JP2003139790A - Optical current direction sensor - Google Patents

Optical current direction sensor

Info

Publication number
JP2003139790A
JP2003139790A JP2001337710A JP2001337710A JP2003139790A JP 2003139790 A JP2003139790 A JP 2003139790A JP 2001337710 A JP2001337710 A JP 2001337710A JP 2001337710 A JP2001337710 A JP 2001337710A JP 2003139790 A JP2003139790 A JP 2003139790A
Authority
JP
Japan
Prior art keywords
flow direction
fbg
optical fiber
strain detection
magnetic pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001337710A
Other languages
Japanese (ja)
Other versions
JP3899900B2 (en
Inventor
Morihisa Fukushi
盛久 福士
Hiroyasu Tomita
浩庸 冨田
Hiroshi Kamoshita
博史 鴨志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001337710A priority Critical patent/JP3899900B2/en
Publication of JP2003139790A publication Critical patent/JP2003139790A/en
Application granted granted Critical
Publication of JP3899900B2 publication Critical patent/JP3899900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strong and inexpensive optical current direction sensor not affected by the circumferential condition, easily performing the multi-point observation, and not needing a power source at all. SOLUTION: A rotatable shaft 20 is mounted on a non-magnetic pipe 17 mounted in a main body cylinder 10 in a state of being projected from a lower end of the non-magnetic pipe 17, a rudder 24 directed in the water current direction is mounted on a lower end of the shaft 20, an internal magnet 30 is mounted on the shaft 20 in the non-magnetic pipe 17, a pair of distortion detecting plates 26, 27 are mounted in a state of being suspended down along an outer side face of the non-magnetic pipe 17 from upper end both sides of the non-magnetic pipe 17, external magnets 28, 29 are mounted oppositely to the internal magnet 30 at a non-magnetic pipe 17 side of a lower part of the distortion detecting plates 26, 27, and FBGs 31, 32 connected to the optical fiber 33 and respectively outputting the different wavelengths from the light emitted from the optical fiber 33 by the distortion, are integrally mounted on the distortion detecting plates 26, 27.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、河川水流の方向を
常時監視するための流向センサに係り、特に、光ファイ
バを用いて流向を監視するための光式流向センサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flow direction sensor for constantly monitoring the direction of a river water flow, and more particularly to an optical flow direction sensor for monitoring a flow direction using an optical fiber.

【0002】[0002]

【従来の技術】従来、河川流水方向を検出する方式とし
ては、流れの表面に直接電波を発射し、その反射波のド
ップラー効果により流向を監視する方式、流水に含まれ
る微粒子の移動をTVカメラにより映像として取り込
み、その軌跡を直接監視し、演算して求める方式があ
る。
2. Description of the Related Art Conventionally, as a method of detecting the direction of flowing water in a river, a method of directly emitting a radio wave on the surface of the flow and monitoring the flow direction by the Doppler effect of the reflected wave, a TV camera for moving fine particles contained in the flowing water There is a method in which the image is captured as an image, the locus is directly monitored, and calculation is performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、電波等
電気式センサを使用して河川等の流向を監視する前者の
方式は、電気式であるがゆえに電源の確保が容易でな
く、また複数箇所を同時に監視する場合、伝送装置等の
機器が必要となるため多点化には適さない。また降雨等
悪天候時には電波が、不安定状態となり、確実に監視が
行えない可能性がある。さらに、長期的にセンサを放置
した場合、センサの入出力部が極端に汚れてしまうと出
力が安定せず、またセンサそのものも高価なものであり
設置後のメンテナンスも容易ではない。
However, the former method of monitoring the flow direction of a river or the like by using an electric sensor for radio waves, etc., is an electric method, so that it is not easy to secure a power source, and a plurality of locations are required. When monitoring at the same time, a device such as a transmission device is required, which is not suitable for multiple points. In addition, in bad weather such as rainfall, the radio waves may become unstable and reliable monitoring may not be possible. Furthermore, if the sensor is left unattended for a long period of time, the output will not be stable if the input / output section of the sensor becomes extremely dirty, and the sensor itself is expensive and maintenance after installation is not easy.

【0004】CCDカメラを用いて流水に含まれる微粒
子の移動軌跡により流向を監視する後者の方式は、微粒
子の移動軌跡の入力はオペレータが行うため、高水流の
場合、微粒子の移動速度が速く入力が困難である。また
水面が停滞し低水流である場合の監視は不可能であり、
またカメラのレンズ部等は長期に放置すると汚れて鮮明
な画像が撮影できなくなるなどの問題もある。またその
メンテナンスと電源の確保も容易でなく、多点常時監視
は方式的に不可能である。
In the latter method in which a CCD camera is used to monitor the flow direction by the movement trajectory of fine particles contained in running water, since the operator inputs the movement trajectory of the fine particles, in the case of high water flow, the movement speed of the fine particles is input fast. Is difficult. In addition, it is impossible to monitor when the water surface is stagnant and the flow is low,
There is also a problem that the lens portion of the camera becomes dirty and a clear image cannot be taken if left unattended for a long period of time. Moreover, the maintenance and securing of the power source are not easy, and it is systematically impossible to perform multipoint continuous monitoring.

【0005】そこで、本発明の目的は、上記課題を解決
し、周囲環境に影響されずに、多点監視が容易で、しか
も電源を全く必要とせずに、且つ頑丈で安価な光式流向
センサを提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to easily monitor multiple points without being affected by the surrounding environment, to require no power source at all, and to be robust and inexpensive. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1の発明は、本体筒内に設けた非磁性体パイ
プに、回転自在なシャフトを、その非磁性体パイプの下
端から突出するよう設けると共に該シャフトの下端に水
流方向に向く舵を設け、上記非磁性体パイプ内のシャフ
トに内部磁石を設け、非磁性体パイプの上端両側より、
非磁性体パイプの外側面に沿って垂下するよう一対の歪
み検出板を設け、その歪み検出板の下部の非磁性体パイ
プ側に、上記内部磁石に対向して外部磁石を設け、その
歪み検出板に、光ファイバに接続されると共に、歪みに
より光ファイバから入射された光から異なる波長をそれ
ぞれ出力するFBGを一体に設けた光式流向センサであ
る。
In order to achieve the above object, the invention of claim 1 is such that a rotatable shaft is attached to a non-magnetic pipe provided in a main body cylinder from a lower end of the non-magnetic pipe. A rudder is provided at the lower end of the shaft so as to project in the water flow direction, an internal magnet is provided on the shaft in the non-magnetic pipe, and both ends of the non-magnetic pipe are at the upper end.
A pair of strain detection plates are provided so as to hang down along the outer surface of the non-magnetic pipe, and an external magnet is provided facing the internal magnet on the non-magnetic pipe side below the strain detection plate to detect the strain. It is an optical flow direction sensor in which an FBG that is connected to an optical fiber and that outputs different wavelengths from light incident from the optical fiber due to strain is integrally provided on a plate.

【0007】請求項2の発明は、2枚の歪み検出板の温
度補正を、流向により変化した歪み検出板側のFBGの
出力波長の変化量から、他方の歪み検出板側のFBGの
出力波長の変化量を差し引くことで行う請求項1記載の
光式流向センサである。
According to the second aspect of the present invention, the temperature correction of the two strain detection plates is performed based on the change amount of the output wavelength of the FBG on the side of the strain detection plate, which is changed depending on the flow direction, from the output wavelength of the FBG on the side of the other strain detection plate. The optical flow direction sensor according to claim 1, wherein the change amount is subtracted.

【0008】請求項3の発明は、FBGは、歪み検出板
に一体に設けた光ファイバに光ファイバからの光を波長
を変えて出力するグレーティング部を形成してなり、そ
のFBGの光ファイバを歪み検出板に一体にする際に微
量のテンションを与えた状態で一体化させた請求項1記
載の光式流向センサである。
According to a third aspect of the present invention, in the FBG, a grating portion for changing the wavelength and outputting the light from the optical fiber is formed in the optical fiber provided integrally with the strain detecting plate. 2. The optical flow direction sensor according to claim 1, wherein the strain detecting plate is integrated with the strain detecting plate with a slight amount of tension applied.

【0009】請求項4の発明は、非磁性体パイプに、複
数の歪み検出板を設けると共にこれら歪み検出板にそれ
ぞれ外部磁石を設け、その各歪み検出板にFBGをそれ
ぞれ一体に設け、水流に伴う舵の回転運動を上記各FB
Gの出力波長変化から検出する請求項1記載の光式流向
センサである。
According to a fourth aspect of the present invention, a plurality of strain detecting plates are provided on the non-magnetic pipe, and external magnets are provided on these strain detecting plates. The rotary motion of the rudder accompanying the above FB
The optical flow direction sensor according to claim 1, wherein the optical flow direction sensor detects the change in the output wavelength of G.

【0010】請求項5の発明は、光ファイバに請求項1
記載の光式流向センサを複数直列に接続したことを特徴
とする光式流向センサである。
The invention of claim 5 relates to an optical fiber according to claim 1.
An optical flow direction sensor is characterized in that a plurality of the described optical flow direction sensors are connected in series.

【0011】[0011]

【発明の実施の形態】以下、本発明の好適実施の形態を
添付図面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0012】図1は、FBG( Fiber Bragg Grating)
利用光式流向センサの内部構造を示す断面図である。
FIG. 1 shows an FBG (Fiber Bragg Grating).
It is sectional drawing which shows the internal structure of a utilization optical type flow direction sensor.

【0013】図1において、10は本体筒で、その上部
に、上フランジ11が、下部に、下フランジ12が、ボ
ルト13,14で取り付けられると共に本体筒10と上
下フランジ11,12間がOリング15,16でシール
される。
In FIG. 1, reference numeral 10 designates a main body cylinder, an upper flange 11 is attached to an upper part thereof, a lower flange 12 is attached to a lower part thereof with bolts 13 and 14, and a space between the main body cylinder 10 and the upper and lower flanges 11 and 12 is O. Sealed with rings 15 and 16.

【0014】下フランジ12には、本体筒10内から下
フランジ12の下方に貫通するように非磁性体パイプ1
7が設けられる。本体筒10内に位置した非磁性体パイ
プ17内には、上下ベアリング18,19を介してシャ
フト20が回転自在に設けられる。上下のベアリング1
8,19は、それぞれストップリング21,22で非磁
性体パイプ17内に固定される。
The non-magnetic pipe 1 extends through the lower flange 12 from the inside of the body cylinder 10 to below the lower flange 12.
7 is provided. A shaft 20 is rotatably provided in the non-magnetic pipe 17 located in the main body cylinder 10 via upper and lower bearings 18 and 19. Upper and lower bearing 1
8 and 19 are fixed in the nonmagnetic pipe 17 by stop rings 21 and 22, respectively.

【0015】シャフト20は、非磁性体パイプ17の下
端に設けたカラー23から下方に延び、その下部に舵2
4が設けられる。この舵24はプラスチック系の舶等の
舵形状と同じに形成される。
The shaft 20 extends downward from a collar 23 provided at the lower end of the non-magnetic pipe 17, and the rudder 2 is provided below the collar 23.
4 are provided. The rudder 24 is formed in the same shape as the rudder shape of a plastic ship or the like.

【0016】本体筒10内の非磁性体パイプ17の上端
には、本体筒10の径方向外方に突出するよう取付板2
5が設けられ、その取付板25の両側に歪み検出板2
6,27が片持ち支持され、且つ非磁性体パイプ17の
側面に沿うように垂下して設けられると共に、その歪み
検出板26,27の下端の非磁性体パイプ17に面した
側に外部磁石28,29が設けられる。この歪み検出板
26,27は、SUSバネ鋼、スーパーインバ材等、温
度変化により材料そのものの収縮率の小さい材質が望ま
しい。
At the upper end of the non-magnetic pipe 17 in the body tube 10, the mounting plate 2 is provided so as to project outward in the radial direction of the body tube 10.
5 is provided, and the strain detecting plates 2 are provided on both sides of the mounting plate 25.
6, 27 are supported in a cantilever manner and are provided so as to hang along the side surface of the non-magnetic pipe 17, and the external magnets are provided at the lower ends of the strain detecting plates 26, 27 facing the non-magnetic pipe 17. 28 and 29 are provided. The strain detection plates 26 and 27 are preferably made of a material such as SUS spring steel, super invar material, etc., which has a small shrinkage rate due to temperature changes.

【0017】この外部磁石28,29の位置に対向して
シャフト20には内部磁石30が取り付けられる。内部
磁石30と外部磁石28,29とは、その極性が異なる
ようにしても或いは同極になるようにしてもよい。この
内部磁石30と外部磁石28,29に用いる永久磁石
は、その磁石密度が2000〜2500ガウス程度とす
るのが最も好ましい。
An internal magnet 30 is attached to the shaft 20 so as to face the positions of the external magnets 28 and 29. The inner magnet 30 and the outer magnets 28 and 29 may have different polarities or may have the same polarities. The permanent magnets used for the internal magnet 30 and the external magnets 28 and 29 are most preferably magnet density of about 2000 to 2500 gauss.

【0018】歪み検出板26,27には、その歪み検出
板26,27と一体にFBG31,32が取り付けられ
る。
FBGs 31 and 32 are attached to the strain detecting plates 26 and 27 integrally with the strain detecting plates 26 and 27.

【0019】先ず、流向測定装置(図示せず)に接続さ
れた光ファイバ33をループ状にして、上フランジ11
より本体筒10内に導入し、その流向測定装置の上流側
の光ファイバ33Aを、外水方向検出用の歪み検出板2
7に一体化して歪み測定光ファイバ部33Dとし、その
歪み測定光ファイバ部33Dから接続光ファイバ33C
を介して内水方向検出用の歪み検出板28に一体化して
歪み測定用光ファイバ33Uとし、その光ファイバ33
Uより流向測定装置の下流側光ファイバ33Bを上フラ
ンジ11を通して本体筒10外に延出させ、その下流側
光ファイバ33Bを、同様にして他の光式流向センサに
順次接続して、多点で流向を測定できるように光ファイ
バ33が設けられる。
First, the optical fiber 33 connected to the flow direction measuring device (not shown) is formed into a loop, and the upper flange 11 is formed.
Further, the optical fiber 33A is introduced into the main body cylinder 10 and the upstream optical fiber 33A of the flow direction measuring device is connected to the strain detecting plate 2 for detecting the direction of the outside water.
7 is integrated into a strain measurement optical fiber section 33D, and the strain measurement optical fiber section 33D is connected to the connection optical fiber 33C.
Is integrated with the strain detecting plate 28 for detecting the direction of the inner water via an optical fiber 33U for strain measurement.
From U, the downstream optical fiber 33B of the flow direction measuring device is extended to the outside of the main body cylinder 10 through the upper flange 11, and the downstream optical fiber 33B is sequentially connected to other optical flow direction sensors in the same manner, and multipoint An optical fiber 33 is provided so that the flow direction can be measured at.

【0020】FBG31,32は、歪み検出板26,2
7に一体に設けた歪み測定用光ファイバ33U,33D
に回折波長の相違するグレーティング部34U,34D
を形成して構成される。
The FBGs 31 and 32 are the strain detection plates 26 and 2 respectively.
Optical fiber 33U, 33D for strain measurement integrally provided in 7
Grating portions 34U and 34D having different diffraction wavelengths
Is formed and formed.

【0021】図2(a)〜図2(c)は、歪み検出板2
6,27へのFBG31,32取付の詳細を示したもの
で、図2(a)は正面図、図2(b)は側面図、図2
(c)は断面図である。
2 (a) to 2 (c) show the strain detection plate 2
2A and 2B show the details of mounting the FBGs 31 and 32 on the 6 and 27. FIG. 2A is a front view, FIG. 2B is a side view, and FIG.
(C) is a sectional view.

【0022】FBG31,32は、SUSバネ鋼等で形
成した歪み検出板26,27に、グレーチング部34
U,34Dを形成したPI(ポリイミド)で被覆した歪
み測定光ファイバ部33U,33Dを接着剤(エポティ
ック;商品名)35で一体に取り付けて形成される。グ
レーチング部34U,34Dは、回折による出力波長が
相違するように形成しておく。また、歪み検出板26,
27とFBG31,32を一体化させるにあたり、FB
G31,32に微量のテンションを与えた状態で一体化
することで、微小な歪み検出板26,27の撓みを高感
度に検出することが可能となる。
The FBGs 31 and 32 have strain detection plates 26 and 27 formed of SUS spring steel or the like, and a grating portion 34.
It is formed by integrally attaching the strain measurement optical fiber portions 33U and 33D coated with PI (polyimide) on which U and 34D are formed, with an adhesive (epotic; trade name) 35. The grating portions 34U and 34D are formed so that the output wavelengths due to diffraction differ. In addition, the strain detection plate 26,
When integrating 27 and FBGs 31 and 32, FB
By integrating the G31 and 32 with a slight amount of tension, it is possible to detect the bending of the minute strain detection plates 26 and 27 with high sensitivity.

【0023】次に本発明の作用を説明する。Next, the operation of the present invention will be described.

【0024】本体筒10を水流を測定する河川の水面近
くに設置すると共に舵24を水面に浸るように取り付け
る。
The main body tube 10 is installed near the water surface of a river for measuring water flow, and the rudder 24 is attached so as to be immersed in the water surface.

【0025】舵24は、図3(a)に示すように、水流
が内水方向(上流から下流への流れ)にある場合には、
舵24は回転しながら内水方向を示し、シャフト20、
内部磁石30も内水方向を示す位置にある。
As shown in FIG. 3 (a), the rudder 24 is designed so that when the water flow is in the inward direction (flow from upstream to downstream),
The rudder 24 is rotating to indicate the inward water direction, and the shaft 20,
The internal magnet 30 is also in a position that indicates the direction of internal water.

【0026】この状態のとき、外部磁石28,29の
内、内水方向を示す外部磁石28と内部磁石30とが引
きつけ合うため、その歪み検出板26が非磁性体パイプ
17に接するように変形する。
In this state, the external magnet 28 of the external magnets 28 and 29, which indicates the direction of the internal water, and the internal magnet 30 attract each other, so that the strain detecting plate 26 is deformed so as to contact the nonmagnetic pipe 17. To do.

【0027】また、内水方向から外水方向に水流の流れ
が変化した場合には、図3(b)に示すように、舵24
は、外水方向に回転し、同時に内部磁石30も外水方向
を指す。すると、内水方向の検知と同様に、今度は外水
方向を示す外部磁石29が引き合い、その歪み検知板2
7が非磁性体パイプ17に接するように変形する。
When the water flow changes from the inner water direction to the outer water direction, as shown in FIG.
Rotates in the direction of outside water, and at the same time, the inner magnet 30 also points in the direction of outside water. Then, similarly to the detection of the inward water direction, the external magnets 29 indicating the outward water direction attract each other, and the strain detecting plate 2 is detected.
7 deforms so as to contact the non-magnetic pipe 17.

【0028】光ファイバ33には、その流向測定装置
(図示せず)から、光が入射されており、歪み検出板2
6,27の変形により、FBG31,32で、回折によ
り反射が起こると共に、その反射光の出力波長が変化す
るため、この変化を流向計測装置で計測することで、舵
24が内水方向か外水方向か或いはその他の方向(水流
が停滞している状態)かが判別できる。
Light is incident on the optical fiber 33 from a flow direction measuring device (not shown), and the strain detecting plate 2
Due to the deformation of Nos. 6 and 27, the FBGs 31 and 32 cause reflection due to diffraction, and the output wavelength of the reflected light changes. Therefore, by measuring this change with the flow direction measuring device, the rudder 24 is directed toward the inward direction or the outward direction. It is possible to determine whether it is the water direction or another direction (a state where the water flow is stagnant).

【0029】この場合、歪み検出板26,27の湾曲時
のたわみ量は、FBG出力波長変化量で1.5〜2.0
nmとすることが、温度と流向の波長分離を考慮すると
望ましく、且つ歪み検知板26,27の再現性を精度よ
く行う上でも最も望ましい。
In this case, the flexure amount of the strain detecting plates 26 and 27 at the time of bending is 1.5 to 2.0 in terms of the FBG output wavelength change amount.
It is desirable to set the thickness to nm in consideration of temperature and wavelength separation in the flow direction, and most desirable to perform the reproducibility of the strain detection plates 26 and 27 with high accuracy.

【0030】図4は、本発明のFBG利用光式流向セン
サの波長変化による流向判定を説明する図である。
FIG. 4 is a diagram for explaining the flow direction determination by the wavelength change of the FBG-use optical flow direction sensor of the present invention.

【0031】図4において、Aは、水流が停滞している
とき、Bは水流が内水方向(上流から下流方向)のと
き、Cは水流が外水方向(下流から上流方向)のときを
示し、その際のFBG利用光式流向センサの舵24の向
きを同時に示した。
In FIG. 4, A is when the water flow is stagnant, B is when the water flow is in the inward direction (upstream to downstream direction), and C is when the water flow is in the outflow direction (downstream to upstream direction). The orientation of the rudder 24 of the FBG-using optical flow direction sensor at that time is also shown.

【0032】先ず、上述のように内水方向検出用のFB
G31と外水方向検出用のFBG32は、異なった出力
波長となるように形成し、その2波長の変化から水流の
向きを判別する。
First, as described above, the FB for detecting the inward water direction
The G31 and the FBG 32 for detecting the outside water direction are formed so as to have different output wavelengths, and the direction of the water flow is discriminated from the change in the two wavelengths.

【0033】すなわち、図4中、aは、内水方向検出用
のFBG31による波長変化で、bは、外水方向検出用
のFBG32による波長変化を示したもので、水流が停
滞しているとき(A)は、舵24は、図示のように水流
方向がないため、方向性を示さず、水流が内水方向(図
で、右から左の流れ)のとき(B)は、舵24は、その
尾部が下流方向に向き(図3(a)参照)、このため、
内部磁石30と内水側の外部磁石28とが引き合って歪
み検出板26を屈曲させ、これによりFBG31で出力
波長が変化する。また水流が外水方向(図で、左から右
の流れ)のとき(C)は、舵24は、その尾部が上流方
向に向き(図3(b)参照)、このため、内部磁石30
と外水側の外部磁石29とが引き合って歪み検出板27
を屈曲させ、これによりFBG32で出力波長が変化す
る。
That is, in FIG. 4, a shows a wavelength change by the FBG 31 for detecting the inward water direction, and b shows a wavelength change by the FBG 32 for detecting the outer water direction, when the water flow is stagnant. In (A), since the rudder 24 does not have a water flow direction as shown in the figure, it does not show directionality, and when the water flow is in the inward water direction (flow from right to left in the figure), the rudder 24 is , Its tail faces downstream (see FIG. 3 (a)),
The inner magnet 30 and the outer magnet 28 on the inner water side attract each other to bend the strain detection plate 26, whereby the output wavelength changes in the FBG 31. Also, when the water flow is in the direction of the outside water (flow from left to right in the figure) (C), the tail of the rudder 24 faces the upstream direction (see FIG. 3 (b)).
And the external magnet 29 on the outside water side attract each other, and the strain detection plate 27
Is bent, so that the output wavelength changes in the FBG 32.

【0034】このようにFBG31,32の出力波長変
化a,bを流向測定装置で検出し、この信号を処理する
ことで、双方の波長変化の有無により河川水流の流れの
向きを容易に検出することができる。
In this way, the output wavelength changes a and b of the FBGs 31 and 32 are detected by the flow direction measuring device, and by processing this signal, the flow direction of the river water flow can be easily detected by the presence or absence of both wavelength changes. be able to.

【0035】また、歪み検出板26,27は、温度変化
により線膨張し、これがFBG31,32の出力波長変
化に影響を及ぼすため、温度補正を行う。この温度補正
は、流向により変化した歪み検出板26(または27)
の出力波長の変化量から他方の歪み検出板27(または
26)の出力波長の変化量を差し引くことにより行う。
Further, the strain detecting plates 26 and 27 linearly expand due to the temperature change, and this affects the output wavelength change of the FBGs 31 and 32, so that the temperature is corrected. This temperature correction is performed by the strain detection plate 26 (or 27) that changes depending on the flow direction.
This is done by subtracting the amount of change in the output wavelength of the other distortion detection plate 27 (or 26) from the amount of change in the output wavelength of the other.

【0036】上述の実施の形態においては、水流方向の
上流と下流に位置して歪み検出板26,27とFBG3
1,32を設ける例で説明したが、この歪み検出板2
6,27と、90度回転した位置に歪み検出板とFBG
を設けることにより、図4の水流が停滞しているとき
(A)の舵の方向を検出できるとともに、水流が渦巻き
状で、舵24が回転する場合にはその回転の状態も検出
することが可能である。
In the above embodiment, the strain detecting plates 26 and 27 and the FBG 3 are located upstream and downstream in the water flow direction.
Although the example in which 1, 32 are provided has been described, this distortion detection plate 2
6, 27 and the strain detection plate and FBG at the position rotated 90 degrees
By providing the above, it is possible to detect the direction of the rudder when the water flow in FIG. 4 is stagnant (A) and also to detect the state of rotation when the water flow is spiral and the rudder 24 rotates. It is possible.

【0037】以上、本発明の光式流向検出センサによれ
ば、無電源で精度よく河川などの流向検出が可能であ
り、また光ファイバに順次直列に光式流向検出センサを
接続することで、河川の水流の多点測定も可能となる。
また光式流向検出センサは、外観寸法、重量についてみ
ても、外径約100mm、高さ300mm、重量約5k
gと軽量コンパクトであり、現地に適したものを提供で
きる。
As described above, according to the optical flow direction detection sensor of the present invention, the flow direction of a river or the like can be detected accurately without a power source, and by connecting the optical flow direction detection sensors in series to the optical fiber, Multi-point measurement of river water flow is also possible.
The optical flow direction detection sensor has an outer diameter of about 100 mm, a height of 300 mm, and a weight of about 5 k
It is lightweight and compact, and can be provided locally.

【0038】[0038]

【発明の効果】以上要するに本発明によれば、周囲環境
に影響されずに多点化が容易で、しかも電源を全く必要
としない安価な光式流向センサを提供できる。
In summary, according to the present invention, it is possible to provide an inexpensive optical flow direction sensor which is not affected by the surrounding environment and can easily be multi-pointed and which requires no power source.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の歪み検出板へのFBG取り付けの詳細を
示す図である。
FIG. 2 is a diagram showing details of FBG attachment to the strain detection plate of FIG.

【図3】本発明において、水流に対する舵の方向を説明
する図である。
FIG. 3 is a diagram illustrating a rudder direction with respect to a water flow in the present invention.

【図4】本発明において、FBGの出力波長変化による
流向判定を説明する図である。
FIG. 4 is a diagram illustrating flow direction determination based on a change in the output wavelength of an FBG in the present invention.

【符号の説明】[Explanation of symbols]

10 本体筒 17 非磁性体パイプ 20 シャフト 24 舵 26,27 歪み検出板 28,29 外部磁石 30 内部磁石 31,32 FBG 33 光ファイバ 10 Body tube 17 Non-magnetic pipe 20 shaft 24 rudder 26,27 Strain detection plate 28,29 External magnet 30 internal magnet 31,32 FBG 33 optical fiber

フロントページの続き (72)発明者 鴨志田 博史 東京都千代田区大手町一丁目6番1号 日 立電線株式会社内 Fターム(参考) 2F034 AA04 DB05 DB14 Continued front page    (72) Inventor Hiroshi Kamoshida             1-6-1, Otemachi, Chiyoda-ku, Tokyo             Standing Wire Co., Ltd. F-term (reference) 2F034 AA04 DB05 DB14

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 本体筒内に設けた非磁性体パイプに、回
転自在なシャフトを、その非磁性体パイプの下端から突
出するよう設けると共に該シャフトの下端に水流方向に
向く舵を設け、上記非磁性体パイプ内のシャフトに内部
磁石を設け、非磁性体パイプの上端両側より、非磁性体
パイプの外側面に沿って垂下するよう一対の歪み検出板
を設け、その歪み検出板の下部の非磁性体パイプ側に、
上記内部磁石に対向して外部磁石を設け、その歪み検出
板に、光ファイバに接続されると共に、歪みにより光フ
ァイバから入射された光から異なる波長をそれぞれ出力
するFBGを一体に設けたことを特徴とする光式流向セ
ンサ。
1. A non-magnetic pipe provided in a main body cylinder is provided with a rotatable shaft projecting from a lower end of the non-magnetic pipe, and a lower end of the shaft is provided with a rudder directed in a water flow direction. An internal magnet is provided on the shaft in the non-magnetic material pipe, and a pair of strain detection plates are provided so as to hang down from the upper end sides of the non-magnetic material pipe along the outer surface of the non-magnetic material pipe. On the non-magnetic pipe side,
An external magnet is provided so as to face the internal magnet, and an FBG that is connected to an optical fiber and that outputs different wavelengths from light incident from the optical fiber due to strain is integrally provided on the distortion detection plate. A characteristic optical flow direction sensor.
【請求項2】 2枚の歪み検出板の温度補正を、流向に
より変化した歪み検出板側のFBGの出力波長の変化量
から、他方の歪み検出板側のFBGの出力波長の変化量
を差し引くことで行う請求項1記載の光式流向センサ。
2. The temperature correction of the two strain detection plates is performed by subtracting the amount of change in the output wavelength of the FBG on the other strain detection plate side from the amount of change in the output wavelength of the FBG on the strain detection plate side that has changed depending on the flow direction. The optical flow direction sensor according to claim 1, which is performed by the above.
【請求項3】 FBGは、歪み検出板に一体に設けた光
ファイバに光ファイバからの光を波長を変えて出力する
グレーティング部を形成してなり、そのFBGの光ファ
イバを歪み検出板に一体にする際に微量のテンションを
与えた状態で一体化させた請求項1記載の光式流向セン
サ。
3. The FBG comprises an optical fiber provided integrally with the strain detection plate and a grating portion for outputting light from the optical fiber with a wavelength changed, and the optical fiber of the FBG is integrated with the strain detection plate. 2. The optical flow direction sensor according to claim 1, wherein the optical flow direction sensor is integrated in a state where a slight amount of tension is applied during the process.
【請求項4】 非磁性体パイプに、複数の歪み検出板を
設けると共にこれら歪み検出板にそれぞれ外部磁石を設
け、その各歪み検出板にFBGをそれぞれ一体に設け、
水流に伴う舵の回転運動を上記各FBGの出力波長変化
から検出する請求項1記載の光式流向センサ。
4. A non-magnetic pipe is provided with a plurality of strain detection plates, each strain detection plate is provided with an external magnet, and each strain detection plate is integrally provided with an FBG.
The optical flow direction sensor according to claim 1, wherein the rotational movement of the rudder associated with the water flow is detected from a change in the output wavelength of each FBG.
【請求項5】 光ファイバに請求項1記載の光式流向セ
ンサを複数直列に接続したことを特徴とする光式流向セ
ンサ。
5. An optical flow direction sensor comprising a plurality of optical flow direction sensors according to claim 1 connected in series to an optical fiber.
JP2001337710A 2001-11-02 2001-11-02 Optical flow direction sensor Expired - Fee Related JP3899900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337710A JP3899900B2 (en) 2001-11-02 2001-11-02 Optical flow direction sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337710A JP3899900B2 (en) 2001-11-02 2001-11-02 Optical flow direction sensor

Publications (2)

Publication Number Publication Date
JP2003139790A true JP2003139790A (en) 2003-05-14
JP3899900B2 JP3899900B2 (en) 2007-03-28

Family

ID=19152309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337710A Expired - Fee Related JP3899900B2 (en) 2001-11-02 2001-11-02 Optical flow direction sensor

Country Status (1)

Country Link
JP (1) JP3899900B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509086B2 (en) 2005-12-21 2009-03-24 Canon Kabushiki Kaisha Image forming apparatus
KR101600573B1 (en) * 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
CN108037312A (en) * 2017-12-30 2018-05-15 石家庄铁道大学 Flow rate of water flow flow direction sensor
CN108169514A (en) * 2017-12-30 2018-06-15 石家庄铁道大学 Flow direction sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110940829A (en) * 2019-12-06 2020-03-31 石家庄铁道大学 Fiber bragg grating wind direction sensor and fiber bragg grating wind speed and wind direction sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509086B2 (en) 2005-12-21 2009-03-24 Canon Kabushiki Kaisha Image forming apparatus
KR101600573B1 (en) * 2014-09-30 2016-03-07 에스제이포토닉스 주식회사 Sensor based on fiber bragg gratings and observation system using the same
WO2016052974A1 (en) * 2014-09-30 2016-04-07 에스제이포토닉스 주식회사 Optical fiber bragg grating-based sensor and measurement device using same
CN108037312A (en) * 2017-12-30 2018-05-15 石家庄铁道大学 Flow rate of water flow flow direction sensor
CN108169514A (en) * 2017-12-30 2018-06-15 石家庄铁道大学 Flow direction sensor
CN108037312B (en) * 2017-12-30 2024-04-12 石家庄铁道大学 Water flow velocity and direction sensor
CN108169514B (en) * 2017-12-30 2024-04-12 石家庄铁道大学 Water flow direction sensor

Also Published As

Publication number Publication date
JP3899900B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP5190464B2 (en) Non-contact blade vibration measurement method
US6782766B2 (en) Apparatus for detecting torque, axial position and axial alignment of a rotating shaft
JP3712738B2 (en) Flowmeter
JPH08297011A (en) Sensor and method for measuring distance to medium and physical property of medium thereof
US9995612B2 (en) Coriolis mass flow meter
US20100308809A1 (en) Pipeline geometry sensor
US20090245028A1 (en) Ultra low frequency acoustic vector sensor
US9921093B2 (en) Coriolis mass flow meter
CA2355496C (en) Rotary shaft axial elongation measuring method and device
JP3905707B2 (en) Liquid level sensor
JP2003139790A (en) Optical current direction sensor
JP2003287451A (en) Optical flow-velocity sensor
AU2021221640B2 (en) A metal surface corrosion monitoring device with temperature compensation based on fiber grating
KR100638997B1 (en) Magnetic flux leakage pig and sensor module installed at the magnetic flux leakage
CN105783738A (en) Incremental type small-measurement-range displacement sensor and measurement method
JP2004361322A (en) Flowing direction meter, and flow rate / flowing direction meter using optical fiber sensor
JPH0715397B2 (en) Mass flow meter
JP3018099B2 (en) Abnormal detection method for rotating bearings
JPH11166803A (en) Magnetic cable elongation sensor
FI120753B (en) A system and method for determining the properties of a machine part adapted to rotate as it rotates
JPH0743207A (en) Vibration meter
KR200354498Y1 (en) Pipeline Inspection using Neural Networks
KR200241372Y1 (en) The measurement instrument of the distance covered attached at a pig
JPH1138033A (en) Pressure sensor type aerovane
JPH04344436A (en) Optical torque detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees