JP2003134793A - Linear motor - Google Patents

Linear motor

Info

Publication number
JP2003134793A
JP2003134793A JP2001317679A JP2001317679A JP2003134793A JP 2003134793 A JP2003134793 A JP 2003134793A JP 2001317679 A JP2001317679 A JP 2001317679A JP 2001317679 A JP2001317679 A JP 2001317679A JP 2003134793 A JP2003134793 A JP 2003134793A
Authority
JP
Japan
Prior art keywords
inductor
teeth
linear motor
armature
permanent magnets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001317679A
Other languages
Japanese (ja)
Other versions
JP3824061B2 (en
Inventor
Toru Shikayama
透 鹿山
Yoshiyuki Nagamatsu
良之 永松
Takaaki Yasumura
隆明 安村
Motomichi Oto
基道 大戸
Mitsuhiro Matsuzaki
光洋 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001317679A priority Critical patent/JP3824061B2/en
Publication of JP2003134793A publication Critical patent/JP2003134793A/en
Application granted granted Critical
Publication of JP3824061B2 publication Critical patent/JP3824061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a linear motor which has a pole structure of a pole pitch of a large generating thrust and suitable for a reduction in size, low manufacturing and assembling costs of a permanent magnet and in which the change of a cogging force or the thrust can be reduced. SOLUTION: The linear motor comprises an armature 11 having an armature winding 15 wound on the teeth 13 of an armature core 12 and a plurality of poles 16 disposed at the distal end of the teeth 13, and an inductor 2 having inductor teeth (the pitch of the inductor teeth: λ) opposed to the armature 11 via a magnetic air gap (g), in such a manner that the armature 11 is used as a movable element and the inductor 2 is used as a stator. In the motor, the poles 16 are constituted of rugged-like permanent magnets 17b, 17c. The pitch of the protrusions of the permanent magnet is set equally to the inductor teeth pitch λ. As the permanent magnets 17b, 17c, one set of two permanent magnets having different magnetizing directions are combined and disposed at the distal ends of the teeth 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体製造
装置やFA機器などの分野で小形・高推力が要求される
リニアモータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a linear motor which is required to have a small size and high thrust in the fields of semiconductor manufacturing equipment and FA equipment.

【0002】[0002]

【従来の技術】従来、例えば半導体製造装置やFA機器
などの分野に多く供給されて小形・高推力が要求される
リニアモータとしては図8、図9のようになっている。
図8は従来技術を示すリニアモータの側断面図、図9は
図8における磁極の拡大図である。図において、1は固
定子、2は誘導子、3は誘導子歯、10は可動子、11
は電機子、12は電機子コア、13はティース、14は
継鉄、15は電機子巻線、16は磁極である。リニアモ
ータの固定子1は長手方向に誘導子歯3(誘導子歯ピッ
チ:λ)を有すると共に、磁性材料から成る誘導子2に
よって構成されている。また、可動子10は3つのティ
ース13およびそれらをつなぐ継鉄14を一体に形成し
た、磁性材料からなる電機子コア12と、ティース13
に集中巻された3相(U、V、W)の電機子巻線15
と、ティース13先端に配置された複数の磁極16(磁
極ピッチ:Pm)を備えた電機子11によって構成され
ている。この電機子11は誘導子歯3と磁気的空隙gを
介して対向するように設けられている。なお、誘導子2
および電機子コア12は例えば積層された電磁鋼板が用
いられる。それから、1つのティース13先端に設けた
磁極16は6極から成り、その磁極ピッチPmがλ/2
となるように隣接するものどうしが互いに異極になるよ
うに永久磁石17aを6個配置したものとなっている。
具体的には、隣り合った永久磁石17aの磁化方向間の
角度θは180度で、1極当たりの磁極に使われる永久
磁石数nは1である。また、隣接するティース13間の
間隔は、ティース13の幅3×λとティース13間の幅
λ+λ/3を足し合わせた4×λ+λ/3である。
2. Description of the Related Art Conventionally, as a linear motor which is supplied to many fields such as semiconductor manufacturing equipment and FA equipment and requires small size and high thrust, it is as shown in FIGS.
FIG. 8 is a side sectional view of a linear motor showing a conventional technique, and FIG. 9 is an enlarged view of magnetic poles in FIG. In the figure, 1 is a stator, 2 is an inductor, 3 is an inductor tooth, 10 is a mover, and 11
Is an armature, 12 is an armature core, 13 is teeth, 14 is a yoke, 15 is an armature winding, and 16 is a magnetic pole. The stator 1 of the linear motor has inductor teeth 3 (inductor tooth pitch: λ) in the longitudinal direction, and is also constituted by an inductor 2 made of a magnetic material. Further, the mover 10 includes an armature core 12 made of a magnetic material, which is integrally formed with three teeth 13 and a yoke 14 connecting them, and the teeth 13.
Three-phase (U, V, W) armature winding 15
And an armature 11 having a plurality of magnetic poles 16 (magnetic pole pitch: Pm) arranged at the tips of the teeth 13. The armature 11 is provided so as to face the inductor tooth 3 via a magnetic gap g. In addition, inductor 2
For the armature core 12, for example, laminated electromagnetic steel sheets are used. The magnetic pole 16 provided at the tip of one tooth 13 is composed of 6 poles, and the magnetic pole pitch Pm is λ / 2.
Six permanent magnets 17a are arranged so that adjacent magnets have different polarities.
Specifically, the angle θ between the magnetization directions of the adjacent permanent magnets 17a is 180 degrees, and the number of permanent magnets n used for one magnetic pole is 1. The interval between the adjacent teeth 13 is 4 × λ + λ / 3, which is the sum of the width 3 × λ of the teeth 13 and the width λ + λ / 3 between the teeth 13.

【0003】次に動作原理について説明する。永久磁石
17aの磁束は、ティース13、継鉄14、磁気的空隙
g、誘導子歯3によって構成される磁気回路を流れる。
各相のティース13の位相差が電気角で120度なの
で、可動子10を動かすと互いに電気角120度差の磁
束が各相電機子巻線15に鎖交し、電機子巻線15には
3相の誘起電圧が発生する。逆に各相の電機子巻線15
に3相の正弦波電流を通電すると3相同期モータとして
推力を発生し、可動子10が図示しないリニアガイド等
によって移動自在に支持された状態で、固定子1の長手
方向を移動方向(矢視A)として直線移動する(例え
ば、特公平5−34901号公報)。
Next, the operation principle will be described. The magnetic flux of the permanent magnet 17a flows through a magnetic circuit formed by the teeth 13, the yoke 14, the magnetic gap g, and the inductor teeth 3.
Since the phase difference between the teeth 13 of each phase is 120 degrees in electrical angle, when the mover 10 is moved, magnetic fluxes having an electrical angle difference of 120 degrees interlink with each other in the armature windings 15 and the armature windings 15 Three-phase induced voltage is generated. Conversely, the armature winding 15 for each phase
When a three-phase sinusoidal current is applied to the motor, a thrust is generated as a three-phase synchronous motor, and the longitudinal direction of the stator 1 is moved in the moving direction (arrow) while the mover 10 is movably supported by a linear guide or the like (not shown). It moves linearly as a view A) (for example, Japanese Patent Publication No. 5-34901).

【0004】[0004]

【発明が解決しようとする課題】ところで、従来技術の
ような電機子11と誘導子2によって構成されるリニア
モータは、誘導子歯3のピッチλを小さくし、1ティー
ス当たりの誘導子歯数を多くするほど発生推力が大きく
なる。これは発生推力箇所がティース13に対向した誘
導子歯3であるためである。また、このリニアモータを
小型化しようとする場合、1ティース当たりの誘導子歯
数を確保するには、λを小さくしなければならない。し
かしながら、従来技術ではλを小さくしようとした場
合、磁極ピッチPmも小さくしなければならず、その結
果、以下のような問題が生じた。 (1)永久磁石17aの磁極ピッチPmが小さくなるほ
ど、磁極ピッチPm寸法誤差が磁極ピッチの精度に影響
を及ぼし、コギング力の変動あるいは推力変動を生じ
た。 (2)永久磁石17aの磁極ピッチPm寸法に対し、可
動子の移動方向Aおよび磁気的空隙方向Gと直交する方
向B(紙面と垂直方向)の寸法が大きくなり、永久磁石
自身の強度が劣化し、永久磁石17aをティース13先
端へ貼り付ける際や運搬する際に永久磁石が折損する事
故などがあった。 (3)上記(1)の問題を回避するため、個々の永久磁
石17aの寸法管理を厳しくすると、検査時間が増える
だけでなく歩留まりが低下し、コスト高を招いた。 (4)上記(2)の問題を回避するため、永久磁石17
aを磁極ピッチPm寸法に対して可動子の移動方向Aお
よび磁気的空隙方向Gと直交する方向Bに複数に分割
し、磁極ピッチPm寸法に対して図示B方向における寸
法の小さい永久磁石を複数使用すると、永久磁石の貼り
付け作業に時間がかかり、コスト高を招いた。
By the way, in the linear motor constituted by the armature 11 and the inductor 2 as in the prior art, the pitch λ of the inductor teeth 3 is made small, and the number of inductor teeth per tooth is reduced. The greater the number, the greater the generated thrust. This is because the generated thrust portion is the inductor tooth 3 facing the tooth 13. Further, in order to reduce the size of this linear motor, λ must be reduced in order to secure the number of inductor teeth per tooth. However, in the prior art, when trying to reduce λ, the magnetic pole pitch Pm also had to be reduced, resulting in the following problems. (1) As the magnetic pole pitch Pm of the permanent magnet 17a becomes smaller, the dimensional error of the magnetic pole pitch Pm influences the accuracy of the magnetic pole pitch, resulting in the fluctuation of the cogging force or the fluctuation of the thrust. (2) The dimension of the permanent magnet 17a in the direction B (perpendicular to the paper surface) orthogonal to the moving direction A of the mover and the magnetic gap direction G is larger than the magnetic pole pitch Pm of the permanent magnet 17 and the strength of the permanent magnet itself deteriorates. However, there was an accident such as breakage of the permanent magnet 17a when the permanent magnet 17a was attached to the tip of the tooth 13 or during transportation. (3) If the dimensional control of the individual permanent magnets 17a is made strict in order to avoid the problem of (1), not only the inspection time is increased but also the yield is decreased, resulting in high cost. (4) In order to avoid the problem of (2) above, the permanent magnet 17
a is divided into a plurality of parts in a moving direction A of the mover and a direction B perpendicular to the magnetic gap direction G with respect to the magnetic pole pitch Pm, and a plurality of permanent magnets having a small size in the B direction with respect to the magnetic pole pitch Pm are shown. If it is used, it takes a long time to attach the permanent magnet, resulting in a high cost.

【0005】また、上記に示したリニアモータでは、電
機子側の問題を挙げたが、長ストローク化する際に誘導
子側にも課題がある。リニアモータには一般に高価な永
久磁石が使用されているが、永久磁石17aは固定子1
となる誘導子2には取り付けておらず、可動子10とな
る電機子11側のみにあるため、ストロークが長い用途
に適している。しかし、長ストローク化する際に誘導子
2の全長を長くしすぎると、誘導子2を運搬ずる際に労
力がかかったり、誘導子の材料となる電磁鋼鈑をプレス
機械により打ち抜く際にワンスタンプで抜くことができ
ず生産性が悪い。また、加工による反りが生じて誘導子
歯7のピッチ精度が悪くなり、コギング力が大きくなる
などの問題があった。本発明は、上記課題を解決するた
めになされたものであって、その第1の目的は、発生推
力が大きくかつ小形化に適した磁極ピッチの磁極構造を
有すると共に、永久磁石の製造・組立コストが安価であ
り、コギング力の変動あるいは推力変動を低減すること
ができるリニアモータを提供することにある。また、第
2の目的はリニアモータを長ストローク化する際に誘導
子の生産性を良好にし、誘導子歯のピッチ精度低下を防
止できるリニアモータを提供することにある。
Further, in the linear motor shown above, the problem on the armature side is mentioned, but there is also a problem on the inductor side when the stroke is extended. Although an expensive permanent magnet is generally used for the linear motor, the permanent magnet 17a is used for the stator 1.
Since it is not attached to the inductor 2 that becomes, and is only on the armature 11 side that becomes the mover 10, it is suitable for applications with a long stroke. However, if the total length of the inductor 2 is made too long when making the stroke longer, it takes labor to transport the inductor 2, or one stamp is used when punching the electromagnetic steel sheet that is the material of the inductor by a press machine. It cannot be pulled out with and productivity is poor. In addition, there is a problem in that the accuracy of the pitch of the inductor teeth 7 is deteriorated due to warpage due to processing, and the cogging force is increased. The present invention has been made to solve the above problems, and a first object thereof is to have a magnetic pole structure having a large magnetic pole pitch and a magnetic pole pitch suitable for downsizing, and to manufacture and assemble a permanent magnet. It is an object of the present invention to provide a linear motor which is low in cost and capable of reducing fluctuations in cogging force or fluctuations in thrust. A second object is to provide a linear motor that can improve the productivity of the inductor when the stroke of the linear motor is increased and can prevent the pitch accuracy of the inductor teeth from decreasing.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するた
め、請求項1の本発明は、電機子コアのティースに巻装
された電機子巻線と前記ティース先端に配置された複数
の磁極とより構成される電機子と、前記電機子と磁気的
空隙を介して対向するように設けられた誘導子歯(誘導
子歯ピッチ:λ)を有する誘導子とを備え、前記電機子
と前記誘導子の何れか一方を相対移動する可動子に、他
方を固定子とするリニアモータにおいて、前記磁極は凹
凸状に形成してなる永久磁石で構成するとともに、当該
永久磁石の凸部のピッチを前記誘導子歯ピッチλに等し
くなるように設定してあり、前記永久磁石は、前記ティ
ースの各々の先端に磁化方向の異なる当該永久磁石を少
なくとも2個1組として組み合わせたものを配置しであ
ることを特徴とするものである。請求項2の本発明は、
請求項1記載のリニアモータにおいて、磁化方向の異な
る前記永久磁石を、可動子の移動方向に並べて配置した
ものである。請求項3の本発明は、請求項1または2に
記載のリニアモータにおいて、磁化方向の異なる前記永
久磁石を、可動子の移動方向および磁気的空隙方向と直
交する方向に並べて配置したものである。請求項4の本
発明は、請求項1〜3の何れか1項に記載のリニアモー
タにおいて、前記永久磁石をボンド磁石で構成したもの
である。請求項5の本発明は、請求項1〜4の何れか1
項に記載のリニアモータにおいて、前記誘導子を移動方
向に分割する構成とするとともに、分割する部位となる
接合面に凹凸状の係合部を設けたものである。
In order to solve the above problems, the present invention according to claim 1 provides an armature winding wound around a tooth of an armature core and a plurality of magnetic poles arranged at the tips of the teeth. And an inductor having inductor teeth (inductor tooth pitch: λ) provided so as to face the armature via a magnetic gap. In a linear motor in which one of the children is relatively moved and the other is a stator, the magnetic poles are composed of permanent magnets formed in an uneven shape, and the pitch of the convex portions of the permanent magnets is It is set to be equal to the inductor tooth pitch λ, and the permanent magnets are arranged by combining at least two permanent magnets having different magnetization directions as a set at each tip of the teeth. Is also characterized by Of. The present invention according to claim 2 provides
The linear motor according to claim 1, wherein the permanent magnets having different magnetization directions are arranged side by side in the moving direction of the mover. According to a third aspect of the present invention, in the linear motor according to the first or second aspect, the permanent magnets having different magnetization directions are arranged side by side in a direction orthogonal to a moving direction of the mover and a magnetic air gap direction. . According to a fourth aspect of the present invention, in the linear motor according to any one of the first to third aspects, the permanent magnet is composed of a bond magnet. The present invention of claim 5 is any one of claims 1 to 4.
In the linear motor according to the item (3), the inductor is configured to be divided in the moving direction, and an engaging portion having an uneven shape is provided on a joint surface which is a dividing portion.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施例を図に基づ
いて説明する。 [第1の実施例]図1は本発明の第1の実施例を示すリ
ニアモータの側断面図、図2は図1の磁極を可動子の下
方から見た平面図である。図3は図1の磁極の拡大図で
あり、永久磁石の磁化方向を表したものである。なお、
本発明の構成要素が従来技術と同じものについてはその
説明を省略し、異なるものについて説明する。また、本
発明の実施例では、従来技術同様、電機子を可動子、誘
導子を固定子とした例を示している。本発明が従来技術
と異なる点は、以下のとおりである。磁極16は凹凸状
に形成してなる永久磁石17b、17cで構成するとと
もに、当該永久磁石の凸部のピッチを誘導子歯ピッチλ
に等しくなるように設定した点である。また、凹凸状の
永久磁石17b、17cは、ティース13の各々の先端
に磁化方向の異なる当該永久磁石を2個1組組み合わせ
て配置してあり、それぞれの凸部が電気的に180度の
位相差になるように、可動子の移動方向に並べて配置し
てある。なお、本実施例では従来技術に対して、リニア
モータの発生推力を上げるための1ティース当たりの誘
導子歯数を多くする条件として、隣接するティース13
間の間隔を、ティース13の幅6×λとティース13間
の幅2λ+2λ/3を足し合わせた8×λ+2λ/3と
して設定してある。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a side sectional view of a linear motor showing a first embodiment of the present invention, and FIG. 2 is a plan view of the magnetic pole of FIG. 1 as seen from below the mover. FIG. 3 is an enlarged view of the magnetic poles in FIG. 1 and shows the magnetization direction of the permanent magnet. In addition,
Description of components of the present invention that are the same as those of the conventional technique will be omitted, and different components will be described. Further, in the embodiment of the present invention, as in the prior art, an example is shown in which the armature is the mover and the inductor is the stator. The present invention is different from the prior art in the following points. The magnetic pole 16 is composed of permanent magnets 17b and 17c formed in an uneven shape, and the pitch of the convex portion of the permanent magnet is the inductor tooth pitch λ.
Is set to be equal to. Further, the concave and convex permanent magnets 17b and 17c are formed by combining two pairs of the permanent magnets having different magnetization directions at the tips of the teeth 13 respectively, and the respective convex portions are at an electrical angle of 180 degrees. They are arranged side by side in the moving direction of the mover so as to have a phase difference. In this embodiment, as compared with the conventional technique, as a condition for increasing the number of inductor teeth per tooth in order to increase the thrust generated by the linear motor, the adjacent teeth 13
The distance between them is set as 8 × λ + 2λ / 3, which is the sum of the width 6 × λ of the teeth 13 and the width 2λ + 2λ / 3 between the teeth 13.

【0008】次に動作原理について、図4を用いて説明
する。図4は、第1の実施例における電機子起磁力によ
る磁束の流れを示した模式図である。なお、本実施例に
よる磁極構造は従来技術のものと違いはあるものの、動
作原理の基本的な部分は同じであるため、重複する動作
内容については省略し、その動作内容を補足する形で説
明する。 すなわち、U相の電機子巻線15に+方向の電流、V相
とW相に−方向の電流を印可した場合の電機子起磁力に
よる磁束の流れを示している。図示したように、電機子
起磁力による磁束は、磁化方向と一致する凹凸状永久磁
石17b中または凹凸状永久磁石17c中を流れる。そ
の結果、誘導子歯3と電機子起磁力による磁束が通過す
る凹凸状永久磁石17bまたは凹凸状永久磁石17cと
の磁気吸引作用によって、可動子は移動方向(矢視A方
向)に移動する。
Next, the operating principle will be described with reference to FIG. FIG. 4 is a schematic diagram showing the flow of magnetic flux due to the armature magnetomotive force in the first embodiment. Although the magnetic pole structure according to the present embodiment is different from that of the prior art, since the basic part of the operation principle is the same, duplicated operation contents will be omitted and the operation contents will be supplemented. To do. That is, it shows the flow of magnetic flux due to the armature magnetomotive force when a + direction current is applied to the U-phase armature winding 15 and a − direction current is applied to the V phase and W phase. As illustrated, the magnetic flux due to the armature magnetomotive force flows through the concave-convex permanent magnet 17b or the concave-convex permanent magnet 17c that coincides with the magnetization direction. As a result, the mover moves in the moving direction (direction of arrow A) due to the magnetic attraction between the inductor teeth 3 and the concave-convex permanent magnet 17b or the concave-convex permanent magnet 17c through which the magnetic flux generated by the armature magnetomotive force passes.

【0009】このように、第1の実施例は、誘導子歯ピ
ッチλを従来技術の1/2の長さ(1ティース当たりの
誘導子歯数を2倍)に設定した条件のもとで、磁極16
を凹凸状に形成された永久磁石17b、17cで構成す
るとともに、当該永久磁石の凸部のピッチを誘導子歯ピ
ッチλに等しくなるように設定した構成、永久磁石17
b、17cは、ティース13の各々の先端に磁化方向の
異なる当該永久磁石を少なくとも2個1組として組み合
わせたものを配置した構成、そして、凹凸状の永久磁石
17b、17cを、それぞれの凸部が電気的に180度
の位相差になるように、可動子の移動方向に並べて配置
した構成にしたので、複数の磁極が一体で構成されるこ
とから、従来技術よりも永久磁石の磁極ピッチPmに対
して紙面と垂直方向の寸法を大きくすることなく、機械
加工によって磁極ピッチPmを小さくすることができ、
磁極ピッチPm寸法誤差も小さくできることできる。そ
の結果、従来技術で問題となった製造にかかるコストを
低減するとともに、コギング力、推力変動を低減しつつ
発生推力の大きなリニアモータを提供することができ
る。また、上記構成により個々の永久磁石の寸法管理を
厳しくする必要が無く、永久磁石の組み付け時の検査時
間も短縮できるため、組立コストの安価なリニアモータ
を提供することができる。さらに、磁化方向の異なる永
久磁石17b、17cを、可動子10の移動方向Aに並
べて配置したので、磁極ピッチPm寸法に対し可動子1
0の移動方向Aに多数並べることができるため、個々の
凹凸状の永久磁石17b、17cを強度上問題無い縦横
寸法形状に設定することができ、永久磁石17b、17
cをティース13先端へ貼り付けたり、運搬する時に折
損を生じる等の問題を回避することができる。
As described above, in the first embodiment, the inductor tooth pitch λ is set to half the length of the prior art (the number of inductor teeth per tooth is doubled) under the condition. , Magnetic pole 16
Is composed of concave and convex permanent magnets 17b and 17c, and the pitch of the convex portions of the permanent magnet is set to be equal to the inductor tooth pitch λ.
b and 17c have a configuration in which at least two permanent magnets having different magnetization directions are combined as a set at each tip of the teeth 13, and the concave and convex permanent magnets 17b and 17c are provided at the respective convex portions. Are arranged side by side in the moving direction of the mover so that they have an electrical phase difference of 180 degrees. Therefore, since a plurality of magnetic poles are integrally formed, the magnetic pole pitch Pm of the permanent magnet is larger than that of the conventional technique. However, the magnetic pole pitch Pm can be reduced by machining without increasing the dimension in the direction perpendicular to the paper surface.
The dimensional error of the magnetic pole pitch Pm can also be reduced. As a result, it is possible to provide a linear motor having a large thrust generated while reducing the manufacturing cost, which is a problem in the conventional technique, and reducing cogging force and thrust fluctuation. Further, with the above configuration, it is not necessary to strictly control the dimensions of the individual permanent magnets, and the inspection time at the time of assembling the permanent magnets can be shortened, so that it is possible to provide a linear motor with low assembly cost. Further, since the permanent magnets 17b and 17c having different magnetization directions are arranged side by side in the moving direction A of the mover 10, the mover 1 is arranged with respect to the magnetic pole pitch Pm.
Since a large number of permanent magnets 17b and 17c can be arranged in the moving direction A of 0, the permanent magnets 17b and 17c having an uneven shape can be set in vertical and horizontal dimensional shapes with no problem in strength.
It is possible to avoid problems such as breakage when attaching c to the tips of the teeth 13 or during transportation.

【0010】[第2の実施例]次に本発明の第2の実施
例について説明する。図5は本発明の第2実施例を示す
リニアモータの側断面図、図6は図5の磁極を可動子の
下方から見た平面図である。。第2の実施例が第1の実
施例と異なる点は、磁化方向の異なる永久磁石17b、
17cを、当該磁石の凸部が電気的に180度の位相差
になるように、可動子10の移動方向Aおよび磁気的空
隙方向Gと直交する方向Bに並べて配置した点である。
なお、動作原理については第1の実施例と同じであるた
め、その説明を省略する。
[Second Embodiment] Next, a second embodiment of the present invention will be described. FIG. 5 is a side sectional view of a linear motor showing a second embodiment of the present invention, and FIG. 6 is a plan view of the magnetic pole of FIG. 5 seen from below the mover. . The second embodiment differs from the first embodiment in that the permanent magnets 17b having different magnetization directions are
17c is arranged in the direction B orthogonal to the moving direction A of the mover 10 and the magnetic gap direction G so that the convex portions of the magnets have an electrical phase difference of 180 degrees.
Since the operating principle is the same as that of the first embodiment, its explanation is omitted.

【0011】このように第2の実施例は、磁化方向の異
なる永久磁石17b、17cを、当該磁石の凸部が電気
的に180度の位相差になるように、可動子10の移動
方向Aおよび磁気的空隙方向Gと直交する方向Bに並べ
て配置したので、第1の実施例同様の効果を得ることが
できる。また、上記効果に加えて、磁極ピッチPm寸法
に対し可動子10の移動方向Aおよび磁気的空隙方向G
と直交する方向Bの寸法が大きい場合でも、可動子10
の移動方向Aおよび磁気的空隙方向Gと直交する方向B
に短い形状をした磁化方向の異なる凹凸状の永久磁石を
複数個並べることができるため、強度劣化の無い永久磁
石を使用することができ、ティース13先端への貼り付
け時や運搬時に永久磁石が折損を生じる等の問題を回避
することができる。また、従来技術に比べても、永久磁
石の貼り付け作業を大幅に短縮でき、安価なリニアモー
タを提供することができる。
As described above, in the second embodiment, the moving direction A of the mover 10 is set so that the permanent magnets 17b and 17c having different magnetizing directions are electrically phase-shifted by 180 degrees. Since they are arranged side by side in the direction B orthogonal to the magnetic gap direction G, the same effect as the first embodiment can be obtained. In addition to the above effects, the moving direction A of the mover 10 and the magnetic air gap direction G with respect to the magnetic pole pitch Pm dimension.
Even if the dimension in the direction B orthogonal to the
Direction A of B and direction B orthogonal to magnetic gap direction G
Since it is possible to arrange a plurality of concave and convex permanent magnets each having a short shape and different in magnetization direction, it is possible to use a permanent magnet that does not deteriorate in strength. Problems such as breakage can be avoided. Further, as compared with the prior art, the work of attaching the permanent magnet can be significantly shortened, and an inexpensive linear motor can be provided.

【0012】[第3の実施例]次に、本発明の第3の実
施例について説明する。図7は本発明の第3実施例を示
すリニアモータであって、(a)は誘導子の側断面図、
(b)は係合部の拡大図である。第3の実施例が第1、
第2の実施例と異なる点は、誘導子2を移動方向Aに分
割する構成とするとともに、分割する部位となる接合面
に凹凸状の係合部2a、2bを設けた点である。なお、
誘導子歯3は電機子11との磁気的空隙gの寸法精度が
要求されるため、分割位置は歯と歯の中間部としてい
る。このように第3の実施例は誘導子2を分割構造にし
たので、リニアモータを長ストローク化する際に持ち運
びが容易に行うことができる。また、誘導子2のコア形
状もプレス機械によりワンスタンプで抜くことができる
ため生産性が向上し、加工による反りも少ないため誘導
子歯3のピッチ精度が良く、コギング力を低減すること
ができる。
[Third Embodiment] Next, a third embodiment of the present invention will be described. FIG. 7 is a linear motor showing a third embodiment of the present invention, (a) is a side sectional view of an inductor,
(B) is an enlarged view of the engaging portion. The third embodiment is the first,
The difference from the second embodiment is that the inductor 2 is divided in the moving direction A, and the engaging surfaces 2a and 2b having a concave-convex shape are provided on the joint surface serving as the dividing portion. In addition,
Since the inductor tooth 3 is required to have a dimensional accuracy of the magnetic gap g with the armature 11, the division position is set between the teeth. As described above, in the third embodiment, the inductor 2 has the divided structure, so that the linear motor can be easily carried when the stroke is extended. Further, since the core shape of the inductor 2 can be punched out by a stamp with a press machine, the productivity is improved, and the warp due to processing is small, so that the pitch accuracy of the inductor teeth 3 is good and the cogging force can be reduced. .

