JPH0471620B2 - - Google Patents

Info

Publication number
JPH0471620B2
JPH0471620B2 JP61182764A JP18276486A JPH0471620B2 JP H0471620 B2 JPH0471620 B2 JP H0471620B2 JP 61182764 A JP61182764 A JP 61182764A JP 18276486 A JP18276486 A JP 18276486A JP H0471620 B2 JPH0471620 B2 JP H0471620B2
Authority
JP
Japan
Prior art keywords
sand
resin
aggregate
casting
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61182764A
Other languages
Japanese (ja)
Other versions
JPS6340635A (en
Inventor
Nobuo Nishama
Yasushi Ueno
Eiji Yamashita
Masao Tomari
Masaaki Iimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Asahi Kasei Corp
Original Assignee
Nippon Jiryoku Senko Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd, Asahi Kasei Kogyo KK filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP18276486A priority Critical patent/JPS6340635A/en
Publication of JPS6340635A publication Critical patent/JPS6340635A/en
Publication of JPH0471620B2 publication Critical patent/JPH0471620B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は低膨張性樹脂被覆砂に関するものであ
る。さらに詳しくいえば、本発明は、鋳物製造分
野における鋳型又は中子(以後、鋳型と記す)の
製造に用いられる、特に鋳物の寸法安定性の改善
や、型割れ、ベーニング、スクワレ、焼着などの
鋳物欠陥防止などに好適な低膨張性樹脂被覆砂に
関するものである。 従来の技術 従来、鋳造用鋳型に用いられている耐火性骨材
としては、SiO2を主成分とするケイ砂をはじめ、
オリビンサンド、ジルコンサンドあるいはアルミ
ナサンドなどが一般的であり、その中でもとりわ
けケイ砂が常用されている。 しかし、ケイ砂は一般的にそのSiO2含量によ
つて異なるが、概略1000℃以上の温度にさらされ
ると大きな急熱膨張を生じる性質を有するため、
これを用いた鋳型材料は鋳物の寸法精度を悪くさ
せたり、あるいは型割れ、ベーニング、スクワ
レ、焼着などの鋳物欠陥を発生させるなど多くの
問題を有している。 このような諸問題の対応方法としては、古くか
らケイ砂より低膨張性で知られる特殊骨材、すな
わち前記のケイ酸マグネシウムを主成分とするオ
リビンサンド、ケイ酸ジルコニウムを主成分とす
るジルコンサンド、又は酸化アルミニウムを主成
分とするアルミナサンドなどの単独、あるいはケ
イ砂との混合物を耐火性骨材として用いる方法が
一般的に採用されている。 しかしながら、この種の特殊骨材はいずれもケ
イ砂より非常に高価であるため、鋳造用としては
非経済的であり、またオリビンサンドなどは、多
くの結晶水を含有し、かつ機械的に破砕されやす
い性質を有するため、実用的な鋳型強度を保持す
るには、一般に多量のバインダーの使用を免れ
ず、したがつて、鋳造時の熱分解ガスによつて、
鋳物に欠陥が生じやすいなどの問題がある。 発明が解決しようとする問題点 本発明はこのような従来技術における問題を解
決するためになされたものであり、その第1の目
的は、鋳造時における鋳型の急熱膨張を少なくし
て鋳物の寸法安定性を向上させ、かつ熱膨張や熱
衝撃による鋳型の型割れ、ベーニング、スクワ
レ、焼着などの鋳物欠陥を防止し、鋳肌の美しい
鋳物を与える低膨張性樹脂被覆砂を提供すること
にあり、また、第2の目的は、フエロクロム製造
分野で産業廃棄物として発生する鉱物残滓を鋳型
の耐火性骨材としては有効に活用し、従来の特殊
骨材より著しく経済性に優れ、かつ安定的に使用
しうる低膨張性樹脂被覆砂を提供することにあ
る。 問題点を解決するための手段 本発明者らは、鋳造に耐えうる耐火性を有し、
高温時における急熱膨張が少なく、回収再生が可
能であり、かつ安価で容易に入手可能な耐火性骨
材に着目して種々研究を重ねた結果、鋳物用骨材
として実用上支障のない耐火性骨材を見出し、本
発明を完成するに至つた。 すなわち、本発明は、耐火性骨材に熱硬化性樹
脂を分散又は被覆して成る樹脂被覆砂において、
該耐火性骨材がフエロクロムを製造する際に発生
する残滓を粉砕、整粒して得られる砂粒上残滓、
又はこのものとSiO2成分少なくとも85重量%を
含有するケイ砂との混合物であることを特徴とす
る低膨張性樹脂被覆砂を提供するものである。 以下、本発明を詳細に説明する。 本発明において用いられる新規な耐火性骨材
は、天然に産出されるフエロクロムの原料鉱石を
還元しフエロクロムを製造する際に発生する残滓
を例えば磁力選鉱法、比重選鉱法などによりメタ
ル分を分離除去し、次いで適宜な粉砕機を用いて
粉砕したのち、整粒し、さらに必要に応じて乾式
又は湿式研摩機による研摩処理、あるいは微粉除
去処理を施して得られる砂粒状残滓、及びこれら
の回収再生骨材などである。 本発明において用いられるフエロクロム系残滓
は、SiO2、Al2O3及びMgOの3成分を主体とし
て構成されたものである。第1表にこのフエロク
ロム系残滓の代表例について、化学分析値、性状
などを示す。なお、比較のためにフエロニツケル
系残滓についても併記した。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to low expansion resin coated sand. More specifically, the present invention is used in the production of molds or cores (hereinafter referred to as molds) in the field of foundry manufacturing, and is particularly applicable to improving the dimensional stability of castings, preventing mold cracking, vening, squaling, and burning. The present invention relates to low-expansion resin-coated sand suitable for preventing defects in castings. Conventional technology Conventionally, refractory aggregates used in casting molds include silica sand whose main component is SiO2 ,
Olivine sand, zircon sand, or alumina sand are common, among which silica sand is most commonly used. However, silica sand generally has the property of causing large rapid thermal expansion when exposed to temperatures of approximately 1000°C or higher, although it varies depending on its SiO 2 content.
Mold materials using this material have many problems, such as deteriorating the dimensional accuracy of the casting or causing casting defects such as mold cracking, veining, squawking, and burning. As a way to deal with these problems, special aggregates that have been known for a long time to have lower expansion than silica sand, such as olivine sand whose main component is magnesium silicate, and zircon sand whose main component is zirconium silicate, have been used. Or, a method is generally adopted in which alumina sand containing aluminum oxide as a main component alone or in a mixture with silica sand is used as a refractory aggregate. However, all of these types of special aggregates are much more expensive than silica sand, making them uneconomical for casting, and olivine sand and other materials contain a lot of crystallization water and cannot be crushed mechanically. Therefore, in order to maintain practical mold strength, it is generally necessary to use a large amount of binder.
There are problems such as the tendency for defects to occur in castings. Problems to be Solved by the Invention The present invention has been made in order to solve the problems in the prior art, and its first purpose is to reduce the rapid thermal expansion of the mold during casting to improve the quality of the casting. To provide low-expansion resin-coated sand that improves dimensional stability, prevents mold cracking caused by thermal expansion and thermal shock, prevents casting defects such as veining, squawking, and seizing, and provides castings with beautiful casting surfaces. The second objective is to effectively utilize mineral residue generated as industrial waste in the ferrochrome manufacturing field as a fire-resistant aggregate for molds, which is significantly more economical than conventional special aggregates, and An object of the present invention is to provide low-expansion resin-coated sand that can be stably used. Means for Solving the Problems The present inventors have developed a method that has fire resistance that can withstand casting.
As a result of various research focusing on fire-resistant aggregates that have low rapid thermal expansion at high temperatures, can be recovered and recycled, and are inexpensive and easily available, we have developed fire-resistant aggregates that have no practical problems as aggregates for castings. They discovered a flexible aggregate and completed the present invention. That is, the present invention provides resin-coated sand made by dispersing or coating a thermosetting resin in a fire-resistant aggregate.
Residue on sand grains obtained by crushing and sizing the residue generated when the refractory aggregate produces ferrochrome,
Alternatively, the present invention provides a low expansion resin-coated sand characterized by being a mixture of this sand and silica sand containing at least 85% by weight of the SiO 2 component. The present invention will be explained in detail below. The new refractory aggregate used in the present invention reduces the naturally occurring raw material ore of ferrochrome and removes the metal content from the residue generated when producing ferrochrome by, for example, magnetic beneficiation or specific gravity beneficiation. Then, after pulverizing using an appropriate pulverizer, grading is performed, and if necessary, polishing using a dry or wet polishing machine, or fine powder removal treatment is performed to obtain a sand-like residue, and the recovery and recycling of these residues. Such as aggregate. The ferrochrome residue used in the present invention is mainly composed of three components: SiO 2 , Al 2 O 3 and MgO. Table 1 shows chemical analysis values, properties, etc. of representative examples of this ferrochrome residue. For comparison, ferronic acid residues are also listed.

【表】【table】

【表】 さらに、フエロクロム系残滓は、一般的にフエ
ロニツケル系残滓よりCaO、Fe2O3などの成分が
非常に少なく、骨材の溶融温度で示されるような
耐火性に優れることから、鋳造時における焼着、
浸蝕性スクワレなどが少なく、また鋳肌面の外観
不良を防止しうること、並びにAl2O3成分を含有
することから骨材のリークレーマ処理などにおい
て良好な耐摩耗性と耐破砕性を示し高歩留りで骨
材回収が可能であるなどの利点を有する。 本発明においては、この砂粒状残滓の各成分含
量については特に制限はないが、該残滓を単独で
耐火性骨材として用いる場合には、一般に少なく
とも1350℃以上の溶融温度を確保する必要性から
CaO、Fe2O3などの成分が通常5重量%以下、好
ましくは2重量%以下であるものを用いることが
望ましい。しかしながらこのようなCaO、Fe2O3
などの成分が5重量%以上含有するものであつて
も、鋳物製品の大きさ、鋳造方法、鋳造条件など
によつては単独でも実用に供しうるし、またケイ
砂と混合使用することで耐火性の向上を図ること
も可能であるとともに本発明の目的とする急熱膨
張の低下にも有効である。 本発明において前記砂粒状骨材と併用されるケ
イ砂としては、従来鋳造分野で一般的に使用され
ている天然又は人造ケイ砂の新砂、又は焙焼砂、
炭化砂、グリーン再生砂などの再生砂、あるいは
これらの研摩処理砂など、任意のケイ砂を使用す
ることができる。しかし、これらのケイ砂は焼着
などの鋳物欠陥を回避する耐火性の観点から、
SiO2含有量が85重量%以上、好ましくは90重量
%以上を有することが必要である。 本発明における耐火性骨材として、前記砂粒状
残滓とケイ砂との混合物を用いる場合には、該砂
粒状残滓は混合物中に通常5重量%以上、好まし
くは10重量%以上含有していることが望ましい。
この量が5重量%未満では、ケイ砂と同等の急熱
膨張を示し、その改善効果が十分に発揮されな
い。 本発明において、前記耐火性骨材の結合材とし
て用いられる熱硬化性樹脂については特に制限は
なく、例えばノボラツク型フエノール樹脂、レゾ
ール型フエノール樹脂、含窒素レゾール型フエノ
ール樹脂、ベンジルエーテル型フエノール樹脂及
び尿素、メラミン、アニリン、フルフラール、フ
リフリルアルコール、カシユーナツトシエルオイ
ル、トール油、酢酸ビニール樹脂、ポリアミド樹
脂、アクリル樹脂、ポリエチレン樹脂などと反応
又は混合して成る変性フエノール樹脂をはじめ、
エポキシ樹脂、尿素樹脂、メラミン樹脂、キシレ
ン樹脂、不飽和ポリエステル樹脂、又はこれらの
2種以上を組み合わせた混合樹脂などが用いられ
る。これらの熱硬化性樹脂は公知の製造方法によ
つて製造され、固形状、液状又はワニス状として
使用される。 耐火性骨材に対する前記熱硬化性樹脂の配合量
は、樹脂やケイ砂の種類、ケイ砂と砂粒状残滓と
の配合比、所望性能などによつて異なり一概に限
定されないが、一般的には耐火性骨材100重量部
に対して0.5〜10重量部の範囲内で適宜選択され
る。 また、本発明の低膨張性樹脂被覆砂の製造方法
としては、シエルモールド分野において一般的に
実施されているドライホツトコート法、セミホツ
トコート法、コールドコート法、粉末溶剤法など
のいずれの方法であつてもよい。 さらには、本発明の低膨張性樹脂被覆砂には、
前記した各成分のほかに、従来一般的に使用され
ている任意の配合剤、例えばアミノ系シラン、エ
ポキシ系シランなどのシランカツプリング剤、ス
テアリン酸系モノ又はビスアミド、メチロールア
ミドなどのワツクス類、安息香酸、サリチル酸な
どの芳香族カルボン酸類、ヘキサメチレンテトラ
ミン、ベンガラ、砂鉄などを本発明の目的を損わ
ない範囲で配合することができる。 また、これらの配合剤は、鋳型材料の製造時に
配合してもよいが、シランカツプリング剤、ワツ
クス類、あるいは芳香族カルボン酸類について
は、フエノール樹脂の製造時に配合されるほうが
望ましい。 なお、本発明に係る砂粒状残滓は前記したよう
なシエルモールド法以外の鋳型造型法、例えばア
シユランド法、βセツト法などのコールドボツク
ス法、ペプセツト法などのフエノールウレタン型
有機自硬性法、αセツト法などのフエノール−有
機自硬性法などによる低膨張性鋳型の製造を目的
とした鋳型材料の耐火性骨剤としては単独又はケ
イ砂と混合して使用することができる。 実施例 次に実施例により本発明をさらに詳細に説明す
るが、本発明はこれらの例によつてなんら限定さ
れるものではない。 なお、本発明に係る樹脂被覆砂の物性評価は次
の試験法に従つて実施した。 (a) 抗析力(Kg/cm2):JIS−K−6910 (b) ベンド(mm):JACT試験法SM−3 (c) 融着点(℃):JACT試験法C−1 (d) 熱膨張率(%):炉内温度1100℃に調節され
た高温鋳物砂試験器中にテストピース(30mmφ
×50mmH)を設置したのち、所定時間ごとに測
定したテストピースの熱膨張量を下記の計算式
によつて算出し熱膨張率とした。 熱膨張率(%) =(曝熱後−曝熱前)テストピース長/曝熱前のテス
トピース長×100 実施例1〜4、比較例1、2 鋳型用骨材として、第2表に示すような耐火性
骨材5000gを用い、これを加熱して140〜150℃に
調節したのち、スピードミキサー(遠州鉄工社
製)に投入した。次いで、結合剤としてノボラツ
ク型フエノール樹脂150g(耐火性骨材に対して
3重量%)を投入し、ミキサー中で50秒間混合し
て耐火性骨材を該樹脂で溶融被覆させたのち、冷
却水75gにヘキサメチレンテトラミン22.5g(結
合剤に対して15重量%)を予め溶解した水溶液を
全量投入するとともに、送風によつて混合物を急
冷しつつ約40〜60秒間混合を続けた。 続いて骨
剤としてステアリン酸カリウム5g(耐火性骨材
に対して0.1重量%)を投入し、さらに15秒間混
合したのち、ミキサーより排出し5種類の樹脂被
覆秒実施例1〜4、比較例1を得た。 なお、比較例2の場合はフエノール樹脂量を耐
火性骨材に対して3.5重量%ヘキサメチレンテト
ラミンを該樹脂に対して15重量%とする以外は上
記方法と従つて樹脂被覆砂比較例2を得た。 得られた樹脂被覆砂の物性評価は、前記した方
法に従つて実施し、その評価結果を第2表に示
す。
[Table] In addition, ferrochrome residue generally contains significantly less components such as CaO and Fe 2 O 3 than ferronickel residue, and has superior fire resistance as indicated by the melting temperature of the aggregate, so it is used during casting. Burning in,
It has a low level of corrosive squaling, prevents poor appearance of the casting surface, and contains Al 2 O 3 components, so it exhibits good wear resistance and crushing resistance during aggregate leak crema treatment. It has the advantage of being able to recover aggregate at a low yield. In the present invention, there is no particular restriction on the content of each component in this sand granular residue, but when the residue is used alone as a fire-resistant aggregate, it is generally necessary to ensure a melting temperature of at least 1350°C or higher.
It is desirable to use a material containing components such as CaO and Fe 2 O 3 in an amount of usually 5% by weight or less, preferably 2% by weight or less. However, such CaO, Fe 2 O 3
Even if the component contains 5% by weight or more, depending on the size of the cast product, casting method, casting conditions, etc., it can be used alone for practical use, or it can be used in combination with silica sand to improve fire resistance. It is also possible to improve the thermal expansion rate, and is also effective in reducing rapid thermal expansion, which is the objective of the present invention. In the present invention, the silica sand used in combination with the sand granular aggregate includes fresh natural or artificial silica sand commonly used in the casting field, or roasted sand;
Any silica sand can be used, such as carbonized sand, recycled sand such as green recycled sand, or polished sand thereof. However, from the viewpoint of fire resistance to avoid casting defects such as burning, these silica sands are
It is necessary that the SiO 2 content be at least 85% by weight, preferably at least 90% by weight. When a mixture of the sand granule residue and silica sand is used as the refractory aggregate in the present invention, the sand granule residue should normally be contained in the mixture in an amount of 5% by weight or more, preferably 10% by weight or more. is desirable.
If this amount is less than 5% by weight, it exhibits rapid thermal expansion equivalent to that of silica sand, and its improvement effect is not sufficiently exhibited. In the present invention, there are no particular restrictions on the thermosetting resin used as the binder for the fire-resistant aggregate, and examples thereof include novolak type phenolic resin, resol type phenolic resin, nitrogen-containing resol type phenolic resin, benzyl ether type phenolic resin, Including modified phenolic resins that are reacted or mixed with urea, melamine, aniline, furfural, furfuryl alcohol, oaknut shell oil, tall oil, vinyl acetate resin, polyamide resin, acrylic resin, polyethylene resin, etc.
Epoxy resins, urea resins, melamine resins, xylene resins, unsaturated polyester resins, or mixed resins of two or more of these resins are used. These thermosetting resins are produced by known production methods and are used in solid, liquid or varnished form. The amount of the thermosetting resin blended into the fire-resistant aggregate varies depending on the type of resin and silica sand, the blending ratio of silica sand and sand grain residue, desired performance, etc., but is generally not limited. It is appropriately selected within the range of 0.5 to 10 parts by weight based on 100 parts by weight of the refractory aggregate. In addition, as a method for producing the low expansion resin-coated sand of the present invention, any of the dry hot coating methods, semi-hot coating methods, cold coating methods, powder solvent methods, etc. commonly practiced in the shell mold field can be used. It may be. Furthermore, the low expansion resin-coated sand of the present invention includes:
In addition to the above-mentioned components, any compounding agents commonly used in the past, such as silane coupling agents such as amino-based silanes and epoxy-based silanes, waxes such as stearic acid-based mono- or bisamides, and methylolamide, Aromatic carboxylic acids such as benzoic acid and salicylic acid, hexamethylenetetramine, red iron sand, iron sand, etc. can be blended within the range that does not impair the purpose of the present invention. Further, these compounding agents may be blended during the production of the mold material, but it is preferable that the silane coupling agent, waxes, or aromatic carboxylic acids be blended during the production of the phenolic resin. Incidentally, the sand grain-like residue according to the present invention can be produced by a molding method other than the shell molding method described above, such as a cold box method such as the Ashland method or the β-set method, a phenol urethane type organic self-hardening method such as the Pep-set method, or an α-set method. It can be used alone or in combination with silica sand as a refractory aggregate for mold materials intended for producing low-expansion molds by phenol-organic self-hardening methods such as the phenol-organic self-hardening method. Examples Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. The physical properties of the resin-coated sand according to the present invention were evaluated according to the following test method. (a) Resistance strength (Kg/cm 2 ): JIS-K-6910 (b) Bend (mm): JACT test method SM-3 (c) Fusion point (°C): JACT test method C-1 (d ) Coefficient of thermal expansion (%): A test piece (30 mmφ
x 50 mmH), the amount of thermal expansion of the test piece measured at predetermined time intervals was calculated using the following formula, and was defined as the coefficient of thermal expansion. Thermal expansion coefficient (%) = (after heating - before heating) test piece length / test piece length before heating x 100 Examples 1 to 4, Comparative Examples 1 and 2 As aggregates for molds, as shown in Table 2 Using 5,000 g of the refractory aggregate as shown, it was heated and adjusted to 140 to 150°C, and then put into a speed mixer (manufactured by Enshu Tekko Co., Ltd.). Next, 150 g of novolak type phenolic resin (3% by weight based on the refractory aggregate) was added as a binder and mixed in a mixer for 50 seconds to melt and coat the refractory aggregate with the resin, and then cooled with cooling water. The entire amount of an aqueous solution in which 22.5 g of hexamethylenetetramine (15% by weight based on the binder) had been dissolved in 75 g was added, and mixing was continued for about 40 to 60 seconds while rapidly cooling the mixture by blowing air. Subsequently, 5 g of potassium stearate (0.1% by weight based on the refractory aggregate) was added as an aggregate, and after mixing for another 15 seconds, the mixer was discharged and 5 types of resin coating Examples 1 to 4 and Comparative Examples were added. I got 1. In the case of Comparative Example 2, the above method and resin-coated sand Comparative Example 2 were followed except that the amount of phenolic resin was 3.5% by weight based on the fire-resistant aggregate, and the hexamethylenetetramine was 15% by weight based on the resin. Obtained. The physical properties of the obtained resin-coated sand were evaluated according to the method described above, and the evaluation results are shown in Table 2.

【表】【table】

【表】 量%以上のものを使用した。また耐火性骨材配合
比は重量基準である。
実施例5、および比較例3、4 鋳型用骨材として、第3表に示す配合組成から
なる130〜140℃に加熱された耐火性骨材200Kgを
工業用ワールミキサーに投入した。 次いで、ノボラツク型フエノール樹脂5Kg(耐
火性骨材に対して2.5重量%)を投入し、ミキサ
ー中で50秒間混合して耐火性骨材を該樹脂で溶融
被覆させたのち、あらかじめ、冷却水3Kgにヘキ
サメチレンテトラミン0.75Kg(結合剤に対して15
重量%)を溶解させた水溶液を全量投入するとと
もに送風によつて混合物を急冷しつつ約60〜90秒
間混合を続けた。続いて滑材としてステアリン酸
カルシウム0.2Kg(耐火性骨材に対して0.1重量
%)を投入し、さらに20秒間混合したのち、ミキ
サーより排出し3種類の樹脂被覆砂実施例5、お
よび比較例3、4を得た。 これらの樹脂被覆砂を用いて油圧バルブ中子を
造型し、局部塗型を施したのち、鋳鋼による鋳込
み試験を行なつて油圧バルブ鋳物を作製した。 得られた該鋳物は切断して該中子部分に相当す
る鋳肌を調査した結果を第3表に示す。 すなわち、本発明にかかる耐火性骨材を用いた
低膨張性樹脂被覆砂実施例5は、従来のケイ砂単
独樹脂被覆砂比較例4よりベーニング、焼着など
の鋳物欠陥に対し顕著な効果を示し、フエロニツ
ケル系残滓比較例3より特に耐焼着性に優れてい
ることが確認された。
[Table] % or more was used. The refractory aggregate blending ratio is based on weight.
Example 5 and Comparative Examples 3 and 4 As a molding aggregate, 200 kg of refractory aggregate heated to 130 to 140°C having the composition shown in Table 3 was charged into an industrial whirl mixer. Next, 5 kg of novolac type phenolic resin (2.5% by weight based on the fire-resistant aggregate) was added and mixed for 50 seconds in a mixer to melt and coat the fire-resistant aggregate with the resin, and then 3 kg of cooling water was added in advance. Hexamethylenetetramine 0.75Kg (15 to binder)
The entire amount of the aqueous solution in which % by weight) was dissolved was added, and mixing was continued for about 60 to 90 seconds while rapidly cooling the mixture by blowing air. Next, 0.2 kg of calcium stearate (0.1% by weight based on the refractory aggregate) was added as a lubricant, and after further mixing for 20 seconds, it was discharged from the mixer and three types of resin-coated sand were prepared, Example 5 and Comparative Example 3. , got 4. Hydraulic valve cores were molded using these resin-coated sands, and after local coating was applied, a casting test using cast steel was conducted to produce hydraulic valve castings. The obtained casting was cut and the casting surface corresponding to the core portion was examined. Table 3 shows the results. In other words, the low-expansion resin-coated sand Example 5 using the refractory aggregate according to the present invention has a more significant effect on casting defects such as veining and burning than the conventional silica sand-only resin-coated sand Comparative Example 4. It was confirmed that the anti-seizing property was particularly superior to Comparative Example 3 of the ferronitkel-based residue.

【表】 発明の効果 以上の説明より明らかなように、本発明の熱硬
化性樹脂被覆砂は優れた低膨張性を有するため、
鋳造時における鋳型又は中子の急熱膨張が小さ
く、寸法制度の優れた鋳物を提供しうるばかりで
なく、型割れ、ベーニング、スクワレ、焼着など
の鋳物欠陥を防止し、鋳肌の美しい鋳物を提供す
ることができる。 また、本発明における砂粒状残滓は、従来より
産業廃棄物として処分されていたものを有効利用
して製造されるため、従来のジルコンサンド、オ
リビンサンドなどの高価な特殊砂より大幅に安価
な代替鋳物用骨材として用いることができる上
に、鋳物用骨材の省資源に寄与するなどの利点を
有している。 このように、本発明の樹脂被覆砂は鋳物製造分
野において工業的価値の極めて高いものである。
[Table] Effects of the invention As is clear from the above explanation, the thermosetting resin-coated sand of the present invention has excellent low expansion properties.
The rapid thermal expansion of the mold or core during casting is small, and not only can it provide castings with excellent dimensional accuracy, but it also prevents casting defects such as mold cracking, vening, squawking, and burning, and produces castings with beautiful casting surfaces. can be provided. In addition, the sand granule residue in the present invention is manufactured by effectively utilizing what has traditionally been disposed of as industrial waste, so it is a significantly cheaper alternative to conventional expensive special sands such as zircon sand and olivine sand. It not only can be used as an aggregate for castings, but also has the advantage of contributing to resource saving of aggregates for castings. As described above, the resin-coated sand of the present invention has extremely high industrial value in the field of foundry manufacturing.

【特許請求の範囲】[Claims]

1 鋳型の全部又は一部を、酸化防止剤が配合量
5〜255t%で混合された鋳型骨材で造形した鋳型
を用いて鋳造した後、前記酸化防止剤の混合した
鋳型骨材で造形した部分を鋳物に取り付けた状態
で該鋳物を熱処理することを特徴とする熱処理鋳
物の製造方法。 2 鋳型骨材は鋳砂と鉄粉粒とからなる特許請求
の範囲第1項に記載の熱処理鋳物の製造方法。
1 All or part of the mold was cast using a mold made of mold aggregate mixed with an antioxidant at a blending amount of 5 to 255 t%, and then molded with the mold aggregate mixed with the antioxidant. 1. A method for producing a heat-treated casting, comprising heat-treating the casting while the part is attached to the casting. 2. The method for manufacturing a heat-treated casting according to claim 1, wherein the mold aggregate comprises casting sand and iron powder particles.

JP18276486A 1986-08-05 1986-08-05 Low expansion type resin coated sand Granted JPS6340635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18276486A JPS6340635A (en) 1986-08-05 1986-08-05 Low expansion type resin coated sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18276486A JPS6340635A (en) 1986-08-05 1986-08-05 Low expansion type resin coated sand

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP30631295A Division JPH08206774A (en) 1995-11-24 1995-11-24 Method for adjusting characteristic of casting sand

Publications (2)

Publication Number Publication Date
JPS6340635A JPS6340635A (en) 1988-02-22
JPH0471620B2 true JPH0471620B2 (en) 1992-11-16

Family

ID=16124016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18276486A Granted JPS6340635A (en) 1986-08-05 1986-08-05 Low expansion type resin coated sand

Country Status (1)

Country Link
JP (1) JPS6340635A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206774A (en) * 1995-11-24 1996-08-13 Asahi Organic Chem Ind Co Ltd Method for adjusting characteristic of casting sand
JP5093309B2 (en) * 2010-07-12 2012-12-12 トヨタ自動車株式会社 Cooling structure of clutch device
CN103691877B (en) * 2013-12-17 2017-01-04 重庆长江造型材料(集团)股份有限公司 Coated sand prepared by reclaimed sand
CN105081200A (en) * 2015-09-02 2015-11-25 芜湖永达科技有限公司 Process for producing cold-core compound sand for cylinder block oil passage

Also Published As

Publication number Publication date
JPS6340635A (en) 1988-02-22

Similar Documents

Publication Publication Date Title
EP0993889B1 (en) Foundry exothermic assembly
US6598654B2 (en) Molding sand appropriate for the fabrication of cores and molds
EP2513004B1 (en) Foundry mixes containing carbonate salts and their uses
US20050155741A1 (en) Casting sand cores and expansion control methods therefor
JP4545192B2 (en) Resin coated sand for cast steel, mold made of the sand, and steel casting cast by the mold
US4735973A (en) Additive for sand based molding aggregates
US3567667A (en) Mould linings composition comprising ball mill dust and calcium silicate,aluminum silicate or calcium alumino silicate fibrous refractory material
JPH05169184A (en) High siliceous spherical molding sand and its production
US20090199991A1 (en) Compositions containing certain metallocenes and their uses
JPH0471620B2 (en)
JP3253579B2 (en) Sand for mold
JP2011025310A (en) Spherical refractory particle, casting sand composed thereof and mold obtained using the same
US4636262A (en) Additive for green molding sand
US20030150592A1 (en) Method for producing foundry shapes
US8011419B2 (en) Material used to combat thermal expansion related defects in the metal casting process
JPH0669597B2 (en) Low expansion mold material
JPH08206774A (en) Method for adjusting characteristic of casting sand
JPH069726B2 (en) Resin coated sand
JP4216104B2 (en) Method for regenerating synthetic mullite sand and method for producing mold
JP2018140425A (en) Method for producing reconditioned sand and method for producing casting sand
JP6595688B2 (en) Mold sand and its manufacturing method
JP2001286977A (en) Mold and method for manufacturing mold
JP2001293537A (en) Method for manufacturing molding sand
JP3092983B2 (en) Casting sand mold manufacturing method
JPH0829393B2 (en) Sulfurization preventive coating agent for organic binder mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees