JP2003138346A - Low thermal expansion cast alloy - Google Patents

Low thermal expansion cast alloy

Info

Publication number
JP2003138346A
JP2003138346A JP2001334279A JP2001334279A JP2003138346A JP 2003138346 A JP2003138346 A JP 2003138346A JP 2001334279 A JP2001334279 A JP 2001334279A JP 2001334279 A JP2001334279 A JP 2001334279A JP 2003138346 A JP2003138346 A JP 2003138346A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
coefficient
casting
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001334279A
Other languages
Japanese (ja)
Inventor
Toshiro Maekawa
敏郎 前川
Takashi Kanbe
隆 神戸
Toru Kuroda
徹 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Original Assignee
Kogi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp filed Critical Kogi Corp
Priority to JP2001334279A priority Critical patent/JP2003138346A/en
Publication of JP2003138346A publication Critical patent/JP2003138346A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low thermal expansion cast alloy in which the defects of the conventional low thermal expansion material are solved, and which has a sufficiently low thermal expansion coefficient and satisfactory castability, and whose thermal expansion is extremely reduced by the application of suitable heat treatment after casting. SOLUTION: The low thermal expansion cast alloy has a componential composition containing, by weight, 25.0 to 32.0% Ni, 7.0 to 14.0% Co, 0.3 to <1.0% C, <0.5% Si and <0.3% Mn, and containing 0.01 to 0.06% rare earth elements as well, and the balance substantially Fe. In the cast alloy, on casting, spheroidization treatment of graphite and deoxidation/degassing treatment are performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は低熱膨張鋳造合金に
関し、詳しくは温度に対する寸法安定精度が要求される
機器、部品等に使用される低熱膨張鋳造合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal expansion casting alloy, and more particularly to a low thermal expansion casting alloy used for equipment, parts and the like that require dimensional stability accuracy against temperature.

【0002】[0002]

【従来の技術】鉄系の低熱膨張材として、従来、常温付
近での熱膨張係数が鋼材、鋳鉄材の1/10程度のイン
バー合金、更には室温付近で熱膨張係数が0に近いスー
パーインバーが知られている。しかしながら上記インバ
ーやスーパーインバーは、CやSiを含まないことから
鋳造性に関しては極めて悪く、鋳造用合金として使用で
きないという問題があった。また凝固組織において黒鉛
を含まないオーステナイトであるため、その切削加工性
が悪いという問題があった。また特開平4−28914
9号に示されるように、上記インバーやスーパーインバ
ーを製造するには、特殊な加工を施さなければならない
という問題がある。更に特開昭58−210149号、
特開平3−90541号、特開平4−136136号、
特開平8−269613号、特開平11−158542
号には、C、Siを添加して鋳造性を改善した低熱膨張
材が提供されているが、このような組成においてはオー
ステナイトからマルテンサイトへの組織変化が起こりや
すく、一方、それを避けようとすると組成的に低熱膨張
特性が損なわれることになる。その他、鋳造性の良好な
熱膨張の小さい材料として、ニレジスト鋳鉄等が知られ
ているが、熱膨張係数に関しては鋼材、鋳鉄材の約1/
2程度である。
2. Description of the Related Art Conventionally, as an iron-based low thermal expansion material, an Invar alloy having a thermal expansion coefficient of about 1/10 that of a steel material or a cast iron material at room temperature has been used, and further, a Super Invar having a thermal expansion coefficient of about 0 at room temperature is close to 0. It has been known. However, since the above-mentioned Invar and Super Invar do not contain C or Si, they are extremely poor in castability and have a problem that they cannot be used as a casting alloy. Further, since the solidified structure is austenite containing no graphite, there is a problem that its machinability is poor. In addition, JP-A-4-28914
As shown in No. 9, there is a problem that special processing must be performed to manufacture the above-mentioned Invar or Super Invar. Further, JP-A-58-210149,
JP-A-3-90541, JP-A-4-136136,
JP-A-8-269613, JP-A-11-158542
In No. 6, a low thermal expansion material having improved castability by adding C and Si is provided. However, in such a composition, a microstructure change from austenite to martensite is likely to occur, while avoiding it. In that case, the low thermal expansion property is compositionally impaired. In addition, Niresist cast iron and the like are known as materials having good castability and small thermal expansion, but regarding the thermal expansion coefficient, it is about 1 / third that of steel materials and cast iron materials.
It is about 2.

【0003】[0003]

【発明が解決しようとする課題】そこで本発明は上記従
来における低熱膨張材の欠点を解消し、熱膨張係数が十
分に小さく、且つ鋳造性がよく、また鋳造後に適切な熱
処理を施すことにより熱膨張が極めて小さくなる低熱膨
張鋳造合金の提供を課題とする。
Therefore, the present invention solves the above-mentioned drawbacks of the conventional low thermal expansion materials, has a sufficiently small thermal expansion coefficient, and has good castability. An object of the present invention is to provide a low thermal expansion cast alloy having an extremely small expansion.

【0004】[0004]

【課題を解決するための手段】上記課題を達成するた
め、本発明の低熱膨張鋳造合金は、成分組成が重量%
で、Ni:25.0〜32.0%、Co:7.0〜1
4.0%、C:0.3〜1.0%未満、Si:0.5%
未満、Mn:0.3%未満を含有する他に、希土類元素
を0.01〜0.06%含有し、残部が実質的にFeか
らなり、鋳造の際に黒鉛の球状化処理と脱酸・脱ガス処
理とがなされていることを第1の特徴としている。また
本発明の低熱膨張鋳造合金は、上記第1の特徴に加え
て、成分組成として、更にMo、V、W、Nbから選ば
れた一種又は二種以上の元素を0.20〜1.50重量
%含有し、残部が実質的にFeからなることを第2の特
徴としている。また本発明の低熱膨張鋳造合金は、上記
第1又は第2の特徴に加えて、鋳造後に1000〜11
50℃に加熱保持した後、急冷処理を施すことで、基地
中の固溶Cを黒鉛又は炭化物として析出させるようにし
たことを第3の特徴としている。
In order to achieve the above object, the low thermal expansion cast alloy of the present invention has a composition of wt%.
And Ni: 25.0 to 32.0%, Co: 7.0 to 1
4.0%, C: 0.3 to less than 1.0%, Si: 0.5%
%, Mn: less than 0.3%, 0.01 to 0.06% of a rare earth element, the balance being substantially Fe, and spheroidizing and deoxidizing graphite during casting. The first feature is that degassing is performed. Further, the low thermal expansion cast alloy of the present invention has, in addition to the above-mentioned first characteristic, 0.20 to 1.50 one or more elements selected from Mo, V, W and Nb as a component composition. The second feature is that the content is wt% and the balance is substantially Fe. Further, the low thermal expansion casting alloy of the present invention has, in addition to the above-mentioned first or second characteristics, 1000 to 11 after casting.
The third characteristic is that the solid solution C in the matrix is precipitated as graphite or carbide by performing a rapid cooling treatment after heating and holding at 50 ° C.

【0005】本発明の第1の特徴による低熱膨張鋳造合
金によれば、そこに示される成分組成とすることによ
り、十分なる低熱膨張特性を保持しつつ且つ鋳造性や加
工性も良好な合金を提供することができる。本発明者は
特に希土類元素を所定の範囲で含有させることで、熱膨
張係数を非常に小さくすることができることを見出し、
本発明の合金を得るに至った。以下、成分組成は全て重
量%で示す。
According to the low thermal expansion cast alloy according to the first aspect of the present invention, the alloy composition having the composition shown therein can provide an alloy having good low thermal expansion characteristics and good castability and workability. Can be provided. The present inventors have found that the coefficient of thermal expansion can be made extremely small by containing a rare earth element in a predetermined range,
The alloy of the present invention was obtained. Hereinafter, all component compositions are shown by weight%.

【0006】希土類元素は0.01〜0.06%とす
る。希土類元素を添加することにより、熱膨張係数を大
きく低下させることができる。脱ガス効果もあるため、
鋳造性の向上も期待できる。希土類元素の添加は黒鉛生
成核として機能させることにあり、これによって基地に
対して通常よりも黒鉛を微細に存在させることができる
と同時に、基地中のC濃度を減らすことができ、結果と
して熱膨張係数を低下させることができる。更に黒鉛を
微細に存在させることでNi、Coの偏析も小さくする
ことができる。添加する希土類元素は、例えばCeにL
a、Nd、Prが混合されたミッシュメタル(各成分を
分離することは難しい)を用いることができる。希土類
元素の含有量は、好ましくは0.02〜0.05%とす
る。
The rare earth element content is 0.01 to 0.06%. By adding a rare earth element, the coefficient of thermal expansion can be greatly reduced. Because it also has a degassing effect,
Improving castability can also be expected. The addition of the rare earth element is to function as a nucleus for forming graphite, which allows the graphite to be present in a finer amount than usual in the matrix, and at the same time, the C concentration in the matrix can be reduced, resulting in heat generation. The expansion coefficient can be lowered. Further, by making graphite exist minutely, segregation of Ni and Co can be reduced. The rare earth element to be added is, for example, Ce.
A misch metal in which a, Nd, and Pr are mixed (it is difficult to separate each component) can be used. The content of the rare earth element is preferably 0.02 to 0.05%.

【0007】黒鉛の球状化処理と脱酸・脱ガス処理につ
いては、例えば球状化処理はMgを用いて、また脱酸・
脱ガス処理はAl、Caを添加することにより行うこと
ができる。黒鉛を球状化することで、加工性を向上させ
ることができると共に、靭性を増すことができる。脱酸
・脱ガス処理を行うことで鋳造欠陥を減少させ、鋳造性
を向上させることができる。
Regarding the spheroidizing treatment and deoxidizing / degassing treatment of graphite, for example, Mg is used for the spheroidizing treatment, and
The degassing process can be performed by adding Al and Ca. By making the graphite spherical, the workability can be improved and the toughness can be increased. By performing deoxidation and degassing, casting defects can be reduced and castability can be improved.

【0008】第1の特徴において、Niは25.0〜3
2.0%とする。Niは基地をオーステナイト化し、熱
膨張係数を大幅に低下させる。Coの添加量と関係する
が、25.0〜30.0とする。好ましくは26.0〜
30.0%とする。Coは7.0〜14.0%とする。
CoはNiと併用することで、材料の熱膨張係数を更に
大幅に低下させることができるので、積極的に添加す
る。好ましくはNi+Co=36.0〜37.0%とす
る。Cは0.3〜1.0%未満とする。この合金は鋳鋼
組織となる。Cは含有量が多いほど熱膨張係数が大きく
なる。よってCの含有量はできるだけ低くするのが好ま
しい。しかし鋳造性を考慮し、また組織中に黒鉛を晶析
出させて加工性を良くするために、上記範囲を含有させ
る。好ましくは0.5〜0.9%とする。Siは0.5
%未満を含有させる。Siは熱膨張係数低減のためには
できるだけ低くすることが望ましいが、鋳造性を向上さ
せるために少量含有させる。Siの含有量は、好ましく
は0.30〜0.45%とする。Mnは0.3%未満を
含有させる。Mnは多く含有させるほど熱膨張係数が大
きくなるので、できるだけ少ない方がよいが、MnSを
形成してSの害を防止する。また脱酸作用もあるため少
量含有させるのがよい。よって0.3%未満を含有させ
ることとした。好ましくは0.15〜0.28%とす
る。その他、P、S、Cr等は不可避不純物として混入
し得るが、できるだけ少なくする。Pは0.02%以
下、Sは0.02%以下、Crは0.1%以下とするの
がよい。Sは黒鉛球状化阻害元素、Crは熱膨張係数を
大きくし、黒鉛化を阻害する。
In the first feature, Ni is 25.0-3.
2.0%. Ni transforms the base into austenite and significantly reduces the coefficient of thermal expansion. Although related to the amount of Co added, it is set to 25.0 to 30.0. Preferably 26.0
30.0%. Co is set to 7.0 to 14.0%.
By using Co together with Ni, the coefficient of thermal expansion of the material can be further reduced significantly, and therefore Co is positively added. Preferably, Ni + Co = 36.0 to 37.0%. C is 0.3 to less than 1.0%. This alloy has a cast steel structure. The larger the content of C, the larger the coefficient of thermal expansion. Therefore, it is preferable that the C content be as low as possible. However, in consideration of castability, and in order to improve workability by crystallizing graphite in the structure, the above range is included. Preferably it is 0.5 to 0.9%. Si is 0.5
% Is included. Si is preferably made as low as possible in order to reduce the coefficient of thermal expansion, but is contained in a small amount in order to improve castability. The Si content is preferably 0.30 to 0.45%. Mn contains less than 0.3%. Since the thermal expansion coefficient increases as the content of Mn increases, it is better to reduce the content of Mn as much as possible, but MnS is formed to prevent the damage of S. It also has a deoxidizing effect, so it is preferable to add a small amount. Therefore, it was decided to contain less than 0.3%. Preferably it is 0.15 to 0.28%. In addition, P, S, Cr, etc. may be mixed as unavoidable impurities, but the amount should be reduced as much as possible. P is preferably 0.02% or less, S is 0.02% or less, and Cr is 0.1% or less. S is a graphite spheroidization inhibiting element, and Cr increases the thermal expansion coefficient and inhibits graphitization.

【0009】また本発明の第2の特徴によれば、上記第
1の特徴による作用効果に加えて、成分組成として、更
にMo、V、W、Nbから選ばれた一種又は二種以上の
元素を0.20〜1.50%含有させることで、熱膨張
係数を更に低下させることができる。Mo、V、W、N
bは、優先的にCと結びつき、炭化物を形成する。基地
中の固溶C量が少ないほど熱膨張係数が小さくなるた
め、これらの元素を前記範囲内で含有させることで、鋳
造時及び熱処理時に基地中の固溶Cと結びつく結果、基
地中の固溶Cが減少して、熱膨張係数を低下させる。前
記範囲未満では効果が期待できない。また前記範囲を超
えると鋳造時に粗大炭化物が晶出し、熱膨張係数が上昇
してしまう。好ましくは0.25〜0.50%とする。
According to the second feature of the present invention, in addition to the action and effect of the first feature, the component composition further comprises one or more elements selected from Mo, V, W and Nb. By including 0.20 to 1.50% of C, the thermal expansion coefficient can be further reduced. Mo, V, W, N
b preferentially bonds with C to form a carbide. Since the coefficient of thermal expansion becomes smaller as the amount of solute C in the matrix decreases, the inclusion of these elements within the above range results in binding with the solute C in the matrix during casting and heat treatment, resulting in the solid solution in the matrix. The molten C is reduced and the coefficient of thermal expansion is lowered. If less than the above range, no effect can be expected. On the other hand, if it exceeds the above range, coarse carbides are crystallized during casting and the coefficient of thermal expansion is increased. Preferably it is 0.25 to 0.50%.

【0010】また本発明の第3の特徴によれば、上記第
1又は第2の特徴による作用効果に加えて、鋳造後に1
000〜1150℃に一旦加熱した後、急冷処理を施す
ことで、本合金をインバー合金よりも更に熱膨張係数が
低く、スーパーインバー合金に近い熱膨張係数を持ち、
しかもそれらの合金よりもはるかに優れた鋳造性と加工
性を保有するものにすることができる。前記1000〜
1150℃での保持時間は、製品の肉厚によって調整さ
れる。例えば肉厚25mmに対して1時間程度とするこ
とができる。また肉厚50mmでは2時間程度以上とな
る。急冷は水冷が好ましいが、製品の形状、大きさ、そ
の他の要因により、ミストと強制空冷の組み合わせでも
よい。高温に加熱保持後、急冷することにより、基地中
の固溶Cが黒鉛、又は炭化物として析出し、結果として
基地中の固溶C量を減少させて熱膨張係数を低減させ
る。同時に組織中の黒鉛が増加するために加工性が向上
する。
According to a third aspect of the present invention, in addition to the function and effect obtained by the first or second aspect, the first aspect after casting is
After being once heated to 000 to 1150 ° C., it is subjected to a rapid cooling treatment, so that the present alloy has a lower thermal expansion coefficient than the Invar alloy and a thermal expansion coefficient close to that of the Super Invar alloy
Moreover, it can have much better castability and workability than those alloys. 1000-
The holding time at 1150 ° C is adjusted by the wall thickness of the product. For example, it can be about 1 hour for a wall thickness of 25 mm. Further, when the wall thickness is 50 mm, it takes about 2 hours or more. The rapid cooling is preferably water cooling, but may be a combination of mist and forced air cooling depending on the shape, size, and other factors of the product. By heating and holding at a high temperature and then rapidly cooling, solid solution C in the matrix is precipitated as graphite or carbide, and as a result, the amount of solid solution C in the matrix is reduced and the coefficient of thermal expansion is reduced. At the same time, the workability is improved because the graphite in the structure is increased.

【0011】[0011]

【実施例】本発明の実施例を表1の組成となるようにし
て溶解し、Yブロック及び直径100mm、長さ300
mmの丸棒を鋳造した。鋳造の際に黒鉛の球状化処理と
脱酸・脱ガス処理がなされている。比較例についても表
1の組成となるようにして、同様に鋳造した。
EXAMPLE An example of the present invention was melted so as to have the composition shown in Table 1, and a Y block and a diameter of 100 mm and a length of 300 were used.
mm round bar was cast. During casting, graphite is spheroidized and deoxidized and degassed. Also in the comparative example, the composition was as shown in Table 1 and the casting was performed in the same manner.

【0012】[0012]

【表1】 [Table 1]

【0013】丸棒は鋳造後に切断加工を実施し、切断面
の状況を観察することにより鋳造性を評価することとし
た。またYブロックについて、鋳造後に1100℃で2
時間保持した後水中急冷を施したものと、熱処理を施さ
なかったものについて、室温(RT)〜100℃での熱
膨張係数を測定した。結果を表2に示す。
The round bar was subjected to cutting after casting, and the castability was evaluated by observing the state of the cut surface. Also, for the Y block, 2 at 1100 ° C after casting.
The coefficient of thermal expansion at room temperature (RT) to 100 ° C. was measured for those that were subjected to rapid cooling in water after being held for a time and those that were not subjected to heat treatment. The results are shown in Table 2.

【0014】[0014]

【表2】 [Table 2]

【0015】表2からわかるように、実施例1〜4にお
いては、鋳造性評価としてのガス欠陥評価が良好である
と共に、引け巣欠陥評価もまずまずであった。また室温
〜100℃における熱膨張係数は、実施例1〜4におい
て、熱処理無しのものでは1.01〜2.29×10
−6/℃となり非常に良好な低熱膨張を示した。また熱
処理を施したものでは、0.38〜0.78×10−6
/℃となり、熱処理を施すことにより熱膨張係数が1/
3程度近くまで低減されていることがわかる。Cの含有
量は、鋳造性と熱膨張係数に大きく影響を与える。Cの
含有量が低くなるほど熱膨張係数は低下するが、その一
方、鋳造性は悪化する。実施例1〜4では主にCの含有
量を変化させて、その影響を明らかにしている。実施例
1ではCの含有量が0.38%と最も低く、熱膨張係数
は低いが鋳造性はあまり良くない。また実施例4ではC
の含有量が0.9%を超えており、熱膨張係数が2.2
9と大きくなっている。この実施例での場合におけるデ
ータでは、Cの含有量の好ましい範囲は0.5〜0.9
%ということになる。
As can be seen from Table 2, in Examples 1 to 4, the gas defect evaluation as the castability evaluation was good, and the shrinkage cavity defect evaluation was also reasonable. The coefficient of thermal expansion at room temperature to 100 ° C. is 1.01 to 2.29 × 10 in Examples 1 to 4 without heat treatment.
The temperature was −6 / ° C., indicating a very good low thermal expansion. In the case of heat treatment, 0.38 to 0.78 × 10 −6
/ ° C, and the thermal expansion coefficient is 1 /
It can be seen that the value is reduced to about 3. The content of C has a great influence on the castability and the coefficient of thermal expansion. The lower the C content, the lower the coefficient of thermal expansion, but the worse the castability. In Examples 1 to 4, the content of C was mainly changed to clarify the effect. In Example 1, the C content was the lowest at 0.38%, and the coefficient of thermal expansion was low, but the castability was not very good. In Example 4, C
Content exceeds 0.9% and the coefficient of thermal expansion is 2.2.
It is as large as 9. In the data for this example, the preferred range of C content is 0.5-0.9.
%It turns out that.

【0016】比較例3は希土類元素が添加されていない
点でのみ、本発明の合金と異なる。そしてこの比較例3
では熱膨張係数が2.02×10−6/℃となり、各成
分の含有量が近い実施例3と比較してかなり大きく熱膨
張係数が増加している。即ち逆に言えば、希土類元素の
添加によって大きく熱膨張係数を低減できることがわか
る。比較例1はCの含有量が本発明の範囲(0.3〜
1.0%未満)から下方に外れたものである。熱膨張係
数はかなり低い値となっているものの、鋳造性が非常に
悪く、実質的に鋳造不可である。また比較例2はCの含
有量とSiの含有量とが、それぞれ本発明の範囲を上方
に外れたものである。鋳造性が良好であるが、熱膨張係
数が高くなってしまう。比較例4はスーパーインバー合
金成分、比較例5はインバー合金成分である。何れも熱
膨張係数は低くて良好であるが、鋳造性が劣悪で、比較
例4、5は鋳造が実質的に不可能である。尚、実施例1
〜4の合金においては、何れも組織中に微細な球状黒鉛
が多数晶出しており、黒鉛を含まないスーパーインバー
合金、インバー合金等に較べて、極めて加工性は良好で
ある。
Comparative Example 3 differs from the alloy of the present invention only in that the rare earth element is not added. And this comparative example 3
The coefficient of thermal expansion is 2.02 × 10 −6 / ° C., which is considerably larger than the coefficient of thermal expansion of Example 3 in which the content of each component is close. That is, conversely, it can be seen that the coefficient of thermal expansion can be greatly reduced by adding the rare earth element. In Comparative Example 1, the content of C is within the range of the present invention (0.3 to
(Less than 1.0%). Although the coefficient of thermal expansion is a very low value, the castability is very poor and casting is practically impossible. In Comparative Example 2, the content of C and the content of Si are outside the range of the present invention. Good castability, but high thermal expansion coefficient. Comparative Example 4 is a Super Invar alloy component, and Comparative Example 5 is an Invar alloy component. All of them have a low coefficient of thermal expansion and are good, but the castability is poor, and casting of Comparative Examples 4 and 5 is substantially impossible. In addition, Example 1
In each of the alloys Nos. 4 to 4, a large number of fine spherical graphite crystallizes in the structure, and the workability is extremely good as compared with the Super Invar alloy, Invar alloy and the like that do not contain graphite.

【0017】[0017]

【発明の効果】本発明は以上の構成、作用よりなり、請
求項1に記載の低熱膨張鋳造合金によれば、成分組成が
重量%で、Ni:25.0〜32.0%、Co:7.0
〜14.0%、C:0.3〜1.0%未満、Si:0.
5%未満、Mn:0.3%未満を含有する他に、希土類
元素を0.01〜0.06%含有し、残部が実質的にF
eからなり、鋳造の際に黒鉛の球状化処理と脱酸・脱ガ
ス処理とがなされているので、そこに示される成分組成
とすることにより、低熱膨張特性を保持しつつ且つ鋳造
性や加工性も良好な合金を提供することができる。これ
により温度に対する寸法精度が要求される機器、機械部
品等への使用が大きく期待できる。特に希土類元素を所
定の範囲で含有させることで、熱膨張係数を非常に小さ
くすることができる。また希土類元素は脱ガス効果もあ
るため、鋳造性の向上も期待できる。希土類元素の添加
により基地に黒鉛を微細に存在させることができ、N
i、Coの偏析も小さくすることができる。また微細な
球状黒鉛を多数晶出させることで、加工性を向上させる
ことができると共に、靭性を増すことができる。更に脱
酸・脱ガス処理を行うことで鋳造欠陥を減少させ、鋳造
性を向上させることができる。また請求項2に記載の低
熱膨張鋳造合金によれば、上記請求項1に記載の構成に
よる効果に加えて、成分組成として、更にMo、V、
W、Nbから選ばれた一種又は二種以上の元素を0.2
0〜1.50重量%含有し、残部が実質的にFeからな
るので、熱膨張係数を更に低下させることができる。ま
た請求項3に記載の低熱膨張鋳造合金によれば、上記請
求項1又は2に記載の構成による効果に加えて、鋳造後
に1000〜1150℃に加熱保持した後、急冷処理を
施すことで、基地中の固溶Cを黒鉛又は炭化物として析
出させるようにしたので、本合金をインバー合金よりも
更に熱膨張係数が低く、スーパーインバー合金に近い熱
膨張係数を持ち、しかもそれらの合金よりもはるかに優
れた鋳造性と加工性を保有するものにすることができ
る。また高温に加熱保持後、急冷することにより、基地
中の固溶Cを黒鉛又は炭化物として析出させることがで
き、組織中の黒鉛の増加により加工性を向上させること
ができる。
EFFECTS OF THE INVENTION The present invention has the above-mentioned constitution and action. According to the low thermal expansion casting alloy of claim 1, the composition of components is% by weight, Ni: 25.0 to 32.0%, Co: 7.0
˜14.0%, C: 0.3 to less than 1.0%, Si: 0.
In addition to containing less than 5% and Mn: less than 0.3%, 0.01 to 0.06% of a rare earth element is contained, and the balance is substantially F.
It is made of e and is subjected to spheroidizing treatment and deoxidizing / degassing treatment of graphite during casting, so by adopting the component composition shown therein, it is possible to maintain castability and processing while maintaining low thermal expansion characteristics. It is possible to provide an alloy having good properties. As a result, it can be greatly expected to be used for equipments, machine parts, etc. that require dimensional accuracy against temperature. In particular, the coefficient of thermal expansion can be made extremely small by including a rare earth element in a predetermined range. Further, since the rare earth element also has a degassing effect, improvement in castability can be expected. Graphite can be made to exist finely in the matrix by adding a rare earth element, and N
Segregation of i and Co can also be reduced. Further, by crystallizing a large number of fine spherical graphite, the workability can be improved and the toughness can be increased. Further, by performing deoxidation / degas treatment, casting defects can be reduced and castability can be improved. Further, according to the low thermal expansion casting alloy of claim 2, in addition to the effect of the configuration of claim 1, Mo, V,
0.2 of one or more elements selected from W and Nb
Since the content is 0 to 1.50% by weight and the balance is substantially Fe, the thermal expansion coefficient can be further reduced. According to the low thermal expansion casting alloy of claim 3, in addition to the effect of the configuration of claim 1 or 2, by heating and holding at 1000 to 1150 ° C. after casting, and then performing a quenching treatment, Since the solid solution C in the matrix is precipitated as graphite or carbide, this alloy has a lower coefficient of thermal expansion than Invar alloy, has a coefficient of thermal expansion close to that of Super Invar alloy, and is much higher than those alloys. It can have excellent castability and workability. Further, by heating and holding at a high temperature and then rapidly cooling, solid solution C in the matrix can be precipitated as graphite or carbide, and the workability can be improved by increasing the amount of graphite in the structure.

フロントページの続き (72)発明者 黒田 徹 兵庫県姫路市大津区勘兵衛町3丁目12 虹 技株式会社姫路東工場内Continued front page    (72) Inventor Toru Kuroda             Rainbow, 3-12 Kanbei-cho, Otsu-ku, Himeji-shi, Hyogo             Himeji East factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 成分組成が重量%で、 Ni : 25.0〜32.0% Co : 7.0〜14.0% C : 0.3〜1.0%未満 Si : 0.5%未満 Mn : 0.3%未満 を含有する他に、希土類元素を0.01〜0.06%含
有し、残部が実質的にFeからなり、鋳造の際に黒鉛の
球状化処理と脱酸・脱ガス処理とがなされていることを
特徴とする低熱膨張鋳造合金。
1. The composition of the composition is% by weight, Ni: 25.0 to 32.0% Co: 7.0 to 14.0% C: 0.3 to less than 1.0% Si: less than 0.5%. Mn: In addition to containing less than 0.3%, it contains 0.01 to 0.06% of a rare earth element, and the balance consists essentially of Fe. During casting, the graphite is spheroidized and deoxidized / deoxidized. A low thermal expansion casting alloy characterized by being gas-treated.
【請求項2】 成分組成として、更にMo、V、W、N
bから選ばれた一種又は二種以上の元素を0.20〜
1.50重量%含有し、残部が実質的にFeからなるこ
とを特徴とする請求項1に記載の低熱膨張鋳造合金。
2. The component composition further comprises Mo, V, W and N.
0.20 to one or more elements selected from b
The low thermal expansion casting alloy according to claim 1, characterized in that the content is 1.50% by weight and the balance is substantially Fe.
【請求項3】 鋳造後に1000〜1150℃に加熱保
持した後、急冷処理を施すことで、基地中の固溶Cを黒
鉛又は炭化物として析出させるようにしたことを特徴と
する請求項1又は2に記載の低熱膨張鋳造合金。
3. The solid solution C in the matrix is precipitated as graphite or carbide by heating and holding at 1000 to 1150 ° C. after casting and then performing a quenching treatment. The low thermal expansion casting alloy according to.
JP2001334279A 2001-10-31 2001-10-31 Low thermal expansion cast alloy Pending JP2003138346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334279A JP2003138346A (en) 2001-10-31 2001-10-31 Low thermal expansion cast alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334279A JP2003138346A (en) 2001-10-31 2001-10-31 Low thermal expansion cast alloy

Publications (1)

Publication Number Publication Date
JP2003138346A true JP2003138346A (en) 2003-05-14

Family

ID=19149432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334279A Pending JP2003138346A (en) 2001-10-31 2001-10-31 Low thermal expansion cast alloy

Country Status (1)

Country Link
JP (1) JP2003138346A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
CN117144263A (en) * 2023-08-09 2023-12-01 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof
RU2813349C1 (en) * 2023-06-27 2024-02-12 Общество с ограниченной ответственностью Научно-производственный центр "ЛИНВАР" Iron-based casting alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
RU2813349C1 (en) * 2023-06-27 2024-02-12 Общество с ограниченной ответственностью Научно-производственный центр "ЛИНВАР" Iron-based casting alloy
CN117144263A (en) * 2023-08-09 2023-12-01 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof
CN117144263B (en) * 2023-08-09 2024-03-19 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof
RU2818196C1 (en) * 2023-09-12 2024-04-25 Общество с ограниченной ответственностью Научно-производственный центр "ЛИНВАР" Iron-based casting alloy

Similar Documents

Publication Publication Date Title
EP3143175B1 (en) Hypereutectic white iron alloys comprising vanadium, chromium, and nitrogen and articles made therefrom
JP4834292B2 (en) Super duplex stainless steel with excellent corrosion resistance, embrittlement resistance, castability and hot workability with reduced formation of intermetallic compounds
CN103069028A (en) Co-based alloy
JP2008156688A (en) High strength spheroidal graphite cast iron
JP2007016291A (en) Low alloy steel for oil well pipe superior in sulfide stress cracking resistance
JP5113104B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof
JP3753101B2 (en) High strength and high rigidity steel and manufacturing method thereof
TW390910B (en) High strength spheroidal graphite cast iron
JP2007063576A (en) Alloy for nonferrous molten metal
JP2003138346A (en) Low thermal expansion cast alloy
JP2004099923A (en) High strength ductile cast iron
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP4672433B2 (en) Heat-resistant casting alloy and manufacturing method thereof
JP2778891B2 (en) High-strength low-expansion cast iron, method for producing the same, and sliding parts and machine parts using the same
JPH08333650A (en) Thin-walled spheroidal graphite cast iron, automobile parts using same, and production of thin-walled spheroidal graphite cast iron
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JP3707825B2 (en) Low thermal expansion cast iron and method for producing the same
JP2009114477A (en) Cobalt-chromium-molybdenum casting alloy for living body
JP6949352B2 (en) Low thermal expansion alloy
JPS6321728B2 (en)
JP2003138337A (en) Low thermal expansion cast alloy
JP3417922B2 (en) Cast iron for sizing press die
JP2005256088A (en) Spheroidal graphite cast-iron member
WO2016157574A1 (en) High-rigidity spherical graphitic cast iron