) * 1993-12-03 1998-08-18 イー−クエスト サイエンシズ Method for generating heat
JP2015090312A (en) * 2013-11-06 2015-05-11 有限会社イデアリサーチ Cold nuclear fusion reaction method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123667A1 (en) * 2017-12-21 2019-06-27 雄造 川村 Battery device
US11052754B2 (en) 2018-12-15 2021-07-06 Yachiyo Industry Co., Ltd. Fuel tank

Similar Documents

Publication Publication Date Title
US9231268B2 (en) Flow battery system with standby mode
US3540934A (en) Multiple cell redox battery
JP5422083B2 (en) Non-flow redox battery
KR20190052722A (en) Electrochemical-based purification of electrolyte solutions, and related systems and methods
JP5864682B2 (en) Method for producing pasty vanadium electrolyte and method for producing vanadium redox battery
AT503138B1 (en) Pressure control method for anode of fuel cell, involves regulating pressure feedback control unit and pressure feeding unit to match pressure in anode to fixed set point
JP6378319B2 (en) Flow battery health maintenance method
US9893396B2 (en) Method of operating and conditioning electrochemical cells comprising electrodeposited fuel
JP2018014292A (en) Battery device
JP2009245859A (en) Fuel cell device and its driving method
US11949138B2 (en) Redox flow battery and method for producing a guide structure of an electrode element of a redox flow battery
KR101841052B1 (en) Energy storage with charging and discharging simultaneously
JP3215177U (en) Battery device
JP2014127428A (en) Vanadium redox battery
US20090130539A1 (en) Electric power grid buffer
CN109075367A (en) Redox flow batteries
CN117396266A (en) Lithium recovery device and lithium recovery method
JP2007335326A (en) Fuel cell system
US9537167B2 (en) Methods and apparatus of an anode/cathode (A/C) junction fuel cell with solid electrolyte
JPS63164172A (en) Shunt current erasing device for redox flow battery
JP2019046565A (en) Electrochemical device
WO2011093124A1 (en) Water treatment device
JP2016051521A (en) Fuel cell system
JPH0227666A (en) Redox flow type secondary battery
KR20190032354A (en) Electrolytic solution, electrolytic solution for electrolytic bath, and electrolytic bath system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171026