JP2003136203A - Mold for continuous casting under taking into consideration variation of casting radius of cast slab caused by shrinkage and continuous casting facility using the mold - Google Patents

Mold for continuous casting under taking into consideration variation of casting radius of cast slab caused by shrinkage and continuous casting facility using the mold

Info

Publication number
JP2003136203A
JP2003136203A JP2001332944A JP2001332944A JP2003136203A JP 2003136203 A JP2003136203 A JP 2003136203A JP 2001332944 A JP2001332944 A JP 2001332944A JP 2001332944 A JP2001332944 A JP 2001332944A JP 2003136203 A JP2003136203 A JP 2003136203A
Authority
JP
Japan
Prior art keywords
continuous casting
radius
mold
slab
facing surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001332944A
Other languages
Japanese (ja)
Other versions
JP3886774B2 (en
Inventor
Yoji Ao
陽司 阿尾
Yuichi Ogawa
勇一 小川
Hideto Sugiyama
英人 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2001332944A priority Critical patent/JP3886774B2/en
Publication of JP2003136203A publication Critical patent/JP2003136203A/en
Application granted granted Critical
Publication of JP3886774B2 publication Critical patent/JP3886774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a mold for continuous casing under taking into consideration the variation of the casting radius of a cast slab caused by shrinkage and a continuous casting facility using the mold with which the cast slab having good quality can economically be manufactured. SOLUTION: In the mold 10 for continuous casting used for the continuous casting facility 12 manufacturing the cast slab 11 cooling molten steel and solidified in a curving state from the molten steel, one of inside facing surfaces 16 in a mold body 15 is curved from an upper end toward a lower end, and the radius of curvature in the vertical direction of the curved inside facing surface 16 is continuously or intermittently reduced corresponding to the linear expansion amount and the temperature of the cast slab 11 from the upper end to the lower end of the curved inside faced surface 16. Further, the continuous casting facility 12 using the mold 10 for continuous casting is provided with plurality of guide rolls 19 gradually reducing in radii of curvatures of facing abutting carrying surfaces accompanied with reduction in radii of curvatures of the inside facing surfaces 16 at the downstream of the mold body 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、湾曲状態で凝固さ
せた鋳片において収縮による鋳片鋳造半径の変化を考慮
した連続鋳造用鋳型及びこれを用いた連続鋳造設備に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting mold and a continuous casting facility using the same, in consideration of a change in the casting radius of a cast piece that has been solidified in a curved state due to shrinkage.

【0002】[0002]

【従来の技術】従来、連続鋳造設備で使用される連続鋳
造用鋳型(以下、単に鋳型とも言う)70は、図5に示
すように、一対の幅狭冷却部材である短辺71、72
と、この短辺71、72を挟み込むように配置される一
対の幅広冷却部材である長辺73、74とを備え、この
向い合う長辺73、74の両端部にそれぞれボルト75
を取付け、バネ(図示しない)を介してナット76で固
定した構成となっている。この短辺71、72は鏡面対
称で同じ構成となっており、図6(A)、(B)に示す
ように、裏面側の上下方向に多数、例えば10本の導水
溝77が設けられた銅板78と、銅板78の裏面側にボ
ルト79によって固定された支持部材の一例であるバッ
クプレート80(冷却箱とも言う)とを有している。そ
して、バックプレート80の上端部及び下端部にそれぞ
れ設けられた排水部81及び給水部82を介して導水溝
77に冷却水の一例である工業用水を流すことで、銅板
78の冷却を行っている。
2. Description of the Related Art Conventionally, a continuous casting mold (hereinafter, simply referred to as a mold) 70 used in a continuous casting facility has a pair of narrow cooling members 71, 72 as shown in FIG.
And long sides 73 and 74 which are a pair of wide cooling members arranged so as to sandwich the short sides 71 and 72, and bolts 75 are provided at both ends of the facing long sides 73 and 74, respectively.
Is attached and fixed by a nut 76 via a spring (not shown). The short sides 71 and 72 are mirror-symmetrical and have the same configuration, and as shown in FIGS. 6A and 6B, a large number, for example, 10 water guiding grooves 77 are provided in the vertical direction on the back surface side. It has a copper plate 78 and a back plate 80 (also referred to as a cooling box) which is an example of a support member fixed to the back surface side of the copper plate 78 by bolts 79. Then, the copper plate 78 is cooled by flowing industrial water, which is an example of cooling water, into the water guiding groove 77 via the drainage portion 81 and the water supply portion 82 provided at the upper end portion and the lower end portion of the back plate 80, respectively. There is.

【0003】一方、長辺73、74も略同じ構成となっ
ているが、各銅板83の内側対向面84は、上端部から
下端部にかけて一方側に湾曲し、この湾曲した内側対向
面84の上下方向の曲率半径を、所定の曲率半径R1
(例えば、10m程度)に設定している。また、長辺7
3、74の銅板83の幅は短辺71、72間の幅より長
く、この銅板83の裏面側にそれぞれ固定されたバック
プレート85の幅が、銅板83の幅より長くなり、バッ
クプレート85に銅板83を固定するためのボルトの個
数が、短辺71、72より多くなっている。このため、
長辺73、74に挟み込まれる短辺71、72の銅板7
8は、長辺73、74の銅板83の湾曲した内側対向面
84に接するように、銅板78の側面が内側対向面84
の曲率半径R1 と同じ数値に設定されている。なお、こ
の短辺71、72の銅板78と、長辺73、74の銅板
83とで鋳型本体86が構成されている。
On the other hand, although the long sides 73 and 74 have substantially the same structure, the inner facing surface 84 of each copper plate 83 is curved to one side from the upper end portion to the lower end portion, and the curved inner facing surface 84 is The radius of curvature in the up-and-down direction is defined by a predetermined radius of curvature R 1
(For example, about 10 m) is set. Also, long side 7
The width of the copper plate 83 of 3, 74 is longer than the width between the short sides 71, 72, and the width of the back plate 85 fixed to the back surface side of the copper plate 83 becomes longer than the width of the copper plate 83. The number of bolts for fixing the copper plate 83 is larger than that of the short sides 71, 72. For this reason,
Copper plate 7 with short sides 71 and 72 sandwiched between long sides 73 and 74
8 is such that the side surface of the copper plate 78 is the inner facing surface 84 so as to contact the curved inner facing surface 84 of the copper plate 83 on the long sides 73 and 74.
The radius of curvature R 1 is set to the same value. The copper plate 78 having the short sides 71 and 72 and the copper plate 83 having the long sides 73 and 74 form a mold body 86.

【0004】連続鋳造作業時においては、上記した連続
鋳造用鋳型70の上方(短辺71、72、長辺73、7
4の上側)から溶鋼を注ぎ、この鋳型70により製品と
なる鋳片の初期凝固を行い、凝固した鋳片を鋳型70下
方より連続して引抜いて製造している。なお、鋳型70
に注がれる溶鋼温度及び鋳型70出口の鋳片の表面温度
は操業条件により異なるが、通常、溶鋼温度は約150
0℃程度であり、鋳型70出口の鋳片の表面温度は80
0〜1200℃である。ここでの鋳片の内部は未凝固状
態、即ち液体状態となっている。このように、溶鋼から
半凝固状態となり、更に固体となって鋳型70出口の温
度まで温度降下する際、鋳片には、例えば、凝固収縮、
固体収縮等の収縮が発生する。このため、この収縮によ
って、銅板78の内側対向面87及び銅板83の内側対
向面84で構成される冷却面(鋳片との接触面)と鋳片
の凝固殻(凝固シェル)との間に隙間(エアギャップ)
が発生する。この隙間の発生は、冷却面と凝固殻との間
の熱伝達を著しく低下させ、凝固殻の冷却を不均一とす
るので、例えば鋳片コーナー部の内部割れや、これに起
因した鋳片のブレークアウト等を招来することとなる。
During the continuous casting operation, above the continuous casting mold 70 (short sides 71, 72, long sides 73, 7).
Molten steel is poured from the upper side (4), the cast piece to be the product is initially solidified by this mold 70, and the solidified cast piece is continuously drawn from below the mold 70 to manufacture. The mold 70
The molten steel temperature poured into the mold and the surface temperature of the slab at the outlet of the mold 70 differ depending on the operating conditions, but the molten steel temperature is usually about 150
The surface temperature of the slab at the outlet of the mold 70 is about 0 ° C.
It is 0-1200 degreeC. The inside of the slab here is in a non-solidified state, that is, in a liquid state. In this way, when the molten steel becomes a semi-solidified state and becomes solid, and when the temperature drops to the temperature of the outlet of the mold 70, for example, solidification shrinkage,
Shrinkage such as solid shrinkage occurs. Therefore, due to this contraction, between the cooling surface (contact surface with the slab) formed by the inner facing surface 87 of the copper plate 78 and the inner facing surface 84 of the copper plate 83 and the solidified shell (solidified shell) of the slab. Gap (air gap)
Occurs. The generation of this gap significantly reduces the heat transfer between the cooling surface and the solidified shell, and makes the solidified shell non-uniformly cooled. A breakout etc. will be invited.

【0005】そこで、鋳片の収縮分に対応(補償)する
だけ銅板78、83の内面形状をそれぞれ変化させ、冷
却面と凝固殻との接触状態を良好に保つための種々の提
案がなされている。例えば、特開平6−297101号
公報には、短辺の銅板及び長辺の銅板の各内側対向面で
構成される内周長を、銅板の上端側で大きくすると共に
銅板の下端側で小さくし、しかも内周長の減少率を銅板
の上端から下端に向かって小さくした連続鋳造用鋳型が
開示されている。これにより、鋳片の初期凝固の収縮外
形と近似的に等しい内周長の鋳型を使用でき、銅板と凝
固殻の接触状態を最適に保つことができるので、凝固殻
の生成を促進し、凝固殻厚さを均一にして、鋳片の品質
低下の原因となる縦割れ、菱形変形等を生じないように
した。また、特開2000−42690公報には、銅板
の上部(メニスカス位置から所定領域まで)の縦断面形
状に、鋳型に注入した溶鋼の液相から固相への凝固収縮
量に相当する縮減部が形成された連続鋳造用鋳型が開示
されている。これにより、鋳片の凝固殻を、生成初期段
階から冷却面を離れる(鋳型から引抜かれる)までの
間、冷却面に確実に接触させることができ、冷却面の冷
却効果を十分に発揮できるので、鋳片の内部割れを防止
することが可能となる。
Therefore, various proposals have been made for changing the inner surface shapes of the copper plates 78 and 83 by the amount corresponding to (compensating for) the shrinkage of the slab and maintaining a good contact state between the cooling surface and the solidified shell. There is. For example, in Japanese Patent Laid-Open No. 6-297101, the inner peripheral length formed by the inner facing surfaces of the short-side copper plate and the long-side copper plate is increased on the upper end side of the copper plate and decreased on the lower end side of the copper plate. Moreover, a continuous casting mold is disclosed in which the reduction rate of the inner peripheral length is reduced from the upper end to the lower end of the copper plate. This allows the use of a mold with an inner peripheral length that is approximately equal to the contracted contour of the initial solidification of the slab, and can keep the contact state between the copper plate and the solidified shell optimal, thus promoting the formation of the solidified shell and solidifying. The shell thickness was made uniform so as not to cause vertical cracks, rhombus deformation, etc. that would cause deterioration of the quality of the cast slab. Further, in Japanese Unexamined Patent Publication No. 2000-42690, a reduced portion corresponding to the solidification shrinkage amount from the liquid phase to the solid phase of the molten steel injected into the mold is provided in the vertical cross-sectional shape of the upper part of the copper plate (from the meniscus position to the predetermined region). A formed continuous casting mold is disclosed. As a result, the solidified shell of the slab can be reliably brought into contact with the cooling surface from the initial generation stage until it leaves the cooling surface (pulled out from the mold), so that the cooling effect of the cooling surface can be sufficiently exerted. It is possible to prevent internal cracking of the slab.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た技術を用いても、完全に鋳片の収縮が補償されておら
ず、また鋳片の冷却不均一や、冷却面と鋳片との接触が
完全ではないのが実態である。例えば、溶鋼を冷却し、
溶鋼から湾曲状態で凝固させた鋳片を製造する連続鋳造
設備(円弧型連続鋳造設備)に用いる前記した連続鋳造
用鋳型の使用後、銅板の内側対向面を観察すると、銅板
の磨耗状況が不均一であり、特に鋳造半径(曲率半径)
方向の内側対向面(鋳造円弧基準面及びその対向面)で
の磨耗が大きく、また基準面と対向面とでは磨耗の発生
状況が異なっている。このように、銅板の内側対向面に
局部的な大きな磨耗が発生することで、連続鋳造用鋳型
を交換しなければならず、寿命が短くなるため経済的で
ない。また、銅板の内側対向面に局部的な大きな磨耗が
発生するということは、内側対向面と鋳片表面との接触
状態が、銅板の上端部から下端部にかけて不均一となっ
ていることを意味するため、鋳片を均一に冷却できず、
品質低下の原因となる鋳片の内部割れや、更には鋳片の
ブレークアウト等を招来する可能性がある。本発明はか
かる事情に鑑みてなされたもので、経済的でしかも良好
な品質の鋳片を製造できる収縮による鋳片鋳造半径の変
化を考慮した連続鋳造用鋳型及びこれを用いた連続鋳造
設備を提供することを目的とする。
However, even when the above-mentioned technique is used, the shrinkage of the cast piece is not completely compensated, the cooling of the cast piece is not uniform, and the contact between the cooling surface and the cast piece is not achieved. The reality is that it is not perfect. For example, cooling molten steel,
After the continuous casting mold used in the continuous casting equipment (arc-shaped continuous casting equipment) for producing cast pieces solidified from molten steel in a curved state, when the inner facing surface of the copper plate was observed, the wear state of the copper plate was not observed. Uniform, especially casting radius (radius of curvature)
Wear is large on the inner facing surfaces in the direction (cast arc reference surface and its facing surface), and the occurrence of wear is different between the reference surface and the facing surface. As described above, a large amount of local wear is generated on the inner facing surface of the copper plate, and therefore the continuous casting mold must be replaced, which shortens the life and is not economical. Further, the occurrence of large local wear on the inner facing surface of the copper plate means that the contact state between the inner facing surface and the slab surface is uneven from the upper end to the lower end of the copper plate. Therefore, the slab cannot be cooled uniformly,
There is a possibility of causing internal cracking of the slab, which causes quality deterioration, and further causing breakout of the slab. The present invention has been made in view of such circumstances, a continuous casting mold and a continuous casting facility using the casting mold considering the change of the casting radius of the casting due to shrinkage can be produced economically and good quality slab The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】前記目的に沿う本発明に
係る収縮による鋳片鋳造半径の変化を考慮した連続鋳造
用鋳型は、溶鋼を冷却し、溶鋼から湾曲状態で凝固させ
た鋳片を製造する連続鋳造設備に用いる連続鋳造用鋳型
において、鋳型本体の一方の内側対向面が上端部から下
端部にかけて湾曲し、しかも、湾曲した内側対向面の上
下方向の曲率半径を、内側対向面の上端部から下端部に
かけて、鋳片の線膨張量及び温度に対応させて連続的又
は断続的に小さくした。このように構成することで、鋳
型本体の内側対向面の上下方向の曲率半径を、収縮する
鋳片の収縮外形に対応した数値に設定できるので、鋳片
が収縮しても、鋳片の表面と内側対向面との接触状態を
最適にでき、鋳片を連続鋳造用鋳型から内側対向面の形
状に沿って容易に引抜くことが可能となる。ここで、本
発明に係る収縮による鋳片鋳造半径の変化を考慮した連
続鋳造用鋳型において、内側対向面の曲率半径を、内側
対向面の上端部から下端部にかけて、100%から99
〜97.5%の範囲へと徐々に小さくすることが好まし
い。このように構成することで、内側対向面の上端部か
ら下端部にかけての各部分の曲率半径を、収縮する鋳片
の収縮外形に対応した数値に設定できるので、鋳片が収
縮しても、鋳片の表面と内側対向面との接触状態を最適
に保つことが可能な連続鋳造用鋳型を容易に製造するこ
とが可能となる。
The casting mold for continuous casting in consideration of the change in the casting radius of the casting due to the shrinkage according to the present invention in accordance with the above-mentioned object is a casting obtained by cooling molten steel and solidifying the molten steel in a curved state. In the continuous casting mold used in the continuous casting equipment to be manufactured, one of the inner facing surfaces of the mold body is curved from the upper end portion to the lower end portion, and the radius of curvature in the vertical direction of the curved inner facing surface is equal to that of the inner facing surface. From the upper end portion to the lower end portion, the linear expansion amount and the temperature of the cast slab were made to decrease continuously or intermittently. With this configuration, the radius of curvature in the vertical direction of the inner facing surface of the mold body can be set to a value corresponding to the contracted outer shape of the contracting slab, so that even if the slab contracts, the surface of the slab The contact state between the inner facing surface and the inner facing surface can be optimized, and the slab can be easily pulled out from the continuous casting mold along the shape of the inner facing surface. Here, in the continuous casting mold in consideration of the change in the cast slab casting radius due to shrinkage according to the present invention, the radius of curvature of the inner facing surface is 100% to 99 from the upper end to the lower end of the inner facing surface.
It is preferable to gradually decrease the range to 97.5%. With such a configuration, the radius of curvature of each portion from the upper end to the lower end of the inner facing surface can be set to a value corresponding to the contracted outer shape of the contracting slab, so that the slab contracts, It becomes possible to easily manufacture a continuous casting mold capable of optimally maintaining the contact state between the surface of the slab and the inner facing surface.

【0008】前記目的に沿う本発明に係る収縮による鋳
片鋳造半径の変化を考慮した連続鋳造用鋳型を用いた連
続鋳造設備は、溶鋼を冷却し、溶鋼から湾曲状態で凝固
させた鋳片を製造する連続鋳造設備において、溶鋼を凝
固させる鋳型本体の一方の内側対向面が上端部から下端
部にかけて湾曲し、しかも、湾曲した内側対向面の上下
方向の曲率半径を、内側対向面の上端部から下端部にか
けて、鋳片の線膨張量及び温度に対応させて連続的又は
断続的に小さくし、更に、鋳型本体の下流側には、内側
対向面の曲率半径の減少に伴ってその対向する当接搬送
面の曲率半径が徐々に減少する複数のガイドロールが備
えられている。このように構成することで、鋳型本体の
内側対向面の上下方向の曲率半径、更には鋳型本体の下
流側に備えられた複数のガイドロールによって構成され
る対向する当接搬送面の曲率半径を、収縮する鋳片の収
縮外形に対応した数値に設定できるので、鋳片が収縮し
ても、鋳片の表面と内側対向面、及び鋳片の表面と当接
搬送面との接触状態を更に最適にでき、鋳片を連続鋳造
用鋳型から内側対向面や複数のガイドロールの形状に沿
って容易に引抜くことが可能となる。
The continuous casting equipment using a casting mold for continuous casting in consideration of the change in the casting radius of the casting due to the shrinkage according to the present invention, which meets the above-mentioned object, is a casting in which molten steel is cooled and solidified from the molten steel in a curved state. In a continuous casting facility for manufacturing, one inner facing surface of a mold body for solidifying molten steel is curved from the upper end to the lower end, and the vertical radius of curvature of the curved inner facing surface is the upper end of the inner facing surface. From the bottom to the lower end, it is continuously or intermittently reduced according to the linear expansion amount and temperature of the slab, and further, on the downstream side of the mold main body, faces the inner facing surface as the radius of curvature of the inner facing surface decreases. A plurality of guide rolls are provided in which the radius of curvature of the contact transport surface gradually decreases. With this configuration, the radius of curvature in the vertical direction of the inner facing surface of the mold body, and further, the radius of curvature of the opposing abutting and transporting surfaces constituted by the plurality of guide rolls provided on the downstream side of the mold body, Since it can be set to a value corresponding to the contracted outer shape of the shrinking slab, even if the slab contracts, the contact state between the surface of the slab and the inner facing surface and between the surface of the slab and the abutting and conveying surface can be further improved. It can be optimized, and the cast piece can be easily pulled out from the continuous casting mold along the inner facing surface and the shapes of the plurality of guide rolls.

【0009】本発明者らは、鋳片の凝固及び冷却状況を
コンピュータによってシミュレーションし解析して、本
発明を完成するに至った。この検討により、例えば冷却
時における鋳片の凝固収縮で、鋳片の平断面形状が変化
するだけでなく、鋳片の鋳造半径も大きく変化している
ことを見出し、この鋳造半径の変化を補償するために、
鋳片の凝固時における線膨張量について検討した。
The present inventors have completed the present invention by simulating and analyzing the solidification and cooling conditions of a cast piece by a computer. From this examination, it was found that not only the flat cross-sectional shape of the slab changes but also the casting radius of the slab greatly changes due to solidification shrinkage of the slab during cooling, and the change in the casting radius is compensated for. In order to
The amount of linear expansion of the slab during solidification was examined.

【0010】[0010]

【発明の実施の形態】続いて、添付した図面を参照しつ
つ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。ここに、図1は本発明の一実施の形
態に係る収縮による鋳片鋳造半径の変化を考慮した連続
鋳造用鋳型の鋳型本体の説明図、図2は同連続鋳造用鋳
型の鋳型本体を斜め上方から見た説明図、図3は同連続
鋳造用鋳型で凝固させた鋳片の温度に対する線膨張の説
明図、図4は同連続鋳造用鋳型を用いた連続鋳造設備の
説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION Next, referring to the attached drawings, an embodiment in which the present invention is embodied will be described to provide an understanding of the present invention. Here, FIG. 1 is an explanatory view of a mold body of a continuous casting mold in consideration of a change in a cast slab casting radius according to an embodiment of the present invention, and FIG. 2 is an oblique view of the mold body of the continuous casting mold. FIG. 3 is an explanatory diagram viewed from above, FIG. 3 is an explanatory diagram of linear expansion with respect to temperature of a slab solidified by the continuous casting mold, and FIG. 4 is an explanatory diagram of a continuous casting facility using the continuous casting mold.

【0011】図1〜図4に示すように、本発明の一実施
の形態に係る収縮による鋳片鋳造半径の変化を考慮した
連続鋳造用鋳型(以下、単に連続鋳造用鋳型とも言う)
10は、溶鋼を冷却し、溶鋼から湾曲状態で凝固させた
鋳片11を製造する連続鋳造設備12に用いるもので、
前記したように、一対の幅狭冷却部材である短辺と、一
対の幅広冷却部材である長辺とを組合せることで製造さ
れるものである(図5参照)。また、連続鋳造用鋳型1
0の短辺は、熱伝導性が良好な金属の一例である銅から
なり、裏面側に通水部が設けられた銅板13と、銅板1
3の裏面側に取付け手段の一例であるボルトによって固
定された支持部材の一例であるバックプレート(冷却
箱、水箱とも言う)とを有し、バックプレートに設けら
れた給水部及び排水部を介して通水部に冷却水の一例で
ある工業用水を流すことで銅板13の冷却を行うもので
ある(図6(A)、(B)参照)。なお、連続鋳造用鋳
型10の長辺も、上記した短辺と略同様の構成であり、
短辺の銅板13と長辺の銅板14とで鋳型本体15が構
成されている。以下、詳しく説明する。
As shown in FIGS. 1 to 4, a continuous casting mold (hereinafter also simply referred to as a continuous casting mold) in consideration of a change in a cast slab casting radius according to an embodiment of the present invention.
10 is used for a continuous casting facility 12 that cools molten steel and manufactures a slab 11 that is solidified from molten steel in a curved state.
As described above, it is manufactured by combining the short side which is the pair of narrow cooling members and the long side which is the pair of wide cooling members (see FIG. 5). Also, the continuous casting mold 1
The short side of 0 is made of copper, which is an example of a metal having good thermal conductivity, and the copper plate 13 having a water passage portion on the back surface side and the copper plate 1
A back plate (also referred to as a cooling box or a water box), which is an example of a support member fixed by a bolt, which is an example of an attaching means, on the back surface side of No. 3, and a water supply section and a drain section provided on the back plate are provided. The copper plate 13 is cooled by flowing industrial water, which is an example of cooling water, to the water passage (see FIGS. 6A and 6B). The long side of the continuous casting mold 10 has substantially the same configuration as the short side described above,
The copper plate 13 on the short side and the copper plate 14 on the long side form a mold body 15. The details will be described below.

【0012】図1、図2に示すように、鋳型本体15を
構成する短辺及び長辺の各銅板13、14の上端から下
端までの垂直長さLは、例えば700〜900mm程度
であり、鋳型本体15の一方、即ち長辺の銅板14の内
側対向面16は、上端部から下端部にかけて一方向側に
湾曲している。このため、一対の長辺の各銅板14は、
一対の短辺の各銅板13を挟み込んで配置されるので、
長辺の内側対向面16の湾曲状態に対応させて、短辺の
銅板13の側面は反っている。なお、銅板13の幅W
(銅板14の幅も同様)は、上端部から下端部へかけて
それぞれ短くなっているため、一対の短辺の銅板13の
内側対向面17及び一対の長辺の銅板14の内側対向面
16とで構成される内周長は、鋳型本体15の上端部よ
り下端部の方が短くなっている。これは、例えば、凝固
収縮、固体収縮等の鋳片の体積収縮を考慮して決定され
るもので、その数値は、過去の実績データや、鋳片の線
膨張量及び温度を基に決定することが好ましい。
As shown in FIGS. 1 and 2, the vertical length L from the upper end to the lower end of each of the short-side and long-side copper plates 13 and 14 constituting the mold body 15 is, for example, about 700 to 900 mm, One of the mold bodies 15, that is, the inner facing surface 16 of the long side copper plate 14 is curved in one direction from the upper end to the lower end. Therefore, the pair of long side copper plates 14 are
Since the pair of short side copper plates 13 are arranged so as to be sandwiched therebetween,
The side surface of the copper plate 13 on the short side is warped so as to correspond to the curved state of the inner facing surface 16 on the long side. The width W of the copper plate 13
Since the widths of the copper plates 14 are similar from the upper end to the lower end, the inner facing surfaces 17 of the pair of short side copper plates 13 and the inner facing surfaces 16 of the pair of long side copper plates 14 are short. The inner peripheral length constituted by and is shorter at the lower end portion than at the upper end portion of the mold body 15. This is determined, for example, in consideration of volumetric shrinkage of the slab, such as solidification shrinkage and solid shrinkage, and the numerical value is determined based on past performance data and the linear expansion amount and temperature of the slab. It is preferable.

【0013】前後方向に湾曲した銅板14の内側対向面
16の上下方向の曲率半径は、内側対向面16の上部で
従来の銅板83の内側対向面84(図5参照)と同程度
の曲率半径R2 (例えば、10〜15m程度)とし(図
1中の点線)、また内側対向面16の下部で曲率半径R
2 より小さい曲率半径R3 としている。この曲率半径R
3 は、鋳片の線膨張量及び温度に対応させて決定される
もので、曲率半径R2 を100%とした場合に、99〜
97.5%の範囲の数値に設定される。これにより、湾
曲した内側対向面16の上下方向の曲率半径は、内側対
向面16の上端部から下端部にかけて、鋳片の線膨張量
及び温度に対応させて連続的又は断続的に徐々に小さく
することが可能となる。なお、連続的とは、内側対向面
の上端部から下端部にかけて曲率半径を、例えば、関数
で求めて変化させたり、所定の数値(例えば、1〜10
mm程度)毎に少しずつ変化させることを意味し、また
断続的とは、内側対向面の上端部から下端部にかけて、
内側対向面を所定の間隔に区分し(銅板の長さに応じ
て、例えば、50〜200mm毎)、各部分に所定の曲
率半径を設定することを意味する。
The inner facing surface of the copper plate 14 curved in the front-rear direction
The radius of curvature of 16 in the vertical direction is at the upper part of the inner facing surface 16.
About the same as the inner facing surface 84 (see FIG. 5) of the conventional copper plate 83
Radius of curvature R2 (For example, about 10 to 15 m)
(Dotted line in 1), and the radius of curvature R at the bottom of the inner facing surface 16
2 Smaller radius of curvature R3 I am trying. This radius of curvature R
3 Is determined according to the linear expansion amount and temperature of the slab
The radius of curvature R2 Is 100%, 99-
It is set to a numerical value in the range of 97.5%. This makes the bay
The radius of curvature of the curved inner facing surface 16 in the vertical direction is
The linear expansion of the slab from the upper end to the lower end of the facing surface 16
And gradually decreases continuously or intermittently according to the temperature
It becomes possible to do. Note that continuous means the inner facing surface.
The radius of curvature from the upper end to the lower end of
Or change it by a certain value (for example, 1 to 10).
It means to change little by little every
Intermittent means from the upper end to the lower end of the inner facing surface,
Divide the inner facing surface into predetermined intervals (depending on the length of the copper plate
For example, every 50 to 200 mm)
This means setting the rate radius.

【0014】ここで、内側対向面16の曲率半径R3
を、前記した数値に設定した理由について説明する。図
3に示すように、鋳片の化学成分の一例である純鉄は、
液体状態で連続鋳造用鋳型10に注がれて凝固し始め、
連続鋳造用鋳型10の上部の鋳片温度が例えば1500
℃程度の場合、基準温度常温に対する線膨張量が2.5
%程度、連続鋳造用鋳型10の出口の鋳片の表面温度が
例えば800℃程度の場合、線膨張量が1.0%程度と
なる。この間、純鉄には相変態が発生するため、線膨張
量が部分的に小さくなることが分かる。このため、この
小さくなった線膨張量を考慮(例えば、平均をとる)す
れば、鋳片の温度を1500℃から800℃まで下げる
ことで、約1.7%程度の収縮が鋳片に発生することと
なる。従って、連続鋳造用鋳型10の上部の鋳造半径に
対して、連続鋳造用鋳型10の出口の鋳造半径では、
1.7%の収縮が発生するので、連続鋳造用鋳型10の
上部の鋳造半径に対し、連続鋳造用鋳型10の出口の鋳
造半径は、1.7%小さい鋳造半径としなければならな
い。即ち、銅板14の内側対向面16の上部の曲率半径
2 を100%とすれば、内側対向面16の下部の曲率
半径R3 を98.3%とすることを意味する。従って、
曲率半径R2 を、例えば10mとした場合、曲率半径R
3 は9.83mとなる。
Here, the radius of curvature R 3 of the inner facing surface 16
The reason why is set to the above numerical value will be described. As shown in FIG. 3, pure iron, which is an example of the chemical composition of the slab,
In a liquid state, it is poured into the continuous casting mold 10 and begins to solidify,
The slab temperature at the upper part of the continuous casting mold 10 is, for example, 1500.
If the temperature is around ℃, the linear expansion is 2.5
%, And when the surface temperature of the slab at the outlet of the continuous casting mold 10 is, for example, about 800 ° C., the linear expansion amount is about 1.0%. During this period, it is found that the phase expansion occurs in pure iron, so that the linear expansion amount is partially reduced. Therefore, if the reduced linear expansion amount is taken into consideration (for example, the average is taken), shrinkage of about 1.7% occurs in the slab by lowering the temperature of the slab from 1500 ° C to 800 ° C. Will be done. Therefore, with respect to the casting radius of the upper portion of the continuous casting mold 10, at the casting radius of the outlet of the continuous casting mold 10,
Since shrinkage of 1.7% occurs, the casting radius at the outlet of the continuous casting mold 10 must be 1.7% smaller than the casting radius of the upper part of the continuous casting mold 10. That is, if the radius of curvature R 2 of the upper portion of the inner facing surface 16 of the copper plate 14 is 100%, it means that the radius of curvature R 3 of the lower portion of the inner facing surface 16 is 98.3%. Therefore,
When the radius of curvature R 2 is, for example, 10 m, the radius of curvature R
3 will be 9.83m.

【0015】なお、例えば、鋳片の化学成分(例えば、
0.25質量%炭素鋼、0.80質量%炭素鋼等)を変
化させた場合、また、連続鋳造用鋳型10の上部の鋳片
の表面温度や連続鋳造用鋳型10の出口の鋳片の表面温
度を変化させた場合等は、前記した線膨張量はそれぞれ
変化するため、曲率半径R3 を99〜97.5%の範囲
とした。しかし、連続鋳造用鋳型10で凝固させる鋳片
の表面と、銅板14の内側対向面16との接触状態をよ
り最適にするには、曲率半径R3 を99〜98%の範
囲、更には98.5〜98%の範囲とすることが好まし
い。
Note that, for example, the chemical composition of the slab (for example,
0.25 mass% carbon steel, 0.80 mass% carbon steel, etc.), the surface temperature of the upper slab of the continuous casting mold 10 and the outlet slab of the continuous casting mold 10 When the surface temperature is changed, the above-mentioned linear expansion amount is changed, so that the radius of curvature R 3 is set in the range of 99 to 97.5%. However, in order to optimize the contact state between the surface of the slab to be solidified in the continuous casting mold 10 and the inner facing surface 16 of the copper plate 14, the radius of curvature R 3 is in the range of 99 to 98%, and further 98 It is preferably in the range of 0.5 to 98%.

【0016】続いて、本発明の一実施の形態に係る収縮
による鋳片鋳造半径の変化を考慮した連続鋳造用鋳型を
用いた連続鋳造設備について説明する。図4に示すよう
に、連続鋳造設備12は、上流側端部に配置されたタン
ディッシュ18と、タンディッシュ18から供給される
溶鋼の凝固を行う前記した連続鋳造用鋳型10と、連続
鋳造用鋳型10の鋳型本体15の下流側に配置され、鋳
型本体15で凝固させた鋳片11の更なる冷却を行う複
数のガイドロール19を備えた冷却装置20とを有して
いる。なお、この冷却装置20の下流側には、鋳片11
を鋳型本体15から引抜くと共に、湾曲状態で凝固させ
た鋳片11を平坦状態に矯正する複数のロール21が配
置された引抜矯正装置22が設置され、この平坦状態と
なった鋳片23は、更に下流側に配置された切断装置
(図示しない)により所定の長さに切断される。
Next, a continuous casting facility using a continuous casting mold in consideration of a change in the cast slab casting radius according to the embodiment of the present invention will be described. As shown in FIG. 4, the continuous casting facility 12 includes a tundish 18 arranged at an upstream end, the continuous casting mold 10 for solidifying molten steel supplied from the tundish 18, and a continuous casting facility. The cooling device 20 is provided on the downstream side of the mold body 15 of the mold 10 and includes a plurality of guide rolls 19 for further cooling the slab 11 solidified by the mold body 15. The slab 11 is provided downstream of the cooling device 20.
Is pulled out from the mold body 15, and a pull-out correction device 22 in which a plurality of rolls 21 for rectifying the slab 11 solidified in a curved state to a flat state is arranged is installed, and the slab 23 in the flat state is Further, it is cut into a predetermined length by a cutting device (not shown) arranged further downstream.

【0017】冷却装置20を構成する複数のガイドロー
ル19は、銅板14の内側対向面16の曲率半径の減少
に伴って、その対向する当接搬送面、即ち複数のガイド
ロール19と鋳片11との複数の接触点を曲線で結んだ
面の曲率半径R4 が、徐々に減少するように配置されて
いる。従って、この当接搬送面の曲率半径R4 は、銅板
14の内側対向面16の下端部の曲率半径R3 を基に、
当接搬送面の上流側端部から下流側端部にかけて、鋳片
11の線膨張量及び温度に対応させて、連続的又は断続
的に小さくしている。このように構成することで、鋳片
11の固体収縮に伴って発生する鋳片11に対するガイ
ドロール19からの局部的な力を防止できるので、ガイ
ドロール19の損傷を低減でき経済的である。
The plurality of guide rolls 19 constituting the cooling device 20 are opposed to each other in contact conveying surfaces, that is, the plurality of guide rolls 19 and the slab 11 as the radius of curvature of the inner facing surface 16 of the copper plate 14 decreases. The radius of curvature R 4 of the surface connecting a plurality of contact points with and is curved is gradually reduced. Therefore, the radius of curvature R 4 of the contact transport surface is based on the radius of curvature R 3 of the lower end of the inner facing surface 16 of the copper plate 14,
From the upstream end to the downstream end of the contact conveyance surface, the linear expansion amount and the temperature of the cast slab 11 are made to correspond to the continuous or intermittent reduction. With such a configuration, it is possible to prevent a local force from the guide roll 19 on the slab 11 caused by the solid contraction of the slab 11, so that damage to the guide roll 19 can be reduced and it is economical.

【0018】なお、既存の連続鋳造設備、即ち複数のガ
イドロールが備えられて形成される当接搬送面の曲率半
径を変更できない連続鋳造設備に前記した連続鋳造用鋳
型10を配置する場合は、複数のガイドロールの上流側
端部の曲率半径を基に、鋳型本体の内側対向面の下端部
から上端部にかけて、内側対向面の曲率半径を前記した
範囲で徐々に大きくすることが好ましい。従って、当接
搬送面の上流側端部の曲率半径R4 が、例えば10mに
設定された場合、鋳型本体の内側対向面の下端部の曲率
半径R3 は10mとなり、内側対向面の上端部の曲率半
径R2 は、前記した範囲から10.17mに設定するこ
とが好ましい。なお、このとき、内側対向面の曲率半径
は、内側対向面の下端部から上端部にかけて連続的又は
断続的に大きくすることが好ましい。
When the continuous casting mold 10 is arranged in the existing continuous casting equipment, that is, the continuous casting equipment in which the radius of curvature of the contact transfer surface formed by a plurality of guide rolls cannot be changed, It is preferable that the radius of curvature of the inner facing surface is gradually increased from the lower end to the upper end of the inner facing surface of the mold body based on the radius of curvature of the upstream end of the plurality of guide rolls. Therefore, when the radius of curvature R 4 of the upstream end of the contact conveyance surface is set to, for example, 10 m, the radius of curvature R 3 of the lower end of the inner facing surface of the mold body becomes 10 m, and the upper end of the inner facing surface. The radius of curvature R 2 of is preferably set to 10.17 m from the above range. At this time, it is preferable that the radius of curvature of the inner facing surface be continuously or intermittently increased from the lower end to the upper end of the inner facing surface.

【0019】以上、本発明を、一実施の形態を参照して
説明してきたが、本発明は何ら上記した実施の形態に記
載の構成に限定されるものではなく、特許請求の範囲に
記載されている事項の範囲内で考えられるその他の実施
の形態や変形例も含むものである。例えば、前記実施の
形態においては、連続鋳造用鋳型として多数の導水溝を
備えた一対の短辺と一対の長辺とを組合せた組立鋳型を
用いた場合について説明したが、例えば、銅製のチュー
ブを、導水溝を備えたハウジングに収納するチューブラ
鋳型や、鋳造又は鍛造した銅ブロックに導水溝を穿孔し
たブロック鋳型等についても、本発明は適用される。そ
して、このように連続鋳造用鋳型として使用する鋳型の
種類を変化させることで、例えば、スラブ(例えば、幅
が1000〜2500mm程度、厚みが200〜300
mm程度)、ブルーム(例えば、幅及び厚みが200〜
400mm程度)、ビレット(例えば、幅及び厚みが1
00〜200mm程度)、ビームブランク(H型鋼用に
使用)等の鋳片をそれぞれ製造することが可能となる。
Although the present invention has been described with reference to one embodiment, the present invention is not limited to the configuration described in the above embodiment, but is described in the scope of claims. Other embodiments and modifications that are conceivable within the scope of the matters described above are also included. For example, in the above-described embodiment, the case of using an assembly mold in which a pair of short sides and a pair of long sides provided with a large number of water guiding grooves is used as the continuous casting mold has been described, but for example, a copper tube The present invention is also applicable to a tubular mold in which the above is housed in a housing having a water guiding groove, a block mold in which a water guiding groove is bored in a cast or forged copper block, and the like. Then, by changing the type of the mold used as the continuous casting mold in this manner, for example, a slab (for example, a width of about 1000 to 2500 mm and a thickness of 200 to 300).
mm), bloom (for example, width and thickness of 200 ~
400 mm), billet (for example, width and thickness is 1
It is possible to manufacture slabs such as beam blanks (used for H-section steel), etc., respectively.

【0020】また、前記実施の形態においては、平断面
が矩形の開口部を備えた鋳型本体を有する連続鋳造用鋳
型を使用した場合について説明したが、開口部の平断面
の形状を、製造する鋳片の断面形状に対応させて、例え
ば多角形(例えば、凸角形、凹角形、6角形、8角形
等)、円形、楕円形等とすることも可能である。そし
て、前記実施の形態においては、鋳型本体の一方の内側
対向面の上部の曲率半径R2 を、従来の鋳型本体の銅板
の内側対向面の曲率半径と同じとし、内側対向面の下部
の曲率半径R3 を、鋳片の線膨張量及び温度に対応させ
て曲率半径R 2 より小さくしている。このとき、鋳型本
体の一方の内側対向面と鋳片表面との接触状態をより最
適に行うため、鋳型本体の一方の内側対向面の上端部か
ら下端部にかけて、鋳片の温度を所定間隔(例えば、1
0mm程度)毎に測定し、その温度と線膨張量を基に、
内側対向面の曲率半径をそれぞれ設定することも可能で
ある。更に、前記実施の形態においては、湾曲した内側
対向面の上下方向の曲率半径を、鋳片の線膨張量を基に
変化させた場合について説明したが、鋳片の線膨張率や
熱膨張係数を基に変化させることも可能である。
Further, in the above-mentioned embodiment, the plane section is
For continuous casting having a mold body with a rectangular opening
I explained the case of using a mold, but the plane cross section of the opening
Corresponding the shape of, to the cross-sectional shape of the slab to be manufactured,
For example, polygon (for example, convex, concave, hexagonal, octagonal)
Etc.), a circle, an ellipse, and the like. That
In the above-mentioned embodiment, one inside of the mold body
Radius of curvature R at the top of the facing surface2 The conventional copper plate of the mold body
The radius of curvature of the inner facing surface of the
Radius of curvature R3 Corresponding to the linear expansion amount and temperature of the slab
Radius of curvature R 2 Making it smaller. At this time, mold book
The contact state between the inner facing surface of one side of the body and the surface of the slab is better
In order to perform properly, the upper end of one inner facing surface of the mold body
From the bottom to the lower end, the temperature of the slab is set at a predetermined interval (eg, 1
It is measured every 0 mm), and based on the temperature and the amount of linear expansion,
It is also possible to set the radius of curvature of the inner facing surface.
is there. Further, in the above embodiment, the curved inner side
The vertical radius of curvature of the facing surface is based on the linear expansion of the slab.
I explained the case of changing, the linear expansion coefficient of the slab and
It is also possible to change it based on the coefficient of thermal expansion.

【0021】[0021]

【発明の効果】請求項1及び2記載の収縮による鋳片鋳
造半径の変化を考慮した連続鋳造用鋳型においては、鋳
型本体の内側対向面の上下方向の曲率半径を、収縮する
鋳片の収縮外形に対応した数値に設定できるので、鋳片
が収縮しても、鋳片の表面と内側対向面との接触状態を
最適にでき、鋳片を連続鋳造用鋳型から内側対向面の形
状に沿って容易に引抜くことが可能となる。従って、従
来、収縮した鋳片の形状が、内側対向面で形成される形
状と異なることで、鋳型本体の内側に発生していた局部
的な大きな磨耗の発生を防止できるので、鋳型本体の寿
命を長くでき経済的である。また、鋳型本体の一方の内
側対向面と鋳片表面との接触状態を、鋳型本体の上端部
から下端部にかけて均一にできるので、鋳型本体によっ
て鋳片を均一に冷却することができ、安定した品質を備
えた鋳片を製造できる。特に、請求項2記載の収縮によ
る鋳片鋳造半径の変化を考慮した連続鋳造用鋳型におい
ては、内側対向面の上端部から下端部にかけての各部分
の曲率半径を、収縮する鋳片の収縮外形に対応した数値
に設定できるので、鋳片が収縮しても、鋳片の表面と内
側対向面との接触状態を最適に保つことが可能な連続鋳
造用鋳型を容易に製造することが可能となる。従って、
収縮に伴う鋳片の形状変化によって、内側対向面へ局部
的に大きな力が加わる可能性を低減できる連続鋳造用鋳
型を提供できるので、例えば磨耗や損傷等による連続鋳
造用鋳型の交換頻度を低減できるため経済的である。
According to the first and second aspects of the present invention, in a continuous casting mold that takes into account the change in the casting radius of the casting due to the shrinkage, the vertical radius of curvature of the inner facing surface of the casting mold body shrinks. Even if the slab contracts, the contact state between the surface of the slab and the inner facing surface can be optimized so that the slab can be moved from the continuous casting mold to the shape of the inner facing surface. Can be easily pulled out. Therefore, since the shape of the contracted slab is different from the shape formed on the inner facing surface in the past, it is possible to prevent the occurrence of a large amount of local wear that has occurred inside the mold body. Can be long and economical. Further, since the contact state between the one inner facing surface of the mold body and the slab surface can be made uniform from the upper end portion to the lower end portion of the mold body, the slab can be uniformly cooled by the mold body, which is stable. A quality slab can be manufactured. Particularly, in the continuous casting mold in consideration of the change in the cast piece casting radius due to the shrinkage according to claim 2, the radius of curvature of each portion from the upper end portion to the lower end portion of the inner facing surface shrinks the shrinking outer shape of the cast piece. Since it can be set to a value corresponding to, it is possible to easily manufacture a continuous casting mold that can keep the contact state between the surface of the slab and the inner facing surface optimal even if the slab contracts. Become. Therefore,
Since it is possible to provide a continuous casting mold that can reduce the possibility that a large force is locally applied to the inner facing surface due to the shape change of the slab due to shrinkage, for example, the frequency of continuous casting mold replacement due to wear or damage is reduced. It is economical because it can be done.

【0022】請求項3記載の収縮による鋳片鋳造半径の
変化を考慮した連続鋳造用鋳型を用いた連続鋳造設備に
おいては、鋳型本体の一方の内側対向面の上下方向の曲
率半径、更には鋳型本体の下流側に備えられた複数のガ
イドロールによって構成される対向する当接搬送面の曲
率半径を、収縮する鋳片の収縮外形に対応した数値に設
定できるので、鋳片が収縮しても、鋳片の表面と内側対
向面、及び鋳片の表面と当接搬送面との接触状態を更に
最適にでき、鋳片を連続鋳造用鋳型から内側対向面や複
数のガイドロールの形状に沿って容易に引抜くことが可
能となる。従って、収縮した鋳片の形状が、内側対向面
及び当接搬送面で形成される形状と異なることで、鋳型
本体の内側に発生していた局部的な大きな磨耗の発生を
防止でき、またガイドロールから受けていた局部的な大
きな力の発生も防止できるので、連続鋳造設備の操業を
安定に行うことができ、作業性が良好となる。
According to a third aspect of the present invention, in a continuous casting facility using a continuous casting mold that takes into account the change in the casting radius of the slab due to shrinkage, the radius of curvature in the vertical direction of one of the inner facing surfaces of the mold body, and further the mold. Even if the slab contracts, the radius of curvature of the abutting and conveying surfaces facing each other formed by the plurality of guide rolls provided on the downstream side of the main body can be set to a value corresponding to the contracted outer shape of the contracting slab. It is possible to further optimize the contact state between the surface of the slab and the inner facing surface, and the surface of the slab and the contact conveying surface, and the slab is cast from the continuous casting mold along the inner facing surface and the shape of the plurality of guide rolls. Can be easily pulled out. Therefore, since the shape of the shrunk slab is different from the shape formed by the inner facing surface and the contact transport surface, it is possible to prevent the occurrence of large local wear that has occurred inside the mold body, and Since it is possible to prevent the generation of a large local force received from the rolls, the continuous casting equipment can be stably operated and the workability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係る収縮による鋳片鋳
造半径の変化を考慮した連続鋳造用鋳型の鋳型本体の説
明図である。
FIG. 1 is an explanatory diagram of a mold body of a continuous casting mold in consideration of a change in a cast slab casting radius according to an embodiment of the present invention.

【図2】同連続鋳造用鋳型の鋳型本体を斜め上方から見
た説明図である。
FIG. 2 is an explanatory view of a mold body of the continuous casting mold as seen obliquely from above.

【図3】同連続鋳造用鋳型で凝固させた鋳片の温度に対
する線膨張の説明図である。
FIG. 3 is an explanatory view of linear expansion with respect to temperature of a slab solidified by the continuous casting mold.

【図4】同連続鋳造用鋳型を用いた連続鋳造設備の説明
図である。
FIG. 4 is an explanatory view of a continuous casting facility using the continuous casting mold.

【図5】従来例に係る連続鋳造用鋳型の平面図である。FIG. 5 is a plan view of a continuous casting mold according to a conventional example.

【図6】(A)、(B)はそれぞれ従来例に係る連続鋳
造用鋳型に使用した短辺の内側から見た側面図、(A)
のA−A矢視断面図である。
6A and 6B are side views seen from the inside of a short side used in a continuous casting mold according to a conventional example, respectively.
FIG. 7 is a sectional view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

10:連続鋳造用鋳型、11:鋳片、12:連続鋳造設
備、13:銅板、14:銅板、15:鋳型本体、16:
内側対向面、17:内側対向面、18:タンディッシ
ュ、19:ガイドロール、20:冷却装置、21:ロー
ル、22:引抜矯正装置、23:鋳片
10: continuous casting mold, 11: cast piece, 12: continuous casting equipment, 13: copper plate, 14: copper plate, 15: mold body, 16:
Inside facing surface, 17: Inside facing surface, 18: Tundish, 19: Guide roll, 20: Cooling device, 21: Roll, 22: Pull-out straightening device, 23: Cast slab

フロントページの続き (72)発明者 杉山 英人 福岡県北九州市小倉南区新曽根5番1号 三島光産株式会社機工事業本部内 Fターム(参考) 4E004 AA06 LC10 NA01 NB01 NC01Continued front page    (72) Inventor Hideto Sugiyama             5-1 Shinsone, Kokuraminami-ku, Kitakyushu City, Fukuoka Prefecture             Mishima Kosan Co., Ltd. F term (reference) 4E004 AA06 LC10 NA01 NB01 NC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼を冷却し、該溶鋼から湾曲状態で凝
固させた鋳片を製造する連続鋳造設備に用いる連続鋳造
用鋳型において、鋳型本体の一方の内側対向面が上端部
から下端部にかけて湾曲し、しかも、湾曲した前記内側
対向面の上下方向の曲率半径を、該内側対向面の上端部
から下端部にかけて、前記鋳片の線膨張量及び温度に対
応させて連続的又は断続的に小さくしたことを特徴とす
る収縮による鋳片鋳造半径の変化を考慮した連続鋳造用
鋳型。
1. A continuous casting mold used in a continuous casting facility for cooling molten steel and producing cast pieces solidified from the molten steel in a curved state, wherein one inner facing surface of the mold body extends from the upper end to the lower end. A curved radius of curvature of the curved inner facing surface in the vertical direction is continuously or intermittently applied from the upper end to the lower end of the inner facing surface in accordance with the linear expansion amount and temperature of the slab. A continuous casting mold that takes into account the change in the casting radius of the slab, which is characterized by being made smaller.
【請求項2】 請求項1記載の収縮による鋳片鋳造半径
の変化を考慮した連続鋳造用鋳型において、前記内側対
向面の曲率半径を、該内側対向面の上端部から下端部に
かけて、100%から99〜97.5%の範囲へと徐々
に小さくすることを特徴とする収縮による鋳片鋳造半径
の変化を考慮した連続鋳造用鋳型。
2. The continuous casting mold according to claim 1, which takes into account the change in the cast slab casting radius due to shrinkage, wherein the radius of curvature of the inner facing surface is 100% from the upper end to the lower end of the inner facing surface. From 99 to 97.5%, the casting mold for continuous casting in consideration of the change in the casting radius of the slab due to shrinkage.
【請求項3】 溶鋼を冷却し、該溶鋼から湾曲状態で凝
固させた鋳片を製造する連続鋳造設備において、前記溶
鋼を凝固させる鋳型本体の一方の内側対向面が上端部か
ら下端部にかけて湾曲し、しかも、湾曲した前記内側対
向面の上下方向の曲率半径を、該内側対向面の上端部か
ら下端部にかけて、前記鋳片の線膨張量及び温度に対応
させて連続的又は断続的に小さくし、更に、前記鋳型本
体の下流側には、前記内側対向面の曲率半径の減少に伴
ってその対向する当接搬送面の曲率半径が徐々に減少す
る複数のガイドロールが備えられていることを特徴とす
る収縮による鋳片鋳造半径の変化を考慮した連続鋳造用
鋳型を用いた連続鋳造設備。
3. In a continuous casting facility for cooling molten steel and producing a cast piece solidified from the molten steel in a curved state, one inner facing surface of a mold body for solidifying the molten steel is curved from an upper end to a lower end. In addition, the radius of curvature in the vertical direction of the curved inner facing surface is reduced continuously or intermittently from the upper end to the lower end of the inner facing surface in accordance with the linear expansion amount and temperature of the slab. In addition, a plurality of guide rolls are provided on the downstream side of the mold body, the radius of curvature of the facing abutting and conveying surfaces gradually decreasing as the radius of curvature of the inner facing surface decreases. Continuous casting equipment using a continuous casting mold that takes into account changes in the casting radius of slab due to shrinkage.
JP2001332944A 2001-10-30 2001-10-30 Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same Expired - Lifetime JP3886774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001332944A JP3886774B2 (en) 2001-10-30 2001-10-30 Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001332944A JP3886774B2 (en) 2001-10-30 2001-10-30 Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same

Publications (2)

Publication Number Publication Date
JP2003136203A true JP2003136203A (en) 2003-05-14
JP3886774B2 JP3886774B2 (en) 2007-02-28

Family

ID=19148291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001332944A Expired - Lifetime JP3886774B2 (en) 2001-10-30 2001-10-30 Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same

Country Status (1)

Country Link
JP (1) JP3886774B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001481A1 (en) * 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Mold for continuous casting of round billet cast piece and method of continuous casting thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001481A1 (en) * 2007-06-28 2008-12-31 Sumitomo Metal Industries, Ltd. Mold for continuous casting of round billet cast piece and method of continuous casting thereof
JP2009006364A (en) * 2007-06-28 2009-01-15 Sumitomo Metal Ind Ltd Continuous casting mold for round billet, and continuous casting method thereof
US8225843B2 (en) 2007-06-28 2012-07-24 Sumitomo Metal Industries, Ltd. Continuous casting mold and continuous casting method of round billet
US8397792B2 (en) 2007-06-28 2013-03-19 Sumitomo Metal Industries, Ltd. Continuous casting mold and continuous casting method of round billet

Also Published As

Publication number Publication date
JP3886774B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US5651411A (en) Apparatus for and method of continuous casting
US11207729B2 (en) Light reduction method for continuous casting of bloom plain-barrelled roll-roller combination
JP2683725B2 (en) Liquid cooled surface plate mold for continuous casting of continuous cast material from molten steel in slab shape
JP2008049385A (en) Continuous casting mold
JP2814958B2 (en) Continuous casting method
JP3443109B2 (en) Assembly mold for continuous casting
JP2003136203A (en) Mold for continuous casting under taking into consideration variation of casting radius of cast slab caused by shrinkage and continuous casting facility using the mold
JP2019171435A (en) Method of continuous casting
JP6439663B2 (en) Steel continuous casting method
JP5342904B2 (en) Slab slab continuous casting equipment
JP2973834B2 (en) Mold for continuous casting of thin slabs
JPS5927672B2 (en) Variable width mold device
WO2023228796A1 (en) Continuous casting method and continuous casting machine for steel
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JP4364852B2 (en) Continuous casting equipment and continuous casting method for slab slabs
JP2000117405A (en) Method for continuously casting billet and apparatus therefor
RU2136438C1 (en) Continuous casting machine
JPH06210420A (en) Roll device for continuous casting
CN117961017A (en) Continuous casting equipment and continuous casting method
JP2024047887A (en) Continuous casting mold, manufacturing method for continuous casting mold, and continuous casting method for steel
JP2888071B2 (en) Thin slab continuous casting method
US4977037A (en) Smoother continuous cast steel bar product
EP1018382A1 (en) Method and device for continuous casting
JP2022065814A (en) Mold for continuous casting and continuous casting method for steel
JPS62270257A (en) Apparatus for producing continuously rulled stock for metal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Ref document number: 3886774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term