【0013】なお、上記の実施例で示した永久磁石17
b、17cを、例えばボンド磁石を用いると良い。すな
わち、永久磁石17b、17cのような凹凸に形成しよ
うとした場合、従来から使用される燒結磁石では加工が
困難で、形状が複雑なものには不向きであるため、ボン
ド磁石によって金型で成形することにより、永久磁石1
7b、17cを安価にすることができる。また、誘導子
2を分割構成にしたが、これは場合によっては誘導子2
の加工による寸法誤差を生じ、それに伴って連結部での
誘導子歯3のピッチ精度や電機子11とのギャップ精度
が悪くなるという問題を生じる恐れがある。すなわち、
分割した誘導子2の係合部が大きいために、ベース18
と誘導子2の間の直角精度をクリアすることが難しく、
各々の誘導子2を連結した時に部分的な接触となってし
まい、誘導子歯3のピッチ精度が悪くなることや、ベー
ス18の上面から誘導子歯3の先端面までの高さ寸法が
長いために、各々の誘導子2で高さ寸法に誤差を生じる
ことが考えられる。このような問題を回避するには、誘
導子2を分割する部位となる接合面に設けた凹凸状の係
合部2a、2bにおいて、当該係合部を連結したとき
に、図7(b)に示すように微小の隙間2cを設けて凹
凸状の係合部の寸法を調節すると、加工による寸法誤差
を逃がすことができ、寸法精度の必要な面を小さくでき
たり、連結部の誘導子歯7のピッチを精度良くできる。
また、ベース18の上面と誘導子2の間に微小の隙間2
dを設けると、各々の誘導子2で高さ寸法に誤差を生じ
ることはない。また、本実施例では電機子を可動子に、
誘導子を固定子とした構造としたが、電機子を固定子
に、誘導子を可動子とした構造としても、本発明の効果
を同じく発揮できることは言うまでもない。また、3つ
のティースで構成される電機子を示したが、それらを複
数個連結して同一のテーブルに固定する構成、1個の電
機子において複数個のティースを持つものであっても同
様の効果を得ることができる。また、本実施例では凹凸
状の永久磁石の凸部を単に矩形状としたが、永久磁石
を、可動子の移動方向Aおよび磁気的空隙方向Gと直交
する方向Bにスキューを設けたり、凸部先端を円弧状に
形成するようにしても良い。
The permanent magnet 17 shown in the above embodiment is used.
For b and 17c, for example, a bond magnet may be used. That is, when it is attempted to form irregularities such as the permanent magnets 17b and 17c, it is difficult to process with a conventionally used sintered magnet and it is not suitable for a complicated shape. The permanent magnet 1
7b and 17c can be made inexpensive. Moreover, although the inductor 2 has a split structure, this may be the inductor 2 in some cases.
There is a possibility that a dimensional error may occur due to the machining of No. 1 and the pitch accuracy of the inductor teeth 3 at the connecting portion and the gap accuracy with the armature 11 may be deteriorated. That is,
Since the engaging portion of the divided inductor 2 is large, the base 18
It is difficult to clear the right angle accuracy between the inductor and the inductor 2,
When the respective inductors 2 are connected to each other, they partially come into contact with each other, the pitch accuracy of the inductor teeth 3 is deteriorated, and the height dimension from the upper surface of the base 18 to the tip surfaces of the inductor teeth 3 is long. Therefore, it is conceivable that an error may occur in the height dimension of each inductor 2. In order to avoid such a problem, when the engaging portions 2a and 2b provided on the joint surface, which is a portion where the inductor 2 is divided, are connected to each other when the engaging portions are connected, as shown in FIG. By adjusting the dimensions of the concave-convex engaging portion by providing a minute gap 2c as shown in Fig. 4, the dimension error due to machining can be released, the surface requiring dimensional accuracy can be reduced, and the inductor teeth of the connecting portion can be reduced. The pitch of 7 can be accurately performed.
In addition, a minute gap 2 is formed between the top surface of the base 18 and the inductor 2.
When d is provided, no error occurs in the height dimension of each inductor 2. Further, in this embodiment, the armature is used as a mover,
Although the structure is such that the inductor is the stator, it goes without saying that the effect of the present invention can also be achieved if the structure is such that the armature is the stator and the inductor is the mover. Further, although an armature composed of three teeth is shown, a structure in which a plurality of them are connected to each other and fixed to the same table is the same even if one armature has a plurality of teeth. The effect can be obtained. Further, in this embodiment, the convex portion of the concave-convex permanent magnet is simply rectangular, but the permanent magnet is skewed in the moving direction A of the mover and the direction B orthogonal to the magnetic gap direction G, or the convex portion is convex. The tip of the part may be formed in an arc shape.

【0014】[0014]

【発明の効果】以上のような構成により、以下の効果を
得ることができる。 (1)第1の実施例は、誘導子歯ピッチλを従来技術の
1/2の長さ(1ティース当たりの誘導子歯数を2倍)
に設定した条件のもとで、磁極を凹凸状に形成された永
久磁石で構成するとともに、当該永久磁石の凸部のピッ
チを誘導子歯ピッチλに等しくなるように設定した構
成、永久磁石は、ティースの各々の先端に磁化方向の異
なる当該永久磁石を少なくとも2個1組として組み合わ
せたものを配置した構成、そして、凹凸状の永久磁石
を、それぞれの凸部が電気的に180度の位相差になる
ように、可動子の移動方向に並べて配置した構成にした
ため、複数の磁極が一体で構成されることから、従来技
術よりも永久磁石の磁極ピッチPmに対して紙面と垂直
方向の寸法を大きくすることなく、機械加工によって磁
極ピッチPmを小さくすることができ、磁極ピッチPm
寸法誤差も小さくできることできる。その結果、従来技
術で問題となった製造にかかるコストを低減するととも
に、コギング力、推力変動を低減しつつ発生推力の大き
なリニアモータを提供することができる。また、上記構
成により個々の永久磁石の寸法管理を厳しくする必要が
無く、永久磁石の組み付け時の検査時間も短縮できるた
め、組立コストの安価なリニアモータを提供することが
できる。さらに、磁化方向の異なる永久磁石を、可動子
の移動方向および磁気的空隙と直交する方向に並べて配
置したので、磁極ピッチPm寸法に対し可動子の移動方
向および磁気的空隙と直交する方向に多数並べることが
できるため、個々の凹凸状の永久磁石を強度上問題無い
縦横寸法形状に設定することができ、永久磁石をティー
ス先端へ貼り付けたり、運搬する時に折損を生じる等の
問題を回避することができる。 (2)第2の実施例は、磁化方向の異なる永久磁石を、
当該磁石の凸部が電気的に180度の位相差になるよう
に、可動子の移動方向および磁気的空隙と直交する方向
に並べて配置したため、第1の実施例同様の効果を得る
ことができる。また、上記効果に加えて、磁極ピッチP
m寸法に対し可動子の移動方向および磁気的空隙と直交
する方向の寸法が大きい場合でも、可動子の移動方向お
よび磁気的空隙と直交する方向に短い形状をした磁化方
向の異なる凹凸状の永久磁石を複数個並べることができ
るため、強度劣化の無い永久磁石を使用することがで
き、ティース先端への貼り付け時や運搬時に永久磁石が
折損を生じる等の問題を回避することができる。また、
従来技術に比べても、永久磁石の貼り付け作業を大幅に
短縮でき、安価なリニアモータを提供することができ
る。 (3)第3の実施例は、誘導子を移動方向に分割する構
成とするとともに、分割する部位となる接合面に凹凸状
の係合部を設けたため、リニアモータを長ストローク化
する際に持ち運びが容易に行うことができる。また、誘
導子のコア形状もプレス機械によりワンスタンプで抜く
ことができるため生産性が向上し、加工による反りも少
ないため誘導子歯のピッチ精度が良く、コギング力を低
減することができる。
The following effects can be obtained by the above structure. (1) In the first embodiment, the inductor tooth pitch λ is half the length of the prior art (twice the number of inductor teeth per tooth).
Under the conditions set in step 1, the magnetic poles are made of concave and convex permanent magnets, and the pitch of the convex portions of the permanent magnets is set to be equal to the inductor tooth pitch λ. , A structure in which at least two permanent magnets having different magnetization directions are combined as one set at each tip of each tooth, and a concave-convex permanent magnet is arranged so that each convex portion is electrically at an angle of 180 degrees. Since the plurality of magnetic poles are integrally formed because they are arranged side by side in the moving direction of the mover so as to have a phase difference, the dimension in the direction perpendicular to the paper surface with respect to the magnetic pole pitch Pm of the permanent magnet is larger than that in the prior art. The magnetic pole pitch Pm can be reduced by machining without increasing the magnetic pole pitch Pm.
The dimensional error can be reduced. As a result, it is possible to provide a linear motor having a large thrust generated while reducing the manufacturing cost, which is a problem in the conventional technique, and reducing cogging force and thrust fluctuation. Further, with the above configuration, it is not necessary to strictly control the dimensions of the individual permanent magnets, and the inspection time at the time of assembling the permanent magnets can be shortened, so that it is possible to provide a linear motor with low assembly cost. Further, since the permanent magnets having different magnetization directions are arranged side by side in the direction perpendicular to the moving direction of the mover and the magnetic gap, a large number of permanent magnets are arranged in the direction perpendicular to the moving direction of the mover and the magnetic gap with respect to the magnetic pole pitch Pm. Since they can be arranged side by side, individual concave and convex permanent magnets can be set in vertical and horizontal dimension shapes that do not pose a problem in strength, and problems such as breaking of the permanent magnets when they are attached to the tips of teeth or when they are transported are avoided. be able to. (2) The second embodiment uses permanent magnets having different magnetization directions,
Since the protrusions of the magnets are arranged side by side in the moving direction of the mover and in the direction orthogonal to the magnetic gap so that the protrusions of the magnets electrically have a phase difference of 180 degrees, the same effect as in the first embodiment can be obtained. . In addition to the above effects, the magnetic pole pitch P
Even if the dimension of the mover in the direction perpendicular to the moving direction and the magnetic gap is larger than the size of m, a permanent magnet having a short shape in the direction of the mover's moving direction and the direction perpendicular to the magnetic gap and having different magnetization directions Since a plurality of magnets can be arranged, it is possible to use a permanent magnet that does not deteriorate in strength, and it is possible to avoid problems such as breakage of the permanent magnet during attachment to the tooth tip or during transportation. Also,
Compared with the conventional technology, the work of attaching the permanent magnet can be greatly shortened, and an inexpensive linear motor can be provided. (3) In the third embodiment, the inductor is divided in the moving direction, and the engaging surface having the concave and convex portions is provided on the joint surface which is the dividing portion. Therefore, when the linear motor has a long stroke. It can be easily carried. Further, since the core shape of the inductor can be punched out by one stamp with a press machine, the productivity is improved, and the warp due to processing is small, so that the pitch accuracy of the inductor teeth is good and the cogging force can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すリニアモータの側
断面図である。
FIG. 1 is a side sectional view of a linear motor showing a first embodiment of the present invention.

【図2】図1の磁極を可動子の下方から見た平面図であ
る。
FIG. 2 is a plan view of the magnetic pole shown in FIG. 1 as viewed from below the mover.

【図3】図1の磁極の拡大図であり、永久磁石の磁化方
向を表したものである。
FIG. 3 is an enlarged view of the magnetic poles in FIG. 1, showing the magnetization direction of a permanent magnet.

【図4】第1の実施例における電機子起磁力による磁束
の流れを示した模式図である。
FIG. 4 is a schematic diagram showing a flow of magnetic flux due to an armature magnetomotive force in the first embodiment.

【図5】本発明の第2実施例を示すリニアモータの側断
面図である。
FIG. 5 is a side sectional view of a linear motor showing a second embodiment of the present invention.

【図6】図5の磁極を可動子の下方から見た平面図であ
る。
FIG. 6 is a plan view of the magnetic pole of FIG. 5 as seen from below the mover.

【図7】本発明の第3実施例を示すリニアモータであっ
て、(a)は誘導子の側断面図、(b)は係合部の拡大
図である。
FIG. 7 is a linear motor showing a third embodiment of the present invention, in which (a) is a side sectional view of an inductor and (b) is an enlarged view of an engaging portion.

【図8】従来技術を示すリニアモータの側断面図であ
る。
FIG. 8 is a side sectional view of a linear motor showing a conventional technique.

【図9】図8における磁極の拡大図であり、永久磁石の
磁化方向を表したものである。
FIG. 9 is an enlarged view of the magnetic poles in FIG. 8, showing the magnetization direction of the permanent magnet.

【符号の説明】[Explanation of symbols]

1 固定子 2 誘導子 2a 係合部 2b 係合部 2c 隙間 2d 隙間 3 誘導子歯 10 可動子 11 電機子 12 電機子コア 13 ティース 14 継鉄 15 電機子巻線 16 磁極 17a 永久磁石(従来技術) 17b、17c 永久磁石(本発明) 1 stator 2 inductor 2a Engagement part 2b Engagement part 2c gap 2d gap 3 inductor teeth 10 mover 11 armature 12 Armature core 13 Teeth 14 Yoke 15 Armature winding 16 magnetic poles 17a Permanent magnet (prior art) 17b, 17c Permanent magnet (present invention)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大戸 基道 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 (72)発明者 松崎 光洋 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 5H641 BB10 BB18 GG03 GG04 GG12 HH03 HH05 HH09 HH10 HH12 HH13 HH20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Oto Kiichi             2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu City, Fukuoka Prefecture               Yasukawa Electric Co., Ltd. (72) Inventor Mitsuhiro Matsuzaki             2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu City, Fukuoka Prefecture               Yasukawa Electric Co., Ltd. F term (reference) 5H641 BB10 BB18 GG03 GG04 GG12                       HH03 HH05 HH09 HH10 HH12                       HH13 HH20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電機子コアのティースに巻装された電機子
巻線と前記ティース先端に配置された複数の磁極とより
構成される電機子と、前記電機子と磁気的空隙を介して
対向するように設けられた誘導子歯(誘導子歯ピッチ:
λ)を有する誘導子とを備え、前記電機子と前記誘導子
の何れか一方を相対移動する可動子に、他方を固定子と
するリニアモータにおいて、 前記磁極は凹凸状に形成してなる永久磁石で構成すると
ともに、当該永久磁石の凸部のピッチを前記誘導子歯ピ
ッチλに等しくなるように設定してあり、 前記永久磁石は、前記ティースの各々の先端に磁化方向
の異なる当該永久磁石を少なくとも2個1組として組み
合わせたものを配置しであることを特徴とするリニアモ
ータ。
1. An armature composed of an armature winding wound around a tooth of an armature core and a plurality of magnetic poles arranged at the tips of the teeth, and opposed to the armature via a magnetic gap. An inductor tooth (inductor tooth pitch:
a linear motor having a mover that relatively moves one of the armature and the inductor and a stator as the other, wherein the magnetic poles are formed in a concavo-convex shape. The permanent magnets are formed of magnets, and the pitch of the convex portions of the permanent magnets is set to be equal to the inductor tooth pitch λ. The permanent magnets have different magnetization directions at the tips of the teeth. A linear motor characterized by arranging a combination of at least two.
【請求項2】磁化方向の異なる前記永久磁石を、可動子
の移動方向に並べて配置したことを特徴とする請求項1
に記載のリニアモータ。
2. The permanent magnets having different magnetization directions are arranged side by side in the moving direction of the mover.
Linear motor described in.
【請求項3】磁化方向の異なる前記永久磁石を、可動子
の移動方向および磁気的空隙方向と直交する方向に並べ
て配置したことを特徴とする請求項1または2に記載の
リニアモータ。
3. The linear motor according to claim 1, wherein the permanent magnets having different magnetization directions are arranged side by side in a direction orthogonal to the moving direction of the mover and the magnetic air gap direction.
【請求項4】前記永久磁石をボンド磁石で構成したこと
を特徴とする請求項1〜3の何れか1項に記載のリニア
モータ。
4. The linear motor according to claim 1, wherein the permanent magnet is a bond magnet.
【請求項5】前記誘導子を移動方向に分割する構成とす
るとともに、分割する部位となる接合面に凹凸状の係合
部を設けたことを特徴とする請求項1〜4の何れか1項
に記載のリニアモータ。
5. The structure according to claim 1, wherein the inductor is divided in the moving direction, and a concave-convex engaging portion is provided on a joint surface which is a dividing portion. The linear motor according to item.
JP2001317679A 2001-10-16 2001-10-16 Linear motor Expired - Fee Related JP3824061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317679A JP3824061B2 (en) 2001-10-16 2001-10-16 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317679A JP3824061B2 (en) 2001-10-16 2001-10-16 Linear motor

Publications (2)

Publication Number Publication Date
JP2003134793A true JP2003134793A (en) 2003-05-09
JP3824061B2 JP3824061B2 (en) 2006-09-20

Family

ID=19135510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317679A Expired - Fee Related JP3824061B2 (en) 2001-10-16 2001-10-16 Linear motor

Country Status (1)

Country Link
JP (1) JP3824061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514168A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Secondary parts of electrical machines
CN104935148A (en) * 2015-07-06 2015-09-23 东南大学 A magnetic-flux reverse direction type permanent magnet linear motor and a motor module group comprising same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008514168A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Secondary parts of electrical machines
CN104935148A (en) * 2015-07-06 2015-09-23 东南大学 A magnetic-flux reverse direction type permanent magnet linear motor and a motor module group comprising same

Also Published As

Publication number Publication date
JP3824061B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US7230355B2 (en) Linear hybrid brushless servo motor
JP4103066B2 (en) Permanent magnet synchronous linear motor
US8446054B2 (en) Periodic magnetic field generation device, and linear motor and rotary motor using the same
JP5770417B2 (en) Linear motor
US10700585B2 (en) Linear motor
JP3344645B2 (en) Motor using permanent magnet
US7138734B2 (en) Linear drive unit reducing stress generated in movable part in horizontal direction
JP4492118B2 (en) Linear motor and suction force cancellation type linear motor
JP3360606B2 (en) Linear motor
JP2009509491A (en) Tooth module for primary side magnetic pole member of permanent magnet excitation synchronous motor
JP4600712B2 (en) Linear motor
KR20130023037A (en) Stator for a linear motor and linear motor
JP2005168243A (en) Permanent magnet type synchronous linear motor
US6548919B2 (en) Linear motor
JP2004364374A (en) Linear motor
JP2002209371A (en) Linear motor
US6661125B2 (en) Linear motor
JP4434383B2 (en) Linear motor
JP2002186244A (en) Permanent magnet linear motor
JPH11178310A (en) Linear motor
JP2003134793A (en) Linear motor
JP2002101636A (en) Linear motor
JPH11313475A (en) Linear motor
JPWO2018167970A1 (en) Linear motor
JP2018050430A (en) Linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140707

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees