JP2003136187A - Method for manufacturing die-casting die - Google Patents

Method for manufacturing die-casting die

Info

Publication number
JP2003136187A
JP2003136187A JP2001340584A JP2001340584A JP2003136187A JP 2003136187 A JP2003136187 A JP 2003136187A JP 2001340584 A JP2001340584 A JP 2001340584A JP 2001340584 A JP2001340584 A JP 2001340584A JP 2003136187 A JP2003136187 A JP 2003136187A
Authority
JP
Japan
Prior art keywords
ceramic particles
artificial ceramic
sand
raw material
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001340584A
Other languages
Japanese (ja)
Other versions
JP3540788B2 (en
Inventor
Hirofumi Furukawa
洋文 古河
Koji Osera
光次 大瀬良
Toshiyuki Hamaguchi
俊幸 濱口
Toshihiko Yoshida
稔彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001340584A priority Critical patent/JP3540788B2/en
Publication of JP2003136187A publication Critical patent/JP2003136187A/en
Application granted granted Critical
Publication of JP3540788B2 publication Critical patent/JP3540788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Casting Devices For Molds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a die-casting die of high- strength capable of manufacturing a die-cast item having a superior surface state and further capable of reducing the number of finishing steps for the die-cast item. SOLUTION: As a raw material composition of die-casting sand for a die- casting die, some calcinated artificial ceramic particles and molten granulated artificial ceramic particles are utilized together, mixed and kneaded sand mixed with binder is formed into a die to attain a die-casting die.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度な鋳造用鋳
型の製造方法に関する。特に、人造セラミック鋳型の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a high-strength casting mold. In particular, it relates to a method of manufacturing an artificial ceramic mold.

【0002】[0002]

【従来の技術】従来、鋳造用鋳型の鋳型材料の1つであ
る鋳物砂としては、珪砂、ジルコン砂、クロマイト砂、
オリビン砂などがあり、とくに平均粒径が0.4〜0.
5mmの珪砂が広く用いられてきた。また、Al23
SiO2が主体のアルミノケイ酸塩の組成となるように
配合された原料をスラリー調整して、造粒した後、造粒
相互の融着阻止用の微粒粉末を混合して1400〜17
50℃で焼成し、解砕と同時に融着阻止用の微粒粉末を
除去して製造された焼成法による人造セラミック粒子
が、造型工数が低減する、耐破砕性に優れ廃棄物が
減少する、耐火度に優れることから、徐々に使用され
てきている。
2. Description of the Related Art Conventionally, as molding sand which is one of mold materials for casting molds, silica sand, zircon sand, chromite sand,
There is olivine sand, etc., and especially the average particle size is 0.4-0.
5 mm silica sand has been widely used. In addition, the raw materials mixed so that the composition of the aluminosilicate mainly composed of Al 2 O 3 and SiO 2 is slurry-adjusted, granulated, and then mixed with a fine powder for preventing fusion between the granules. 1400-17
Artificial ceramic particles produced by firing at 50 ° C and removing fine particles for fusion prevention at the same time as crushing reduce the man-hours required for molding, have excellent crush resistance, reduce waste, and fire resistance It is being used gradually because it is excellent.

【0003】[0003]

【発明が解決しようとする課題】上述した珪砂を使用し
た鋳造用鋳型は耐火度が低く、かつ粒子が破砕され易い
ためにリサイクル率が低い。すなわち廃棄物量が多いと
いう問題があった。また、前述した焼成法で製造された
人造セラミック粒子(以下、焼成人造セラミック粒子と
いう)は、図2の焼成人造セラミック粒子1の断面形状
の模式図に示すように、製造条件によっては粒子表面に
凹凸が多い。
The casting mold using silica sand as described above has a low refractory level and the particles are easily crushed, so that the recycling rate is low. That is, there was a problem that the amount of waste was large. In addition, the artificial ceramic particles produced by the above-described firing method (hereinafter, referred to as fired artificial ceramic particles) may be formed on the particle surface depending on the production conditions, as shown in the schematic view of the sectional shape of the fired artificial ceramic particles 1 in FIG. There are many irregularities.

【0004】表面に凹凸が多い粒子では、回収再生過程
で凹部に残留したバインダを除去しにくく、再生利用し
た場合、この残留バインダの性能劣化により、図17に
示すように、焼成人造セラミック再生砂を使用した鋳造
用鋳型の圧壊強度は著しく低下する問題がある。その結
果、とくに製品重量が約20トン以上の大物鋳鋼用の鋳
型では、鋳造後に鋳型の割れ、鋳型の変形などが発生
し、鋳物の表面性状の不良、鋳型中への溶湯の浸入(焼
着き)が発生して鋳物の仕上げに多大の工数を要する場
合がある。
Particles having a large number of irregularities on the surface make it difficult to remove the binder remaining in the recesses during the recovery and regeneration process. When recycled, the residual binder deteriorates in performance, as shown in FIG. There is a problem that the crushing strength of the casting mold using is significantly reduced. As a result, especially in the case of large cast steel molds with a product weight of about 20 tons or more, cracks in the mold, deformation of the mold, etc. occur after casting, resulting in poor surface quality of the cast product and intrusion of molten metal into the mold (seizure). ) Occurs, and a great number of steps are required to finish the casting.

【0005】本発明は、上記問題を解決するためになさ
れたもので、良好な表面性状の鋳物を製造でき、また鋳
物の仕上げ工数を低減できる高強度な鋳造用鋳型の製造
方法を提供することを目的とする。また、本発明は、圧
壊強度が25kgf/cm2以上となる高強度で大型の
鋳造用鋳型の製造方法を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a method for producing a casting mold with high strength capable of producing a casting having good surface properties and reducing the number of finishing steps of the casting. With the goal. Another object of the present invention is to provide a method for producing a large casting mold having a high strength and a crushing strength of 25 kgf / cm 2 or more.

【0006】[0006]

【課題を解決するための手段】本発明者は、電気炉で2
000℃以上の高温に完全に溶融された酸化物溶湯から
アトマイズ法によって粒子を作る技術として、近年開発
された溶融造粒法による人造セラミック粒子(以下、溶
融造粒人造セラミック粒子という)に注目し粒子性状な
どについて鋭意研究の結果、鋳型用の鋳物砂の原料組成
物として焼成人造セラミック粒子と溶融造粒人造セラミ
ック粒子を併用することが有効であるとの知見を得て本
発明に至った。図3に溶融造粒人造セラミック粒子2の
断面形状の模式図を示す。また、人造セラミック粒子を
繰り返し再生利用する場合、表面の凹凸が多い焼成人造
セラミック粒子の凹部に残留するバインダが再生鋳型の
圧壊強度の劣化の原因となることを究明し、残留バイン
ダの除去手段を適用して再生人造セラミック粒子を使用
した本発明に至った。
The inventor of the present invention is
As a technique for producing particles from an oxide melt completely melted at a high temperature of 000 ° C or higher by atomization, attention has been paid to artificial ceramic particles (hereinafter referred to as melt granulated artificial ceramic particles) developed by the melt granulation method. As a result of diligent research on particle properties, etc., the inventors have found that it is effective to use a combination of fired artificial ceramic particles and melt-granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and arrived at the present invention. FIG. 3 shows a schematic diagram of the cross-sectional shape of the melt-granulated artificial ceramic particles 2. Further, when the artificial ceramic particles are repeatedly recycled, it was clarified that the binder remaining in the concave portions of the sintered artificial ceramic particles having many surface irregularities causes the deterioration of the crushing strength of the recycled mold, and the means for removing the residual binder was investigated. The present invention has been applied to use recycled artificial ceramic particles.

【0007】すなわち、本発明の鋳造用鋳型の製造方法
は、鋳型用の鋳物砂の原料組成物として焼成人造セラミ
ック粒子と溶融造粒人造セラミック粒子を用意する工程
と、原料組成物を結合させるバインダを原料組成物に混
合して混練砂を得る工程と、混練砂を造型する工程と、
からなることを特徴とする。本発明において、溶融造粒
人造セラミック粒子は、その表面の凹凸が、前記焼成人
造セラミック粒子の凹凸より少ない。ここで、原料組成
物が溶融造粒人造セラミック粒子を30〜80wt%含
有していることが好ましい。また、焼成人造セラミック
粒子及び溶融造粒人造セラミック粒子の組成が、Al
とSiO を主体とし、合計で5wt%以下のFe
、TiO、KO、NaO、CaO、MgO
の一種または二種以上を含有することができる。
That is, the method for producing a casting mold of the present invention
Is an artificial ceramic ceramic that is used as a raw material composition for foundry sand for molds.
Process of preparing powder particles and melt granulated artificial ceramic particles
And a binder that binds the raw material composition to the raw material composition.
A step of combining to obtain kneaded sand, a step of molding the kneaded sand,
It is characterized by consisting of. In the present invention, melt granulation
Artificial ceramic particles have irregularities on the surface,
Less than unevenness of ceramic particles. Where the raw material composition
The product contains 30-80 wt% of melt-granulated artificial ceramic particles.
It is preferable to have. Also, firing artificial ceramics
The composition of the particles and the fused granulated artificial ceramic particles is AlTwo
OThreeAnd SiO TwoFe as a main component, and Fe of 5 wt% or less in total
TwoOThree, TiOTwo, KTwoO, NaTwoO, CaO, MgO
One or two or more of the above can be contained.

【0008】また、本発明の鋳造用鋳型の製造方法は、
鋳型用の鋳物砂の原料組成物として焼成人造セラミック
粒子と溶融造粒人造セラミック粒子を用意する工程と、
原料組成物を結合させるバインダを原料組成物に混合し
て混練砂を得る工程と、混練砂を造型する工程と、前記
造型された鋳型に金属溶湯を鋳込後型ばらし回収された
再生用焼成人造セラミック粒子及び再生用溶融造粒人造
セラミック粒子からなる再生用粒子を得る工程と、再生
用焼成人造セラミック粒子に10μm以下の微細セラミ
ック粒子を機械的手段により混合して残留バインダを除
去した後、微細セラミック粒子を分級、除去した再生人
造セラミック粒子を製造する工程と、鋳型用の鋳物砂の
再原料組成物として焼成人造セラミック粒子と溶融造粒
人造セラミック粒子に再生人造セラミック粒子を配合す
る工程と、再原料組成物を結合させるバインダを再原料
組成物に混合して再混練砂を得る工程と、再混練砂を造
型する工程と、からなることを特徴とする。
The method for producing a casting mold of the present invention is
A step of preparing firing artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold;
A step of mixing a binder for binding the raw material composition to the raw material composition to obtain kneading sand, a step of molding the kneading sand, and a firing for regeneration recovered after casting the molten metal into the molded mold and recovering the mold. A step of obtaining regenerating particles composed of artificial ceramic particles and regenerated melt-granulated artificial ceramic particles; and a step of mixing fine ceramic particles of 10 μm or less with the regenerating fired artificial ceramic particles by mechanical means to remove residual binder, A step of classifying and removing fine ceramic particles to produce regenerated artificial ceramic particles, and a step of blending the regenerated artificial ceramic particles with the fired artificial ceramic particles and the melt-granulated artificial ceramic particles as a raw material composition of the molding sand for casting A step of mixing a binder for binding the re-raw material composition with the re-raw material composition to obtain re-kneaded sand, and a step of molding the re-kneaded sand, Characterized in that it comprises.

【0009】また、本発明の鋳造用鋳型の製造方法は、
鋳型用の鋳物砂の原料組成物として焼成人造セラミック
粒子と溶融造粒人造セラミック粒子を用意する工程と、
原料組成物を結合させるアルカリフェノールバインダを
原料組成物に混合して混練砂を得る工程と、混練砂を造
型する工程と、前記造型された鋳型に金属溶湯を鋳込後
型ばらし回収された再生用焼成人造セラミック粒子及び
再生用溶融造粒人造セラミック粒子からなる再生用粒子
を得る工程と、再生用焼成人造セラミック粒子に酸を混
練して残留バインダを反応、除去することにより再生人
造セラミック粒子を得る工程と、鋳型用の鋳物砂の再原
料組成物として焼成人造セラミック粒子と溶融造粒人造
セラミック粒子に再生人造セラミック粒子を配合する工
程と、再原料組成物を結合させるアルカリフェノールバ
インダ及び硬化剤を再原料組成物に混合して再混練砂を
得る工程と、再混練砂を造型する工程と、からなること
を特徴とする。
The method of manufacturing a casting mold of the present invention is
A step of preparing firing artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold;
A step of mixing an alkaline phenol binder that binds the raw material composition to the raw material composition to obtain kneading sand, a step of molding the kneading sand, and a recovery after recovering the mold after casting the molten metal into the molded mold Process for obtaining reclaimed particles composed of fired artificial ceramic particles and regenerated melt-granulated artificial ceramic particles, and regenerated artificial ceramic particles by reacting and removing the residual binder by kneading the regenerated fired artificial ceramic particles with an acid. A step of obtaining, a step of blending the regenerated artificial ceramic particles with the fired artificial ceramic particles and the melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and an alkali phenol binder and a curing agent for binding the regenerated material composition Is mixed with the re-raw material composition to obtain re-kneading sand, and a step of molding the re-kneading sand.

【0010】また、本発明の鋳造用鋳型の製造方法は、
鋳型用の鋳物砂の原料組成物として焼成人造セラミック
粒子と溶融造粒人造セラミック粒子を用意する工程と、
原料組成物を結合させるアルカリフェノールバインダを
原料組成物に混合して混練砂を製造する工程と、混練砂
を造型する工程と、造型された鋳型に金属溶湯を鋳込後
型ばらし回収された再生用焼成人造セラミック粒子及び
再生用溶融造粒人造セラミック粒子からなる再生用粒子
を得る工程と、再生用焼成人造セラミック粒子を水中で
残留バインダを溶出、除去し、乾燥することにより再生
人造セラミック粒子を得る工程と、鋳型用の鋳物砂の再
原料組成物として焼成人造セラミック粒子と溶融造粒人
造セラミック粒子に再生人造セラミック粒子を配合する
工程と、再原料組成物を結合させるアルカリフェノール
バインダ及び硬化剤を再原料組成物に混合して再混練砂
を製造する工程と、再混練砂を造型する工程と、からな
ることを特徴とする。
The manufacturing method of the casting mold of the present invention is
A step of preparing firing artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold;
A step of mixing the raw material composition with an alkali phenol binder to produce a kneaded sand, a step of molding the kneaded sand, and a step of casting the molten metal into a molded mold and recovering the mold after recovery. Process for obtaining reclaimed particles consisting of fired artificial ceramic particles and reclaimed melt-granulated artificial ceramic particles, and regenerated artificial ceramic particles are obtained by eluting and removing residual binder from the reclaimed fired artificial ceramic particles in water. A step of obtaining, a step of blending the regenerated artificial ceramic particles with the fired artificial ceramic particles and the melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and an alkali phenol binder and a curing agent for binding the regenerated material composition Is mixed with the raw material composition to produce re-kneaded sand, and a step of molding the re-kneaded sand. .

【0011】さらに、本発明の鋳造用鋳型の製造方法
は、鋳型用の鋳物砂の原料組成物として焼成人造セラミ
ック粒子と溶融造粒人造セラミック粒子を用意する工程
と、原料組成物を結合させるバインダを原料組成物に混
合して混練砂を得る工程と、混練砂を造型機に充填し先
端に特殊形状の粒子拘束部位を有した型込め治具にて前
記原料組成物の充填密度を高めるように造型する工程
と、からなることを特徴とする。好ましくは、先端に特
殊形状の粒子拘束部位を有した型込め治具が、先端にテ
ーパ状もしくはコの字状の窪みを有した型込め治具であ
る。
Further, the method for producing a casting mold of the present invention comprises a step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and a binder for binding the raw material composition. To obtain a kneading sand by mixing with the raw material composition, and to increase the packing density of the raw material composition with a molding jig with a kneading sand filled in a molding machine and having a specially shaped particle restraining site at the tip. And a molding step. Preferably, the molding jig having a specially-shaped particle restraining portion at its tip is a molding jig having a tapered or U-shaped recess at its tip.

【0012】[0012]

【発明の実施の形態】以下、本発明の鋳造用鋳型の製造
方法を完成するにあたって行った基礎的な検討結果を述
べる。
BEST MODE FOR CARRYING OUT THE INVENTION The basic results of studies conducted in completing the method for producing a casting mold of the present invention will be described below.

【0013】図1は、本発明にかかる鋳造用鋳型の製造
方法の一例を示す工程図である。まず、鋳型用の鋳物砂
の原料組成物として焼成人造セラミック粒子と溶融造粒
人造セラミック粒子を用意する(ステップS11)。原
料組成物を結合させるバインダを原料組成物に混合して
混練砂を製造(ステップS12)し、その後、混練砂を
造型(ステップS13)して鋳造用鋳型を製造する(ス
テップS14)。なお、原料組成物を結合させるバイン
ダを原料組成物に混合して混練砂を製造する場合に、接
合力を増加するためのバインダのほかに他の目的で硬化
剤ほかの添加剤を混合してもよい。
FIG. 1 is a process chart showing an example of a method for manufacturing a casting mold according to the present invention. First, fired artificial ceramic particles and melt-granulated artificial ceramic particles are prepared as a raw material composition of molding sand for a mold (step S11). A binder for binding the raw material composition is mixed with the raw material composition to produce kneading sand (step S12), and then the kneading sand is molded (step S13) to produce a casting mold (step S14). When a binder that binds the raw material composition is mixed with the raw material composition to produce kneaded sand, in addition to the binder for increasing the bonding strength, a curing agent and other additives are mixed for other purposes. Good.

【0014】鋳型用の鋳物砂の原料組成物として使用さ
れる焼成人造セラミック粒子や溶融造粒人造セラミック
粒子は、繰り返し鋳物砂の原料組成物として再生利用で
きる必要がある。図4に鋳型用の鋳物砂の原料組成物と
して焼成人造セラミック粒子と溶融造粒人造セラミック
粒子を併用して造型した鋳型に金属溶湯を鋳込後型ばら
し回収されたままの再生用焼成人造セラミック粒子の残
留バインダ量と、この再生用焼成人造セラミック粒子に
10μm以下の微細セラミック粒子を衝撃、摩擦、研磨
などの機械的手段により混合して残留バインダを除去
し、その後鋳型材料として利用できない微細セラミック
粒子を分級、除去する場合の微細セラミック粒子の配合
割合の影響を示す。
The fired artificial ceramic particles and the melt-granulated artificial ceramic particles used as the raw material composition of the foundry sand for the mold must be repeatedly recyclable as the raw material composition of the foundry sand. FIG. 4 shows a reclaimed reclaimed reclaimed man-made ceramic that has been recovered by casting a molten metal into a mold, which is formed by combining fired man-made ceramic particles and melt-granulated man-made ceramic particles as a raw material composition of foundry sand for a mold. The residual binder amount of the particles and fine ceramic particles of 10 μm or less are mixed with the regenerated firing artificial ceramic particles by mechanical means such as impact, friction and polishing to remove the residual binder, and thereafter the fine ceramic which cannot be used as a mold material. The influence of the compounding ratio of fine ceramic particles when classifying and removing particles is shown.

【0015】微細セラミック粒子の配合割合が高くなる
と、これら微細セラミック粒子が再生用焼成人造セラミ
ック粒子の凹部に残留したバインダを機械的に除去する
効果があるために、残留バインダ量が低減する。再生利
用されたときの鋳型の強度の劣化の原因となる再生用焼
成人造セラミック粒子の残留バインダ量が減少すると、
再生鋳型の強度は増加する。図5に再生鋳型の圧壊強度
に及ぼす微細セラミック粒子の配合割合の影響を示す。
これより、微細セラミック粒子を再生用焼成人造セラミ
ック粒子に機械的手段で混合適用することで、鋳型用の
好適な再生人造セラミック粒子を製造でき、これを用い
ることで圧壊強度の高い鋳型を得ることができる。
When the blending ratio of the fine ceramic particles becomes high, the fine ceramic particles have an effect of mechanically removing the binder remaining in the concave portions of the regenerated fired artificial ceramic particles, so that the residual binder amount is reduced. When the residual binder amount of the regenerated fired artificial ceramic particles, which causes the deterioration of the strength of the mold when recycled, decreases,
The strength of the regenerated mold increases. FIG. 5 shows the influence of the compounding ratio of the fine ceramic particles on the crush strength of the recycled mold.
From this, by mixing and applying the fine ceramic particles to the recycled artificial ceramic particles by mechanical means, it is possible to produce suitable recycled artificial ceramic particles for a mold, and by using this, a mold having high crush strength can be obtained. You can

【0016】図6は焼成人造セラミック粒子と溶融造粒
人造セラミック粒子の残留バインダ量と鋳型の圧壊強度
の関係を示すもので、焼成人造セラミック粒子(焼成セ
ラミックス)を用いたものは繰り返し再生使用すること
により残留バインダ量が多くなり圧壊強度が大きく低下
することがわかる。一方、溶融造粒人造セラミック粒子
(溶融造粒法セラミックス)は表面の凹凸が少ないの
で、回収再生時に残留バインダは除去し易く繰り返し再
生使用されても残留バインダ量の増加は少ないことがわ
かる。鋳造用鋳型の鋳物砂の原料組成物を結合させるバ
インダとして、アルカリフェノールバインダを用いた場
合、バインダはアルカリ性であり、再生用焼成人造セラ
ミック粒子の残留バインダを除去するために酸との反応
利用を検討した。
FIG. 6 shows the relationship between the residual binder amount of the fired artificial ceramic particles and the melt-granulated artificial ceramic particles and the crush strength of the mold. Those using the fired artificial ceramic particles (fired ceramics) are repeatedly recycled. As a result, the amount of residual binder increases and the crushing strength decreases significantly. On the other hand, since the melt-granulated artificial ceramic particles (melt-granulated ceramics) have few irregularities on the surface, it can be seen that the residual binder is easily removed at the time of recovery and regeneration, and the increase in the amount of residual binder is small even after repeated recycling. When an alkali phenol binder is used as the binder for binding the raw material composition of the foundry sand of the casting mold, the binder is alkaline, and the reaction utilization with acid is used to remove the residual binder of the regenerated firing artificial ceramic particles. investigated.

【0017】図7に鋳込後型ばらし回収された古砂の再
生用焼成人造セラミック粒子のPHに及ぼす塩酸水溶液
添加量の影響を示す。塩酸水溶液の添加量が多くなるほ
ど、塩酸水溶液との反応が生じた結果、再生人造セラミ
ック粒子のPHがより小さくなり中和されていることが
わかる。図8は中和に使用した酸消費量と鋳型圧壊強度
の関係を示すものである。アルカリフェノールバインダ
中には金属カリウムやナトリウムが含まれているので、
繰り返し再生使用により再生用焼成人造セラミック粒子
の表面に残留バインダ量が多くなると、これらが蓄積さ
れてくるので新たなバインダを混合する前に酸で中和す
る必要がある。従って、鋳型の圧壊強度の低いものは残
留バインダ量が多く、これを中和するために使用される
酸消費量が多くなることがわかる。
FIG. 7 shows the effect of the addition amount of the hydrochloric acid aqueous solution on the PH of the reclaimed artificial ceramic particles for reclaiming the old sand recovered after the casting. It can be seen that as the amount of the hydrochloric acid aqueous solution added increases, the pH of the regenerated artificial ceramic particles becomes smaller and neutralized as a result of the reaction with the hydrochloric acid aqueous solution. FIG. 8 shows the relationship between the consumption amount of acid used for neutralization and the crush strength of the template. Since the alkali phenol binder contains metallic potassium and sodium,
When the amount of the residual binder increases on the surface of the reclaimed artificial ceramic particles due to repeated recycling, they are accumulated, so that it is necessary to neutralize with an acid before mixing a new binder. Therefore, it can be seen that a mold having a low crushing strength has a large amount of residual binder, and a large amount of acid is consumed to neutralize the residual binder.

【0018】図9は塩酸水溶液の添加量と鋳型圧壊強度
の関係を示すもので、再生用焼成人造セラミック粒子に
混練する塩酸水溶液の添加量が多くなると再生用焼成人
造セラミック粒子の凹部に残留したバインダを反応、除
去する効果があるために、残留バインダ量が低減する。
古砂が新砂と一緒に再生利用されるときは、あらたにア
ルカリフェノールバインダと硬化剤が鋳物砂の原料組成
物に混合される。鋳型の強度の劣化の原因となる再生用
焼成人造セラミック粒子の残留バインダ量が減少するの
で、再生鋳型の強度は増加する。これより、酸を混練す
ることで、鋳型用の好適な再生人造セラミック粒子を製
造でき、これを用いることで圧壊強度の高い鋳型を得る
ことができる。なお、酸としては塩酸などの無機酸でも
酢酸などの有機酸であってもよい。
FIG. 9 shows the relationship between the addition amount of hydrochloric acid aqueous solution and the crushing strength of the mold. When the addition amount of the hydrochloric acid aqueous solution to be kneaded with the regenerated artificial ceramic particles remained in the recesses of the regenerated artificial ceramic particles. The amount of residual binder is reduced because it has the effect of reacting and removing the binder.
When old sand is recycled together with fresh sand, an alkaline phenol binder and a hardening agent are newly mixed in the raw material composition of the foundry sand. Since the amount of residual binder in the regenerated fired artificial ceramic particles, which causes deterioration of the strength of the mold, is reduced, the strength of the recycled mold is increased. From this, by kneading an acid, it is possible to produce a suitable regenerated artificial ceramic particle for a mold, and by using this, a mold having a high crush strength can be obtained. The acid may be an inorganic acid such as hydrochloric acid or an organic acid such as acetic acid.

【0019】図10は残留バインダ量に及ぼす水洗時間
の影響を示すもので、水洗時間が長くなると残留バイン
ダ量が大きく減少することがわかる。鋳造用鋳型の鋳物
砂の原料組成物を結合させるバインダとして、アルカリ
フェノールバインダを用いた場合、バインダは水溶性で
あり、再生用焼成人造セラミック粒子の残留バインダを
除去するために水洗処理が有効であることがわかる。
FIG. 10 shows the effect of the washing time on the residual binder amount, and it can be seen that the residual binder amount is greatly reduced as the washing time becomes longer. When an alkali phenol binder is used as a binder for binding the raw material composition of the foundry sand of the casting mold, the binder is water-soluble, and the washing treatment is effective for removing the residual binder of the regenerated artificial ceramic particles. I know there is.

【0020】図11は水洗時間と鋳型圧壊強度の関係を
示すもので、再生用焼成人造セラミック粒子を水洗する
時間が長くなると、水中で処理された再生用焼成人造セ
ラミック粒子の凹部に残留したバインダを溶出、除去す
る効果があるために、残留バインダ量が低減する。その
後乾燥され、古砂と新砂と一緒に再生利用されるとき
は、あらたにアルカリフェノールバインダと硬化剤が鋳
物砂の原料組成物に混合される。鋳型の強度の劣化の原
因となる再生用焼成人造セラミック粒子の残留バインダ
量が水中処理により減少するので、再生鋳型の強度は増
加する。これより、水中で処理することで、鋳型用の好
適な再生人造セラミック粒子を製造でき、これを用いる
ことで圧壊強度の高い鋳型を得ることができる。
FIG. 11 shows the relationship between the time of washing with water and the crushing strength of the mold. When the time for washing the regenerated fired artificial ceramic particles with water becomes long, the binder remaining in the recesses of the regenerated fired artificial ceramic particles treated in water is shown. The amount of residual binder is reduced because it has the effect of elution and removal. When it is then dried and reused with old sand and new sand, an alkaline phenol binder and a hardening agent are newly mixed with the raw material composition of the foundry sand. The strength of the regenerated mold is increased because the amount of the residual binder of the regenerated fired artificial ceramic particles, which causes deterioration of the strength of the mold, is reduced by the water treatment. From this, by treating in water, it is possible to manufacture suitable regenerated artificial ceramic particles for a mold, and by using this, it is possible to obtain a mold having high crush strength.

【0021】高強度で大型の鋳造用鋳型を製造するため
には、造鋳型の人造セラミック粒子の充填密度を高める
必要がある。従来、一般的に使用されていた非球形状の
人造珪砂と異なり、焼成人造セラミック粒子はもとよ
り、とくに溶融造粒人造セラミック粒子の形状は球状で
あるために、造型機でいかにして砂をしまるようにつき
固めて充填密度を高めるかが重要である。とくに、重量
が数トン以上の鋳物の造型では、鋳型枠全体を振動させ
ることや、機械的な自動型込めも困難であり、人力によ
る型込め作業が必要である。
In order to manufacture a high-strength and large-sized casting mold, it is necessary to increase the packing density of the artificial ceramic particles in the molding mold. Unlike non-spherical artificial silica sand that has been generally used in the past, not only calcined artificial ceramic particles but also melt-granulated artificial ceramic particles have a spherical shape. Therefore, it is important to solidify and increase the packing density. In particular, in the molding of a casting having a weight of several tons or more, it is difficult to vibrate the entire mold frame and it is difficult to perform mechanical automatic molding, and thus manual molding work is required.

【0022】通常用いられる先端に平板をとりつけた型
込め治具では、充填後つき固めしようとしても粒子が球
状であるために拘束できず平板の外側に逃げてしまい砂
がしまらず充填密度を高めることが困難である。そこ
で、図12に示す先端が特殊形状の粒子拘束部位を有し
た型込め治具を検討した。テーパ状窪みの先端部31を
有した型込め治具3とコの字状窪みの先端部32を有し
た型込め治具3の例を示す。この特殊形状の粒子拘束部
位を有した型込め治具3を備えた振動充填機で、充填後
移動しながら人造セラミック粒子をテーパ状もしくはコ
の字状の特殊形状の粒子拘束部位で粒子を拘束しながら
つき固める作業を何回も繰り返して充填率を高め、造型
全体を緻密化しなければ大型の高強度な鋳造用鋳型が得
られない。
In a molding jig having a flat plate attached to the tip, which is usually used, even if it is attempted to solidify after filling, it cannot be restrained because the particles are spherical and escapes to the outside of the flat plate so that sand is not generated and the packing density is It is difficult to raise. Therefore, a molding jig having a particle-confined portion having a special shape at the tip as shown in FIG. 12 was examined. An example of the molding jig 3 having the tip portion 31 of the tapered depression and the molding jig 3 having the tip portion 32 of the U-shaped depression are shown. With the vibration filling machine equipped with the molding jig 3 having this special shape particle restraining portion, the artificial ceramic particles are restrained at the tapered or U-shaped special particle restraining portion while moving after filling. However, a large, high-strength casting mold cannot be obtained unless the filling rate is increased by repeating the solidifying operation many times to densify the entire molding.

【0023】図13は従来の先端に平板をとりつけた型
込め治具を備えた振動充填機と本発明の先端に特殊形状
の粒子拘束部位を有した型込め治具を備えた振動充填機
で充填、つき固めた場合の鋳型圧壊強度に及ぼす粒子の
充填率の影響を示すものである。先端に特殊形状の粒子
拘束部位を有した型込め治具にて粒子の充填率を高める
ように造型することにより圧壊強度の高い鋳型を得るこ
とができる。
FIG. 13 shows a conventional vibration filling machine equipped with a molding jig having a flat plate attached to the tip and a vibration filling machine equipped with a molding jig having a specially shaped particle restraining portion at the tip of the present invention. It shows the effect of the packing ratio of particles on the crushing strength of the mold when it is filled and solidified. A mold having a high crushing strength can be obtained by molding with a molding jig having a special shape particle restraining portion at the tip so as to increase the packing rate of particles.

【0024】以下では、以上の基礎的な検討に基づく鋳
造用鋳型の製造方法の具体例について説明する。鋳型用
の鋳物砂の原料組成物として、平均粒径が0.12〜
0.15mmの焼成人造セラミック粒子と溶融造粒人造
セラミック粒子を併用2することを検討した。なお、両
方の人造セラミック粒子の組成は、AlとSiO
を主体とアルミノケイ酸塩の組成であり、通常ムライ
トと呼ばれているAlが61wt%−SiO
37wt%の3Al・2SiO相当の組成であ
る。なお、人造セラミック粒子の組成としては、Al
とSiOを主体とするが、合計で5wt%以下の
Fe、TiO、KO、NaO、CaO、M
gOの一種または二種以上を含有することができる。
A specific example of a method for manufacturing a casting mold based on the above basic examination will be described below. As a raw material composition of molding sand for a mold, the average particle size is 0.12 to 0.12.
The combined use of 0.15 mm fired artificial ceramic particles and melt granulated artificial ceramic particles was studied. The composition of both artificial ceramic particles was Al 2 O 3 and SiO 2.
2 is a composition of mainly the aluminosilicate to a the Al 2 O 3, which is usually referred to as mullite 61 wt% -SiO 2 37 wt% of 3Al 2 O 3 · 2SiO 2 equivalent composition. The composition of the artificial ceramic particles is Al 2
Mainly composed of O 3 and SiO 2 , but 5 wt% or less in total of Fe 2 O 3 , TiO 2 , K 2 O, Na 2 O, CaO, M
One or two or more kinds of gO can be contained.

【0025】図14に鋳型用の鋳物砂の原料組成物とし
て焼成人造セラミック粒子単独の場合と溶融造粒人造セ
ラミック粒子を併用して造型した鋳型に金属溶湯を鋳込
後型ばらし回収されたままの再生用焼成人造セラミック
粒子の残留バインダ量について、溶融造粒人造セラミッ
ク粒子の配合割合の影響を示す。これより、鋳型用の鋳
物砂の原料組成物として表面凹凸の多い焼成人造セラミ
ック粒子単独の場合に比して、表面凹凸の少ない溶融造
粒人造セラミック粒子の配合割合が高くなると、再生用
焼成人造セラミック粒子の残留バインダ量が少なくなる
ことがわかり、再生用として好適である。これは、溶融
造粒人造セラミック粒子の表面についた残留バインダ
は、焼成人造セラミック粒子の表面についたものより除
去し易いためである。
FIG. 14 shows a case where the firing sand ceramics alone are used as the raw material composition of the foundry sand for the casting mold and the molten granulation is used in combination with the casting ceramics particles. The effect of the blending ratio of the melt-granulated artificial ceramic particles on the residual binder amount of the regenerated fired artificial ceramic particles is shown. From this, as compared with the case of using only the firing artificial ceramic particles having many surface irregularities as the raw material composition of the molding sand for the mold, when the blending ratio of the melt granulated artificial ceramic particles having less surface irregularities becomes higher, the firing artificial regeneration particles It was found that the residual binder amount of the ceramic particles was small, which is suitable for regeneration. This is because the residual binder on the surface of the melt-granulated artificial ceramic particles is easier to remove than that on the surface of the fired artificial ceramic particles.

【0026】図15に鋳型圧壊強度に及ぼす溶融造粒人
造セラミック粒子の配合割合の影響を示す。これより、
溶融造粒人造セラミックス粒子の配合割合が高くなるに
つれて鋳型圧壊強度が増加し、30wt%以上になると
25kgf/cm2以上の高い鋳型圧壊強度が得られ、
大型の鋳造用鋳型に好適である。一方、図16に鋳型用
の鋳物砂の原料組成物として焼成人造セラミック粒子と
溶融造粒人造セラミック粒子を併用して造型した鋳型に
金属溶湯を鋳込後型ばらし回収された再生用焼成人造セ
ラミック粒子を繰り返し再生使用したときの回収率に及
ぼす溶融造粒人造セラミック粒子の配合割合の影響を示
す。
FIG. 15 shows the influence of the blending ratio of the melt-granulated artificial ceramic particles on the mold crushing strength. Than this,
The mold crushing strength increases as the blending ratio of the melt-granulated artificial ceramic particles increases, and when it exceeds 30 wt%, a high mold crushing strength of 25 kgf / cm 2 or more is obtained.
Suitable for large casting molds. On the other hand, FIG. 16 shows a recycled firing artificial ceramic which is obtained by casting a molten metal into a mold produced by using firing artificial ceramic particles and melting granulation artificial ceramic particles together as a raw material composition of foundry sand for a mold and recovering the mold. The influence of the blending ratio of the melt-granulated artificial ceramic particles on the recovery rate when the particles are repeatedly recycled is shown.

【0027】従来使用されている珪砂の場合は、砂の耐
破砕性が小さいために再生を1回繰り返すたびに回収率
は6〜10%づつ低下するが、焼成人造セラミック粒子
や溶融造粒人造セラミック粒子は砂の強度が高く、繰り
返し再生されても回収率の低下は少ない。溶融造粒人造
セラミック粒子からなる鋳型の耐破砕性は焼成人造セラ
ミック粒子からなるものより若干低いので、図16よ
り、溶融造粒人造セラミック粒子の配合割合が高くなる
につれて、若干回収率が低下する傾向があり、93%以
上の回収率を得るためには溶融造粒人造セラミック粒子
の配合割合の上限を80wt%にするのが望ましい。
In the case of conventionally used silica sand, since the crush resistance of the sand is small, the recovery rate decreases by 6 to 10% each time the regeneration is repeated, but the firing artificial ceramic particles and the melt granulated artificial particles are produced. The ceramic particles have high sand strength, and the recovery rate is small even if they are repeatedly regenerated. Since the crush resistance of the mold made of the melt-granulated artificial ceramic particles is slightly lower than that of the mold made of the fired artificial ceramic particles, as shown in FIG. 16, the recovery rate slightly decreases as the blending ratio of the melt-granulated artificial ceramic particles increases. There is a tendency, and in order to obtain a recovery rate of 93% or more, it is desirable to set the upper limit of the compounding ratio of the melt-granulated artificial ceramic particles to 80 wt%.

【0028】従って、高強度な鋳造用鋳型は、鋳型用の
鋳物砂の原料組成物として焼成人造セラミック粒子とこ
の焼成人造セラミック粒子の表面凹凸より少ない表面凹
凸を有する溶融造粒人造セラミック粒子を併用すること
によって得られる。とくに、溶融造粒人造セラミック粒
子の混合率が30〜80wt%の場合に、回収率が高
く、かつ25kgf/cm2以上の圧壊強度を有する有
用な鋳造用鋳型が得られる。この高強度な鋳造用鋳型を
用いて鋳物を製造した結果、鋳物の表面性状が改善され
ること、鋳物の寸法精度が向上されること、鋳型の焼着
きの防止も達成できることが確認された。その結果、鋳
物品質の向上と仕上げ工数の低減効果も発揮された。
Therefore, the high-strength casting mold is used in combination with the fired artificial ceramic particles and the melt-granulated artificial ceramic particles having surface irregularities smaller than the surface irregularities of the fired artificial ceramic particles as the raw material composition of the molding sand for the mold. It is obtained by doing. Particularly, when the mixing ratio of the melt-granulated artificial ceramic particles is 30 to 80 wt%, a useful casting mold having a high recovery rate and a crushing strength of 25 kgf / cm 2 or more can be obtained. As a result of producing a casting using this high-strength casting mold, it was confirmed that the surface quality of the casting is improved, the dimensional accuracy of the casting is improved, and the seizure of the mold can be prevented. As a result, the casting quality was improved and the finishing man-hours were reduced.

【0029】[0029]

【発明の効果】以上、説明したとおり、本発明によれ
ば、良好な表面性状の鋳物を製造でき、また鋳物の仕上
げ工数を低減できる高強度な鋳造用鋳型の製造方法が得
られる。また、圧壊強度が25kgf/cm2以上とな
る高強度で大型の鋳造用鋳型の製造法が得られる。
As described above, according to the present invention, it is possible to obtain a casting method with high strength, which is capable of producing a casting having good surface properties and reducing the number of man-hours required for finishing the casting. In addition, a method for producing a high-strength, large-sized casting mold having a crushing strength of 25 kgf / cm 2 or more can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかる鋳造用鋳型の製造方法の一例
を示す工程図である。
FIG. 1 is a process drawing showing an example of a method for manufacturing a casting mold according to the present invention.

【図2】 本発明に使用する焼成人造セラミック粒子の
断面形状の模式図である。
FIG. 2 is a schematic diagram of a cross-sectional shape of the fired artificial ceramic particles used in the present invention.

【図3】 本発明に使用する溶融造粒人造セラミック粒
子の断面形状の模式図である。
FIG. 3 is a schematic view of a cross-sectional shape of melt-granulated artificial ceramic particles used in the present invention.

【図4】 本発明にかかる鋳造用鋳型の製造方法におい
て、再生後の残留バインダ量に及ぼす微細セラミック粒
子配合割合の影響を示す図である。
FIG. 4 is a diagram showing the influence of the blending ratio of fine ceramic particles on the amount of residual binder after regeneration in the method for producing a casting mold according to the present invention.

【図5】 本発明にかかる鋳造用鋳型の製造方法におい
て、鋳型圧壊強度に及ぼす微細セラミック粒子配合割合
の影響を示す図である。
FIG. 5 is a view showing the influence of the mixing ratio of fine ceramic particles on the mold crushing strength in the method for manufacturing a casting mold according to the present invention.

【図6】 本発明に使用する焼成人造セラミック粒子と
溶融造粒人造セラミック粒子を用いた場合の鋳型圧壊強
度と残留バインダ量の関係を示す図である。
FIG. 6 is a diagram showing the relationship between the mold crushing strength and the amount of residual binder when the fired artificial ceramic particles and the melt-granulated artificial ceramic particles used in the present invention are used.

【図7】 本発明にかかる鋳造用鋳型の製造方法におい
て、回収再生した古砂である処理砂のPHに及ぼす塩酸
水溶液添加量の影響を示す図である。
FIG. 7 is a diagram showing the effect of the addition amount of a hydrochloric acid aqueous solution on the PH of treated sand which is recovered and regenerated old sand in the method for producing a casting mold according to the present invention.

【図8】 本発明に使用する焼成人造セラミック粒子と
溶融造粒人造セラミック粒子を用いた場合の酸消費量と
残留バインダ量の関係を示す図である。
FIG. 8 is a diagram showing a relationship between an acid consumption amount and a residual binder amount in the case of using the fired artificial ceramic particles and the melt granulated artificial ceramic particles used in the present invention.

【図9】 本発明にかかる鋳造用鋳型の製造方法におい
て、鋳型圧壊強度に及ぼす塩酸水溶液添加量の影響を示
す図である。
FIG. 9 is a diagram showing the influence of the amount of hydrochloric acid aqueous solution added on the mold crush strength in the method for manufacturing a casting mold according to the present invention.

【図10】 本発明にかかる鋳造用鋳型の製造方法にお
いて、残留バインダ量に及ぼす水洗時間の影響を示す図
である。
FIG. 10 is a diagram showing the influence of the washing time on the amount of residual binder in the method for producing a casting mold according to the present invention.

【図11】 本発明にかかる鋳造用鋳型の製造方法にお
いて、鋳型圧壊強度に及ぼす水洗時間の影響を示す図で
ある。
FIG. 11 is a diagram showing the influence of the water washing time on the mold crush strength in the method for manufacturing a casting mold according to the present invention.

【図12】 本発明にかかる鋳造用鋳型の製造方法にお
いて、先端が特殊形状の型込め治具の先端部の断面形状
の模式図である。
FIG. 12 is a schematic view of a cross-sectional shape of a tip portion of a molding jig having a special tip in the method for manufacturing a casting mold according to the present invention.

【図13】 本発明に用いる先端が特殊形状の型込め治
具を備えた振動充填機と従来の先端に平板をとりつけた
型込め治具を備えた振動充填機で造型した鋳型圧壊強度
に及ぼす粒子の充填率の影響を示す図である。
FIG. 13 shows the crushing strength of a mold produced by a vibration filling machine equipped with a molding jig having a special shape at the tip and a conventional vibration filling machine equipped with a molding jig having a flat plate attached to the tip. It is a figure which shows the influence of the filling rate of particles.

【図14】 本発明にかかる鋳造用鋳型の製造方法にお
いて、再生後の残留バインダ量に及ぼす溶融造粒人造セ
ラミック粒子の配合割合の影響を示す図である。
FIG. 14 is a diagram showing the influence of the blending ratio of melt-granulated artificial ceramic particles on the amount of residual binder after regeneration in the method for manufacturing a casting mold according to the present invention.

【図15】 本発明にかかる鋳造用鋳型の製造方法にお
いて、鋳型圧壊強度に及ぼす溶融造粒人造セラミック粒
子の配合割合の影響を示す図である。
FIG. 15 is a diagram showing the influence of the blending ratio of melt-granulated artificial ceramic particles on the mold crushing strength in the method for manufacturing a casting mold according to the present invention.

【図16】 本発明にかかる鋳造用鋳型の製造方法にお
いて、回収率に及ぼす溶融造粒人造セラミック粒子の配
合割合の影響を示す図である。
FIG. 16 is a diagram showing the influence of the blending ratio of melt-granulated artificial ceramic particles on the recovery rate in the method for manufacturing a casting mold according to the present invention.

【図17】 従来使用されている珪砂と焼成人造セラミ
ック粒子を単独で用いた場合と焼成人造セラミック粒子
の再生砂を用いた場合の鋳型圧壊強度を示す図である。
FIG. 17 is a diagram showing mold crushing strength when silica sand and fired artificial ceramic particles that have been conventionally used alone are used and when recycled sand of fired artificial ceramic particles is used.

【符号の説明】[Explanation of symbols]

1…焼成人造セラミック粒子、2…溶融造粒人造セラミ
ック粒子、3…型込め治具、31…テーパ状窪みの先端
部、32…コの字状窪みの先端部
DESCRIPTION OF SYMBOLS 1 ... Firing artificial ceramic particle, 2 ... Melt granulation artificial ceramic particle, 3 ... Molding jig, 31 ... Tip part of tapered recess, 32 ... Tip part of U-shaped recess

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B22C 1/22 B22C 1/22 B 5/04 5/04 C D 15/02 15/02 Z 23/00 23/00 J (72)発明者 濱口 俊幸 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)発明者 吉田 稔彦 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 Fターム(参考) 4E092 AA01 AA45 AA60 BA04 BA10 BA12 CA01 4E093 BA10 4E094 AA01 AA32 EE02 EE15 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) B22C 1/22 B22C 1/22 B 5/04 5/04 C D 15/02 15/02 Z 23/00 23/00 J (72) Inventor Toshiyuki Hamaguchi 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Toshihiko Yoshida 1-1, Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Company F Nagasaki Shipyard F-term (reference) 4E092 AA01 AA45 AA60 BA04 BA10 BA12 CA01 4E093 BA10 4E094 AA01 AA32 EE02 EE15

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 鋳型用の鋳物砂の原料組成物として焼成
人造セラミック粒子と溶融造粒人造セラミック粒子を用
意する工程と、 前記原料組成物を結合させるバインダを前記原料組成物
に混合して混練砂を得る工程と、 前記混練砂を造型する工程と、を備えたことを特徴とす
る鋳造用鋳型の製造方法。
1. A step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and a binder for binding the raw material composition is mixed and kneaded with the raw material composition. A method for producing a casting mold, comprising a step of obtaining sand and a step of molding the kneaded sand.
【請求項2】 前記溶融造粒人造セラミックス粒子は、
その表面の凹凸が、前記焼成人造セラミック粒子の凹凸
より少ないことを特徴とする請求項1記載の鋳造用鋳型
の製造方法。
2. The fused granulated artificial ceramic particles,
The method for producing a casting mold according to claim 1, wherein the surface irregularities are smaller than the irregularities of the fired artificial ceramic particles.
【請求項3】 前記原料組成物が、前記溶融造粒人造セ
ラミック粒子を30〜80wt%含有することを特徴と
する請求項1または請求項2に記載の鋳造用鋳型の製造
方法。
3. The method for producing a casting mold according to claim 1, wherein the raw material composition contains 30 to 80 wt% of the melt-granulated artificial ceramic particles.
【請求項4】 前記焼成人造セラミック粒子および前記
溶融造粒人造セラミック粒子の組成が、AlとS
iOを主体とし、合計で5wt%以下のFe
TiO、KO、NaO、CaO、MgOの一種ま
たは二種以上を含有することを特徴とする請求項1〜3
のいずれかに記載の鋳造用鋳型の製造方法。
4. The composition of the fired artificial ceramic particles and the melt-granulated artificial ceramic particles is Al 2 O 3 and S.
The iO 2 mainly the following 5 wt% total Fe 2 O 3,
Claim, characterized TiO 2, K 2 O, Na 2 O, CaO, that contains one or two or more of MgO 1 to 3
A method for producing a casting mold according to any one of 1.
【請求項5】 鋳型用の鋳物砂の原料組成物として焼成
人造セラミック粒子と溶融造粒人造セラミック粒子を用
意する工程と、 前記原料組成物を結合させるバインダを前記原料組成物
に混合して混練砂を得る工程と、 前記混練砂を造型する工程と、 前記造型された鋳型に金属溶湯を鋳込後型ばらし回収さ
れた再生用焼成人造セラミック粒子及び再生用溶融造粒
人造セラミック粒子からなる再生用粒子を得る工程と、 前記再生用焼成人造セラミック粒子に10μm以下の微
細セラミック粒子を機械的手段により混合して残留バイ
ンダを除去した後、前記微細セラミック粒子を分級、除
去した再生人造セラミック粒子を製造する工程と、 鋳型用の鋳物砂の再原料組成物として焼成人造セラミッ
ク粒子と溶融造粒人造セラミック粒子に前記再生人造セ
ラミック粒子を配合する工程と、 前記再原料組成物を結合させるバインダを前記再原料組
成物に混合して再混練砂を得る工程と、 前記再混練砂を造型する工程と、を備えたことを特徴と
する鋳造用鋳型の製造方法。
5. A step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and a binder for binding the raw material composition is mixed and kneaded with the raw material composition. A step of obtaining sand, a step of molding the kneading sand, and a step of casting a molten metal in the shaped mold and recovering the regenerated artificial ceramic particles for regeneration and the regenerated melt granulated artificial ceramic particles for regeneration And removing the residual binder by mixing fine ceramic particles having a particle size of 10 μm or less with the regenerated fired artificial ceramic particles by mechanical means, and classifying and removing the fine ceramic particles to obtain regenerated artificial ceramic particles. The manufacturing process, and the regenerated man-made ceramic particles and the melt-granulated man-made ceramic particles as the raw material composition of the molding sand for the mold A step of mixing ceramic particles, a step of mixing a binder for binding the re-stock composition to the re-stock composition to obtain re-kneading sand, and a step of molding the re-kneading sand. A method for producing a casting mold characterized by the above.
【請求項6】 鋳型用の鋳物砂の原料組成物として焼成
人造セラミック粒子と溶融造粒人造セラミック粒子を用
意する工程と、 前記原料組成物を結合させるアルカリフェノールバイン
ダを前記原料組成物に混合して混練砂を製造する工程
と、 前記混練砂を造型する工程と、 前記造型された鋳型に金属溶湯を鋳込後型ばらし回収さ
れた再生用焼成人造セラミック粒子及び再生用溶融造粒
人造セラミック粒子からなる再生用粒子を得る工程と、 前記再生用焼成人造セラミック粒子に酸を混練して残留
バインダを反応、除去することにより再生人造セラミッ
ク粒子を得る工程と、 鋳型用の鋳物砂の再原料組成物として焼成人造セラミッ
ク粒子と溶融造粒人造セラミック粒子に前記再生人造セ
ラミック粒子を配合する工程と、 前記再原料組成物を結合させるアルカリフェノールバイ
ンダ及び硬化剤を前記再原料組成物に混合して再混練砂
を得る工程と、 前記再混練砂を造型する工程と、を備えたことを特徴と
する鋳造用鋳型の製造方法。
6. A step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and mixing an alkaline phenol binder for binding the raw material composition with the raw material composition. A step of producing kneaded sand by a step of molding the kneaded sand, and a step of casting the molten metal in the molded mold and recovering the regenerated artificial ceramic particles for regeneration and the regenerated melt granulated artificial ceramic particles And a step of obtaining regenerated artificial ceramic particles by reacting and removing the residual binder by kneading the burned artificial ceramic particles for regeneration with an acid, and a raw material composition of molding sand for casting As a product, a step of blending the regenerated artificial ceramic particles with the fired artificial ceramic particles and the melt granulated artificial ceramic particles; A method for producing a casting mold, comprising a step of mixing an alkaline phenol binder and a curing agent to be combined with the re-raw material composition to obtain re-kneading sand, and a step of molding the re-kneading sand. .
【請求項7】 鋳型用の鋳物砂の原料組成物として焼成
人造セラミック粒子と溶融造粒人造セラミック粒子を用
意する工程と、 前記原料組成物を結合させるアルカリフェノールバイン
ダを前記原料組成物に混合して混練砂を製造する工程
と、 前記混練砂を造型する工程と、 前記造型された鋳型に金属溶湯を鋳込後型ばらし回収さ
れた再生用焼成人造セラミック粒子及び再生用溶融造粒
人造セラミック粒子からなる再生用粒子を得る工程と、 前記再生用焼成人造セラミック粒子を水中で残留バイン
ダを溶出、除去し、乾燥することにより再生人造セラミ
ック粒子を得る工程と、 鋳型用の鋳物砂の再原料組成物として焼成人造セラミッ
ク粒子と溶融造粒人造セラミック粒子に前記再生人造セ
ラミック粒子を配合する工程と、 前記再原料組成物を結合させるアルカリフェノールバイ
ンダ及び硬化剤を前記再原料組成物に混合して再混練砂
を得る工程と、 前記再混練砂を造型する工程と、を備えたことを特徴と
する鋳造用鋳型の製造方法。
7. A step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and mixing an alkaline phenol binder for binding the raw material composition with the raw material composition. A step of producing kneaded sand by a step of molding the kneaded sand, and a step of casting the molten metal in the molded mold and recovering the regenerated artificial ceramic particles for regeneration and the regenerated melt granulated artificial ceramic particles And a step of obtaining regenerated artificial ceramic particles by eluting and removing the residual binder of the regenerated fired artificial ceramic particles in water, and a raw material composition of casting sand for a mold. A step of blending the regenerated artificial ceramic particles with the fired artificial ceramic particles and the melt granulated artificial ceramic particles as a product, A method for producing a casting mold, comprising a step of mixing an alkaline phenol binder and a curing agent to be combined with the re-raw material composition to obtain re-kneading sand, and a step of molding the re-kneading sand. .
【請求項8】 鋳型用の鋳物砂の原料組成物として焼成
人造セラミック粒子と溶融造粒人造セラミック粒子を用
意する工程と、 前記原料組成物を結合させるバインダを前記原料組成物
に混合して混練砂を製造する工程と、 前記混練砂を造型機に充填し先端に粒子拘束部位を有し
た型込め治具にて前記原料組成物の充填密度を高めるよ
うに造型する工程と、を備えたことを特徴とする鋳造用
鋳型の製造方法。
8. A step of preparing calcined artificial ceramic particles and melt granulated artificial ceramic particles as a raw material composition of molding sand for a mold, and a binder for binding the raw material composition is mixed and kneaded with the raw material composition. A step of producing sand, and a step of filling the kneading sand into a molding machine and molding the mixture so as to increase the packing density of the raw material composition with a molding jig having a particle restraining site at the tip. A method for producing a casting mold, comprising:
【請求項9】 前記先端に特殊形状の粒子拘束部位を有
した型込め治具が、先端にテーパ状もしくはコの字状の
窪みを有した型込め治具であることを特徴とする請求項
8記載の鋳造用鋳型の製造方法。
9. The molding jig having a specially-shaped particle restraining portion at the tip is a molding jig having a tapered or U-shaped recess at the tip. 8. The method for producing a casting mold according to item 8.
JP2001340584A 2001-11-06 2001-11-06 Manufacturing method of casting mold Expired - Fee Related JP3540788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340584A JP3540788B2 (en) 2001-11-06 2001-11-06 Manufacturing method of casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340584A JP3540788B2 (en) 2001-11-06 2001-11-06 Manufacturing method of casting mold

Publications (2)

Publication Number Publication Date
JP2003136187A true JP2003136187A (en) 2003-05-14
JP3540788B2 JP3540788B2 (en) 2004-07-07

Family

ID=19154762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340584A Expired - Fee Related JP3540788B2 (en) 2001-11-06 2001-11-06 Manufacturing method of casting mold

Country Status (1)

Country Link
JP (1) JP3540788B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184020A (en) * 2009-05-25 2009-08-20 Asahi Organic Chem Ind Co Ltd Synthetic mullite sand and mold
CN105328121A (en) * 2015-11-13 2016-02-17 顺德职业技术学院 Die-free fast casting method based on fused deposition technology
JP6489394B1 (en) * 2018-03-02 2019-03-27 株式会社小西鋳造 Method of manufacturing sand mold for casting
JP2019150871A (en) * 2019-02-13 2019-09-12 株式会社小西鋳造 Manufacturing method of sand block

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110052570A (en) * 2019-04-01 2019-07-26 蔡旭斌 A kind of pollution-free environmentally friendly casting sand and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184020A (en) * 2009-05-25 2009-08-20 Asahi Organic Chem Ind Co Ltd Synthetic mullite sand and mold
CN105328121A (en) * 2015-11-13 2016-02-17 顺德职业技术学院 Die-free fast casting method based on fused deposition technology
JP6489394B1 (en) * 2018-03-02 2019-03-27 株式会社小西鋳造 Method of manufacturing sand mold for casting
JP2019150843A (en) * 2018-03-02 2019-09-12 株式会社小西鋳造 Manufacturing method of casting sand mold
JP2019150871A (en) * 2019-02-13 2019-09-12 株式会社小西鋳造 Manufacturing method of sand block

Also Published As

Publication number Publication date
JP3540788B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
EP0751917B1 (en) Heat curable foundry binder systems
EP1753560B1 (en) Reclamation of ester-cured phenolic resin bonded foundry sands
CN109967693B (en) Additive for removing inert film of used casting sand and method for removing inert film of used casting sand
US20050155741A1 (en) Casting sand cores and expansion control methods therefor
JP6462347B2 (en) Mold sand and its manufacturing method
JP2003136187A (en) Method for manufacturing die-casting die
JP3253579B2 (en) Sand for mold
CN1668402A (en) Sleeve, manufacturing method thereof and mixture for the production of said sleeve
JPH06154941A (en) Reconditioning method for molding sand and production of casting mold
JP2003212667A (en) Process for recycling used refractory
JP5485353B2 (en) Backup stucco material for manufacturing precision casting mold, manufacturing method thereof, and precision casting mold obtained using the same
JP3268137B2 (en) Self-hardening mold for cast steel and method for reclaiming foundry sand
ES2379449T3 (en) Granulate and procedure for its preparation
JP2965782B2 (en) Manufacturing method of artificial sand using waste silica sand
JP2001205388A (en) Method for thermal regeneration of molding sand and method for manufacturing casting mold for casting
JPH0716698A (en) Mold structure
JP5178338B2 (en) Backup stucco material for manufacturing precision casting mold, manufacturing method thereof, and precision casting mold obtained using the same
JP6595688B2 (en) Mold sand and its manufacturing method
JP2018140425A (en) Method for producing reconditioned sand and method for producing casting sand
JPH0471620B2 (en)
JPH09164377A (en) Method for solidifying waste sand generated in casting stage
JP2001293537A (en) Method for manufacturing molding sand
JP2002219549A (en) Aggregate for forming acid self-hardening mold
JP2004042137A (en) Method for making mold, mold, and method and apparatus for recovering/regenerating molding sand
JPH0669597B2 (en) Low expansion mold material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040325

LAPS Cancellation because of no payment of annual fees