JP5237927B2 - Automotive roof reinforcement member and design method thereof - Google Patents

Automotive roof reinforcement member and design method thereof Download PDF

Info

Publication number
JP5237927B2
JP5237927B2 JP2009285410A JP2009285410A JP5237927B2 JP 5237927 B2 JP5237927 B2 JP 5237927B2 JP 2009285410 A JP2009285410 A JP 2009285410A JP 2009285410 A JP2009285410 A JP 2009285410A JP 5237927 B2 JP5237927 B2 JP 5237927B2
Authority
JP
Japan
Prior art keywords
section
closed cross
rectangular closed
width
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009285410A
Other languages
Japanese (ja)
Other versions
JP2011126380A (en
Inventor
幸司 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009285410A priority Critical patent/JP5237927B2/en
Publication of JP2011126380A publication Critical patent/JP2011126380A/en
Application granted granted Critical
Publication of JP5237927B2 publication Critical patent/JP5237927B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

本発明は自動車のルーフ補強部材およびその設計方法に関するものである。   The present invention relates to an automobile roof reinforcing member and a design method thereof.

自動車などの車体には、ルーフパネルを下側から支持するルーフ補強部材(ルーフリーンフォースメント)などの、車幅方向(車体幅方向)への剛性及び強度を確保するために、車幅方向に延在するフレーム部品が設けられている。   For car bodies such as automobiles, in order to ensure rigidity and strength in the vehicle width direction (vehicle body width direction), such as a roof reinforcement member (roof reinforcement) that supports the roof panel from below, An extending frame part is provided.

このようなルーフ補強部材は、周知の通り、ルーフパネルの下側に近接し、車体に対しては水平方向で、車幅方向に対しては平行に延在するように配置される。そして、直接あるいは車幅方向の端部などに設けられたブラケットを介して、ルーフパネルやルーフサイドレールと接合される。   As is well known, such a roof reinforcing member is disposed close to the lower side of the roof panel and extends in the horizontal direction with respect to the vehicle body and in parallel with the vehicle width direction. And it joins with a roof panel or a roof side rail via the bracket provided in the edge part of the vehicle width direction, etc. directly.

また、ルーフ補強部材は、ルーフパネルの張り剛性を確保するために、前記ルーフパネルとマスチックなどの接着剤を介して接着接合されることが多い。また、必要に応じて、ルーフ補強部材の途中や端部には、前記ルーフパネルやフレーム部品と接合するための接合穴や座面などが形成される。そして、ルーフ補強部材は、必要とされる強度や形状の制約により、種々の断面形状が選択される。   Further, the roof reinforcing member is often bonded and bonded to the roof panel via an adhesive such as mastic in order to ensure the rigidity of the roof panel. Further, if necessary, a joint hole, a seating surface, or the like for joining to the roof panel or the frame part is formed in the middle or end of the roof reinforcing member. The roof reinforcing member is selected from various cross-sectional shapes depending on the required strength and shape restrictions.

従来、このようなルーフ補強部材としては、鋼板のプレス成形品で、断面をハット型(帽子型)に成形したものが用いられてきた。しかし、近年、自動車車体の側面衝突基準の強化にともない、車体側面からの車幅方向への圧縮荷重に対して、高い変形強度が求められるようになり、その対策が必要になってきている。また、周知のように、これらの安全性能向上とともに、さらなる軽量化、低コスト化も要求されており、ルーフ補強部材についても、軽量、低コスト、かつ、軸方向圧縮に対する変形強度に優れることが望まれている。   Conventionally, as such a roof reinforcing member, a steel plate press-molded product having a cross-section formed into a hat shape (hat shape) has been used. However, in recent years, with the strengthening of side collision standards for automobile bodies, high deformation strength has been required for compressive loads in the vehicle width direction from the side of the automobile body, and countermeasures have been required. In addition, as is well known, there is a demand for further weight reduction and cost reduction along with these safety performance improvements, and the roof reinforcing member is also light weight, low cost and excellent in deformation strength against axial compression. It is desired.

これに対して、鋼板製ルーフ補強部材の場合には、前記した軸方向圧縮に対する強度を向上させる対策として、ハット型部品のプレス成形品同士を合わせて一体に溶接して、閉断面化することが一般的に行われている。しかし、このようなやり方では、部品重量の増加、部品点数、溶接点数の増加によるコストアップが常に問題となる。また、部品重量増加への対策として、従来の軟鋼板から強度の高い60キロ級などの高張力鋼板への材料置換が行われているが、弾性座屈の発生という新たな問題により、やはり、極端な薄肉化は困難であり、重量増加は不可避となっている。また、80キロあるいは100キロ級超高張力鋼板を用いた場合には、この弾性座屈の問題に加えて、溶接部の軟化による強度低下などの問題も懸念される。   On the other hand, in the case of a steel roof reinforcing member, as a measure to improve the strength against the above-described axial compression, the press-formed products of the hat-type parts are combined and welded together to form a closed cross section. Is generally done. However, in such a method, an increase in cost due to an increase in the weight of parts, the number of parts, and the number of welding points is always a problem. In addition, as a countermeasure to the increase in component weight, material replacement from a conventional mild steel plate to a high-strength steel plate such as a high-strength 60 kg class has been performed, but due to a new problem of the occurrence of elastic buckling, Extremely thinning is difficult, and an increase in weight is inevitable. In addition, when an 80 kg or 100 kg class ultra high strength steel sheet is used, in addition to the problem of elastic buckling, there is a concern about problems such as strength reduction due to softening of the welded portion.

ルーフ補強部材にアルミニウム合金押出形材を用いた場合には、前記鋼板のような成形品同士の一体化のための接合は不要で、押出加工によって矩形中空材として予め一体に閉断面化させることが可能である。また、アルミニウム合金は、鋼板に比べて密度が低く、断面形状内で各部位(辺)の肉厚を変更することも容易である。   When an aluminum alloy extruded profile is used for the roof reinforcing member, it is not necessary to join the molded products such as the steel plates together, and the closed cross-section must be integrated into a rectangular hollow material in advance by extrusion. Is possible. Moreover, an aluminum alloy has a lower density than a steel plate, and it is easy to change the thickness of each part (side) within the cross-sectional shape.

一方、ルーフ補強部材では、一般に、室内空間あるいは車高方向のスペースを確保するために、車体上下方向の高さが大幅に制限される。このため、ルーフ補強部材の断面形状は、特許文献1に示すように、前記した軸方向の強度や剛性を向上させるために、アルミニウム合金材や鋼板などの用いる材料によらず、車体の上下方向ではなく、車体の前後方向に幅広の矩形形状に閉断面化させることが多い。   On the other hand, in the roof reinforcing member, generally, the height in the vertical direction of the vehicle body is greatly limited in order to secure an indoor space or a vehicle height direction space. For this reason, as shown in Patent Document 1, the cross-sectional shape of the roof reinforcing member is the vertical direction of the vehicle body regardless of the material used such as an aluminum alloy material or a steel plate in order to improve the axial strength and rigidity. Instead, the closed cross section is often formed into a rectangular shape that is wide in the longitudinal direction of the vehicle body.

特許文献2では、このように、幅広の矩形形状に閉断面化させたアルミニウム合金押出形材製のルーフ補強部材において、重量増加を最小限に抑え、かつ高い軸圧縮強度が得られる断面形状を提供することを提案している。すなわち、前記矩形の閉断面部を構成するフランジの肉厚Tとそのフランジの端部に形成した突出フランジの肉厚tとを一定の関係とし、かつ前記矩形の閉断面部を構成するフランジの幅厚比と、前記突出フランジの幅厚比を規定している。   In Patent Document 2, in the roof reinforcing member made of an aluminum alloy extruded section that has been closed into a wide rectangular shape as described above, a cross-sectional shape that minimizes an increase in weight and obtains a high axial compressive strength is disclosed. Propose to provide. That is, the thickness T of the flange constituting the rectangular closed cross section and the thickness t of the protruding flange formed at the end of the flange are in a fixed relationship, and the flange constituting the rectangular closed cross section The width-thickness ratio and the width-thickness ratio of the protruding flange are defined.

この特許文献2では、前記した突出フランジによって、限られた車体上下方向スペースの範囲内で、最も車体上下方向に位置する部分に多くの面積を持つ断面とし、重量増加を最小限に抑え、曲げ強度の高いルーフ補強部材を得ている。すなわち、車体上下方向への曲げ強度を高くするために、前記した突出フランジによって、中立軸近傍の面積を最小限にとどめ、中立軸からできるだけ遠い位置に多くの面積を配した断面形状としている。また、前記矩形の閉断面部を構成するフランジや突出フランジの幅厚比を各々満たすことで、閉断面部を構成するフランジの座屈限界応力の低下を抑制可能とし、重量増加を最小限に抑え、かつ高い軸圧縮荷重を得ている。   In this Patent Document 2, a section having a large area in a portion located in the vertical direction of the vehicle body within a limited space in the vertical direction of the vehicle body by the projecting flange described above, the increase in weight is minimized, and bending is performed. A strong roof reinforcing member is obtained. That is, in order to increase the bending strength in the vertical direction of the vehicle body, the above-described projecting flange minimizes the area in the vicinity of the neutral axis and has a cross-sectional shape with a large area as far as possible from the neutral axis. In addition, by satisfying the width-thickness ratio of the flange constituting the rectangular closed cross section and the protruding flange, it is possible to suppress a decrease in the buckling limit stress of the flange constituting the closed cross section and minimize the increase in weight. Suppressing and obtaining high axial compression load.

このような、アルミニウム合金押出中空形材における、前記矩形の閉断面部を構成するフランジの幅厚比は、この他、バンパ補強材、サイドメンバ、サイドシェル等の構造部材として、座屈強度を高めて、衝突エネルギ吸収性能を高めるために規定されることも公知である(特許文献3参照)。   In such an aluminum alloy extruded hollow profile, the width-thickness ratio of the flange constituting the rectangular closed cross-section portion is in addition to the buckling strength as a structural member such as a bumper reinforcement, a side member, and a side shell. It is also well known that it is defined to increase the collision energy absorption performance (see Patent Document 3).

特開2003−112656号公報JP 2003-112656 A 特開2006−240543号公報JP 2006-240543 A 特許第2672753号公報Japanese Patent No. 2672753

しかし、これらの従来技術では、ルーフ補強部材が、車体のデザインによっては、車幅方向(軸方向)に亙って、直線状ではなく、アーチ状に湾曲している場合の、特異な衝突荷重変形挙動には注目していない。すなわち、ルーフ補強部材が車幅方向(軸方向)に亙ってアーチ状に湾曲している場合には、車幅方向(軸方向)に亙って直線状の場合には無い、特異な衝突荷重変形挙動を示す。   However, in these prior arts, depending on the design of the vehicle body, the unique impact load when the roof reinforcing member is curved not in a straight line but in an arch shape over the vehicle width direction (axial direction) No attention is paid to the deformation behavior. That is, when the roof reinforcing member is curved in an arch shape in the vehicle width direction (axial direction), there is a unique collision that is not in the case of a straight shape in the vehicle width direction (axial direction). The load deformation behavior is shown.

ルーフ(ルーフパネル)が車幅方向に亙ってアーチ状に湾曲している場合には、このような曲線状のルーフ形状に応じて、これを支持するルーフ補強部材も、車幅方向(軸方向)に亙ってアーチ状に湾曲した曲線状を有している。したがって、車体のデザインに応じて、ルーフ補強部材を前記矩形の閉断面部を有するアルミニウム合金押出中空形材製とする場合でも、この形材を曲げ加工し、その軸方向である車幅方向に亙って、アーチ状に湾曲させて延在させる場合が多々ある。   When the roof (roof panel) is curved in an arch shape in the vehicle width direction, the roof reinforcing member that supports the curved roof shape is also provided in the vehicle width direction (axis). (Curved) curved in an arch shape over the direction). Therefore, even when the roof reinforcing member is made of an aluminum alloy extruded hollow shape having the rectangular closed cross section, depending on the design of the vehicle body, this shape is bent and the axial direction is the vehicle width direction. In many cases, the arch is curved and extended.

ここで、設計目標の軸圧縮強度に対し、前記アーチ高さ(前記アーチ状の高さ、湾曲高さあるいは湾曲度)が変われば、必要なルーフ補強材の断面強度も変わってくる。例えば、このアーチ高さがほぼゼロである、前記した直線のルーフ補強材であれば、軸圧縮強度(軸圧縮最大荷重)は断面強度と等しくなる。しかし、このアーチ高さが大きくなると、軸圧縮の作用に伴い,ルーフ補強材中央部分が車体上方向に変形しやすくなるため、所定の軸圧縮強度を得るには、ルーフ補強材の断面強度をより大きくする必要がある。   Here, if the arch height (the arch-shaped height, the bending height or the bending degree) changes with respect to the axial compression strength of the design target, the cross-sectional strength of the necessary roof reinforcing material also changes. For example, in the case of the above-described linear roof reinforcing material in which the arch height is substantially zero, the axial compression strength (axial compression maximum load) is equal to the cross-sectional strength. However, when this arch height is increased, the center portion of the roof reinforcement is easily deformed upward in the vehicle body due to the action of axial compression. Therefore, in order to obtain a predetermined axial compression strength, the cross-sectional strength of the roof reinforcement is reduced. Need to be bigger.

また、ルーフ補強材の断面強度を大きくする場合、前記した通り、ルーフの高さ方向の制約(車体上下方向の高さの制限)のため、補強材断面を幅広く取ることが多い。また、高強度材適用による薄肉化、軽量化が図られる。しかしながら、前記アーチ高さが大きくなると、これらの断面の幅広化や高強度材による薄肉化した場合には、ルーフ補強材断面の弾性座屈が起こりやすくなり、所定の断面強度が得られないことが多々ある。   Further, when the cross-sectional strength of the roof reinforcing material is increased, as described above, a wide cross-section of the reinforcing material is often taken due to the restriction in the height direction of the roof (the restriction on the height in the vertical direction of the vehicle body). In addition, it is possible to reduce the thickness and weight by applying a high-strength material. However, when the arch height increases, when the cross section is widened or thinned by a high strength material, elastic buckling of the cross section of the roof reinforcement material is likely to occur, and a predetermined cross sectional strength cannot be obtained. There are many.

この点、前記特許文献2でも、フランジ幅を広く設計しすぎると逆に軸圧縮強度が低下するという現象が生じ、これは、断面を構成する板が座屈するためであることが指摘されている。また、曲げ強度向上のためにフランジ幅を広く設定するとともに、断面を構成する板の座屈を防止するために、中リブと呼ばれる車体上下方向の補強リブを設定することで「フランジ幅を減少させる」ことも前記特許文献2で指摘されている。   In this respect, too, it is pointed out that the above-mentioned Patent Document 2 also causes a phenomenon that the axial compressive strength is lowered if the flange width is designed too wide, and this is because the plate constituting the cross section buckles. . In addition to setting the flange width wide to improve bending strength, and to prevent the buckling of the plates that make up the cross section, by setting a reinforcing rib in the vertical direction of the vehicle body called the middle rib, It is pointed out in the above-mentioned Patent Document 2.

そして、前記特許文献1でも、ルーフ補強部材の断面形状例として、前記矩形閉断面部におけるフランジ幅を、車体上下方向に延在する2本の中リブで分割、補強した、目型断面形状を持つ押出中空形材を実施例として挙げている。   And also in the said patent document 1, as a cross-sectional shape example of a roof reinforcement member, the cross-sectional shape of the eye shape which divided | segmented and reinforced the flange width in the said rectangular closed cross-section with two medium ribs extended in a vehicle body up-down direction. Extruded hollow profiles with the are listed as examples.

ただ、特許文献2では、突出フランジ部の幅厚比を本体のフランジの幅厚比よりも小さくして、突出フランジ部の弾性座屈を防止することで、部材全体の強度向上を狙っている。しかし、この方法は、軸方向に亙るアーチ状の湾曲形状をしたルーフ補強部材においては、必ずしも効率的ではなく、所定の軸圧縮強度を達成するためには、後述する通り、ルーフ補強材の閉断面部分(特にフランジ部分)の弾性座屈を防止する方が、剛性、強度面に加え、重量面からも非常に効率的である。   However, in Patent Document 2, the width-thickness ratio of the projecting flange portion is made smaller than the width-thickness ratio of the flange of the main body, and the elastic flange of the projecting flange portion is prevented to improve the strength of the entire member. . However, this method is not always efficient for the roof reinforcing member having an arch-like curved shape extending in the axial direction, and in order to achieve a predetermined axial compressive strength, as described later, the roof reinforcing member is closed. In addition to rigidity and strength, it is very efficient to prevent elastic buckling of the cross-sectional portion (particularly the flange portion) in terms of rigidity and strength.

本発明の目的は、軸方向に亙るアーチ状の湾曲形状をしたアルミニウム合金押出形材製の自動車ルーフ補強部材において、弾性座屈を抑制して、軽量かつ高い軸圧縮強度が得られるルーフ補強材およびその設計方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an automotive roof reinforcing member made of an aluminum alloy extruded profile having an arch-like curved shape extending in the axial direction, and can suppress elastic buckling and can provide a lightweight and high axial compressive strength. And providing a design method thereof.

上記目的を達成するための本発明のルーフ補強部材の要旨は、自動車のルーフパネルを支持し、車幅方向にアーチ状に湾曲して延在するルーフ補強部材であって、矩形閉断面部を有するアルミニウム合金押出中空形材からなり、このアルミニウム合金押出中空形材の0.2%耐力σyが200MPa以上であるとともに、前記矩形閉断面部の最大厚みが3mm以下、前記矩形閉断面部の全幅Bが下記式で定義される無次元幅厚比パラメータRfで1.00以上である幅広薄肉形状を有しており、更に、前記矩形閉断面部が中リブによって分割されているとともに、この分割された個々の矩形閉断面部の幅が前記無次元幅厚比パラメータRfで1.00未満であり、15kN以上の軸方向の最大荷重を有することである。
但し、無次元幅厚比パラメータRf={(σy/E)×[12(1−ν2 )/π2 k]}1/2×(B/tf)とする。この式で、Eは前記アルミニウム合金のヤング率(MPa)、Bは前記矩形閉断面部の全幅(mm)、tfは前記矩形閉断面部のフランジ側厚み(mm)、νはポアソン比、kは座屈係数(k=4)である。
The gist of the roof reinforcing member of the present invention for achieving the above object is a roof reinforcing member that supports a roof panel of an automobile and extends curvedly in an arch shape in the vehicle width direction, and has a rectangular closed cross section. The aluminum alloy extruded hollow member has a 0.2% proof stress σy of 200 MPa or more, a maximum thickness of the rectangular closed cross section of 3 mm or less, and a full width of the rectangular closed cross section. B has a wide and thin shape having a dimensionless width-thickness ratio parameter Rf defined by the following formula of 1.00 or more, and the rectangular closed cross-section is divided by a middle rib. The width of the individual rectangular closed cross section is less than 1.00 in the dimensionless width-thickness ratio parameter Rf, and has a maximum axial load of 15 kN or more.
However, the dimensionless width-thickness ratio parameter Rf = {(σy / E) × [12 (1−ν 2 ) / π 2 k]} 1/2 × (B / tf). Where E is the Young's modulus (MPa) of the aluminum alloy, B is the full width (mm) of the rectangular closed cross section, tf is the flange side thickness (mm) of the rectangular closed cross section, ν is Poisson's ratio, k Is a buckling coefficient (k = 4).

また、上記目的を達成するための本発明のルーフ補強部材の設計方法の要旨は、自動車のルーフパネルを支持し、車幅方向にアーチ状に湾曲して延在するルーフ補強部材の設計方法であって、このルーフ補強部材を、矩形閉断面部を有するアルミニウム合金押出中空形材とし、このアルミニウム合金押出中空形材の0.2%耐力σyを200MPa以上とするとともに、前記矩形閉断面部を、最大厚みが3mm以下、前記矩形閉断面部の全幅Bが下記式で定義される無次元幅厚比パラメータRfで1.00以上の幅広薄肉形状とし、その上で、前記矩形閉断面部を中リブによって分割するとともに、この分割された個々の矩形閉断面部の幅を前記無次元幅厚比パラメータRfで1.00未満とすることによって、このルーフ補強部材の軸方向の最大荷重を15kN以上としたことである。
但し、無次元幅厚比パラメータRf={(σy/E)×[12(1−ν2 )/π2 k]}1/2×(B/tf)とする。この式で、σyは前記アルミニウム合金押出中空形材の0.2%耐力(MPa)、Eは前記アルミニウム合金のヤング率(MPa)、Bは前記矩形閉断面部の全幅(mm)、tfは前記矩形閉断面部のフランジ側厚み(mm)、νはポアソン比、kは座屈係数(k=4)である。
Further, the gist of the design method of the roof reinforcing member of the present invention for achieving the above object is a method of designing a roof reinforcing member that supports an automobile roof panel and curves and extends in an arch shape in the vehicle width direction. The roof reinforcing member is an aluminum alloy extruded hollow member having a rectangular closed cross section, and the 0.2% proof stress σy of the aluminum alloy extruded hollow member is 200 MPa or more. The rectangular closed cross-section portion has a maximum thickness of 3 mm or less, and a full-width B of the rectangular closed cross-section portion having a dimensionless width-thickness ratio parameter Rf defined by the following formula: By dividing the width of each divided rectangular closed cross section by the dimensionless width-thickness ratio parameter Rf to less than 1.00, the axial direction of the roof reinforcing member is divided by the middle rib. The maximum load is that it was equal to or greater than 15kN.
However, the dimensionless width-thickness ratio parameter Rf = {(σy / E) × [12 (1−ν 2 ) / π 2 k]} 1/2 × (B / tf). In this equation, σy is the 0.2% proof stress (MPa) of the extruded aluminum alloy profile, E is the Young's modulus (MPa) of the aluminum alloy, B is the full width (mm) of the rectangular closed cross section, and tf is The flange side thickness (mm) of the rectangular closed cross section, ν is Poisson's ratio, and k is a buckling coefficient (k = 4).

本発明では、前記側突により負荷される軸方向圧縮に対する変形強度を高めるために、前提として、最大荷重(軸方向圧縮に対して車体上下方向への曲げ変形が発生する最大曲げ強度あるいは最大変形強度)を高くする。このために、本発明では、前記矩形閉断面部の幅(車体前後方向、軸の方向と水平方向に直角の方向)の全体の長さである、全幅B(前記フランジ幅)を幅広く設定する。ここまでは、前記特許文献2と同様である。   In the present invention, in order to increase the deformation strength against axial compression loaded by the side collision, the maximum load (maximum bending strength or maximum deformation at which bending deformation in the vertical direction of the vehicle body occurs with respect to axial compression) is presupposed. Strength) is increased. For this reason, in the present invention, the entire width B (the flange width), which is the entire length of the width (the longitudinal direction of the vehicle body, the direction perpendicular to the axis direction and the horizontal direction) of the rectangular closed cross section, is set widely. . The process up to this point is the same as that of Patent Document 2.

但し、本発明では、この際に、前記矩形閉断面部を構成するアルミニウム合金押出中空形材の0.2%耐力σyを200MPa以上とするとともに、前記矩形閉断面部の最大厚みを3mm以下として、ルーフ補強部材の重量増加を最小限に抑える。   However, in the present invention, at this time, the 0.2% proof stress σy of the aluminum alloy extruded hollow section constituting the rectangular closed cross section is set to 200 MPa or more, and the maximum thickness of the rectangular closed cross section is set to 3 mm or less. , Minimize the weight increase of roof reinforcement members.

特徴的には、本発明では、更に、前記矩形閉断面部を中リブによって分割し、この分割された個々の矩形閉断面部の幅を、前記無次元幅厚比パラメータRfで1.00未満とする。これによって、本発明では、アルミニウム合金押出中空形材からなるルーフ補強部材が、弾性座屈を実際に抑制することができる。そして、この軸方向に亙るアーチ状の湾曲形状をしているルーフ補強部材であっても、前記側突に対する軸方向の最大荷重を、例えば15kN以上に高めることができる。   Characteristically, in the present invention, the rectangular closed cross section is further divided by an intermediate rib, and the width of each divided rectangular closed cross section is less than 1.00 in the dimensionless width-thickness ratio parameter Rf. And As a result, in the present invention, the roof reinforcing member made of an aluminum alloy extruded hollow member can actually suppress elastic buckling. And even if it is the roof reinforcement member which has the arch-shaped curved shape over this axial direction, the axial maximum load with respect to the said side collision can be raised to 15 kN or more, for example.

アーチ状のルーフ補強部材の梁モデルを示す模式図である。It is a schematic diagram which shows the beam model of an arch-shaped roof reinforcement member. 図1の梁モデルのFEMと理論式との解析結果を示す説明図である。It is explanatory drawing which shows the analysis result of FEM and theoretical formula of the beam model of FIG. 図2の解析結果を、荷重効率と無次元幅厚比パラメータRfとで整理した結果を示す説明図である。It is explanatory drawing which shows the result which arranged the analysis result of FIG. 2 by load efficiency and the dimensionless width-thickness ratio parameter Rf. ルーフ補強部材の断面図を示し、図4(a)が原型となる従来の矩形閉断面、(b)と(c)とが本発明の矩形閉断面を示す。FIG. 4A is a cross-sectional view of a roof reinforcing member, FIG. 4A is a conventional rectangular closed cross-section as a prototype, and FIGS. 4B and 4C are rectangular closed cross-sections of the present invention. ルーフ補強部材の断面図を示し、図5(a)が原型となる従来の矩形閉断面、(b)と(c)とが本発明の矩形閉断面を示す。Sectional drawing of a roof reinforcement member is shown, Fig.5 (a) is the conventional rectangular closed cross section used as a prototype, (b) and (c) show the rectangular closed cross section of this invention. 図5(a)の斜視図である。It is a perspective view of Fig.5 (a).

以下に、本発明ルーフ補強部材の実施の形態につき、図面を用いて説明する。   Hereinafter, embodiments of the roof reinforcing member of the present invention will be described with reference to the drawings.

(ルーフ補強部材の変形挙動)
アーチ状のルーフ補強部材の最大荷重を向上させるためには、このアーチ状衝突荷重変形挙動を知る必要がある。この解明のために、先ず、図1のような梁モデルによって、形状条件や強度条件を種々変えた矩形閉断面部を有するルーフ補強部材を、FEMと理論式との両方によって、解析した。
(Deformation behavior of roof reinforcement members)
In order to improve the maximum load of the arch-shaped roof reinforcing member, it is necessary to know this arch-shaped collision load deformation behavior. For this elucidation, first, a roof reinforcing member having a rectangular closed cross-section portion in which the shape condition and the strength condition were variously changed by the beam model as shown in FIG. 1 was analyzed by both the FEM and the theoretical formula.

この結果、軸方向に亙るアーチ状の湾曲形状をして、しかも矩形閉断面部を有するルーフ補強部材では、FEMと理論式との解析結果が異なることを知見した。すなわち、実際のルーフ補強部材の最大荷重(FEM解析)と、理論式による予め予測される(設計される)ルーフ補強部材の最大荷重とが大きく異なる、特定領域があることを知見した。この点を以下に順を追って説明する。   As a result, it was found that the analysis results of the FEM and the theoretical formula are different in a roof reinforcing member having an arch-like curved shape extending in the axial direction and having a rectangular closed cross section. That is, it has been found that there is a specific region where the actual maximum load (FEM analysis) of the roof reinforcing member and the maximum load of the roof reinforcing member predicted (designed) in advance by a theoretical formula are greatly different. This point will be described below in order.

(図1の梁モデル)
先ず、前記図1について説明する。図1のアーチ状のルーフ補強部材の梁モデルにおいて、Pは軸方向の圧縮荷重、δ0 は初期たわみとしての車体上下方向のアーチ高さ、Lはルーフ補強部材の長さである。なお、ルーフ補強部材の最大荷重Pmax とは、軸方向の最大圧縮荷重(最大軸圧縮荷重)のことである。
(Beam model in Fig. 1)
First, FIG. 1 will be described. In the beam model of the arch-shaped roof reinforcing member in FIG. 1, P is the axial compressive load, δ 0 is the arch height in the vehicle body vertical direction as an initial deflection, and L is the length of the roof reinforcing member. The maximum load Pmax of the roof reinforcing member is the maximum axial compressive load (maximum axial compressive load).

(理論式)
この図1における、ルーフ補強部材の最大荷重Pmax を求めるための理論式は以下の公知の式1で表される。この式1は、例えば、構造力学公式集、土木学会、1986、P.314などに記載されている。
(Theoretical formula)
The theoretical formula for obtaining the maximum load Pmax of the roof reinforcing member in FIG. 1 is expressed by the following well-known formula 1. This formula 1 is described in, for example, the Structural Mechanics Official Collection, Japan Society of Civil Engineers, 1986, P.I. 314 and the like.

1/Pmax =1/PE +δ0 /MP ・・・(1)
ここで、PE :曲げ座屈荷重、δ0 :アーチ高さ(アーチ円弧の最大高さ)、MP :全塑性曲げモーメントである。
1 / Pmax = 1 / P E + δ 0 / M P (1)
Here, P E is the bending buckling load, δ 0 is the arch height (the maximum height of the arch arc), and M P is the total plastic bending moment.

つまり、上記式1において、アーチを有する梁の最大荷重Pmax の逆数は、曲げ座屈強度PE の逆数と、全塑性曲げモーメントMP をアーチ高さδ0 で割った逆数δ0 /MP との和である。 That is, in Equation 1 above, the reciprocal of the maximum load Pmax of the beam having the arch is the reciprocal δ 0 / M P obtained by dividing the reciprocal of the bending buckling strength P E and the total plastic bending moment M P by the arch height δ 0. And the sum.

(図2)
図1の梁モデルを用い、前記理論式1とFEM解析との両方の解析によって、前記形状条件や強度条件を種々変えた矩形閉断面部を有するルーフ補強部材の最大荷重Pmax を各々解析した結果を図2に各々示す。
(Figure 2)
Results obtained by analyzing the maximum load Pmax of the roof reinforcing member having the rectangular closed cross-section portion in which the shape condition and the strength condition are variously changed by the analysis of both the theoretical formula 1 and the FEM analysis using the beam model of FIG. Are shown in FIG.

この図2には、ルーフ補強部材の前記矩形閉断面部の形状条件や強度条件も各々示す。ここで、両方の解析には、後述する図5(a)の、側方へ張出したフランジを両側面に有する、矩形閉断面部のルーフ補強部材を共通して用いた。そして、ルーフ補強部材のアーチ高さδ0 は30mm、直線部の長さLは990mmと、全て同じ条件とした。なお,FEM解析には汎用コードであるABAQUSを使用している。 FIG. 2 also shows the shape condition and strength condition of the rectangular closed cross section of the roof reinforcing member. Here, in both analyses, a roof reinforcing member having a rectangular closed cross section having a flange projecting sideways on both sides as shown in FIG. The arch height δ 0 of the roof reinforcing member was 30 mm, and the length L of the straight portion was 990 mm, all under the same conditions. Note that ABAQUS, which is a general-purpose code, is used for FEM analysis.

この図5(a)を含めた、図4と図5において、共通して、Sは矩形閉断面部から横方向(車体前後方向)に伸びたフランジ幅(mm)、Hは矩形閉断面部の車体上下方向の高さ(mm)、tfあるいはtf1は矩形閉断面部の厚み(mm)、tf2は前記張出フランジの厚み(mm)である。Bは矩形閉断面部の車体前後方向の全幅(mm)、B1、B2、B3は、各々前記中リブで仕切られた各矩形閉断面部の車体前後方向の各幅(mm)である。また、矩形閉断面部の厚みtfあるいはtf1や、前記張出フランジの厚みtf2は、これらの解析では、矩形閉断面部の全ての箇所で同じとした。   4 and 5 including FIG. 5A, in common, S is a flange width (mm) extending from the rectangular closed cross section in the lateral direction (vehicle body longitudinal direction), and H is a rectangular closed cross section. The height (mm) in the vertical direction of the vehicle body, tf or tf1 is the thickness (mm) of the rectangular closed cross section, and tf2 is the thickness (mm) of the overhanging flange. B is the full width (mm) of the rectangular closed cross section in the longitudinal direction of the vehicle body, and B1, B2, and B3 are widths (mm) in the longitudinal direction of the vehicle body of the respective rectangular closed cross sections partitioned by the intermediate ribs. In addition, the thickness tf or tf1 of the rectangular closed cross section and the thickness tf2 of the protruding flange are the same in all the portions of the rectangular closed cross section in these analyses.

(図3)
前記図2の解析結果を、縦軸に荷重効率、横軸に無次元幅厚比パラメータRfとで改めた整理した結果を図3に示す。
(Figure 3)
FIG. 3 shows a result of arranging the analysis results of FIG. 2 with the load efficiency on the vertical axis and the dimensionless width-thickness ratio parameter Rf on the horizontal axis.

ここで、図3の縦軸の荷重効率とは、前記理論式1による最大軸圧縮荷重Pmax (理論解:Pmax ,theory)と、FEM解析による最大軸圧縮荷重Pmax (FEM解:Pmax ,FEM )との比、Pmax ,theory/Pmax である。   Here, the load efficiency on the vertical axis in FIG. 3 means the maximum axial compression load Pmax (theoretical solution: Pmax, theory) according to the theoretical formula 1 and the maximum axial compression load Pmax (FEM solution: Pmax, FEM) according to FEM analysis. Ratio, Pmax, theory / Pmax.

また、図3の横軸の無次元幅厚比パラメータRfは、Rf={(σy/E)×[12(1−ν2 )/π2 k]}1/2×(B/tf)・・・(式2)で表される。この式で、σyは前記アルミニウム合金押出中空形材の0.2%耐力(MPa)、Eは前記アルミニウム合金のヤング率(MPa)、Bは前記矩形閉断面部の全幅(mm)、tfは前記矩形閉断面部のフランジ側厚み(フランジの厚み:mm)、νはポアソン比、kは座屈係数(k=4)である。因みに、この式2を√記号を用いて示すと、以下のように表される。 Also, the dimensionless width-thickness ratio parameter Rf on the horizontal axis in FIG. 3 is Rf = {(σy / E) × [12 (1-ν 2 ) / π 2 k]} 1/2 × (B / tf) ·・ ・ (Expression 2) In this equation, σy is the 0.2% proof stress (MPa) of the extruded aluminum alloy profile, E is the Young's modulus (MPa) of the aluminum alloy, B is the full width (mm) of the rectangular closed cross section, and tf is The flange-side thickness of the rectangular closed cross section (flange thickness: mm), ν is the Poisson's ratio, and k is the buckling coefficient (k = 4). By the way, this equation 2 is expressed as follows using the √ symbol.

Figure 0005237927
Figure 0005237927

因みに、この無次元幅厚比パラメータRfは、前記特許文献3に、自動車のボディ、シャーシ等に適用され、荷重を受けるフランジを有する構造部材としての、フランジの幅厚比Rfとして開示されている。すなわち、前記特許文献3では、垂直パネルにて形成され、該垂直パネルに対し直角方向の荷重を受けるフランジと、上記フランジの所定位置に固着された水平パネルにて形成され、該フランジを支持するウエブとからなる構造部材の構造が前提となっている。   Incidentally, this dimensionless width-thickness ratio parameter Rf is disclosed in Patent Document 3 as a flange width-thickness ratio Rf as a structural member having a flange that is applied to the body, chassis, etc. of an automobile and receives a load. . That is, in Patent Document 3, a flange is formed by a vertical panel and receives a load in a direction perpendicular to the vertical panel, and a horizontal panel fixed to a predetermined position of the flange to support the flange. The structure of the structural member consisting of the web is assumed.

そして、この構造において、上記フランジの幅厚比Rfが、Rf={12(1−ν2 )/4π2 1/2 ×(σy/E)1/2 ×(bf/tf)で表されることが記載されている。ここで、bfはフランジの高さ、tfはフランジの厚さ、νはポアソン比、Eは弾性率、σyは降状応力を表している。本発明の幅厚比Rfは、このパネル構造の幅厚比Rfを基に、矩形閉断面部を有するルーフ補強部材としての幅厚比に適合するように、前記式2に変更したものである。 And in this structure, the width-to-thickness ratio Rf of the flange is represented by Rf = {12 (1-ν 2 ) / 4π 2 } 1/2 × (σy / E) 1/2 × (bf / tf). It is described that. Here, bf represents the height of the flange, tf represents the thickness of the flange, ν represents the Poisson's ratio, E represents the elastic modulus, and σy represents the yield stress. The width-thickness ratio Rf of the present invention is changed to the above formula 2 so as to match the width-thickness ratio as a roof reinforcing member having a rectangular closed cross section based on the width-thickness ratio Rf of this panel structure. .

前記した、アーチ状で矩形閉断面部を有するルーフ補強部材では、FEM解析と理論式解析との最大荷重が大きく異なる特定領域がある点につき、この図3を用いて説明する。   The above-described roof reinforcing member having an arch shape and a rectangular closed cross section will be described with reference to FIG. 3 because there is a specific region where the maximum load is greatly different between the FEM analysis and the theoretical formula analysis.

図3から分かる通り、横軸のRfが1.0までの小さい範囲までは、縦軸の荷重効率は概ね100%であり、理論解Pmax ,theoryと、FEM解Pmax ,FEM とが良く一致している。すなわち、図1の梁モデルによって、前記理論式1を用いて、ルーフ補強部材の最大荷重を大きくすべく、矩形閉断面部の全幅Bを大きく設計する場合、横軸のRfが1.0以下であれば、ルーフ補強部材の最大荷重における、予測値(設計値)と実際の値とが良く一致することを意味する。   As can be seen from FIG. 3, the load efficiency on the vertical axis is approximately 100% up to a small range of Rf on the horizontal axis up to 1.0, and the theoretical solution Pmax and theory agree well with the FEM solutions Pmax and FEM. ing. That is, when the full width B of the rectangular closed cross section is designed to increase the maximum load of the roof reinforcing member using the theoretical formula 1 according to the beam model of FIG. 1, the Rf of the horizontal axis is 1.0 or less. If so, it means that the predicted value (design value) and the actual value at the maximum load of the roof reinforcing member agree well.

これに対して、横軸のRfが1.0を超えて大きくなると、縦軸の荷重効率は100%を下回り、理論解Pmax ,theoryに対して、FEM解Pmax ,FEM の方が小さくなる。言い換えると、矩形閉断面部の全幅Bが大きくなると、理論解Pmax ,theoryよりも、FEM解Pmax ,FEM による、実際のルーフ補強部材の最大荷重が小さくなる。これは、図1の梁モデルによって、前記理論式を用いて、ルーフ補強部材の最大荷重を大きくすべく、横軸のRfを1.0を超えて矩形閉断面部の全幅Bを大きく設計した場合には、ルーフ補強部材の実際の最大荷重値が、設計値(予測値)よりも、小さくなってしまうことを意味する。   In contrast, when Rf on the horizontal axis increases beyond 1.0, the load efficiency on the vertical axis falls below 100%, and the FEM solutions Pmax and FEM become smaller than the theoretical solutions Pmax and theory. In other words, when the full width B of the rectangular closed cross section increases, the maximum load of the actual roof reinforcing member by the FEM solutions Pmax and FEM becomes smaller than the theoretical solutions Pmax and theory. In order to increase the maximum load of the roof reinforcing member, the beam model shown in FIG. 1 is used to increase the total width B of the rectangular closed cross section by exceeding Rf of the horizontal axis to 1.0. In this case, it means that the actual maximum load value of the roof reinforcing member is smaller than the design value (predicted value).

例えば、図3において、矩形閉断面部の全幅Bのみが相違する(他の条件が同じ)case2−2、case4−2、case6−2,case8−2の4例を比較する。Rfが1.0のcase2−2の荷重効率は100%で、理論解Pmax ,theoryと、FEM解Pmax ,FEM とが良く一致している。しかし、Rfが1.61のcase4−2の荷重効率は82%、Rfが2.01のcase6−2の荷重効率は73%、Rfが2.61のcase8−2の荷重効率は62%と、各々大幅に低下している。   For example, in FIG. 3, four examples of case 2-2, case 4-2, case 6-2, and case 8-2 in which only the full width B of the rectangular closed cross section is different (the other conditions are the same) are compared. The load efficiency of case 2-2 with Rf of 1.0 is 100%, and the theoretical solution Pmax and theory and the FEM solutions Pmax and FEM are in good agreement. However, the load efficiency of case4-2 with Rf 1.61 is 82%, the load efficiency of case6-2 with Rf 2.01 is 73%, and the load efficiency of case8-2 with Rf 2.61 is 62%. , Each has fallen significantly.

このように、横軸のRfが1.0を超えて大きい場合には、ルーフ補強部材の最大荷重値を上げるための最適矩形閉断面形状を設計することが、困難となることを意味する。これは、ルーフ補強部材の前記矩形閉断面部が、幅広薄肉形状を有しているために、横軸のRfが1.0を超えて大きい場合には、却って弾性座屈しやすくなったからである。   Thus, when Rf on the horizontal axis is larger than 1.0, it means that it becomes difficult to design an optimal rectangular closed cross-sectional shape for increasing the maximum load value of the roof reinforcing member. This is because the rectangular closed cross-section of the roof reinforcing member has a wide and thin shape, and therefore, when the Rf of the horizontal axis is larger than 1.0, it is easily elastically buckled. .

(弾性座屈対策)
このように、弾性的に座屈しやすくなったルーフ補強部材の最大荷重値を上げるためには、通常は、前記した通り、前記矩形閉断面部の肉厚(フランジの肉厚)を厚くする。しかし、前記弾性座屈に対して有効なだけの肉厚の増加は、ルーフ補強部材の軽量化が犠牲となり、アルミニウム合金押出形材を使用する意味がなくなる。
(Elastic buckling measures)
Thus, in order to increase the maximum load value of the roof reinforcing member that is easily elastically buckled, the thickness of the rectangular closed cross section (thickness of the flange) is normally increased as described above. However, an increase in the wall thickness that is effective for the elastic buckling sacrifices the weight reduction of the roof reinforcing member, and makes it meaningless to use an aluminum alloy extruded profile.

このため、本発明では、先ず前提として、軽量化を阻害せずに、最大荷重値を上げるために、ルーフ補強部材を、矩形閉断面部を有する、高強度なアルミニウム合金押出中空形材から構成し、この矩形閉断面部を幅広薄肉形状とする。すなわち、アルミニウム合金押出中空形材の0.2%耐力σyを200MPa以上とするとともに、前記矩形閉断面部の最大厚みtfを3mm以下とした上で、前記矩形閉断面部の全幅Bを無次元幅厚比パラメータRfで1.00以上と大きく(広く)する。   For this reason, in the present invention, as a premise, in order to increase the maximum load value without hindering weight reduction, the roof reinforcing member is composed of a high-strength aluminum alloy extruded hollow shape having a rectangular closed cross section. The rectangular closed cross section is formed into a wide and thin shape. That is, the 0.2% proof stress σy of the extruded aluminum alloy hollow member is 200 MPa or more, the maximum thickness tf of the rectangular closed cross section is 3 mm or less, and the total width B of the rectangular closed cross section is dimensionless. The width-thickness ratio parameter Rf is increased (widened) to 1.00 or more.

但し、これだけでは、却って、弾性座屈が起こりやすくなって、実質的に最大荷重値を上げることができない。このため、本発明では、特徴的には、弾性座屈を防止して、ルーフ補強部材の最大荷重値を上げるために、更に、前記矩形閉断面部を中リブによって分割するとともに、この分割された個々の矩形閉断面部の幅を前記無次元幅厚比パラメータRfで1.00未満と小さく(狭く)する。   However, this alone makes it easier for elastic buckling to occur, and the maximum load value cannot be increased substantially. Therefore, in the present invention, in order to prevent elastic buckling and to increase the maximum load value of the roof reinforcing member, the rectangular closed cross section is further divided by the middle rib and divided. Further, the width of each rectangular closed cross section is reduced (narrow) to less than 1.00 by the dimensionless width-thickness ratio parameter Rf.

(中リブによる矩形閉断面部の分割)
具体的には、前記図4、図5の矩形閉断面において、図4(a)、図5(a)の中リブを有さない、原型となる口型の従来の矩形閉断面に対して、図4(b)、図5(b)や図4(c)、図5(c)のように、矩形閉断面部内に中リブを1本以上設けて、矩形閉断面部を分割する。
(Division of rectangular closed cross-section by middle rib)
Specifically, in the rectangular closed cross-section of FIGS. 4 and 5, compared to the conventional rectangular closed cross-section of the mouth type that does not have the middle ribs of FIGS. 4 (a) and 5 (a). 4 (b), 5 (b), 4 (c), and 5 (c), one or more middle ribs are provided in the rectangular closed cross section, and the rectangular closed cross section is divided.

ここで、図4、図5の矩形閉断面構造(形状)を以下に具体的に説明する。先ず、図4(a)、図5(a)は、前記した通り、車体上下方向の中リブを有さない、原型となる口型の従来の矩形閉断面である。図4(b)、図5(b)は、矩形閉断面部の中央に、車体上下方向の中リブを1本有して、矩形閉断面部を2分割する、日型の矩形閉断面である。図4(c)、図5(c)は、矩形閉断面部に、車体上下方向の中リブを2本、車体の前後方向に間隔を開けて有して、矩形閉断面部を3分割する、目型の矩形閉断面である。   Here, the rectangular closed cross-sectional structure (shape) of FIGS. 4 and 5 will be described in detail below. First, FIG. 4A and FIG. 5A are conventional rectangular closed cross-sections of a mouth type that does not have a middle rib in the vertical direction of the vehicle body, as described above. 4 (b) and 5 (b) show a rectangular closed section of a Japanese shape that has one middle rib in the vertical direction of the vehicle body at the center of the rectangular closed section and divides the rectangular closed section into two. is there. 4 (c) and 5 (c), the rectangular closed cross-section portion is divided into three parts with two middle ribs in the vertical direction of the vehicle body and spaced apart in the front-rear direction of the vehicle body. It is a rectangular closed cross section of an eye shape.

図4、図5の矩形閉断面部において、1、2は、車体上下方向(図の上下方向)に間隔を開けて、車体前後方向(図の左右方向)に延在する2本のフランジ(横壁)である。3、4は、これら2本のフランジ1、2を互いにつなぎ、車体前後方向(図の左右方向)に間隔を開けて、車体上下方向(図の上下方向)に延在する2本のウエブ(縦壁)である。5、6、7、8は、これらフランジ1、2の両端部から、両側方(車体前後方向)に各々伸びた、合計4本の張出フランジである。   In the rectangular closed cross section of FIGS. 4 and 5, two flanges (1 and 2) extend in the longitudinal direction of the vehicle (the vertical direction in the drawing) and extend in the longitudinal direction of the vehicle (the horizontal direction in the drawing). Horizontal wall). 3 and 4 connect these two flanges 1 and 2 to each other, with two webs extending in the vehicle body vertical direction (the vertical direction in the figure) and spaced in the vehicle longitudinal direction (the horizontal direction in the figure). Vertical wall). Reference numerals 5, 6, 7, and 8 denote a total of four overhanging flanges that extend from both ends of the flanges 1 and 2 to both sides (vehicle body longitudinal direction).

図5の矩形閉断面部では、(a)、(b)、(c)のいずれも4本の張出フランジ5、6、7、8を有している。これに対して、図4の矩形閉断面部は、(a)、(b)、(c)のいずれも、これら張出フランジを有さない矩形断面形状を有している。   In the rectangular closed cross section of FIG. 5, all of (a), (b), and (c) have four overhanging flanges 5, 6, 7, and 8. On the other hand, the rectangular closed cross-section portion of FIG. 4 has a rectangular cross-sectional shape in which any of (a), (b), and (c) does not have these overhanging flanges.

なお、このような中リブを有する、口型、目型などの矩形閉断面部自体は周知であり、前記した従来のアルミニウム合金押出中空形材を用いたルーフ補強部材としても公知である。言い換えると、本発明は、口型、目型などの矩形閉断面部の単に断面形状の点だけでは、従来の前記ルーフ補強部材と区別できない。   In addition, rectangular closed cross sections such as a mouth shape and an eye shape having such a middle rib are known per se, and are also known as a roof reinforcing member using the above-described conventional aluminum alloy extruded hollow shape. In other words, the present invention is indistinguishable from the conventional roof reinforcing member only in terms of the cross-sectional shape of a rectangular closed cross-section such as a mouth mold or an eye mold.

本発明を、従来の前記ルーフ補強部材と区別するのは、前記弾性座屈が起こりやすくなっている、全幅Bを無次元幅厚比パラメータRfで1.00以上と大きくされた幅広で、かつ前記高強度で薄肉な矩形閉断面部と、アーチ状に湾曲した軸を有する点である。このような技術分野では、前記した通り、前記弾性座屈の発生自体が、そして、前記弾性座屈を防止した上で最大荷重値を上げること自体が、決して公知では無かった。したがって、このような技術分野では、全幅Bを無次元幅厚比パラメータRfで1.00以上と大きくした上で、中リブを設けて分割されたような、矩形閉断面部を有するルーフ補強部材は存在しなかった。   The present invention is distinguished from the conventional roof reinforcing member in that the elastic buckling is likely to occur, the entire width B is widened to a dimensionless width-thickness ratio parameter Rf of 1.00 or more, and The high strength and thin rectangular closed cross section and an arch-shaped axis. In such a technical field, as described above, it has never been known that the occurrence of the elastic buckling itself and the maximum load value itself are prevented while preventing the elastic buckling. Therefore, in such a technical field, a roof reinforcing member having a rectangular closed cross-section portion that is divided by providing an intermediate rib after the total width B is increased to a dimensionless width-thickness ratio parameter Rf of 1.00 or more. Did not exist.

(矩形閉断面部の全幅)
このように、本発明ルーフ補強部材の矩形閉断面部の全幅(幅方向の全長さ)Bは、最大荷重値を上げるために、無次元幅厚比パラメータRfで1.00以上、好ましくは1.38以上、より好ましくは1.61以上と、更に好ましくは1.72以上として、できるだけ大きく(広く)する。
(Full width of rectangular cross section)
Thus, the total width (the total length in the width direction) B of the rectangular closed cross section of the roof reinforcing member of the present invention is 1.00 or more, preferably 1 in the dimensionless width-thickness ratio parameter Rf in order to increase the maximum load value. .38 or more, more preferably 1.61 or more, and even more preferably 1.72 or more, as large as possible (wide).

(中リブにより分割された矩形閉断面部の幅)
また、中リブによる矩形閉断面部の分割は、図4(b)、図5(b)や図4(c)、図5(c)における、中リブによって分割された(仕切られた)矩形閉断面部(フランジ1、2)の、分割された個々の矩形閉断面部の幅B1、B2、B3が、無次元幅厚比パラメータRfで1.00未満のできるだけ小さい値となるように行う。これらの幅B1、B2、B3が、無次元幅厚比パラメータRfで1.00以上と大きくなっては、矩形閉断面部の全幅Bを前記の通り大きくした際に発生しやすくなる弾性座屈を防止できず、アーチ状のルーフ補強部材の最大荷重値を上げることができない。
(Width of rectangular closed section divided by middle rib)
Further, the rectangular closed cross section by the middle rib is divided into rectangles divided (partitioned) by the middle rib in FIGS. 4B, 5B, 4C, and 5C. The widths B1, B2, and B3 of the divided rectangular closed cross-section portions of the closed cross-section portions (flanges 1 and 2) are set as small as possible with a dimensionless width-thickness ratio parameter Rf of less than 1.00. . If these widths B1, B2, and B3 are increased to 1.00 or more in the dimensionless width-thickness ratio parameter Rf, elastic buckling that is likely to occur when the total width B of the rectangular closed cross section is increased as described above. Cannot be prevented, and the maximum load value of the arched roof reinforcing member cannot be increased.

この点、これらの幅B1、B2、B3は、無次元幅厚比パラメータRfを好ましくは0.7以下、より好ましくは0.5以下、更に好ましくは0.3以下として、できるだけ小さく(狭く)する。但し、これら中リブによって分割される矩形閉断面部の幅B1、B2、B3は、全て同じRfや幅とする必要はなく、必要に応じて変えても良い。   In this respect, these widths B1, B2, and B3 are made as small as possible (narrow) by setting the dimensionless width-thickness ratio parameter Rf to preferably 0.7 or less, more preferably 0.5 or less, and further preferably 0.3 or less. To do. However, the widths B1, B2, and B3 of the rectangular closed cross sections divided by these middle ribs do not have to be the same Rf and width, and may be changed as necessary.

(矩形閉断面部の設計)
本発明ルーフ補強部材の矩形閉断面部の全幅Bの、無次元幅厚比パラメータRfを大きくするための、ルーフ補強部材の矩形閉断面部の設計方法を、図4と図5とを例として、以下に具体的に説明する。
(Design of rectangular closed section)
A method for designing a rectangular closed cross section of a roof reinforcing member for increasing the dimensionless width-thickness ratio parameter Rf of the full width B of the rectangular closed cross section of the roof reinforcing member of the present invention is shown in FIGS. 4 and 5 as an example. This will be specifically described below.

強度:
本発明において使用するアルミニウム合金押出中空形材は、前記矩形閉断面部の最大厚みtfを3mm以下とした上で、前記最大荷重値を上げ、弾性座屈を防止するためには、0.2%耐力σyが200MPa以上のできるだけ高強度なものが必要である。このような前記必要な強度を満たすためには、高強度なA6000系かA7000系の調質(熱処理)されたアルミニウム合金押出中空形材が好ましい。なお、このようなアルミニウム合金押出中空形材は、熱間押出と、溶体化焼入れ処理、人工時効処理などの調質(熱処理)を組み合わせた常法にて製造できる。
Strength:
In order to increase the maximum load value and prevent elastic buckling, the aluminum alloy extruded hollow member used in the present invention has a maximum thickness tf of the rectangular closed cross section of 3 mm or less. A material having as high a strength as possible with a% proof stress σy of 200 MPa or more is required. In order to satisfy such a required strength, a high-strength A6000-based or A7000-based tempered (heat treated) aluminum alloy extruded hollow shape member is preferable. Such an aluminum alloy extruded hollow shape can be produced by a conventional method combining hot extrusion, tempering (heat treatment) such as solution hardening and artificial aging.

矩形閉断面部の厚み:
矩形閉断面部のフランジ1、2やウエブ3、4の厚みtfあるいはtf1は、軽量化を阻害しないために、最大でも3mm以下とする。但し、好ましい最小の厚みは1.5mmであり、矩形閉断面部の厚みtfあるいはtf1は、好ましくは1.5〜3mmの範囲とする。前記張出フランジ5、6、7、8の厚みtf2もこれに準じる。
Rectangular closed cross section thickness:
The thickness tf or tf1 of the flanges 1 and 2 and the webs 3 and 4 of the rectangular closed cross section is set to 3 mm or less at the maximum in order not to hinder weight reduction. However, the preferable minimum thickness is 1.5 mm, and the thickness tf or tf1 of the rectangular closed cross section is preferably in the range of 1.5 to 3 mm. The thickness tf2 of the overhanging flanges 5, 6, 7, and 8 also follows this.

なお、実際のルーフ補強部材設計にあっては、矩形閉断面部の厚みtfあるいはtf1や、前記張出フランジの厚みtf2は、矩形閉断面部の全ての箇所で同じで良い。しかし、強度がより必要で肉厚がより必要な部分を厚くし、それ以外の部分を薄くするなど、フランジやウエブに応じて、あるいは同じフランジや同じウエブでの部位に応じて、部位や部分的に厚みを変えても良い。したがって、無次元幅厚比パラメータRfの前記式2におけるtfは前記矩形閉断面部のフランジ側(フランジ)の平均厚み(mm)とした。   In the actual roof reinforcing member design, the thickness tf or tf1 of the rectangular closed cross section and the thickness tf2 of the overhanging flange may be the same at all locations of the rectangular closed cross section. However, depending on the flange or web, or depending on the part on the same flange or the same web, such as thickening the part that requires more strength and more thickness, and thinning the other part, the part or part The thickness may be changed. Therefore, tf in the expression 2 of the dimensionless width-thickness ratio parameter Rf is the average thickness (mm) on the flange side (flange) of the rectangular closed cross section.

車体上下方向の高さH:
矩形閉断面部の車体上下方向の高さHは、大きい(高い)方が最大荷重値を上げ、弾性座屈を防止できる。しかし、前記した通り、ルーフ補強部材として、自動車の室内空間あるいは車高方向のスペースを確保するために、大幅に制限される。また、軽量化の点からも大幅に制限される。このため、最大でも30mm、通常は10〜25mmの範囲とすることが好ましい。
Body height H:
Larger (higher) height H in the vehicle body vertical direction of the rectangular closed cross-section increases the maximum load value and can prevent elastic buckling. However, as described above, the roof reinforcing member is greatly limited in order to secure a vehicle interior space or a vehicle height direction space. In addition, it is greatly limited in terms of weight reduction. For this reason, it is preferable to set it as the range of 30 mm at the maximum, usually 10-25 mm.

全幅B:
矩形閉断面部の全幅(幅方向の全長さ)Bは、無次元幅厚比パラメータRfを前記した通り大きくし、最大荷重値を上げるために、できるだけ大きく(広く)する。このためには、無次元幅厚比パラメータRfの式を構成する前記した他の因子との関係で、矩形閉断面部の全幅(幅方向の全長さ)Bの絶対値は、最低でも50mmを超えてできるだけ大きい方が好ましく、好ましくは80mm以上、より好ましくは150mmとする。
Full width B:
The total width (the total length in the width direction) B of the rectangular closed cross section is increased (widened) as much as possible in order to increase the dimensionless width-thickness ratio parameter Rf as described above and increase the maximum load value. For this purpose, the absolute value of the total width (total length in the width direction) B of the rectangular closed cross-section is at least 50 mm in relation to the above-described other factors constituting the expression of the dimensionless width-thickness ratio parameter Rf. It is preferably as large as possible, preferably 80 mm or more, and more preferably 150 mm.

中リブで仕切られた幅B1、B2、B3:
中リブによって分割された(仕切られた)矩形閉断面部(フランジ1、2)の、分割された個々の矩形閉断面部の幅B1、B2、B3は、弾性座屈を防止するために、Rfで1.00未満とする。このためには、前記無次元幅厚比パラメータRfの式を構成する他の因子を、前記した範囲とすると、分割された個々の矩形閉断面部の幅B1、B2、B3は、車体前後方向の各幅として、最大でも50mm以下とする。但し、これら中リブによって分割される矩形閉断面部の幅B1、B2、B3は、全て同じ幅とする必要はなく、必要に応じて変えても良い。
Width B1, B2, B3 partitioned by the middle rib:
In order to prevent elastic buckling, the widths B1, B2, and B3 of the divided rectangular closed cross-sections (flanges 1 and 2) divided (partitioned) by the intermediate ribs are as follows. Rf is less than 1.00. For this purpose, if the other factors constituting the expression of the dimensionless width-thickness ratio parameter Rf are within the above-mentioned range, the widths B1, B2, B3 of the divided rectangular closed cross-sections are determined in the vehicle longitudinal direction. Each width is set to 50 mm or less at the maximum. However, the widths B1, B2, and B3 of the rectangular closed cross sections divided by the middle ribs do not have to be the same width, and may be changed as necessary.

張出フランジ:
張出フランジ5、6、7、8は、ルーフ補強部材として、矩形閉断面部を、前記ルーフパネルやルーフサイドレールと接合するために必要であって、弾性座屈を防止するためや、最大荷重値を上げるためには必要ない。
Overhang flange:
The overhanging flanges 5, 6, 7, and 8 are necessary for joining the rectangular closed cross section with the roof panel and the roof side rail as a roof reinforcing member, and prevent the elastic buckling. It is not necessary to increase the load value.

図5(a)の矩形閉断面部を有し、図6に斜視図で示す、ルーフ補強部材について、中リブ9、10による分割の、最大荷重や荷重効率への影響を解析した。この結果を表1に示す。   With respect to the roof reinforcing member having the rectangular closed cross section shown in FIG. 5A and shown in a perspective view in FIG. 6, the influence of the division by the middle ribs 9 and 10 on the maximum load and load efficiency was analyzed. The results are shown in Table 1.

具体的には、前記図3において、前記矩形閉断面部の全幅Bのみが相違し(他の条件が同じ)、前記無次元幅厚比パラメータRfが1.0を超える口型断面例、case4−2、case6−2、case6−2の3例(図4(a)相当)につき、中リブ9、10によって、断面を日型、目型に各々分割し、かつ分割された個々の矩形閉断面部の幅B1、B2、B3の前記Rfを種々変えた。そして、前記図2と同じく、最大荷重(理論解Pmax ,theoryとFEM解Pmax ,FEM )や荷重効率を求めた。表1において、括弧内に日とあるのは図4(b)の日型断面、目とあるのは図4(b)の目型断面を各々示す。   Specifically, in FIG. 3, only the full width B of the rectangular closed cross section is different (other conditions are the same), and the dimensionless width-thickness ratio parameter Rf is more than 1.0. -2, case6-2, and case6-2 (corresponding to FIG. 4 (a)), the cross section is divided into a day shape and an eye shape by the intermediate ribs 9 and 10, respectively, and the divided individual rectangles are closed. The Rf of the cross-sectional widths B1, B2, and B3 was variously changed. As in FIG. 2, the maximum load (theoretical solution Pmax, theory and the FEM solution Pmax, FEM) and the load efficiency were obtained. In Table 1, the date in parentheses indicates the cross section of the day shape in FIG. 4B, and the eye indicates the cross section of the eye shape in FIG. 4B.

表1から分かる通り、分割された幅B1、B2、B3の前記Rfを各々1.00未満とした例では、Rfが1.61のcase4−2の荷重効率は98%と元の82%から大幅に向上し、Rfが2.01のcase6−2の荷重効率は98%と元の73%から大幅に向上し、Rfが2.61のcase8−2の荷重効率は100%と元の62%から大幅に向上している。   As can be seen from Table 1, in the example in which the Rf of the divided widths B1, B2, and B3 is less than 1.00, the load efficiency of case4-2 with Rf of 1.61 is 98%, from the original 82% The load efficiency of case6-2 with Rf 2.01 is significantly improved from the original 73%, which is 98%, and the load efficiency of case8-2 with Rf 2.61 is 100%, the original 62% % Has improved significantly.

その反対に、中リブ9、10によって分割しても、幅B1、B2、B3の前記Rfが1.00以上である他の比較例は、荷重効率があまり大きくは向上せず、依然、最大荷重の理論解Pmax ,theoryとFEM解Pmax ,FEM との乖離が大きく、実際の最大荷重が増加していない。   On the other hand, even if divided by the middle ribs 9 and 10, the other comparative examples in which the Rf of the widths B1, B2, and B3 is 1.00 or more do not improve the load efficiency so much, and are still the maximum. The difference between the theoretical load solutions Pmax and theory and the FEM solutions Pmax and FEM is large, and the actual maximum load does not increase.

Figure 0005237927
Figure 0005237927

本発明によれば、軸方向に亙るアーチ状の湾曲形状をしたアルミニウム合金押出形材製の自動車ルーフ補強部材において、重量増加を最小限に抑えた上で、弾性座屈を抑制して高い軸方向の最大荷重(軸圧縮強度)が得られる。このため、軽量化と最大荷重とがともに要求される、軸方向に亙るアーチ状の湾曲形状をした自動車ルーフ補強部材に好適である。   According to the present invention, in an automotive roof reinforcing member made of an aluminum alloy extruded profile having an arch-like curved shape extending in the axial direction, a high shaft is provided that suppresses elastic buckling while minimizing an increase in weight. Maximum direction load (axial compressive strength) is obtained. Therefore, it is suitable for an automobile roof reinforcing member having an arch-like curved shape extending in the axial direction, which requires both weight reduction and maximum load.

1、2、:フランジ、3、4:ウエブ、5、6、7、8:張出フランジ   1, 2 ,: Flange, 3, 4: Web, 5, 6, 7, 8: Overhang flange

Claims (2)

自動車のルーフパネルを支持し、車幅方向にアーチ状に湾曲して延在するルーフ補強部材であって、矩形閉断面部を有するアルミニウム合金押出中空形材からなり、このアルミニウム合金押出中空形材の0.2%耐力σyが200MPa以上であるとともに、前記矩形閉断面部の最大厚みが3mm以下、前記矩形閉断面部の全幅Bが下記式で定義される無次元幅厚比パラメータRfで1.00以上である幅広薄肉形状を有しており、更に、前記矩形閉断面部が中リブによって分割されているとともに、この分割された個々の矩形閉断面部の幅が前記無次元幅厚比パラメータRfで1.00未満であり、15kN以上の軸方向の最大荷重を有することを特徴とするルーフ補強部材。
但し、無次元幅厚比パラメータRf={(σy/E)×[12(1−ν2 )/π2 k]}1/2×(B/tf)とする。この式で、Eは前記アルミニウム合金のヤング率(MPa)、Bは前記矩形閉断面部の全幅(mm)、tfは前記矩形閉断面部のフランジ側厚み(mm)、νはポアソン比、kは座屈係数(k=4)である。
A roof reinforcing member that supports a roof panel of an automobile and extends in an arch shape in the vehicle width direction, and is formed of an aluminum alloy extruded hollow member having a rectangular closed cross section, and the aluminum alloy extruded hollow member 0.2% proof stress σy is 200 MPa or more, the maximum thickness of the rectangular closed cross section is 3 mm or less, and the total width B of the rectangular closed cross section is 1 as a dimensionless width-thickness ratio parameter Rf defined by the following formula: The rectangular closed cross-section portion is divided by a middle rib, and the width of each divided rectangular closed cross-section portion is the dimensionless width-thickness ratio. A roof reinforcing member having a parameter Rf of less than 1.00 and a maximum axial load of 15 kN or more.
However, the dimensionless width-thickness ratio parameter Rf = {(σy / E) × [12 (1−ν 2 ) / π 2 k]} 1/2 × (B / tf). Where E is the Young's modulus (MPa) of the aluminum alloy, B is the full width (mm) of the rectangular closed cross section, tf is the flange side thickness (mm) of the rectangular closed cross section, ν is Poisson's ratio, k Is a buckling coefficient (k = 4).
自動車のルーフパネルを支持し、車幅方向にアーチ状に湾曲して延在するルーフ補強部材の設計方法であって、このルーフ補強部材を、矩形閉断面部を有するアルミニウム合金押出中空形材とし、このアルミニウム合金押出中空形材の0.2%耐力σyを200MPa以上とするとともに、前記矩形閉断面部を、最大厚みが3mm以下、前記矩形閉断面部の全幅Bが下記式で定義される無次元幅厚比パラメータRfで1.00以上の幅広薄肉形状とし、その上で、前記矩形閉断面部を中リブによって分割するとともに、この分割された個々の矩形閉断面部の幅を前記無次元幅厚比パラメータRfで1.00未満とすることによって、このルーフ補強部材の軸方向の最大荷重を15kN以上としたことを特徴とするルーフ補強部材の設計方法。
但し、無次元幅厚比パラメータRf={(σy/E)×[12(1−ν2 )/π2 k]}1/2×(B/tf)とする。この式で、Eは前記アルミニウム合金のヤング率(MPa)、Bは前記矩形閉断面部の全幅(mm)、tfは前記矩形閉断面部のフランジ側厚み(mm)、νはポアソン比、kは座屈係数(k=4)である。
A method for designing a roof reinforcing member that supports a roof panel of an automobile and extends in an arch shape in the vehicle width direction. The roof reinforcing member is an aluminum alloy extruded hollow member having a rectangular closed cross section. The 0.2% proof stress σy of the extruded aluminum alloy hollow profile is 200 MPa or more, the maximum thickness of the rectangular closed cross section is 3 mm or less, and the total width B of the rectangular closed cross section is defined by the following equation: The dimensionless width-thickness ratio parameter Rf is set to a wide and thin shape having a width of 1.00 or more, and the rectangular closed cross section is divided by a middle rib. A method for designing a roof reinforcing member, wherein the maximum load in the axial direction of the roof reinforcing member is set to 15 kN or more by setting the dimension width thickness ratio parameter Rf to less than 1.00.
However, the dimensionless width-thickness ratio parameter Rf = {(σy / E) × [12 (1−ν 2 ) / π 2 k]} 1/2 × (B / tf). Where E is the Young's modulus (MPa) of the aluminum alloy, B is the full width (mm) of the rectangular closed cross section, tf is the flange side thickness (mm) of the rectangular closed cross section, ν is Poisson's ratio, k Is a buckling coefficient (k = 4).
JP2009285410A 2009-12-16 2009-12-16 Automotive roof reinforcement member and design method thereof Active JP5237927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009285410A JP5237927B2 (en) 2009-12-16 2009-12-16 Automotive roof reinforcement member and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009285410A JP5237927B2 (en) 2009-12-16 2009-12-16 Automotive roof reinforcement member and design method thereof

Publications (2)

Publication Number Publication Date
JP2011126380A JP2011126380A (en) 2011-06-30
JP5237927B2 true JP5237927B2 (en) 2013-07-17

Family

ID=44289466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009285410A Active JP5237927B2 (en) 2009-12-16 2009-12-16 Automotive roof reinforcement member and design method thereof

Country Status (1)

Country Link
JP (1) JP5237927B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102877546B (en) * 2012-10-31 2014-08-27 宝钢工程技术集团有限公司 Ductility energy-consumption anti-seismic steel framework
DE102015001808A1 (en) * 2015-02-11 2016-08-11 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Roof segment for a vehicle and method for providing a roof segment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2672753B2 (en) * 1992-10-21 1997-11-05 株式会社神戸製鋼所 Structure of structural member
JP5085359B2 (en) * 2008-02-01 2012-11-28 株式会社神戸製鋼所 Car roof reinforcement

Also Published As

Publication number Publication date
JP2011126380A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5894081B2 (en) B pillar for vehicles
CN102414049B (en) Bumper structure
US7815247B2 (en) Reinforcing member for vehicle center pillar
KR101157000B1 (en) Formed part for vehicle body structural member
EP3623263B1 (en) Structural member, vehicle-body structure and bumper reinforcement
JP5598632B2 (en) Car body
JP4648047B2 (en) Automotive panel structure
JP4928292B2 (en) Car roof structure
KR100619295B1 (en) Automobile strength member
JP2005178695A (en) Anti-collision reinforcing member for vehicle
JP4764035B2 (en) Automotive panel structure
JP2003129611A (en) Flexural strength member
JP5237927B2 (en) Automotive roof reinforcement member and design method thereof
JP2004051065A (en) Vehicle body structural member and collision-proof reinforcing member
JP7264597B2 (en) Vehicle structural members and vehicles
JP4932688B2 (en) Roof reinforcement for automobile bodies
JP4811848B2 (en) Automobile cross member and frame structure using the same
KR20110061928A (en) Automotive bumper rail
US20050166538A1 (en) Construction component with a longitudinally changing cross-section shape
JP2009101848A (en) Vehicular underrun protector
WO2012035662A1 (en) Center pillar construction
JP2020142764A (en) Bumper reinforcement material for automobile
JP7207452B2 (en) Automobile structural member and manufacturing method thereof
JP4904334B2 (en) Energy absorption member for automobile
JP7192837B2 (en) Vehicle structural member

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3