JP2003139505A - Sensor head for quartz oscillating type film thickness monitor and monitoring method for film thickness using it - Google Patents

Sensor head for quartz oscillating type film thickness monitor and monitoring method for film thickness using it

Info

Publication number
JP2003139505A
JP2003139505A JP2001339436A JP2001339436A JP2003139505A JP 2003139505 A JP2003139505 A JP 2003139505A JP 2001339436 A JP2001339436 A JP 2001339436A JP 2001339436 A JP2001339436 A JP 2001339436A JP 2003139505 A JP2003139505 A JP 2003139505A
Authority
JP
Japan
Prior art keywords
crystal
film thickness
holder
film
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339436A
Other languages
Japanese (ja)
Other versions
JP2003139505A5 (en
JP3953301B2 (en
Inventor
Fumihiko Omura
文彦 大村
Ken Saito
斉藤  憲
Toru Okuno
亨 奥野
Atsushi Ito
敦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2001339436A priority Critical patent/JP3953301B2/en
Publication of JP2003139505A publication Critical patent/JP2003139505A/en
Publication of JP2003139505A5 publication Critical patent/JP2003139505A5/ja
Application granted granted Critical
Publication of JP3953301B2 publication Critical patent/JP3953301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor head for a quartz oscillating type film thickness monitor having a structure capable of carrying out easy and positive operation, and capable of accurately monitoring the film thickness of a thin film during a film forming process. SOLUTION: The sensor head 11 for the quartz oscillating type film thickness monitor is provided with a stainless steel made quartz plate holder 13 holding quartz plates 12X (121 -1212 ), a PTEF resin made electrode holder 15 holding vane type electrodes 14X (141 -1412 ) for detecting a resonance frequency of the quartz plates 12X (121 -1212 ), a vacuum pulse motor 18 arranged so that a driving shaft is journaled to a rotation center shaft 17 of a rotatable disc 16 comprising the quartz plate holder 13 and the electrode holder 15, a stainless steel made water cooled jacket 19 covering the quartz plate holder 13, the electrode holder 15 and the vacuum pulse motor 18, and a stainless steel made mask 20 with a window 21 covering the quartz plate holder 13 from a film forming direction. It is composed so that the quartz plates 12X (121 -1212 ) can be changed by rotating the quartz plate holder 13 by the vacuum pulse motor 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水晶振動子の共振
周波数を測定することによって、真空蒸着、スパッタリ
ング等の成膜工程により水晶振動子上に成膜される薄膜
の膜厚をモニタする水晶発振式膜厚モニタ用センサヘッ
ドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal for monitoring the film thickness of a thin film formed on a crystal resonator by a film forming process such as vacuum deposition or sputtering by measuring the resonance frequency of the crystal resonator. The present invention relates to a sensor head for oscillation type film thickness monitor.

【0002】[0002]

【従来の技術】薄膜の膜厚検出方法としては、光学的方
法、イオンゲージ法、直流抵抗方法、水晶発振式方法等
がある。これらのうち、水晶発振式方法は、水晶振動子
の表面に物質が付着するとその共振振動(従振動、すべ
り振動、屈伸振動等)が変化することを利用して物質の
膜厚を測定するものである。このものによる膜厚測定に
際して、水晶振動子上に薄膜が厚く成膜されると膜の剥
離や内部応力の蓄積によって水晶振動子の共振振動が不
安定になったり、周波数測定範囲から外れるようになっ
たりする。このため水晶発振式方法では、この時点で水
晶振動子が寿命であると判断して、使用していた水晶振
動子を新しい水晶振動子に切換える必要がある。
2. Description of the Related Art As a method for detecting the thickness of a thin film, there are an optical method, an ion gauge method, a direct current resistance method, a crystal oscillation method and the like. Among these, the crystal oscillation method measures the film thickness of a substance by utilizing the fact that when a substance adheres to the surface of a quartz oscillator, its resonance vibration (sub-vibration, sliding vibration, bending and stretching vibration, etc.) changes. Is. When measuring the film thickness with this product, if a thin film is formed thickly on the crystal unit, the resonance vibration of the crystal unit may become unstable due to peeling of the film or accumulation of internal stress. To become. Therefore, in the crystal oscillation method, it is necessary to determine that the crystal resonator is at the end of its life at this point and switch the used crystal resonator to a new crystal resonator.

【0003】このような水晶振動子の切換えを膜厚モニ
タ装置内で簡便に行えるように数枚の水晶振動子を有す
るものとして、従来、切換えを回転式で行う水晶発振式
膜厚モニタ用センサヘッドが知られている。図1は、こ
のような回転式の水晶発振式膜厚モニタ用センサヘッド
の正面断面図で、膜厚モニタ用センサヘッドは、水晶振
動子1a、1bを載置する水晶振動子載置デスク2(水
晶振動子ホルダ)と水晶振動子1a、1bに対するシー
ルドカバー本体3(熱遮蔽カバー)とで構成される。ま
た、本体3には窓4が設けられ、さらに、本体3とこれ
に連結する部分は固定される一方で、水晶振動子載置デ
スク2が回転可能な構造になっている。そして、下部電
極5、6、7は、一点で固定され、水晶振動子1aから
の電極8とそれぞれスライド接触することが可能であ
る。このものにおいて、水晶振動子1aの表面には、本
体3に設けられた窓4を介して物質が成膜され、一定の
膜厚の薄膜が成膜されて水晶振動子1aが寿命と判断さ
れた時点で、回転軸9まわりに水晶振動子載置デスク2
を回転させて別の水晶振動子1bが窓4に対面する位置
に移動させるように構成されている。なお、本体3には
冷却水排水管10が配設されており、装置全体の温度を
抑制するようにしている。
Conventionally, a crystal oscillation type film thickness monitor sensor for performing switching is rotationally provided as having a plurality of crystal oscillators so that the crystal oscillators can be switched easily in the film thickness monitor. The head is known. FIG. 1 is a front sectional view of such a rotary crystal oscillation type film thickness monitor sensor head. The film thickness monitor sensor head includes a crystal oscillator mounting desk 2 for mounting the crystal oscillators 1a and 1b. (Crystal resonator holder) and shield cover body 3 (heat shield cover) for the crystal resonators 1a and 1b. Further, the main body 3 is provided with a window 4, and the main body 3 and a portion connected to the main body 3 are fixed, while the crystal unit mounting desk 2 is rotatable. The lower electrodes 5, 6 and 7 are fixed at one point and can be in sliding contact with the electrodes 8 from the crystal unit 1a. In this structure, a substance is formed on the surface of the crystal unit 1a through a window 4 provided in the main body 3, and a thin film having a constant film thickness is formed. At that time, the crystal unit mounting desk 2 is rotated around the rotary shaft 9.
Is rotated to move another crystal oscillator 1b to a position facing the window 4. A cooling water drain pipe 10 is arranged in the main body 3 to suppress the temperature of the entire device.

【0004】ところが、上記の従来の水晶発振式膜厚モ
ニタ用センサヘッドは、水晶振動子に対する熱遮蔽や熱
シンクが考慮されておらず、水晶振動子が成膜工程中の
輻射熱に曝されることにより熱ひずみが発生し、水晶振
動子の共振周波数が変動して膜厚モニタ用センサヘッド
としての性能が劣化するおそれがある。
However, in the above-mentioned conventional crystal oscillation type film thickness monitor sensor head, heat shield and heat sink for the crystal unit are not taken into consideration, and the crystal unit is exposed to radiant heat during the film forming process. As a result, thermal strain may occur, and the resonance frequency of the crystal unit may fluctuate, degrading the performance of the sensor head for film thickness monitoring.

【0005】このため、特許3213613号の第8図
で開示される水晶発振式膜厚モニタ用センサヘッドは、
水晶振動子を載置するカローセル(水晶振動子ホルダ)
とボディとを高熱伝導材で形成し、蒸着で発生する熱か
らカローセルとボディとを断熱するために熱シールド
(熱遮蔽カバー)を低熱伝導材で形成し、さらに、ボデ
ィからカローセルに対して良好な熱伝導を行うために水
冷冷却コイル(冷却機構)を配設して、蒸着過程で発生
する熱を早期に除去し、カローセル(水晶振動子ホル
ダ)に載置された水晶振動子に対して高い熱負荷が生じ
ないようにしている。
Therefore, the crystal oscillation type film thickness monitor sensor head disclosed in FIG. 8 of Japanese Patent No. 3213613 is
Carousel for mounting a crystal unit (crystal unit holder)
The body and the body are made of a high thermal conductive material, and the heat shield (heat shield cover) is made of a low thermal conductive material to insulate the carousel and the body from the heat generated by vapor deposition. Furthermore, it is good for the body to the carousel. A water-cooled cooling coil (cooling mechanism) is installed to ensure efficient heat transfer, and the heat generated during the vapor deposition process is removed early, and the crystal unit mounted on the carousel (crystal unit holder) is removed. High heat load is prevented.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本来、
膜厚モニタ用センサヘッドに使用される水晶振動子は、
真空蒸着やスパッタリング等の成膜工程において300
℃以上の高温環境に曝される場合がある。そして、上記
のもののように、使用前の待機状態の水晶振動子が水冷
等により比較的低温環境に保たれていると、使用中の水
晶振動子が寿命を迎えたとき、これと切換えて新しい水
晶振動子を使用環境に供する際に、周囲の環境が相対的
に低温状態から高温状態に急激に変化し、この結果、新
しい水晶振動子が急激な温度変化に起因する熱衝撃を受
けることになる。このような熱衝撃は、水晶振動子の共
振周波数を変動させるもので、これにより水晶発振式膜
厚モニタ用センサヘッドの精度の低下や水晶振動子の寿
命の短縮を招くことがある。
[Problems to be Solved by the Invention] However, originally,
The crystal unit used in the sensor head for film thickness monitoring is
300 in film forming processes such as vacuum deposition and sputtering
May be exposed to high temperature environment above ℃. When the crystal unit in the standby state before use is kept in a relatively low temperature environment such as water cooling as described above, when the crystal unit in use reaches the end of its life, it is switched to a new one. When the crystal unit is used in the environment where it is used, the surrounding environment suddenly changes from a relatively low temperature state to a high temperature state, and as a result, the new crystal unit receives a thermal shock due to the rapid temperature change. Become. Such thermal shock fluctuates the resonance frequency of the crystal unit, which may lead to a decrease in accuracy of the crystal oscillation type film thickness monitor sensor head and a shortened life of the crystal unit.

【0007】また、上記の水晶発振式膜厚モニタ用セン
サヘッドは、装置が複雑で取扱い上の問題点も多い。例
えば、このものでは、水晶振動子の切換えのための回転
手段としてラチェット等を用い、これを圧縮空気で回転
作動させているが、このような機械的作動は一般的に制
御が難しく、多数枚の水晶振動子を用いる場合は、位置
精度が厳しくなり、水晶振動子の切換え時に動作不良を
起こすことがある。
Further, the above-mentioned sensor head for crystal oscillation type film thickness monitor has a complicated apparatus and has many problems in handling. For example, in this device, a ratchet or the like is used as a rotating means for switching the crystal oscillator, and this is rotationally operated by compressed air. However, such mechanical operation is generally difficult to control, and a large number of pieces are used. When using the crystal oscillator, the positional accuracy becomes strict, and a malfunction may occur when switching the crystal oscillator.

【0008】さらに、多層積層の薄膜の成膜工程でこの
薄膜の膜厚をモニタする場合には、多層積層薄膜を構成
するそれぞれの成膜材料や水晶振動子の内部応力が異な
ることから、水晶振動子上に多層積層される成膜材料の
相互間や、水晶振動子とこの表面上に成膜される成膜材
料との間において剥離が生じ、水晶発振式膜厚モニタ用
センサヘッドを用いた膜厚のモニタが正確に行えないこ
とがある。
Further, when the film thickness of this thin film is monitored in the film forming process of the multilayer laminated thin film, since the film forming materials forming the multilayer laminated thin film and the internal stress of the crystal oscillator are different, the crystal Detachment occurs between film-forming materials that are laminated in multiple layers on the oscillator, or between the crystal oscillator and the film-forming material that is deposited on this surface. The film thickness may not be accurately monitored.

【0009】本発明は、上記問題点に鑑み、簡便で確実
な作動が行える構造を有し、成膜工程中の薄膜の膜厚を
高い精度でモニタすることが可能な水晶発振式膜厚モニ
タ用センサヘッドを提供し、また、この膜厚モニタ用セ
ンサヘッドを用いて薄膜の膜厚を確実にモニタできる方
法を提供することを課題としている。
In view of the above-mentioned problems, the present invention has a structure capable of performing a simple and reliable operation, and is capable of monitoring the film thickness of a thin film during a film forming process with high accuracy. It is an object of the present invention to provide a sensor head for use in a film, and to provide a method for reliably monitoring the film thickness of a thin film using the sensor head for film thickness monitoring.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するた
め、本発明の水晶発振式膜厚モニタ用センサヘッドは、
複数の水晶振動子を保持する水晶振動子ホルダと、水晶
振動子の共振周波数を検出するための電極を保持する電
極ホルダと、水晶振動子ホルダと電極ホルダとを被う熱
遮蔽カバーと、水晶振動子ホルダと電極ホルダとを一体
的に回転させる回転機構と、水晶振動子保持ホルダと電
極ホルダと回転機構とを冷却する冷却機構とを備える構
造とし、水晶振動子ホルダと熱遮蔽カバーとに低熱伝導
材料を用い、電極ホルダに電気絶縁材料を用い、さら
に、回転機構により水晶振動子ホルダを回転して水晶振
動子を切換えるように構成した。このような構造と材料
とで構成される水晶発振式膜厚モニタ用センサヘッドに
備えられた複数の水晶振動子は、待機中も熱遮蔽カバー
と冷却機構とにより所定温度範囲内に保たれ、使用環境
に供される際に受ける熱衝撃の影響を軽減することがで
きる。このため、水晶振動子が所定の共振周波数を保
ち、このような水晶振動子を用いた水晶発振式膜厚モニ
タ用センサヘッドにより、高い精度で膜厚のモニタを行
うことができる。
In order to solve the above-mentioned problems, the crystal oscillation type film thickness monitor sensor head of the present invention comprises:
A crystal oscillator holder that holds a plurality of crystal oscillators, an electrode holder that holds an electrode for detecting a resonance frequency of the crystal oscillator, a heat shield cover that covers the crystal oscillator holder and the electrode holder, and a crystal A structure including a rotating mechanism that integrally rotates the oscillator holder and the electrode holder, and a cooling mechanism that cools the crystal oscillator holding holder, the electrode holder, and the rotating mechanism, and uses the crystal oscillator holder and the heat shield cover. A low heat conductive material was used, an electric insulating material was used for the electrode holder, and the crystal unit was rotated by a rotating mechanism to switch the crystal unit. A plurality of crystal oscillators provided in the crystal oscillation type film thickness monitor sensor head configured with such a structure and material are kept within a predetermined temperature range by the heat shield cover and the cooling mechanism even during standby, It is possible to reduce the effect of thermal shock that is applied to the environment of use. Therefore, the crystal oscillator keeps a predetermined resonance frequency, and the film thickness can be monitored with high accuracy by the crystal oscillation type film thickness monitor sensor head using such a crystal oscillator.

【0011】この場合、低熱伝導材料としてステンレス
鋼を用い、電気絶縁材料としてPTEF樹脂を用いるの
が好適であり、さらに、冷却機構に水冷式ジャケットを
用いることにより装置をコンパクトに構成することが可
能となる。そして、回転機構に真空用パルスモータを用
いることにより、膜厚モニタ装置全体を成膜室内に配置
して、水晶振動子の切換えなどの作動を確実に行うこと
ができる。
In this case, it is preferable to use stainless steel as the low heat conductive material and PTEF resin as the electrical insulating material. Further, by using a water cooling type jacket for the cooling mechanism, the apparatus can be made compact. Becomes Then, by using the vacuum pulse motor for the rotating mechanism, the entire film thickness monitoring device can be arranged in the film forming chamber, and operations such as switching of the crystal oscillator can be reliably performed.

【0012】また、上記の水晶発振式膜厚モニタ用セン
サヘッドを用いるときに、あらかじめスパッタ成膜によ
り、成膜工程で用いる成膜材料を水晶振動子のそれぞれ
の成膜側の表面に被覆し、その後、成膜材料を用いる成
膜を行う際に、これと同じ成膜材料を被覆しておいた水
晶振動子を選択するように、真空用パルスモータを作動
させて水晶振動子を切換える。このようにすれば、多層
積層状態にすることなく、薄膜に対する膜厚モニタを行
うことになるので、成膜材料間の剥離は起こりえず、ま
た、成膜材料付きの水晶振動子とこの成膜材料とが強力
に密着するので、水晶振動子と成膜材料との剥離を抑制
することができる。したがって、上記の水晶発振式膜厚
モニタ用センサヘッドを用いて薄膜の膜厚のモニタを確
実に行うことが可能となる。
Further, when the above-mentioned crystal oscillation type film thickness monitor sensor head is used, the film forming material used in the film forming step is previously coated on the surface of each crystal resonator on the film forming side by sputtering film formation. Then, when performing film formation using the film forming material, the vacuum pulse motor is operated to switch the crystal oscillator so that the crystal oscillator coated with the same film forming material is selected. By doing so, the film thickness can be monitored for the thin film without forming a multi-layer laminated state, so that peeling between film forming materials cannot occur, and a crystal oscillator with film forming material and this crystal Since the film material strongly adheres to the film material, it is possible to suppress peeling between the crystal unit and the film forming material. Therefore, it becomes possible to reliably monitor the film thickness of the thin film using the above-mentioned crystal oscillation type film thickness monitor sensor head.

【0013】[0013]

【発明の実施の形態】図2は、本発明の水晶発振式膜厚
モニタ用センサヘッド11の正面断面図であり、この膜
厚モニタ用センサヘッド11は、円周上に均等に載置さ
れた12枚の水晶板121〜1212(12X)を保持する
ステンレス鋼製の円板状水晶板ホルダ13と、水晶板1
1〜1212(12X)のそれぞれに導通する羽型電極1
1〜1412(14X)を保持し、水晶板ホルダ13に一
体的に固定されたPTEF樹脂製のリング状電極ホルダ
15と、水晶板ホルダ13と電極ホルダ15とから成る
回転可能な円板16の回転中心軸17に駆動軸が軸着す
るように配置した真空用パルスモータ18と、水晶板ホ
ルダ13と電極ホルダ15と真空用パルスモータ18と
を冷却機構として被うステンレス鋼製の水冷式ジャケッ
ト19と、水晶板ホルダ13を成膜方向から熱遮蔽カバ
ーとして被うステンレス鋼製のマスク20とを備えて構
成されている。マスク20には、水晶板121〜1212
のうち使用環境に供する水晶板12Xを覗くことができ
る窓21が設けられ、膜厚を測定すべき成膜材料は、窓
21を介して水晶板12Xの表面上に成膜される(図3
参照)。そして、マスク20は、ステンレス鋼製で熱遮
蔽効果を有するので、この後に開始する成膜工程で発生
する輻射熱が膜厚モニタ用センサヘッド11に伝導する
のを防止したり、成膜工程中に真空中を飛来してくる物
質から膜厚モニタ用センサヘッド11を保護したりする
役割がある。
FIG. 2 is a front sectional view of a crystal oscillation type film thickness monitor sensor head 11 of the present invention. The film thickness monitor sensor head 11 is evenly mounted on the circumference. And a crystal plate holder 13 made of stainless steel, which holds 12 crystal plates 12 1 to 12 12 (12 X ), and a crystal plate 1.
Wing-shaped electrode 1 that conducts to each of 2 1 to 12 12 (12 X )
4 1 ~14 12 (14 X) holds a ring-shaped electrode holder 15 made of PTEF resin which is integrally fixed to the quartz plate holder 13, a rotatable circular consisting quartz plate holder 13 and the electrode holder 15. The vacuum pulse motor 18 arranged so that the drive shaft is pivotally attached to the rotation center shaft 17 of the plate 16, the crystal plate holder 13, the electrode holder 15, and the vacuum pulse motor 18 are made of stainless steel and cover as a cooling mechanism. It comprises a water-cooled jacket 19 and a stainless steel mask 20 which covers the crystal plate holder 13 as a heat shield cover from the film forming direction. The mask 20 has crystal plates 12 1 to 12 12.
A window 21 through which the crystal plate 12 X to be exposed to the usage environment can be seen is provided, and a film forming material whose film thickness is to be measured is formed on the surface of the crystal plate 12 X through the window 21 ( Figure 3
reference). Further, since the mask 20 is made of stainless steel and has a heat shielding effect, it is possible to prevent radiant heat generated in the film forming process started thereafter from being conducted to the sensor head 11 for film thickness monitoring, or to prevent the radiant heat from being generated during the film forming process. It also has a role of protecting the film thickness monitoring sensor head 11 from a substance flying in a vacuum.

【0014】図4は、図2中で一体的に示した、水晶板
ホルダ13と電極ホルダ15とから成る回転可能な円板
16の要部断面図である。上記のように水晶板121
121 2(12X)を保持する円板状水晶板ホルダ13
と、水晶板121〜1212(12X)のそれぞれに導通す
る羽型電極141〜1412(14X)を保持するリング状
電極ホルダ15とが一体的に円板16を構成し、円板1
6は中心軸17まわりに回転可能となっている。
FIG. 4 is a cross-sectional view of the main part of the rotatable disc 16 composed of the crystal plate holder 13 and the electrode holder 15, which is integrally shown in FIG. Crystal plate 12 1 ~
12 1 2 (12 X) disc-shaped crystal plate holder 13 for holding the
And the ring-shaped electrode holder 15 for holding the wing-shaped electrodes 14 1 to 14 12 (14 X ) that are electrically connected to the crystal plates 12 1 to 12 12 (12 X ) respectively, form a disc 16 integrally, Disk 1
6 is rotatable about a central axis 17.

【0015】羽型電極141〜1412(14X)は、水晶
板121〜1212(12X)に対して付勢可能な羽部22
1〜2212(22X)を有し、水晶板121〜1212と羽
型電極141〜1412とがそれぞれ羽部221〜2212
介して接触して導通する。そして、羽型電極141〜1
12が水晶板121〜1212へ圧接する際に、この圧接
に対して羽部221〜2212が緩衝材の役割を果たすよ
うに構成している。これは、膜厚をモニタする際には、
窓21に対面して位置する水晶板12Xの共振周波数を
測定するため、すべり振動を行えるように水晶板12X
の自由度を確保する必要があるからである。このような
緩衝材を用いることで水晶板12Xが完全に固定されて
しまうことが避けられる。
The wing-shaped electrodes 14 1 to 14 12 (14 X ) are wing portions 22 which can be urged against the quartz plates 12 1 to 12 12 (12 X ).
1 to 22 12 (22 X ) are provided, and the quartz plates 12 1 to 12 12 and the wing-shaped electrodes 14 1 to 14 12 are in contact with each other via the wing portions 22 1 to 22 12 to be in conduction. And the wing-shaped electrodes 14 1 to 1
When 4 12 is pressed against the crystal plates 12 1 to 12 12 , the wing portions 22 1 to 22 12 play a role of a cushioning material against this pressure contact. This is because when monitoring the film thickness,
Since the resonance frequency of the crystal plate 12 X facing the window 21 is measured, the crystal plate 12 X is adjusted so that it can perform sliding vibration.
This is because it is necessary to secure the degree of freedom of By using such a cushioning material, it is possible to prevent the crystal plate 12 X from being completely fixed.

【0016】また、図4中の円板16の中心軸17に、
図2の真空用パルスモータ18の駆動軸が軸着し、真空
用パルスモータ18の駆動により、水晶板121〜12
12が円板16と一体的に回転するようにされている。
Further, on the central axis 17 of the disc 16 in FIG.
The drive shaft of the vacuum pulse motor 18 of FIG. 2 is attached to the shaft, and the vacuum pulse motor 18 is driven to drive the crystal plates 12 1 to 12 1.
12 is adapted to rotate integrally with the disc 16.

【0017】このとき、図2の膜厚モニタ用センサヘッ
ド11に搭載した水晶板121〜1212の共振周波数は
いずれも5MHzに調整されている。また、使用環境に
供する水晶板12Xに導通する羽型電極14Xは、図外の
板バネを介してオシレータ(図示せず)に接続され、水
晶板12Xの共振周波数が羽型電極14Xを介してオシレ
ータで検出できるように構成される。さらに、上記した
ように、水晶板ホルダ13と電極ホルダ15とは、真空
用パルスモータ18の駆動により一体的に回転できるよ
うに構成されているので、水晶板12Xの共振周波数の
変動を検出して水晶板12Xが寿命を迎えたと判断され
たときに、図外のコントローラの制御により真空用パル
スモータ18が作動して円板16が回転移動し、マスク
20の窓21に対面する位置に新しい水晶板12Yが移
動して水晶板12の切換えができるように構成されてい
る。
At this time, the resonance frequencies of the crystal plates 12 1 to 12 12 mounted on the film thickness monitor sensor head 11 of FIG. 2 are all adjusted to 5 MHz. Further, vane-type electrode 14 X which conduct the quartz plate 12 X to be subjected to the environment of use is connected to the oscillator (not shown) via a non-illustrated leaf spring, the quartz plate 12 X resonant frequency vane-type electrode 14 It is configured to be detected by the oscillator via X. Further, as described above, the crystal plate holder 13 and the electrode holder 15 are configured to be integrally rotatable by driving the vacuum pulse motor 18, so that the fluctuation of the resonance frequency of the crystal plate 12 X is detected. When it is determined that the crystal plate 12 X has reached the end of its life, the vacuum pulse motor 18 is actuated by the control of a controller (not shown) to rotationally move the disk 16 and face the window 21 of the mask 20. A new crystal plate 12 Y is moved so that the crystal plate 12 can be switched.

【0018】また、水晶板ホルダ13上の全水晶板12
1〜1212の使用を終了した後は、水晶板ホルダ13の
固定ねじ23を外して全水晶板121〜1212ごと水晶
板ホルダ13を交換する。このようにして、水晶板12
1〜1212を簡便に交換することができる。
Further, the whole crystal plate 12 on the crystal plate holder 13
After the use of 1 to 12 12 is finished, the fixing screw 23 of the crystal plate holder 13 is removed, and the crystal plate holder 13 is replaced with all the crystal plates 12 1 to 12 12 . In this way, the crystal plate 12
1 to 12 12 can be easily replaced.

【0019】図2の膜厚モニタ用センサヘッド11を用
いて、成膜される薄膜の膜厚をモニタするに際し、ま
ず、水冷配管24により、水冷式ジャケット19内に所
定温度の冷却水を循環させる。水冷式ジャケット19内
には邪魔板25、26を適宜配置し、冷却水がジャケッ
ト19内をくまなく循環して、膜厚モニタ用センサヘッ
ド11内部が冷却水による保温効果を均等に確保できる
ようにしている。また、水冷式ジャケット19は真空用
パルスモータ18が作動できる温度限界内の環境を確保
する役割もある。
When monitoring the film thickness of a thin film to be formed using the film thickness monitoring sensor head 11 of FIG. 2, first, the cooling water of a predetermined temperature is circulated in the water cooling jacket 19 through the water cooling pipe 24. Let Baffles 25 and 26 are appropriately arranged in the water-cooled jacket 19 so that the cooling water circulates throughout the jacket 19 so that the inside of the film thickness monitor sensor head 11 can evenly maintain the heat retention effect by the cooling water. I have to. The water-cooled jacket 19 also has a role of ensuring an environment within the temperature limit in which the vacuum pulse motor 18 can operate.

【0020】次に、上記のように水冷式ジャケット19
内で冷却水を循環させた状態で、成膜工程を開始し、水
晶板12X上に成膜される薄膜の膜厚のモニタを開始す
る。このとき、上記したように、冷却水が水冷配管24
を経由して膜厚モニタ用センサヘッド11のジャケット
19内を循環し、膜厚モニタ用センサヘッド11内部を
保温している。このため、膜厚モニタ用センサヘッド1
1に搭載された、12 X以外の使用前の水晶板121〜1
12も所定温度に保温されている。この状態で成膜工程
が開始され、窓21を介して水晶板12X上に薄膜が成
膜される。そして、これに伴って水晶板12Xの共振周
波数が変動し、この振動数が羽型電極14Xにより電気
信号として検知される。
Next, as described above, the water-cooled jacket 19 is used.
With the cooling water circulating inside, start the film formation process and
Crystal plate 12XStart monitoring the thickness of the thin film deposited on top
It At this time, as described above, the cooling water is the water cooling pipe 24.
Jacket of sensor head 11 for film thickness monitoring
19 to circulate inside the sensor head 11 for film thickness monitoring.
Keeps it warm. Therefore, the film thickness monitor sensor head 1
12 mounted on 1 XCrystal plate 12 before use other than1~ 1
Two12Is also kept at a predetermined temperature. Film formation process in this state
Is started, and the crystal plate 12 is passed through the window 21.XThin film on top
Be filmed. And, along with this, the crystal plate 12XResonance circumference
The wave number fluctuates, and this frequency becomes the wing-shaped electrode 14.XBy electricity
It is detected as a signal.

【0021】さらに、その後の膜厚モニタ用センサヘッ
ド11によるセンサ作動の状況を、図5のセンサ接続図
を用いて以下説明する。図5では、膜厚モニタ用センサ
ヘッド11を制御するための成膜コントローラ27が、
フランジ28で区切られる成膜室系(図5のフランジ2
8の向かって左側に位置する領域)の外側に配置されて
いる。
Further, the operation of the sensor by the sensor head 11 for film thickness monitoring thereafter will be described below with reference to the sensor connection diagram of FIG. In FIG. 5, a film formation controller 27 for controlling the film thickness monitor sensor head 11 is
Deposition chamber system divided by flange 28 (flange 2 in FIG. 5
8 is located outside the area located on the left side of 8).

【0022】また、冷却水が水冷配管24を経由して膜
厚モニタ用センサヘッド11のジャケット19内を循環
し、膜厚モニタ用センサヘッド11内部を保温した状態
で、上記のように図2に示す羽型電極14Xより電気信
号として検知された水晶板12Xの共振周波数は、図5
において、真空内部ケーブル29と補助ケーブル30と
を経由して送信され、オシレータ31において電気周波
数として検出される。さらに、オシレータ31で検出さ
れた水晶板12Xの共振周波数は、さらに真空外部ケー
ブル32を経由して成膜コントローラ27に送信され
る。
The cooling water circulates in the jacket 19 of the film thickness monitoring sensor head 11 via the water cooling pipe 24 to keep the inside of the film thickness monitoring sensor head 11 warm as shown in FIG. The resonance frequency of the quartz plate 12 X detected as an electric signal from the wing-shaped electrode 14 X shown in FIG.
At, the signal is transmitted via the vacuum internal cable 29 and the auxiliary cable 30, and is detected as an electric frequency by the oscillator 31. Further, the resonance frequency of the crystal plate 12 X detected by the oscillator 31 is further transmitted to the film formation controller 27 via the vacuum external cable 32.

【0023】成膜コントローラ27は、あらかじめ、水
晶板121〜1212の共振周波数の変動許容範囲が入力
されていて、この許容範囲を逸脱した振動数が検出され
た時点で水晶板12Xが寿命を迎えたと判断し、ピンケ
ーブル33経由でコントローラ34に対して、真空用パ
ルスモータ18(図2参照)の制御信号を送信する。そ
して、図5において、コントローラ34の指示により、
真空外部コントロールケーブル35及び真空内部コント
ロールケーブル36経由で制御信号が送信されて真空用
パルスモータ18が作動し、図2中の水晶板12Xが水
晶板ホルダ13ごと回転して、新しい水晶板12Yが窓
21に対面する位置まで移動する。かくして、水晶板1
2の切換えが終了する。
In the film formation controller 27, the permissible fluctuation range of the resonance frequency of the crystal plates 12 1 to 12 12 is input in advance, and when the frequency deviating from the permissible range is detected, the crystal plate 12 X is detected. It is judged that the life has come to an end, and the control signal of the vacuum pulse motor 18 (see FIG. 2) is transmitted to the controller 34 via the pin cable 33. Then, in FIG. 5, according to an instruction from the controller 34,
A control signal is transmitted via the vacuum external control cable 35 and the vacuum internal control cable 36 to operate the vacuum pulse motor 18, and the crystal plate 12 X in FIG. Move to the position where Y faces window 21. Thus, crystal plate 1
The switching of 2 is completed.

【0024】なお、本実施の形態において行ったような
水晶板12の単純な切換えだけでなく、これを利用した
効率的な膜厚のモニタ方法がある。即ち、膜厚モニタ時
の成膜工程が、多種類の成膜材料を用いた多層積層薄膜
を形成するものであるとき、水晶板12Xを続けて使用
して膜厚のモニタを行うと、成膜工程の高温環境下にお
いて、水晶板12Xと成膜材料との内部応力の差異、ま
たは、成膜材料同士の内部応力の差異に起因して、水晶
板12Xとこの表面に積層する成膜材料との間、また
は、成膜材料同士の成膜層間において剥離が生じること
がある。このような剥離が生じると、水晶板12X上の
成膜量が不完全になるため、その膜厚をモニタする際の
精度が低下することになる。このため、これを防ぐ目的
で、水晶板121〜1212それぞれの成膜側の表面にあ
らかじめAu、Al、Ni、Cu、Ag、Ti、Cr等
の金属元素をスパッタ成膜により被覆しておくと良い。
エネルギーを持ったスパッタ粒子が水晶板121〜12
12の表面に打ち込まれ、蒸着等の場合と比べて水晶板1
1〜1212に対する密着性が非常に良いからである。
したがって、このような被覆面上に同種類の金属元素を
蒸着により積層する場合に密着性が向上するので、水晶
板12X上に直接成膜を行う場合に比べて確実な成膜が
得られる。即ち、このようにすることにより、膜厚モニ
タ用センサヘッド11の所望の作動環境を整備すること
ができ、これにより、膜厚を高精度でモニタすることが
可能となるのである。
In addition to the simple switching of the crystal plate 12 performed in the present embodiment, there is an efficient film thickness monitoring method using this. That is, when the film-forming process at the time of film thickness monitoring is to form a multilayer laminated thin film using various kinds of film-forming materials, if the quartz plate 12 X is continuously used to monitor the film thickness, In the high temperature environment of the film forming process, due to the difference in the internal stress between the crystal plate 12 X and the film forming material or the difference in the internal stress between the film forming materials, the crystal plate 12 X and the surface thereof are laminated. Peeling may occur between the film forming materials or between the film forming materials. If such peeling occurs, the amount of film formed on the quartz plate 12 X becomes incomplete, so that the accuracy in monitoring the film thickness decreases. Therefore, in order to prevent this, the surface of each of the crystal plates 12 1 to 12 12 on the film formation side is previously coated with a metal element such as Au, Al, Ni, Cu, Ag, Ti, and Cr by sputtering film formation. It is good to leave.
Quartz plate sputtered particles having energy 12 1 to 12
Quartz plate 1 which is driven into the surface of 12 compared to the case of vapor deposition etc.
Adhesion to 2 1 to 12 12 that it has a very good.
Therefore, when the same kind of metal element is laminated on such a coated surface by vapor deposition, the adhesion is improved, so that a more reliable film formation can be obtained as compared with the case where the film is directly formed on the crystal plate 12 X. . That is, by doing so, the desired operating environment of the sensor head 11 for film thickness monitoring can be maintained, and thereby the film thickness can be monitored with high accuracy.

【0025】また、水晶板121〜1212上にTiやA
lをスパッタ成膜し、これを酸化または窒化すれば、T
i/TiN層若しくはTi/TiO2層、または、Al/A
lN層若しくはAl/Al23層が形成される。即ち、
一般的に密着性が劣る酸化膜や窒化膜の場合も、このよ
うにすれば、水晶板12Xと強力に密着している金属膜
の中間層が介在した酸化膜や窒化膜が水晶板12X上に
成膜されることになるので、密着性の問題は解消され
る。
Further, Ti and A are deposited on the crystal plates 12 1 to 12 12.
l is sputter-deposited and oxidized or nitrided to obtain T
i / TiN layer or Ti / TiO 2 layer or Al / A
An IN layer or an Al / Al 2 O 3 layer is formed. That is,
In general, even in the case of an oxide film or a nitride film having poor adhesion, the oxide film or the nitride film with the intermediate layer of the metal film strongly adhered to the crystal plate 12 X is formed in this manner. Since the film is formed on X , the problem of adhesion is solved.

【0026】そして、多層積層を構成する別の成膜材料
を用いる成膜工程に移行するたびに、その際に用いる成
膜材料と同種類の材料をあらかじめスパッタ成膜により
被覆しておいた水晶板121〜1212を選択して切換え
るようにして各成膜材料の膜厚をモニタするようにす
る。このようにすると、多層積層状態にすることなく、
水晶板12X上の成膜に対して膜厚のモニタを行うこと
になるので、多層積層を構成する成膜材料間の剥離が水
晶板12X上では起こり得ず、また、成膜材料と同種類
の材料をあらかじめスパッタ成膜により被覆しておいた
水晶板121〜1212を用いると、上記のように密着性
が向上して、水晶板12Xの表面における成膜材料の剥
離を抑制することができる。したがって、膜厚モニタ用
センサヘッド11を用いて確実に膜厚のモニタを行うこ
とが可能となる。
Each time the process proceeds to a film forming process using another film forming material forming a multi-layer stack, the same kind of material as the film forming material used at that time is previously coated by sputtering film formation. The thickness of each film forming material is monitored by selecting and switching the plates 12 1 to 12 12 . In this way, without making a multi-layer laminated state,
Since the film thickness is monitored for the film formation on the crystal plate 12 X , peeling between the film forming materials forming the multilayer stack cannot occur on the crystal plate 12 X , and When the crystal plates 12 1 to 12 12 coated with the same kind of material by sputtering film formation in advance are used, the adhesiveness is improved as described above, and the film forming material is removed from the surface of the crystal plate 12 X. Can be suppressed. Therefore, it is possible to reliably monitor the film thickness using the film thickness monitor sensor head 11.

【0027】[0027]

【発明の効果】以上の説明から明らかなように、本発明
の水晶発振式膜厚モニタ用センサヘッドは簡便な構造を
有し、さらに、この膜厚モニタ用センサヘッドを用いる
と、これに搭載した水晶振動子が使用環境に供されると
きに受ける熱衝撃を軽減することができるので、このよ
うな水晶振動子を用いて精度良く膜厚をモニタすること
ができる。また、この膜厚モニタ用センサヘッドを用い
るときに、あらかじめスパッタ成膜により、成膜工程で
用いる成膜材料をこの膜厚モニタ用センサヘッドに搭載
する水晶振動子のそれぞれの成膜側の表面に被覆し、そ
の後、成膜材料を用いる成膜を行う際に、これと同じ成
膜材料を被覆しておいた水晶振動子を選択するように、
真空用パルスモータを作動させて水晶振動子を切換える
こととすれば、水晶振動子に対して強力に密着して成膜
材料の成膜が行われるので、成膜材料の剥離などの問題
が生じることなく、確実に膜厚をモニタすることができ
る。
As is apparent from the above description, the crystal oscillation type film thickness monitor sensor head of the present invention has a simple structure, and when this film thickness monitor sensor head is used, it is mounted on the sensor head. Since it is possible to reduce the thermal shock received when the crystal oscillator is subjected to the usage environment, it is possible to accurately monitor the film thickness using such a crystal oscillator. When this film thickness monitor sensor head is used, the film forming material used in the film forming process is previously formed by sputtering film formation, and the surface of each film forming side of the crystal unit mounted on this film thickness monitor sensor head. When a film is formed using the film-forming material, the crystal resonator coated with the same film-forming material should be selected.
If the crystal oscillator is switched by operating the vacuum pulse motor, the film forming material is deposited in close contact with the crystal oscillator, which causes problems such as peeling of the film forming material. Without fail, the film thickness can be reliably monitored.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の水晶発振式膜厚モニタ用センサヘッドの
正面断面図
FIG. 1 is a front sectional view of a conventional crystal oscillation type film thickness monitor sensor head.

【図2】本発明の水晶発振式膜厚モニタ用センサヘッド
の正面断面図
FIG. 2 is a front sectional view of a crystal oscillation type film thickness monitor sensor head of the present invention.

【図3】図2の成膜方向正面図FIG. 3 is a front view of the film forming direction of FIG.

【図4】本発明の要部拡大断面図FIG. 4 is an enlarged sectional view of an essential part of the present invention.

【図5】本発明のセンサ接続図FIG. 5 is a sensor connection diagram of the present invention.

【符号の説明】[Explanation of symbols]

11 水晶発振式膜厚モニタ用センサヘッド 12X 水晶板(水晶振動子) 13 ステンレス鋼製水晶板ホルダ 14X 羽型電極 15 PTEF樹脂製電極ホルダ 18 真空用パルスモータ 19 ステンレス鋼製水冷式ジャケット11 Crystal Oscillation Type Film Thickness Monitor Sensor Head 12 X Crystal Plate (Crystal Resonator) 13 Stainless Steel Crystal Plate Holder 14 X Feather Electrode 15 PTEF Resin Electrode Holder 18 Vacuum Pulse Motor 19 Stainless Steel Water Cooling Jacket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 亨 神奈川県茅ヶ崎市萩園2500 株式会社アル バック内 (72)発明者 伊藤 敦 神奈川県茅ヶ崎市萩園2500 株式会社アル バック内 Fターム(参考) 2F063 AA16 BA30 BC10 EC03 EC27 LA04 4K029 CA01 CA05 EA01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toru Okuno             2500 Hagien, Chigasaki-shi, Kanagawa Al             In the back (72) Inventor Atsushi Ito             2500 Hagien, Chigasaki-shi, Kanagawa Al             In the back F term (reference) 2F063 AA16 BA30 BC10 EC03 EC27                       LA04                 4K029 CA01 CA05 EA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】複数の水晶振動子を保持する水晶振動子ホ
ルダと、前記水晶振動子の共振周波数を検出するための
電極を保持する電極ホルダと、前記水晶振動子ホルダと
前記電極ホルダとを被う熱遮蔽カバーと、前記水晶振動
子ホルダと前記電極ホルダとを一体的に回転させる回転
機構と、前記水晶振動子保持ホルダと前記電極ホルダと
前記回転機構とを冷却する冷却機構とを備え、前記水晶
振動子ホルダと前記熱遮蔽カバーとが低熱伝導材料で構
成され、前記電極ホルダが電気絶縁材料で構成され、前
記回転機構により前記水晶振動子ホルダを回転して前記
水晶振動子を切換えることを特徴とする水晶発振式膜厚
モニタ用センサヘッド。
1. A crystal resonator holder for holding a plurality of crystal resonators, an electrode holder for holding electrodes for detecting a resonance frequency of the crystal resonator, the crystal resonator holder and the electrode holder. A heat shield cover, a rotating mechanism that integrally rotates the crystal oscillator holder and the electrode holder, and a cooling mechanism that cools the crystal oscillator holding holder, the electrode holder, and the rotating mechanism. The crystal oscillator holder and the heat shield cover are made of a low heat conductive material, the electrode holder is made of an electrically insulating material, and the crystal oscillator holder is rotated by the rotating mechanism to switch the crystal oscillator. A crystal oscillation type film thickness monitor sensor head characterized by the following.
【請求項2】前記低熱伝導材料がステンレス鋼から成
り、前記電気絶縁材料がPTEF樹脂から成り、前記冷
却機構として水冷式ジャケットを用い、前記回転機構と
して真空用パルスモータを用いることを特徴とする請求
項1に記載の水晶発振式膜厚モニタ用センサヘッド。
2. The low heat conductive material is made of stainless steel, the electrical insulating material is made of PTEF resin, a water cooling jacket is used as the cooling mechanism, and a vacuum pulse motor is used as the rotating mechanism. The crystal oscillation type film thickness monitor sensor head according to claim 1.
【請求項3】前記水晶発振式膜厚モニタ用センサヘッド
を用いて膜厚をモニタする方法において、あらかじめス
パッタ成膜により、成膜工程で用いる成膜材料を前記水
晶振動子のそれぞれの成膜側の表面に被覆し、その後、
前記成膜材料を用いる成膜を行う際に、該成膜材料が被
覆されている前記水晶振動子を選択して切換えることを
特徴とする膜厚のモニタ方法。
3. A method of monitoring a film thickness using the crystal oscillation type film thickness monitoring sensor head, wherein a film-forming material used in a film-forming step is formed in advance by sputtering film-forming for each of the crystal oscillators. On the side surface, then
A method for monitoring a film thickness, characterized in that, when performing film formation using the film forming material, the crystal resonator covered with the film forming material is selected and switched.
JP2001339436A 2001-11-05 2001-11-05 Sensor head for crystal oscillation type film thickness monitor Expired - Fee Related JP3953301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339436A JP3953301B2 (en) 2001-11-05 2001-11-05 Sensor head for crystal oscillation type film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339436A JP3953301B2 (en) 2001-11-05 2001-11-05 Sensor head for crystal oscillation type film thickness monitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006265189A Division JP3953505B2 (en) 2006-09-28 2006-09-28 A film thickness monitoring method using a crystal oscillation type film thickness monitoring sensor head.

Publications (3)

Publication Number Publication Date
JP2003139505A true JP2003139505A (en) 2003-05-14
JP2003139505A5 JP2003139505A5 (en) 2005-05-12
JP3953301B2 JP3953301B2 (en) 2007-08-08

Family

ID=19153782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339436A Expired - Fee Related JP3953301B2 (en) 2001-11-05 2001-11-05 Sensor head for crystal oscillation type film thickness monitor

Country Status (1)

Country Link
JP (1) JP3953301B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270332A (en) * 2006-03-31 2007-10-18 Showa Shinku:Kk Vacuum deposition apparatus
JP2007305561A (en) * 2006-05-11 2007-11-22 Samsung Sdi Co Ltd Crystal sensor, and deposition device of organic luminescent element equipped with the same
JP2008122200A (en) * 2006-11-10 2008-05-29 Ulvac Japan Ltd Film thickness measuring method
JP2009001885A (en) * 2007-06-25 2009-01-08 Canon Inc Film thickness detection device and vapor deposition method
WO2009038085A1 (en) * 2007-09-21 2009-03-26 Ulvac, Inc. Thin film forming apparatus, film thickness measuring method and film thickness sensor
JP2012169168A (en) * 2011-02-15 2012-09-06 Hitachi High-Technologies Corp Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
KR20160127078A (en) 2014-05-26 2016-11-02 가부시키가이샤 아루박 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
KR20170028980A (en) 2014-08-26 2017-03-14 가부시키가이샤 아루박 Film-thickness monitor and film-thickness determination method
CN106967959A (en) * 2017-05-15 2017-07-21 成都西沃克真空科技有限公司 A kind of crystal oscillator probe control system
CN106990209A (en) * 2017-05-15 2017-07-28 成都西沃克真空科技有限公司 A kind of crystal oscillator probe for being used to detect evaporator evaporation amount
CN107130214A (en) * 2017-05-11 2017-09-05 成都西沃克真空科技有限公司 A kind of evaporator is with rotatable water cooled electrode device
CN107794509A (en) * 2016-09-06 2018-03-13 株式会社爱发科 Film thickness sensor
CN108728810A (en) * 2018-08-16 2018-11-02 广东振华科技股份有限公司 A kind of vacuum and low temperature magnetron sputtering coater
DE112018000303B4 (en) * 2017-06-28 2020-10-08 Ulvac, Inc. Sensor head for a quartz oscillator film thickness motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957467B1 (en) * 2013-04-24 2019-03-12 주식회사 선익시스템 Apparatus for measuring thickness of deposition
CN104131261B (en) * 2014-07-08 2016-09-14 东莞市汇成真空科技有限公司 A kind of vacuum optical coating system of the dynamically Thickness Monitoring in place with workpiece motion s
CN106574833B (en) * 2014-07-31 2019-12-31 株式会社爱发科 Method for diagnosing film thickness sensor and film thickness monitor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270332A (en) * 2006-03-31 2007-10-18 Showa Shinku:Kk Vacuum deposition apparatus
JP4737760B2 (en) * 2006-03-31 2011-08-03 株式会社昭和真空 Vacuum deposition equipment
JP2007305561A (en) * 2006-05-11 2007-11-22 Samsung Sdi Co Ltd Crystal sensor, and deposition device of organic luminescent element equipped with the same
JP4563976B2 (en) * 2006-05-11 2010-10-20 三星モバイルディスプレイ株式會社 CRYSTAL SENSOR AND ORGANIC LIGHT EMITTING DEVICE DEPOSITION EQUIPPED WITH THE SAME
JP2008122200A (en) * 2006-11-10 2008-05-29 Ulvac Japan Ltd Film thickness measuring method
JP2009001885A (en) * 2007-06-25 2009-01-08 Canon Inc Film thickness detection device and vapor deposition method
WO2009038085A1 (en) * 2007-09-21 2009-03-26 Ulvac, Inc. Thin film forming apparatus, film thickness measuring method and film thickness sensor
US8226802B2 (en) 2007-09-21 2012-07-24 Ulvac, Inc. Thin film forming apparatus, film thickness measuring method and film thickness sensor
JP5140678B2 (en) * 2007-09-21 2013-02-06 株式会社アルバック Thin film forming equipment, film thickness measuring method, film thickness sensor
JP2012169168A (en) * 2011-02-15 2012-09-06 Hitachi High-Technologies Corp Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
KR20160127078A (en) 2014-05-26 2016-11-02 가부시키가이샤 아루박 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
KR20180063369A (en) 2014-05-26 2018-06-11 가부시키가이샤 아루박 Film-forming device, method for measuring film thickness of organic film, and film thickness sensor for organic film
KR20170028980A (en) 2014-08-26 2017-03-14 가부시키가이샤 아루박 Film-thickness monitor and film-thickness determination method
CN106574365A (en) * 2014-08-26 2017-04-19 株式会社爱发科 Film-thickness monitor and film-thickness determination method
CN107794509A (en) * 2016-09-06 2018-03-13 株式会社爱发科 Film thickness sensor
KR20180027334A (en) 2016-09-06 2018-03-14 가부시키가이샤 아루박 Film thickness sensor
CN107794509B (en) * 2016-09-06 2021-10-01 株式会社爱发科 Film thickness sensor
CN107130214A (en) * 2017-05-11 2017-09-05 成都西沃克真空科技有限公司 A kind of evaporator is with rotatable water cooled electrode device
CN106967959A (en) * 2017-05-15 2017-07-21 成都西沃克真空科技有限公司 A kind of crystal oscillator probe control system
CN106990209A (en) * 2017-05-15 2017-07-28 成都西沃克真空科技有限公司 A kind of crystal oscillator probe for being used to detect evaporator evaporation amount
DE112018000303B4 (en) * 2017-06-28 2020-10-08 Ulvac, Inc. Sensor head for a quartz oscillator film thickness motor
CN108728810A (en) * 2018-08-16 2018-11-02 广东振华科技股份有限公司 A kind of vacuum and low temperature magnetron sputtering coater

Also Published As

Publication number Publication date
JP3953301B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
JP2003139505A (en) Sensor head for quartz oscillating type film thickness monitor and monitoring method for film thickness using it
JP3953505B2 (en) A film thickness monitoring method using a crystal oscillation type film thickness monitoring sensor head.
CN106574833B (en) Method for diagnosing film thickness sensor and film thickness monitor
JP5696576B2 (en) Temperature measuring substrate and heat treatment apparatus
JP2013112897A (en) Facility for producing plating film for ic shield and metal shield film layer of ic
JPH03153872A (en) Multipolar crystal head for monitoring film thickness of vapor deposition
JP2003139505A5 (en)
JP2012169168A (en) Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
CA3092312A1 (en) Formation of piezoelectric devices
KR20060055445A (en) Method and apparatus for measuring film thickness and film thickness growth
JP2017145443A (en) Film thickness monitoring device
CN110872695B (en) Film forming apparatus and control method for film forming apparatus
CN110306165B (en) Film thickness monitoring device and thin film deposition equipment
JP7022419B2 (en) Film thickness monitoring device, film thickness monitoring device and film thickness monitoring method
JPH09256155A (en) Film forming device
JPH10302997A (en) Plasma treatment device
JP3945103B2 (en) Frequency adjusting method and processing device for frequency adjustment of piezoelectric vibrator and piezoelectric vibrating piece
JPH06116721A (en) Sputtering device
US3723778A (en) Thickness sensor for sputtering systems utilizing magnetic deflection of electrons for thermal protection
EP4300029A1 (en) Measuring device for measuring a thickness of a film of material deposited on a substrate and film deposition apparatus with at least one such measuring device
JPH07188914A (en) Formation of film and sputtering device
JPH0740240A (en) Method and device for grinding ceramic plate
KR101010166B1 (en) Apparatus for forming external electrode
JPH0949075A (en) Sputtering device
JP2002275627A (en) Element for electronic parts, electronic parts and method for manufacturing these

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070424

R150 Certificate of patent or registration of utility model

Ref document number: 3953301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees