JP2003139180A - Bending strength member - Google Patents

Bending strength member

Info

Publication number
JP2003139180A
JP2003139180A JP2001334600A JP2001334600A JP2003139180A JP 2003139180 A JP2003139180 A JP 2003139180A JP 2001334600 A JP2001334600 A JP 2001334600A JP 2001334600 A JP2001334600 A JP 2001334600A JP 2003139180 A JP2003139180 A JP 2003139180A
Authority
JP
Japan
Prior art keywords
bending
strength member
bending strength
compression
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001334600A
Other languages
Japanese (ja)
Inventor
Haruyuki Konishi
晴之 小西
Hiroyuki Yamashita
浩之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001334600A priority Critical patent/JP2003139180A/en
Publication of JP2003139180A publication Critical patent/JP2003139180A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a bending strength member with high energy absorption performance. SOLUTION: This bending strength member comprises an aluminum alloy hollow shape 1 having a nearly rectangular cross section formed by flanges 4, 5 and webs 2, 3. The ratio (b/tf ) of the width (b) and the thickness (tf ) of the flange 4 which is on the compressed side when a bending load (A) acts on the hollow shape 1 exceeds 5, and the ratio (h/tw ) of the width (h) and the thickness (tw ) of the webs 2, 3 exceeds 5. The local elongation of the aluminum alloy material of the hollow shape 1 at a tension test is 2.5% or more. At bending deformation of the hollow shape 1 by the bending load (A), facing surfaces 4a, 4b of the flange 4 which is bent-deformed on the compressed side contact and interfere each other so as to prevent bending deformation of each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はエネルギー吸収性に
優れたアルミニウム合金中空形材からなる曲げ強度部材
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending strength member made of an aluminum alloy hollow material having excellent energy absorption.

【0002】[0002]

【従来の技術】自動車などの輸送機車体や構造物、建築
物等に用いられるアルミニウム合金製強度 (構造) 部材
の中には、曲げ強度部材がある。この曲げ強度部材は、
自動車などの場合には、バンパー補強材やドアビーム、
あるいはフレ−ム部材などが例示される。
Bending strength members are among the strength (structure) members made of aluminum alloy used in the bodies of vehicles such as automobiles, structures, buildings and the like. This bending strength member,
In the case of automobiles, bumper reinforcements, door beams,
Alternatively, a frame member or the like is exemplified.

【0003】この曲げ強度部材には、外から加わる荷重
(外力) のエネルギーを、部材自らの曲げ変形および断
面方向の変形 (横圧壊) により吸収する性能が求められ
ている。
An external load is applied to this bending strength member.
The ability to absorb the energy of (external force) by bending deformation and lateral deformation (lateral crushing) of the member itself is required.

【0004】例えば、前記バンパー補強材( バンパーリ
インフォースメントあるいはバンパーアマチャアなどと
も言う) やドアビームには、車体の衝突により加わった
衝突荷重のエネルギー (衝突エネルギー) を、自らの曲
げ変形および断面方向の変形(横圧壊) により吸収し、
車体を保護する性能が求められている。
For example, the energy of the collision load (collision energy) applied by the collision of the vehicle body is applied to the bumper reinforcement (also referred to as bumper reinforcement or bumper armature) and the door beam by its own bending deformation and cross-section deformation. Absorb by (lateral crushing),
The ability to protect the vehicle body is required.

【0005】これら曲げ強度部材に用いられるアルミニ
ウム合金材には、他に、軽量化や組み立てコストの低減
要求もあり、基本的に断面が矩形の中空形材とされる。
そして、この中空形材は、主として、5000系、6000系、
7000系等の高強度アルミニウム合金を押出加工および調
質処理(熱処理)して製造される。また、圧延によるア
ルミニウム合金板を成形加工後、溶接して中空形材とす
る場合もある。
The aluminum alloy materials used for these bending strength members are also required to be lighter in weight and lower in assembly cost, and are basically hollow sections having a rectangular cross section.
And, this hollow shape material is mainly 5000 series, 6000 series,
It is manufactured by extruding and tempering (heat treatment) a high-strength aluminum alloy such as 7000 series. Further, the aluminum alloy plate may be formed by rolling and then welded to form a hollow shape member.

【0006】図9 を用いて従来のアルミニウム合金中空
形材製の曲げ強度部材を説明する。図9 (a) は、従来の
口形の中空断面形状の曲げ強度部材 (中空形材)1m を斜
視図で示している。曲げ強度部材1mは、曲げ荷重方向
(水平方向) に対し、垂直で互いに平行に配置されたフ
ランジ (縦壁) 4 、5 と、これらを結ぶ、互いに平行な
水平ウエブ (横壁) 2、3 により、形材の長手方向に渡
って均一な口形の略矩形断面を構成している。なお、こ
の矩形断面の種類も、この口形の中空断面形状の他に、
フランジ両端をウエブ幅より左右に張り出した形状、中
リブを設けて補強した日形、田形、目形などの断面形状
が、用途に応じて適宜選択される。
A conventional bending strength member made of an aluminum alloy hollow profile will be described with reference to FIG. FIG. 9 (a) shows a perspective view of a conventional bending strength member (hollow shape member) having a hollow cross-sectional shape of 1 m. Bending strength member 1m is in bending load direction
With (horizontal direction), flanges (vertical walls) 4 and 5 which are arranged vertically and parallel to each other, and horizontal webs (horizontal walls) 2 and 3 which connect them and are parallel to each other, are used to extend in the longitudinal direction of the profile. It has a substantially rectangular cross section with a uniform mouth shape. The type of this rectangular cross section is, in addition to this mouth-shaped hollow cross section,
A cross-sectional shape such as a shape in which both ends of the flange are juxtaposed to the left or right of the web width, a cross-sectional shape such as a day shape, a square shape, or an eye shape in which a middle rib is provided for reinforcement is appropriately selected according to the application.

【0007】このようなアルミニウム合金中空形材製の
曲げ強度部材 (以下、単に曲げ強度部材とも言う) によ
れば、従来使用されていた鋼材製の曲げ強度部材より
も、軽量化と衝突などの荷重時のより高いエネルギー吸
収量が期待できる。
According to such a bending strength member made of an aluminum alloy hollow shape member (hereinafter, also simply referred to as bending strength member), it is possible to reduce the weight and to prevent collision, compared to the conventionally used bending strength members made of steel material. Higher energy absorption under load can be expected.

【0008】図9(b)に示す通り、今、曲げ強度部材1mの
長手方向に対し略直角の矢印A 方向(水平方向) からの
曲げ荷重が作用した場合、曲げ荷重が作用する側の曲げ
内側フランジ4 には水平方向の圧縮力F1がかかり、反対
側の曲げ外側フランジ5 には水平方向の引張力F2がかか
る曲げ変形が生じる。したがい、曲げ内側フランジ4は
圧縮側 (圧縮応力側) フランジ、曲げ外側フランジ5 は
引張側 (引張応力側)フランジとなる。
As shown in FIG. 9 (b), when a bending load is applied in the direction of arrow A (horizontal direction) substantially perpendicular to the longitudinal direction of the bending strength member 1m, the bending on the side where the bending load acts A bending deformation occurs in which a horizontal compressive force F1 is applied to the inner flange 4 and a horizontal tensile force F2 is applied to the opposite bent outer flange 5. Therefore, the bending inner flange 4 is a compression side (compression stress side) flange, and the bending outer flange 5 is a tension side (tensile stress side) flange.

【0009】ここにおいて、図9(b)の状態を図10(a) に
平面図で示す通り、曲げ荷重が作用した当初、この曲げ
荷重を支えるのは、曲げ強度部材1mの曲げ荷重が負荷さ
れた部位 (中央部12) を曲げ中心 (曲げ部) とする曲げ
変形となる。通常は、この曲げ変形により曲げ荷重のエ
ネルギー吸収が行われる。
Here, as shown in the plan view of FIG. 9 (b) in the state of FIG. 9 (b), when the bending load is applied, the bending load is supported by the bending load of the bending strength member 1m at the beginning. The bending deformation takes place at the bent portion (center portion 12) as the bending center (bending portion). Normally, this bending deformation absorbs the energy of the bending load.

【0010】これに対し、図10(b) に示すように、曲げ
荷重が負荷された曲げ強度部材1mの中央部12などで、圧
縮側フランジ4 およびウエブ2 、3 に局部的な座屈が生
じ、更に変形が進んだ場合、圧縮側フランジ4 やウエブ
2 、3 が顕著に湾曲する変形を生じつつ、これらで形成
する断面のつぶれ変形 (範囲X で示す) が進行する。こ
の断面のつぶれ変形が進行した場合、圧縮側フランジ4
やウエブ2 、3 が湾曲するため、十分に荷重を負担でき
ない。また、断面の深みが減少するため、曲げ変形に対
する抵抗モーメントが減少し、耐曲げ荷重が減少する。
この結果、曲げ強度部材1mのエネルギー吸収量はより大
幅に低下してしまう。
On the other hand, as shown in FIG. 10 (b), in the central portion 12 of the bending strength member 1m under a bending load, the compression side flange 4 and the webs 2 and 3 are not locally buckled. If deformation occurs further, the compression side flange 4 or web
While the deformation of 2 and 3 is remarkably curved, the crush deformation of the cross section formed by these (indicated by the range X) proceeds. If this crush deformation progresses, the compression side flange 4
Since the and webs 2 and 3 are curved, they cannot bear the load sufficiently. Further, since the depth of the cross section is reduced, the resistance moment against bending deformation is reduced and the bending resistance is reduced.
As a result, the energy absorption amount of the bending strength member 1m is further reduced.

【0011】したがって、曲げ強度部材のエネルギー吸
収量を高めるためには、前記断面のつぶれ変形を防止し
て、全断面が効率的に応力を負担する、矩形断面構造体
本来の変形による本来のエネルギー吸収を生じるように
することが重要となる。
Therefore, in order to increase the energy absorption amount of the bending strength member, the original energy due to the original deformation of the rectangular cross-section structure in which the collapse deformation of the cross section is prevented and the entire cross section efficiently bears the stress. It is important to allow absorption.

【0012】従来から、曲げ強度部材のエネルギー吸収
性能を高めるために、種々の手段が提案されている。即
ち、 素材アルミニウム合金の強度を高める、 圧縮側フランジの幅b と厚みt f との比b/t f を一定
値以下に制限する、 ウエブの幅h と厚み t wとの比h/ t wを一定値以下に
する、 特開平6-101732号や特開平11-173356 号、再公表特許
WO99/10168号などの公報で提案されている、アルミニウ
ム合金中空形材の引張側フランジ面に炭素繊維などで強
化したCFRP材やFRP 材を設ける、等々である。
Conventionally, various means have been proposed in order to enhance the energy absorption performance of the bending strength member. That is, increasing the strength of the material aluminum alloy, limiting the ratio b / t f of the compression side flange width b to the thickness t f to a certain value or less, the ratio of the web width h to the thickness t w h / t w To a certain value or less, JP-A-6101732, JP-A-11-173356, and republished patents
Proposed in WO99 / 10168 and other publications, a CFRP material or FRP material reinforced with carbon fiber or the like is provided on the tensile side flange surface of an aluminum alloy hollow shape material, and so on.

【0013】[0013]

【発明が解決しようとする課題】前記素材アルミニウ
ム合金の強度を高めることは、曲げ荷重によって、曲げ
強度部材の断面のつぶれ変形 (断面の屈服) 現象が生じ
るまでの、曲げ変形量や断面変形量が比較的小さい範囲
でのエネルギー吸収性能を高めるのには有効である。し
かし、曲げ強度部材の断面のつぶれ変形が生じた後に
は、荷重は極端に低下し、大きな曲げ変形までのエネル
ギー吸収性能を高めるためには有効ではない。
To increase the strength of the material aluminum alloy, the amount of bending deformation and the amount of deformation of the cross section of the bending strength member until the deformation of the cross section of the bending strength member (bringing of the cross section) occurs due to the bending load. Is effective in improving the energy absorption performance in a relatively small range. However, after the crush deformation of the cross section of the bending strength member occurs, the load is extremely reduced, and it is not effective for improving the energy absorption performance up to a large bending deformation.

【0014】また、前記圧縮側フランジの幅b と厚み
t f との比b/t f を一定値以下に制限することや、ウ
エブの幅h と厚みt w との比h/t w を一定値以下にする
ことは、前記大きな曲げ変形までのエネルギー吸収性能
を高めるためには、相当の厚肉化が必要である。このた
め、重量が増加し、曲げ強度部材へのアルミニウム合金
材採用の大きな利点である軽量化自体が損なわれる。
The width b and the thickness of the compression side flange
and limiting the ratio b / t f and t f below a predetermined value, to a ratio h / t w of the width h and the thickness t w of the web to the predetermined value or less, the energy to the large bending deformation In order to improve the absorption performance, it is necessary to considerably thicken the wall. For this reason, the weight increases, and the weight saving itself, which is a great advantage of using the aluminum alloy material for the bending strength member, is impaired.

【0015】更に、前記のCFRP材やFRP 材を設ける技
術では、曲げ強度部材の引張側フランジ面に設けられた
FRP材が、負荷される曲げ荷重を受け持つことで、圧縮
側フランジの過度の変形を抑制し、中空形材の矩形断面
構造体の変形による本来のエネルギー吸収を生じるよう
にしている。しかし、CFRP材やFRP 材を新たに設ける分
のコストや工程の増加の不利が大きい。
Further, in the above-mentioned CFRP material and the technology for providing the FRP material, the technique is provided on the tensile side flange surface of the bending strength member.
Since the FRP material bears the bending load applied, it suppresses the excessive deformation of the compression side flange and causes the original energy absorption due to the deformation of the rectangular cross-section structure of the hollow shape member. However, the cost of adding new CFRP material or FRP material and the increase in the number of processes are disadvantageous.

【0016】したがって、本発明の目的は、これら従来
技術の問題を解決し、エネルギー吸収量を高めた曲げ強
度部材を提供しようとするものである。
Therefore, an object of the present invention is to solve these problems of the prior art and to provide a bending strength member having an increased energy absorption amount.

【0017】[0017]

【課題を解決するための手段】この目的を達成するため
に、本発明請求項1 の曲げ強度部材の要旨は、フランジ
とウエブにより略矩形断面を形成したアルミニウム合金
中空形材からなる曲げ強度部材であって、中空形材に対
し曲げ荷重が作用した際の圧縮側となる前記フランジの
幅b と厚みt f との比b/t f が 5を越えるとともに、前
記ウエブの幅hと厚みt w との比h/t w が5 を越え、か
つ、中空形材のアルミニウム合金素材の引張試験におけ
る局部伸びを2.5%以上とし、前記曲げ荷重の作用による
中空形材の曲げ変形時に、曲げ変形した圧縮側フランジ
の向かい合う面同士が接触するとともに、互いの曲げ変
形を阻止するように干渉し合うようになしたことであ
る。
In order to achieve this object, the gist of the bending strength member of claim 1 of the present invention is that the bending strength member is made of an aluminum alloy hollow shape member having a substantially rectangular cross section formed by a flange and a web. The ratio b / t f of the width b and the thickness t f of the flange on the compression side when a bending load is applied to the hollow shape member exceeds 5 and the width h and the thickness t of the web are the ratio h / t w and w exceeds 5, and the local elongation in tensile test of the aluminum alloy material of the hollow profile is 2.5% or more, when the bending deformation of the hollow shape member by the action of the bending load, the bending deformation The facing surfaces of the compression side flanges are in contact with each other, and interfere with each other so as to prevent mutual bending deformation.

【0018】アルミニウム合金中空形材の場合、前記曲
げ荷重の作用による中空形材の曲げ変形時に、前記図10
(b) で述べた圧縮側フランジの局部的な座屈が生じた場
合、後述する図1(b)に示す通り、曲げ変形した圧縮側フ
ランジの向かい合う面( 曲げ対称面) 同士が接触し合う
状態となる。
In the case of an aluminum alloy hollow shape member, when the hollow shape member is bent and deformed by the action of the bending load, as shown in FIG.
When local buckling of the compression-side flange described in (b) occurs, the faces (bending symmetry planes) facing each other of the bending-deformed compression-side flange contact each other, as shown in Fig. 1 (b) described later. It becomes a state.

【0019】この状態となった場合、一定の条件下で
は、曲げ変形した圧縮側フランジの向かい合う面同士
が、互いの曲げ変形に対し、曲げ変形を阻止するよう
に、干渉し合う現象が生じる。この現象が生じた場合、
圧縮側フランジやウエブで形成する断面の前記つぶれ変
形はそれ以上進行せず、見かけ上、断面の深みが増した
状態で全断面が曲げ変形することとなり、曲げ変形に対
する抵抗モーメントが増大する。本発明では、この曲げ
変形した圧縮側フランジの向かい合う面同士の干渉作用
を利用して、曲げ強度部材のエネルギー吸収量を大幅に
増加させるとともに、この干渉作用を有効に発現させう
る一定の条件を特定したものである。
In this state, under certain conditions, the opposing surfaces of the bending-deformed compression-side flanges interfere with each other so as to prevent the bending deformation. When this phenomenon occurs,
The crush deformation of the cross section formed by the compression side flange or the web does not proceed any further, and apparently the entire cross section undergoes bending deformation with the depth of the cross section increasing, and the resistance moment against bending deformation increases. In the present invention, by utilizing the interference effect of the opposing surfaces of the bending-deformed compression-side flange, the energy absorption amount of the bending strength member is significantly increased, and a certain condition capable of effectively expressing this interference effect is provided. It has been specified.

【0020】この一定の条件とは、曲げ強度部材の、例
えば図9(a)に示す、前記圧縮側フランジの幅b と厚みt
f との比b/t f と前記ウエブの幅h と厚みt w との比h/
t w、そして中空形材 (アルミニウム合金素材) の引張
試験における局部伸びδ' (%) の条件である。
This constant condition is, for example, the width b and the thickness t of the compression side flange of the bending strength member shown in FIG. 9 (a).
f and the ratio b / t f and the web width h and the ratio between the thickness t w h /
It is the condition of t w and the local elongation δ ' (%) in the tensile test of the hollow shape material (aluminum alloy material).

【0021】また、曲げ変形した圧縮側フランジの向か
い合う面同士の前記干渉をより強めるようにするために
は、更に加えて、請求項2 に記載のように、前記圧縮側
フランジの面に突起を有し、前記曲げ荷重の作用による
中空形材の曲げ変形時に、曲げ変形した圧縮側フランジ
の向かい合う面の前記突起同士が接触するように前記突
起を構成することが好ましい。
Further, in order to further strengthen the interference between the facing surfaces of the compression-side flange that has been bent and deformed, in addition, as described in claim 2, a projection is provided on the surface of the compression-side flange. It is preferable that the protrusions are configured so that the protrusions on the facing surfaces of the compression-deformed flange that have been bent and deformed contact each other when the hollow shape member is bent and deformed by the action of the bending load.

【0022】本発明は、以上のように、曲げ強度部材の
エネルギー吸収量を大幅に増加させることができるの
で、請求項3 の要旨のように、この種の要求特性が高い
自動車用フレーム補強材に用いられて好適である。
As described above, according to the present invention, the energy absorption amount of the bending strength member can be greatly increased. Therefore, as in the gist of claim 3, a frame reinforcing material for automobiles having high required characteristics of this kind. It is suitable for use in.

【0023】[0023]

【発明の実施の形態】以下に、図面を用いて、本発明曲
げ強度部材の実施態様を詳細に説明する。図1(a)は本発
明に係るアルミニウム合金中空形材製曲げ強度部材1aの
斜視図を示し、曲げ強度部材 (中空形材)1a の長手方向
に対し略直角方向の矢印A 方向からの曲げ荷重が作用
し、長手方向にくの字状の曲げ変形している状態を示し
ている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the bending strength member of the present invention will be described in detail below with reference to the drawings. FIG. 1 (a) is a perspective view of a bending strength member 1a made of an aluminum alloy hollow shape member according to the present invention, in which bending strength member (hollow shape member) 1a is bent in a direction substantially perpendicular to the longitudinal direction from an arrow A direction. The figure shows a state in which a load is applied and bending is deformed in a V shape in the longitudinal direction.

【0024】曲げ強度部材1aの断面形状は、基本的に
は、前記図9 の従来の曲げ強度部材1mの断面形状と同じ
口形であり、曲げ荷重方向 (水平方向) に対し垂直で、
互いに平行に配置されたフランジ (縦壁) 4 、5 と、こ
れらを結ぶ、互いに平行に配置された水平なウエブ (横
壁) 2、3 により、形材の長手方向に渡って均一な口形
の略矩形断面を形成している。なお、2aは凸状に変形し
たウエブ部分である。
The cross-sectional shape of the bending strength member 1a is basically the same mouth shape as the cross-sectional shape of the conventional bending strength member 1m shown in FIG. 9, and is perpendicular to the bending load direction (horizontal direction).
The flanges (vertical walls) 4 and 5 arranged in parallel to each other and the horizontal webs (horizontal walls) 2 and 3 that connect them and connect them to each other make it possible to form a uniform mouth shape in the longitudinal direction of the profile. It has a rectangular cross section. In addition, 2a is a web portion deformed in a convex shape.

【0025】曲げ強度部材1aに対し、矢印A の方向か
ら、部材中央部 (部材曲げ中心)11 に大きな曲げ荷重が
かかった場合、前記図1(a)の曲げ強度部材1aの曲げ変形
した圧縮側フランジ4 の部材曲げ中心11を中心とするく
の字状の曲げ変形状態を経由して、更に図1(b)のよう
に、圧縮側フランジ4 の曲げの中心を挟んで向かい合う
面4aと4bとが互いに近接乃至接触するまで曲げ変形が進
行する。
When a large bending load is applied to the bending strength member 1a in the direction of the arrow A in the member central portion (member bending center) 11, the bending strength member 1a of FIG. As shown in Fig. 1 (b), through the bending deformation state of the V shape centering on the member bending center 11 of the side flange 4, and as shown in Fig. Bending deformation progresses until they come close to or contact with 4b.

【0026】ここにおいて、圧縮側フランジ4 の幅b と
厚みt f との比b/t f が 5を越えるとともに、前記ウエ
ブ2 、3 の幅h と厚みt w との比h/t w が5 を越え、か
つ、中空形材のアルミニウム合金素材の引張試験におけ
る局部伸びδ' を2.5%以上とした場合、曲げ変形した圧
縮側フランジ4 の向かい合う面4aと4b同士が曲げ中心11
を略中心として接触し合い、かつ、向かい合う面4aと4b
の互いの曲げ変形に対し、それ以上の曲げ変形を阻止す
るように、干渉し合う。この結果、圧縮側フランジの前
記干渉部分が圧縮荷重を受け持つようになるため、圧縮
側フランジ4 やウエブ2 、3 で形成する断面の前記つぶ
れ変形はそれ以上進行せず、見かけ上、断面の深みが増
した状態で全断面が曲げ変形することとなり、曲げ変形
に対する抵抗モーメントが増大する。
Here, the ratio b / t f between the width b and the thickness t f of the compression side flange 4 exceeds 5, and the ratio h / t w between the width h and the thickness t w of the webs 2 and 3 is increased. 5 traversal, and, when the local elongation [delta] 'in the aluminum alloy material tensile test of the hollow shape member with more than 2.5%, the center bending bending deformation and compression-side flange 4 of the opposed surfaces 4a and 4b between 11
Faces 4a and 4b that are in contact with each other with the center of
When they are bent, they interfere with each other so as to prevent further bending. As a result, the interference portion of the compression side flange bears the compressive load, so that the crush deformation of the cross section formed by the compression side flange 4 and the webs 2 and 3 does not proceed any more, and the depth of the cross section is apparent. In the state in which is increased, the entire cross section undergoes bending deformation, and the resistance moment against bending deformation increases.

【0027】図2 にこの本発明曲げ強度部材の作用効果
を荷重- 変位曲線で模式的に示す。図2 において、前記
図10(a) のような曲げ強度部材1mの曲げ変形の初期に
は、部材は弾性変形し、荷重- 変位関係は図2 のA の領
域のように直線的なものとなる。
FIG. 2 schematically shows the action and effect of the bending strength member of the present invention with a load-displacement curve. In Fig. 2, in the initial stage of bending deformation of the bending strength member 1m as shown in Fig. 10 (a), the member elastically deforms, and the load-displacement relationship is linear as in the area A in Fig. 2. Become.

【0028】更に曲げ変形が進み、前記図10(b) のよう
な曲げ強度部材1mの状態となると、曲げ荷重が負荷され
た曲げ強度部材1aの中央部などで、圧縮側フランジ4 お
よびウエブ2 、3 に顕著な湾曲状の座屈が生じつつ、断
面のつぶれ変形が進行し、図2 のB 、C の領域の実線2
のように荷重が低下する。この結果、従来の曲げ強度部
材のエネルギー吸収量はより大幅に低下する。
When the bending deformation further progresses and the bending strength member 1m shown in FIG. 10 (b) is obtained, the compression side flange 4 and the web 2 are formed at the central portion of the bending strength member 1a under the bending load. , 3, while the curved buckling occurs, the crush deformation of the cross-section progresses, and the solid line 2 in the areas B and C in Fig. 2
The load decreases as shown in. As a result, the energy absorption amount of the conventional bending strength member is significantly reduced.

【0029】一方、前記2 つの曲げ強度部材断面形状条
件と、アルミニウム合金素材条件の3 つの条件を全て満
足した場合、前記した通り、曲げ変形した圧縮側フラン
ジの向かい合う面同士が接触し合い、かつ、向かい合う
面の互いの曲げ変形に対し、それ以上の曲げ変形を阻止
するように干渉し合い、曲げ変形に対する抵抗モーメン
トが増大する。この結果、図2 のB 、C の領域の実線1
のように荷重が増大する。この結果、本発明曲げ強度部
材のエネルギー吸収量は大幅に増加する。
On the other hand, when all three conditions of the above-mentioned two bending strength member cross-sectional shape conditions and aluminum alloy material conditions are satisfied, as described above, the bending-deformed compression side flanges face each other, and , Interfering with each other's bending deformation so as to prevent further bending deformation, the resistance moment against bending deformation increases. As a result, the solid line 1 in the areas B and C in Fig. 2
The load increases like. As a result, the energy absorption amount of the bending strength member of the present invention is significantly increased.

【0030】勿論、曲げ強度部材自体の条件や曲げ強度
部材の使用条件には種々の違いがある。この曲げ強度部
材自体の強度、断面形状条件の違いや、前記自動車など
で要求されるようなレベルの負荷曲げ荷重などの曲げ強
度部材の使用条件の違いを含め、通常の曲げ強度部材の
条件の違いの範囲で、共通して、エネルギー吸収量を向
上させるレベルまで、曲げ変形した圧縮側フランジの向
かい合う面同士が、互いの曲げ変形に対し干渉し合うよ
うにするためには、前記2 つの曲げ強度部材断面形状条
件と、アルミニウム合金素材条件の3 つの条件を全て満
足する必要がある。
Of course, there are various differences in the conditions of the bending strength member itself and the conditions of use of the bending strength member. The strength of the bending strength member itself, the difference in the cross-sectional shape conditions, and the difference in the usage conditions of the bending strength member such as the level of bending load required for the automobile, etc. Within the range of difference, in order to make the opposing faces of the bending side compression deformed flanges interfere with each other to the extent that energy absorption is improved, in order to interfere with each other's bending deformation, It is necessary to satisfy all three conditions: strength member cross-sectional shape condition and aluminum alloy material condition.

【0031】これに対し、前記圧縮側フランジの幅b と
厚みt f との比b/t f が 5以下、あるいは前記ウエブの
幅h と厚みt w との比h/t w が5 以下となる場合には、
曲げ変形した圧縮側フランジの向かい合う面同士が接触
せず、互いの曲げ変形に対し干渉し合うことがない。加
えて、圧縮側フランジの厚みt f やウエブの厚みt w
厚くなるため、曲げ強度部材には顕著な座屈は起らず、
高いエネルギー吸収量を示す。しかし、前記厚みの増大
による曲げ強度部材の重量増加が大きく、実用的ではな
い。
On the other hand, the ratio b / t f between the width b and the thickness t f of the compression side flange is 5 or less, or the ratio h / t w between the width h and the thickness t w of the web is 5 or less. If
Faces of the compression-deformed flange that have been bent and deformed do not come into contact with each other, so that they do not interfere with each other. In addition, since the compression side flange thickness t f and the web thickness t w are increased, no significant buckling occurs in the bending strength member,
Shows high energy absorption. However, the increase in the thickness of the bending-strength member due to the increase in the thickness is large, which is not practical.

【0032】また、中空形材のアルミニウム合金素材の
引張試験における局部伸びδ' が2.5%未満の場合には素
材としての曲げ変形能が小さくなる。このため、前記b/
t fやh/t w の二つの条件を満足しても曲げ変形した圧
縮側フランジの向かい合う面同士が接触し合う状態にな
る前、あるいはその後に、圧縮側フランジやウエブの前
記湾曲変形部に破断が生じ易くなる。
Further, bending deformability as raw material in the case of local elongation [delta] 'is less than 2.5% in the aluminum alloy material tensile test of the hollow shape member is reduced. Therefore, the above b /
Even if the two conditions of t f and h / t w are satisfied, the curved side of the compression side flange and the above-mentioned curved deformation part of the web may be bent before or after the faces of the compression side flange that have been bent and deformed contact each other. Breakage easily occurs.

【0033】この結果、前記曲げ強度部材の条件によっ
ては、または、前記曲げ強度部材の条件によらず、曲げ
変形した圧縮側フランジの向かい合う面同士が、互いの
曲げ変形に対し干渉し合うまでには至らず、前記断面の
つぶれ変形のみが進行し、前記図2 のB 、C の領域の実
線2 のように荷重が低下する。
As a result, depending on the condition of the bending strength member or regardless of the condition of the bending strength member, the facing surfaces of the compression-deformed flanges that have been bent and deformed may interfere with each other against the bending deformation. However, only the crush deformation of the cross section progresses, and the load decreases as shown by the solid line 2 in the regions B and C in FIG.

【0034】次に、請求項2 に記載のように、前記圧縮
側フランジの面に突起を有する態様について説明する。
圧縮側フランジの面に突起を設けた場合、前記曲げ荷重
の作用による中空形材の曲げ変形時に、前記突起同士の
接触が曲げ変形の早い段階からおきるために、圧縮側フ
ランジの向かい合う面同士の互いの曲げ変形に対する干
渉は早くおこる。このため、図2 のB の領域でも、曲げ
変形に対する抵抗モーメントが増大し、荷重が増大す
る。この結果、曲げ強度部材のエネルギー吸収量は大幅
に増加する。
Next, as described in claim 2, a mode in which a projection is provided on the surface of the compression side flange will be described.
When a protrusion is provided on the surface of the compression-side flange, when the hollow shape member is bent and deformed by the action of the bending load, contact between the protrusions occurs from an early stage of bending and deformation, so Interference with each other's bending deformation occurs quickly. Therefore, in the area B in Fig. 2, the resistance moment against bending deformation increases, and the load increases. As a result, the energy absorption amount of the bending strength member is significantly increased.

【0035】図3(a)はこの突起を設けた本発明に係るア
ルミニウム合金中空形材製曲げ強度部材1bの斜視図を示
し、図3(b)、(c) は曲げ強度部材 (中空形材)1b の長手
方向に対し略直角の矢印A 方向からの曲げ荷重が作用
し、長手方向にくの字状の曲げ変形している状態を示し
ている。なお、曲げ強度部材1bの断面形状は、基本的に
は、前記図1aの曲げ強度部材1aの断面形状と同じ口形で
ある。
FIG. 3 (a) is a perspective view of an aluminum alloy hollow profile bending strength member 1b according to the present invention provided with this protrusion, and FIGS. 3 (b) and 3 (c) are bending strength members (hollow type). It shows a state in which a bending load is applied from the direction of arrow A, which is substantially perpendicular to the longitudinal direction of the material 1b, and the material is bent and deformed in a V shape in the longitudinal direction. The cross-sectional shape of the bending strength member 1b is basically the same mouth shape as the cross-sectional shape of the bending strength member 1a of FIG. 1a.

【0036】突起6 、7 を前記圧縮側フランジ4 に設け
た場合、通常の圧縮側フランジ4 の向かい合う面4aと4b
同士の接触の前に、この突起6 、7 同士が先行接触して
押し合い (反発し合い) 、向かい合う面4aと4b同士のそ
れ以上の近接乃至接触、即ち、それ以上のくの字状曲げ
変形の進行を妨げる。言い換えると、圧縮側フランジ4
に突起6 、7 を設けた場合、曲げ変形した圧縮側フラン
ジの向かい合う面同士が、曲げ変形の早い段階から、互
いの曲げ変形に対し干渉し合う。
When the projections 6 and 7 are provided on the compression-side flange 4, the surfaces 4a and 4b of the normal compression-side flange 4 which face each other are opposed to each other.
Before contacting each other, the protrusions 6 and 7 are pushed in front of each other (repulsing each other), further advancing or contacting between the facing surfaces 4a and 4b, that is, more dogleg bending deformation. Hinder the progression of. In other words, compression side flange 4
When the projections 6 and 7 are provided on the surfaces of the compression-side flanges, which are bent and deformed, the opposing surfaces of the compression side flanges interfere with each other from an early stage of the bending deformation.

【0037】この結果、突起が無い場合に比して、向か
い合う面4aと4b同士の互いの曲げ変形に対する干渉によ
る、曲げ変形に対する抵抗モーメントの増大が早い段階
から生じ、図2 のB 、C の領域の点線3 のように荷重が
増大する。このため、本発明曲げ強度部材のエネルギー
吸収量はより大幅に増加する。
As a result, as compared with the case where there is no protrusion, the resistance moment against bending deformation increases due to the interference of the opposing surfaces 4a and 4b against the bending deformation from each other at an early stage, and B and C in FIG. The load increases as shown by the dotted line 3 in the area. Therefore, the energy absorption amount of the bending strength member of the present invention is significantly increased.

【0038】この突起の断面形状は、要は、圧縮側フラ
ンジ4 の局部的な座屈の進行が抑制され、通常の圧縮側
フランジ4 の向かい合う面4aと4b同士の接触の前に、接
触できる形状であれば、大きさを含めて、曲げ強度部材
の要求エネルギー吸収量と、突起を設けることによる重
量増加許容量との関係から、適宜選択される。また、長
手方向の突起形状は均一としても良く、均一としなくて
も良い。
The cross-sectional shape of the protrusion is, in short, to suppress the local buckling of the compression-side flange 4 and to make contact before the usual contact between the facing surfaces 4a and 4b of the compression-side flange 4. The shape is appropriately selected, including the size, from the relationship between the required energy absorption amount of the bending strength member and the weight increase allowable amount by providing the protrusion. Further, the shape of protrusions in the longitudinal direction may be uniform or may not be uniform.

【0039】この突起形状の他の態様を図4 〜6 に示
す。先ず、図4(a)〜(e) は円弧状 (半円状) 突起を圧縮
側フランジ4 に設けた例を示す。図4(a)の斜視図で示す
曲げ強度部材1cでは、前記図3 の突起6 、7 よりも大き
な円弧状 (半円状) 突起8 の 1個として、圧縮側フラン
ジ4 の幅方向中央部に設けたものである。
Other embodiments of this protrusion shape are shown in FIGS. First, FIGS. 4 (a) to 4 (e) show an example in which arc-shaped (semi-circular) projections are provided on the compression side flange 4. In the bending strength member 1c shown in the perspective view of FIG. 4 (a), one of the arc-shaped (semi-circular) projections 8 larger than the projections 6 and 7 of FIG. 3 is used as the center portion in the width direction of the compression side flange 4. It was installed in.

【0040】この他、断面のみを示す図4(b)の曲げ強度
部材1dでは、口形断面に中リブを入れて補強した日形断
面に前記図3 の突起6 、7 と同じように突起を設けた例
を示す。断面のみを示す図4(c)の曲げ強度部材1eでは、
図4(b)と同じ日形断面に図4(a)と同じように突起を設け
た例を示す。断面のみを示す図4(d)の曲げ強度部材1fで
は、各々のウエブ側に1 個ずつ、2 個の突起を設けた例
を示す。断面のみを示す図4(e)の曲げ強度部材1gでは、
圧縮側および引張側のフランジ両端をウエブ幅より外方
に張り出した断面を形状とし、圧縮側フランジ側の中リ
ブ接合部部分に突起を2 個設けた例を示す。
In addition, in the bending strength member 1d shown in FIG. 4 (b) showing only the cross section, a protrusion is formed in the same manner as the protrusions 6 and 7 in FIG. The example provided is shown. In the bending strength member 1e of FIG. 4 (c) showing only the cross section,
An example in which protrusions are provided in the same cross section as in FIG. 4 (b) as in FIG. 4 (a) is shown. The bending strength member 1f of FIG. 4 (d) showing only the cross section shows an example in which two protrusions are provided, one on each web side. In the bending strength member 1g of FIG. 4 (e) showing only the cross section,
An example is shown in which both ends of the compression-side and tension-side flanges are shaped so as to project outward from the web width, and two protrusions are provided on the compression-side flange-side middle rib joint portion.

【0041】図5 の曲げ強度部材では、口形断面の圧縮
側フランジ4 自体を外方に適宜の形状に張出し、圧縮側
フランジ面の突起としている。このうち、図5 (a) の曲
げ強度部材1hでは、圧縮側フランジ4 の面中央が外方に
張り出した四角状の張出部9を1 個を設けたものであ
る。この他、断面のみを示す図5(b)の曲げ強度部材1iで
は、口形断面の圧縮側フランジ面の上方と下方との2 箇
所を外方に四角状に張り出したものである。また、図5
(c)の曲げ強度部材1jでは、前記図5(b)と同じ張出部9
を日形断面に設けた例を示す。更に、図5(d)の曲げ強度
部材1kでは、日形断面に、前記図5 (a) と同じ圧縮側フ
ランジの面中央が外方に張り出した四角状の張出部を1
個を設けたものである。
In the bending strength member shown in FIG. 5, the compression-side flange 4 itself having a mouth-shaped cross section is projected outward in an appropriate shape to form a projection on the compression-side flange surface. Among them, the bending strength member 1h shown in FIG. 5 (a) is provided with one square-shaped protruding portion 9 in which the surface center of the compression-side flange 4 protrudes outward. In addition, in the bending strength member 1i shown in FIG. 5 (b) showing only the cross section, two points, that is, the upper side and the lower side of the compression side flange surface of the mouth-shaped cross section, are projected outward in a square shape. Also, FIG.
In the bending strength member 1j of (c), the same overhanging portion 9 as in FIG. 5 (b) is used.
The following shows an example in which is provided in a day cross section. Further, in the bending strength member 1k shown in FIG. 5 (d), the same square-shaped overhanging portion as the above-mentioned FIG.
It is provided with an individual.

【0042】更に、図6 の曲げ強度部材では、日形断面
の圧縮側フランジ自体を2 箇所で外方に張出す円弧状壁
として、圧縮側フランジ面の突起10a 、10b としてい
る。したがい、中空形材は略B 形の断面から構成されて
いる。
Further, in the bending strength member of FIG. 6, the compression-side flange itself having a day-shaped cross section is formed as projections 10a and 10b on the compression-side flange surface as arc-shaped walls that project outward at two locations. Therefore, the hollow profile has a substantially B-shaped cross section.

【0043】これら突起乃至張出は、圧縮側フランジの
長手方向全般に渡って設ける必要は必ずしもなく、部材
曲げ中心11を中心とする向かい合う面4aと4b相当部分に
のみ、部分的に設けることも可能である。また、張出の
断面形状も、滑らかあるいは段差をつけた円弧状、四角
状の適宜の形状が選択される。
It is not always necessary to provide these protrusions or bulges over the entire length of the compression side flange, and it is also possible to partially provide only the portions corresponding to the surfaces 4a and 4b facing each other with the bending center 11 of the member as the center. It is possible. Further, as the cross-sectional shape of the overhang, an appropriate shape such as a smooth or stepped arcuate shape or a square shape is selected.

【0044】本発明曲げ強度部材に用いるアルミニウム
合金中空形材は、長手方向に渡る断面形状は、必ずしも
同一でなくとも、部分的あるいは順次断面形状が変化す
るような中空形状が、部材の設計側から、自由に選択で
きる。また、断面形状も、口形、日形、目形、田形ある
いは前記図4(e)のようなフランジ両端をウエブ幅よりも
左右外側に張り出した形状、これらの形状を基本に、例
えば各々のフランジとウエブが外方に膨らむか内方に凹
む円弧状、フランジやウエブが平行ではなく傾斜してい
るとなるような形状など、矩形断面に対し変形乃至付加
した断面形状が用途に応じて適宜選択される。
The aluminum alloy hollow profile used for the bending strength member of the present invention has a hollow shape in which the cross-sectional shape in the longitudinal direction is not necessarily the same, but the hollow shape in which the cross-sectional shape changes partially or sequentially is on the design side of the member. You can choose freely. In addition, the cross-sectional shape is also mouth-shaped, sun-shaped, eye-shaped, or T-shaped, or a shape in which both ends of the flange as shown in Fig. 4 (e) above are projected to the left and right outside the web width. The cross-sectional shape that is deformed or added to the rectangular cross-section is appropriately selected according to the application, such as an arc shape in which the web bulges outward or inward, or a shape in which the flange and the web are inclined instead of parallel. To be done.

【0045】したがい、本発明で言う矩形断面とは厳密
な意味での矩形ではなく、概ねあるいは略矩形の断面を
意味する。したがって、曲げ荷重方向に対し垂直、互い
に平行に配置されるなどのフランジの規定や、互いに平
行な水平ウエブなどのウエブの規定も、垂直や平行乃至
水平の規定に厳密さは不要であり、全て略 (概ね) の意
味である。
Therefore, the rectangular cross section referred to in the present invention does not mean a rectangular shape in a strict sense, but means a substantially or substantially rectangular cross section. Therefore, the stipulations of flanges such as being arranged perpendicular to the bending load direction and parallel to each other, and web regulations such as horizontal webs parallel to each other do not require strictness in the regulation of vertical, parallel or horizontal. It means abbreviation (generally).

【0046】また、本発明曲げ強度部材に用いられるア
ルミニウム合金形材は、他の、軽量化や組み立てコスト
の低減要求もあり、断面が略矩形の中空形材とされる。
この中空形材は、好ましくは、押出形材から構成され
る。この押出形材の製造自体は、鋳造、均質化熱処理、
熱間押出、調質熱処理等を主要工程とする常法により適
宜製造される。このような押出による形材を使用するこ
とにより、設計、デザイン上、断面が複雑な形状の場合
であっても、容易に、かつ効率的に製造することが可能
となる。なお、圧延によるアルミニウム合金板を成形加
工後、溶接、接着などして中空形材としても良い。
In addition, the aluminum alloy profile used for the bending strength member of the present invention is a hollow profile having a substantially rectangular cross section because of other requirements such as weight reduction and assembly cost reduction.
The hollow profile is preferably composed of extruded profiles. The production itself of this extruded shape is made by casting, homogenizing heat treatment,
It is appropriately produced by a conventional method having hot extrusion, heat treatment for tempering and the like as main steps. By using the extruded shape member, it becomes possible to easily and efficiently manufacture even if the design has a complicated cross-section. It should be noted that the aluminum alloy plate may be formed into a hollow shape by welding, bonding or the like after forming the aluminum alloy plate by rolling.

【0047】本発明中空形材で用いるアルミニウム合金
は、AA乃至JIS 規格を満足するあるいは要求特性を満足
する範囲で規格から外れたアルミニウム合金が適宜使用
可能である。この中でも、輸送機などの構造材用に汎用
される、6000系、7000系のアルミニウム合金が好まし
い。
As the aluminum alloy used in the hollow shape member of the present invention, an aluminum alloy that does not meet the standards of AA to JIS or that satisfies the required characteristics can be appropriately used. Among these, 6000 series and 7000 series aluminum alloys, which are commonly used for structural materials such as transportation machines, are preferable.

【0048】(実施例)前記図1 の口形断面形状を有する
直線状のアルミニウム合金製押出形材 (長さ1300mm)
を、アルミニウム合金の機械的性質と形材断面条件を種
々変えて、エネルギー吸収量を求めた。試験は、曲げ強
度部材の曲げ変形を模擬して、図11に示す、荷重P を加
えた3 点曲げ試験を行い、荷重と押出形材の変位との関
係からエネルギー吸収量を求めた。エネルギー吸収量
は、図11の曲げ変形量 (押し込み変形量)270mmまでのエ
ネルギー吸収量E(N ・mm) と、このE を無次元化したエ
ネルギー吸収量とで表わし、各々表1 に示す。なお、前
記E の無次元化は、形材の断面積A(mm2)、アルミニウム
合金の引張強さσb(MPa)、3 点曲げ試験支持点間の距離
(スパンL 、mm) の積で除した、E /(A σbL) で求め
た。
(Example) A linear aluminum alloy extruded shape having a mouth-shaped cross-sectional shape shown in FIG. 1 (length 1300 mm)
The energy absorption was determined by changing the mechanical properties of the aluminum alloy and the cross-sectional conditions of the profile. In the test, the bending deformation of the bending strength member was simulated, and the three-point bending test with load P shown in Fig. 11 was performed, and the energy absorption amount was obtained from the relationship between the load and the displacement of the extruded profile. The energy absorption amount is represented by the energy absorption amount E (N.mm) up to 270 mm of bending deformation amount (indentation deformation amount) in FIG. 11 and the energy absorption amount obtained by making this E dimensionless, and each is shown in Table 1. It should be noted that the dimension E is made dimensionless by the cross-sectional area A (mm 2 ) of the profile, the tensile strength σb (MPa) of the aluminum alloy, and the distance between the three-point bending test support points
It was calculated by E / (A σbL) divided by the product of (span L, mm).

【0049】アルミニウム合金の機械的性質は、中空形
材の押出加工後の調質処理 (熱処理) 条件を変えて、特
に、中空形材 (アルミニウム合金素材) の引張試験にお
ける局部伸びδ' (%) を変化させた。また、形材断面条
件は、前記図9(a)に示す、前記圧縮側フランジの幅b と
厚みt f との比b/t f と、前記ウエブの幅h と厚みt w
との比h/t w を、断面の外寸は一定のまま、圧縮側フラ
ンジの厚みt f とウエブの厚みt w を種々変えて変化さ
せた。これらの条件も表1 に示す。
The mechanical properties of the aluminum alloy are hollow
Changing the condition of heat treatment (heat treatment) after extrusion of the material
In addition, in the tensile test of hollow shape material (aluminum alloy material)
Local elongation δ'(%) Was changed. Also, the cross section of the profile
The condition is that the width b of the compression side flange shown in FIG. 9 (a) and
Thickness tfRatio with b / tfAnd the width h and thickness t of the web w
Ratio with h / twThe compression side fla
Thickness tfAnd web thickness twChange by changing
Let These conditions are also shown in Table 1.

【0050】なお、表1 において、番号に* 印を付した
発明例4 は、図3(a)に示した断面円弧状の突起6 、7
(高さ3mm 、幅5mm)を圧縮フランジ側に設けた断面形状
とし (但し、形材の断面積A には突起断面積を含めな
い) 、他の条件は発明例1 と同じとした。
In addition, in Table 1, the invention example 4 in which the number is marked with * is the projections 6 and 7 having the arcuate cross section shown in FIG. 3 (a).
(Height 3 mm, width 5 mm) has a cross-sectional shape provided on the compression flange side (however, the cross-sectional area A of the profile does not include the cross-sectional area of the protrusion), and the other conditions are the same as in Invention Example 1.

【0051】発明例1 〜4 は、表1 から明らかな通り、
中空形材の圧縮側フランジ4 の幅bと厚みt f との比b/t
f が 5を越えるとともに、前記ウエブ2 、3 の幅h と
厚みt w との比h/t w が5 を越え、かつ、局部伸びδ'
が2.5%以上である。
Inventive Examples 1 to 4 are, as is clear from Table 1,
Ratio b / t of width b and thickness t f of compression side flange 4 of the hollow profile
When f exceeds 5, the ratio h / t w between the width h and the thickness t w of the webs 2 and 3 exceeds 5, and the local elongation δ '
Is 2.5% or more.

【0052】この結果、例えば自動車のドアビームなど
に求められる無次元化したエネルギー吸収量[E /(Aσb
L)]の基準を0.0100とすると、発明例1 〜4 はエネルギ
ー吸収量E(N ・mm) と、このE を無次元化したエネルギ
ー吸収量[E /(AσbL)]とが、局部伸びδ' が2.5%未満で
ある比較例5 〜7 に比して高く、無次元化したエネルギ
ー吸収量の基準0.0100を満足している。この傾向は、局
部伸びδ' が高いほど強い。また、特に、圧縮フランジ
側に突起を設けた発明例4 は、他の条件が同じ発明例1
に比してエネルギー吸収量が高い。
As a result, for example, the dimensionless energy absorption amount [E / (Aσb
L)] is set to 0.0100, the invention examples 1 to 4 show that the energy absorption amount E (N · mm) and the energy absorption amount [E / (AσbL)] obtained by making this E dimensionless are the local elongation δ. ' Is less than 2.5%, which is higher than Comparative Examples 5 to 7, which satisfies the dimensionless energy absorption criterion of 0.0100. This tendency is stronger as the local elongation δ ' is higher. Further, in particular, Invention Example 4 in which the protrusion is provided on the compression flange side is Invention Example 1 under the same conditions other than the above.
Energy absorption is higher than.

【0053】また、前記3 点曲げ試験時の目視観察によ
れば、発明例1 〜4 では曲げ荷重の作用による中空形材
の曲げ変形時に、前記図1 の(b) や図3 の(c) のよう
に、曲げ変形した圧縮側フランジの向かい合う面同士
(発明例4 では向かい合う突起同士) が接触するととも
に、互いの曲げ変形を阻止するように干渉し合う様子が
確認された。そして、発明例1 、2 、4 は圧縮側フラン
ジやウエブの前記湾曲変形部に割れ (破断) は生じてい
なかった。ただ、局部伸びδ' が低い発明例3 のみは、
曲げ変形能が比較的小さくなるため、圧縮側フランジや
ウエブの前記湾曲変形部に微小な割れが生じていた。
Further, according to the visual observation at the time of the three-point bending test, in Invention Examples 1 to 4, when the hollow shape member is bent and deformed by the action of the bending load, (b) of FIG. 1 and (c) of FIG. ), The opposite faces of the compression-side flange that have been bent and deformed
It was confirmed that (the protrusions facing each other in Inventive Example 4) were in contact with each other and interfered with each other so as to prevent mutual bending deformation. In Invention Examples 1, 2, and 4, cracks (breakages) did not occur in the compression side flange and the curved deformation portion of the web. However, only in Invention Example 3 in which the local elongation δ ' is low,
Since the bending deformability was relatively small, minute cracks were formed in the compression side flange and the curved deformed portion of the web.

【0054】これに対し、中空形材の局部伸びδ' が下
限の2.5%未満である比較例5 は、発明例1 に比してエネ
ルギー吸収量が低く、無次元化したエネルギー吸収量の
基準0.0100も満足していない。また、中空形材の局部伸
びδ' が下限の2.5%未満である比較例6 、7 は、発明例
2 に比してエネルギー吸収量が低く、無次元化したエネ
ルギー吸収量の基準0.0100も満足していない。更に、こ
れら比較例5 、6 、7は、局部伸びδ' が低いことで、
曲げ変形能が小さくなるため、圧縮側フランジやウエブ
の前記湾曲変形部に大きな割れが生じていた。
[0054] In contrast, Comparative Example 5 local elongation of the hollow shape member [delta] 'is less than 2.5% of the lower limit, the invention example low energy absorption amount compared to 1, the energy absorption amount of criteria dimensionless 0.0100 is not satisfied either. In Comparative Example 6, 7 local elongation of the hollow shape member [delta] 'is less than 2.5% of the lower limit, the invention Example
The energy absorption is lower than that of 2, and the dimensionless energy absorption criterion 0.0100 is not satisfied. Furthermore, these Comparative Examples 5, 6, and 7 have a low local elongation δ ,
Since the bending deformability was reduced, large cracks were formed in the compression side flange and the curved deformed portion of the web.

【0055】実際に、これら比較例5 〜7 の、発明例と
同様の、前記3 点曲げ試験時の目視観察によれば、曲げ
荷重の作用による中空形材の曲げ変形時に、曲げ変形し
た圧縮側フランジの向かい合う面同士が接触する前に、
前記図10(b) に示すような、曲げ荷重が負荷された圧縮
側フランジ4 およびウエブ2 、3 に局部的な座屈12や、
これらで形成する断面のつぶれ変形が進行する様子が確
認された。
Actually, according to the visual observation of the comparative examples 5 to 7 in the above-mentioned three-point bending test, which is similar to the invention examples, the bending deformation of the hollow shape member due to the action of the bending load causes the bending deformation. Before the facing surfaces of the side flanges contact each other,
As shown in Fig. 10 (b), there is a local buckling 12 on the compression side flange 4 and the webs 2 and 3 under bending load, and
It was confirmed that the crushing deformation of the cross section formed by these proceeded.

【0056】一方、前記圧縮側フランジの幅b と厚みt
f との比b/t f が 5以下、あるいは前記ウエブの幅h と
厚みt w との比h/t w が5 以下である比較例8 〜12は、
曲げ変形した圧縮側フランジの向かい合う面同士が接触
せず、互いの曲げ変形に対し干渉し合うことがない。こ
れら比較例8 〜12では、表1 の通り、圧縮側フランジの
厚みt f やウエブの厚みt w が必然的に厚くなるため、
曲げ強度部材には顕著な座屈は起らず、発明例に比して
も、高いエネルギー吸収量を示す。しかし、これら比較
例8 〜12では、前記厚みの増大による曲げ強度部材の重
量増加が大きく、実用的ではない。
On the other hand, the width b and the thickness t of the compression side flange are
The ratio b / t f with f is 5 or less, or the ratio h / t w is Comparative Example 8-12 5 or less of the width h and the thickness t w of the web,
Faces of the compression-deformed flange that have been bent and deformed do not come into contact with each other, so that they do not interfere with each other. In Comparative Examples 8 to 12, as shown in Table 1, since the compression side flange thickness t f and the web thickness t w inevitably become large,
No significant buckling occurs in the flexural strength member, and a high energy absorption amount is exhibited as compared with the invention examples. However, in these Comparative Examples 8 to 12, the weight increase of the bending strength member due to the increase in the thickness is large, which is not practical.

【0057】前記発明例1 〜4 と比較例5 〜7 の荷重-
変位曲線を図7 に示す。図7 において、発明例1 〜4
(黒丸、白丸、黒四角、黒菱形) は、比較例5 〜7 (黒
三角、白三角、白四角) に比して、前記図2 のB 、C の
領域の点線2 、3 のように荷重が増大乃至荷重低下が少
なくなっており、エネルギー吸収量の増加か裏付けられ
る。但し、局部伸びδ' が2.6%と下限値2.5%近傍の発明
例3 は、比較例5 〜7 に比して、前記図2 のB 、C の領
域での荷重の下がり方は小さいものの、発明例1、2 の
ように荷重の増大はない。
Loads of Invention Examples 1 to 4 and Comparative Examples 5 to 7-
Figure 7 shows the displacement curve. In FIG. 7, invention examples 1 to 4
(Black circles, white circles, black squares, black diamonds) are compared with Comparative Examples 5 to 7 (black triangles, white triangles, white squares) as shown by dotted lines 2 and 3 in the areas B and C in FIG. 2. The increase in load or the decrease in load is small, which supports the increase in energy absorption. However, in the invention example 3 in which the local elongation δ is around 2.6% and the lower limit value is around 2.5%, the load decrease in the regions B and C in FIG. 2 is small as compared with Comparative examples 5 to 7, There is no increase in load as in Invention Examples 1 and 2.

【0058】また、発明例1 〜3 と比較例5 〜7 の、局
部伸びδ' ( 横軸) と無次元化したエネルギー吸収量[E
/(AσbL)] (縦軸) との関係を図8 に示す。図8 から、
局部伸びδ' の2.5 近傍に、前記無次元化したエネルギ
ー吸収量の基準0.0100を満たすか否かの境界点があるこ
とが分かる。
In addition, in the invention examples 1 to 3 and the comparative examples 5 to 7, the local elongation δ ' (horizontal axis) and the dimensionless energy absorption [E
Figure 8 shows the relationship with / (AσbL)] (vertical axis). From Figure 8,
It can be seen that there is a boundary point in the vicinity of 2.5 of the local elongation δ ' , whether or not the dimensionless energy absorption criterion 0.0100 is satisfied.

【0059】以上の結果から、圧縮側フランジの幅b と
厚みt f との比b/t f 、ウエブの幅h と厚みt w との比
h/t w 、かつ、中空形材のアルミニウム合金素材の引張
試験における局部伸びの臨界的な意義と、本発明曲げ強
度部材のエネルギー吸収量の向上効果とが明らかであ
る。
From the above results, the ratio b / t f of the compression side flange width b to the thickness t f, and the ratio of the web width h to the thickness t w.
h / t w and the critical significance of local elongation in tensile test of the aluminum alloy material of the hollow shape members, and the effect of improving the energy absorption amount of the present invention the bending strength member is clear.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【発明の効果】本発明によれば、アルミニウム合金材の
利点を損なわずに、要求されるエネルギー吸収量を充分
に満たす曲げ強度部材を提供することができる。このた
め、輸送機などの車体構造材へのアルミニウム合金材の
用途を大きく拡大するものであり、工業的な価値が大き
い。
According to the present invention, it is possible to provide a bending strength member that sufficiently satisfies the required energy absorption amount without impairing the advantages of the aluminum alloy material. Therefore, the use of the aluminum alloy material for vehicle body structural materials such as transport aircraft is greatly expanded, and the industrial value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明曲げ強度部材の曲げ変形状態を(a) から
(b) へ示す斜視図である。
FIG. 1 shows the bending deformation state of the bending strength member of the present invention from (a).
It is a perspective view shown to (b).

【図2】図1 の曲げ強度部材の荷重- 変位状態を示す説
明図である。
FIG. 2 is an explanatory view showing a load-displacement state of the bending strength member of FIG.

【図3】(a) は本発明曲げ強度部材の他の実施態様を示
し、(b) 、(c) はその曲げ変形状態を示す斜視図であ
る。
FIG. 3A is a perspective view showing another embodiment of the bending strength member of the present invention, and FIGS. 3B and 3C are perspective views showing the bending deformation state thereof.

【図4】本発明曲げ強度部材の他の実施態様を各々示
し、(a) は斜視図、(b) から(e)は断面図である。
4A and 4B respectively show another embodiment of the bending strength member of the present invention, FIG. 4A is a perspective view, and FIGS. 4B to 4E are sectional views.

【図5】本発明曲げ強度部材の他の実施態様を各々示
し、(a) は斜視図、(b) から(d)は断面図である。
5A and 5B respectively show another embodiment of the bending strength member of the present invention, FIG. 5A is a perspective view, and FIGS. 5B to 5D are sectional views.

【図6】本発明曲げ強度部材の他の実施態様を示す斜視
図である。
FIG. 6 is a perspective view showing another embodiment of the bending strength member of the present invention.

【図7】実施例における荷重- 変位曲線を示す説明図で
ある。
FIG. 7 is an explanatory diagram showing a load-displacement curve in the example.

【図8】実施例における局部伸びとエネルギー吸収量と
の関係を示す説明図である。
FIG. 8 is an explanatory diagram showing the relationship between the local elongation and the energy absorption amount in the example.

【図9】(a) は従来の曲げ強度部材を示す斜視図、(b)
はその曲げ変形状態を示す斜視図である。
FIG. 9A is a perspective view showing a conventional bending strength member, and FIG.
FIG. 4 is a perspective view showing a bending deformation state thereof.

【図10】(a) 、(b) は図9 の曲げ変形状態を示す平面
図である。
10 (a) and 10 (b) are plan views showing the bending deformation state of FIG.

【図11】実施例における3 点曲げ試験を示す平面図で
ある。
FIG. 11 is a plan view showing a three-point bending test in an example.

【符号の説明】[Explanation of symbols]

1:曲げ強度部材 (中空形材) 、2 、3:ウエブ、4:圧縮側
フランジ、5:引張側フランジ、6 、7 、8 、9 、10: 突
起、11: 曲げ中心、
1: Bending strength member (hollow shape), 2, 3: Web, 4: Compression side flange, 5: Tensile side flange, 6, 7, 8, 9, 10: Protrusion, 11: Bending center,

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フランジとウエブにより略矩形断面を形
成したアルミニウム合金中空形材からなる曲げ強度部材
であって、中空形材に対し曲げ荷重が作用した際の圧縮
側となる前記フランジの幅b と厚みt f との比b/t f
5を越えるとともに、前記ウエブの幅h と厚みt w との
比h/t w が5 を越え、かつ、中空形材のアルミニウム合
金素材の引張試験における局部伸びを2.5%以上とし、前
記曲げ荷重の作用による中空形材の曲げ変形時に、曲げ
変形した圧縮側フランジの向かい合う面同士が接触する
とともに、互いの曲げ変形を阻止するように干渉し合う
ようになしたことを特徴とする曲げ強度部材。
1. A bending strength member made of an aluminum alloy hollow frame having a substantially rectangular cross section formed by a flange and a web, wherein the width b of the flange is a compression side when a bending load is applied to the hollow frame. And the thickness t f ratio b / t f is
5 with excess of a ratio h / t w of the width h and the thickness t w of the web exceed 5, and the local elongation in tensile test of the aluminum alloy material of the hollow profile is 2.5% or more, the bending load The bending strength member characterized in that, when the hollow shape member is bent and deformed by the action of, the facing surfaces of the bent and deformed compression side flanges come into contact with each other and interfere with each other so as to prevent mutual bending deformation. .
【請求項2】 前記圧縮側フランジの面に突起を有し、
前記中空形材の曲げ変形時に、曲げ変形した圧縮側フラ
ンジの向かい合う面の前記突起同士が接触するように前
記突起を構成した請求項1に記載の曲げ強度部材。
2. A protrusion is provided on a surface of the compression side flange,
The bending strength member according to claim 1, wherein when the hollow shape member is bent and deformed, the protrusions are configured so that the protrusions on the surfaces of the compression-side flange that have been bent and deformed contact each other.
【請求項3】 前記曲げ強度部材が自動車用フレーム補
強材である請求項1または2に記載の曲げ強度部材。
3. The bending strength member according to claim 1, wherein the bending strength member is an automobile frame reinforcing material.
JP2001334600A 2001-10-31 2001-10-31 Bending strength member Pending JP2003139180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334600A JP2003139180A (en) 2001-10-31 2001-10-31 Bending strength member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334600A JP2003139180A (en) 2001-10-31 2001-10-31 Bending strength member

Publications (1)

Publication Number Publication Date
JP2003139180A true JP2003139180A (en) 2003-05-14

Family

ID=19149701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334600A Pending JP2003139180A (en) 2001-10-31 2001-10-31 Bending strength member

Country Status (1)

Country Link
JP (1) JP2003139180A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053438A (en) * 2003-08-07 2005-03-03 Kobe Steel Ltd Aluminum alloy hollow shape member for personal protection energy absorbing member
JP2005059766A (en) * 2003-08-18 2005-03-10 Mitsubishi Alum Co Ltd Bumper member for vehicle
EP1617098A3 (en) * 2004-07-15 2006-01-25 Honda Motor Co., Ltd. Shock absorbing component for automobiles
JP2007153108A (en) * 2005-12-05 2007-06-21 Aisin Seiki Co Ltd Vehicular bumper device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053438A (en) * 2003-08-07 2005-03-03 Kobe Steel Ltd Aluminum alloy hollow shape member for personal protection energy absorbing member
JP4509505B2 (en) * 2003-08-07 2010-07-21 株式会社神戸製鋼所 Aluminum alloy hollow extruded shape for energy protection member for personal protection
JP2005059766A (en) * 2003-08-18 2005-03-10 Mitsubishi Alum Co Ltd Bumper member for vehicle
JP4480969B2 (en) * 2003-08-18 2010-06-16 三菱アルミニウム株式会社 Bumper members for vehicles
EP1617098A3 (en) * 2004-07-15 2006-01-25 Honda Motor Co., Ltd. Shock absorbing component for automobiles
JP2007153108A (en) * 2005-12-05 2007-06-21 Aisin Seiki Co Ltd Vehicular bumper device

Similar Documents

Publication Publication Date Title
US7631924B2 (en) Crash box for a vehicle
US8641129B2 (en) Twelve-cornered strengthening member
CA2920881C (en) Method for manufacturing press-formed product and press-forming apparatus
JP5894081B2 (en) B pillar for vehicles
RU2581634C1 (en) Vehicle body
CN109808466B (en) Car door anti-collision beam
IE62501B1 (en) Impact bar for vehicle doors, especially for doors of passenger cars
JP2003139180A (en) Bending strength member
JP2004051065A (en) Vehicle body structural member and collision-proof reinforcing member
WO2019065342A1 (en) Railway vehicle structure body
US11718252B2 (en) Bumper arrangement
US11155224B2 (en) Bumper reinforcement for automobile
JP5237927B2 (en) Automotive roof reinforcement member and design method thereof
JP2001227573A (en) Energy absorbing member
JP7025847B2 (en) Railroad vehicle structure
CN110450745B (en) Bumper reinforcement for a motor vehicle
JP4104530B2 (en) Door beam
JP2006240543A (en) Cross member of automobile, and frame structure using the same
JP7187120B2 (en) Aluminum alloy door beam
JPH04208633A (en) Door guard bar excellent in shock absorption characteristic and light weight
JPH0648177A (en) Lightweight door reinforcing pipe with excellent shock absorbing characteristic
JP4734129B2 (en) Automotive strength members with excellent impact characteristics
KR20230069627A (en) Side sill for vehicle
KR20070071377A (en) Reinforced impact beam
KR20230071531A (en) Side sill for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080226