JP2003129101A - Powder for press sintering - Google Patents

Powder for press sintering

Info

Publication number
JP2003129101A
JP2003129101A JP2001325880A JP2001325880A JP2003129101A JP 2003129101 A JP2003129101 A JP 2003129101A JP 2001325880 A JP2001325880 A JP 2001325880A JP 2001325880 A JP2001325880 A JP 2001325880A JP 2003129101 A JP2003129101 A JP 2003129101A
Authority
JP
Japan
Prior art keywords
powder
gas
mass
shape
amended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001325880A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sawada
俊之 澤田
Masaru Yanagimoto
勝 柳本
Shingo Fukumoto
新吾 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2001325880A priority Critical patent/JP2003129101A/en
Publication of JP2003129101A publication Critical patent/JP2003129101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder for sintering superior in shape retainability as well as in sinterability due to a thin oxide film on the powder surface, by obtaining a powder of indefinite shape with a gas atomization method. SOLUTION: This method for manufacturing the powder for press sintering is characterized by atomizing an alloy powder which contains at least one or more rare earth elements of 0.1 mass% or more but less than 10 mass% in total, by using a gas consisting of nitrogen gas of 5 vol.% or more and the balance inert gas. Thereby, the objective powder develops an excellent effect that the cold-pressed green compact has a satisfactory shape retainability and is easily handled due to its high compressed powder strength, and that the obtained sintered compact has high density.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、冷間プレス圧粉体
の保形性および焼結性に優れたプレス焼結用粉末に関す
るものである。 【0002】 【従来の技術】従来、焼結分野においては、冷間プレス
後の圧粉体の保形性に優れる不定形状粉が主に使用され
ている。このような不定形状粉の製造方法としては、水
アトマイズ法が一般的である。しかしながら、焼結性に
は、粉末表面の清浄性が大きく影響するため、粉末表面
が厚い酸化物の被膜に覆われた水アトマイズ粉末では、
高密度焼結体を得ることは困難である。一方、ガスアト
マイズ粉末は水アトマイズ粉末に比べ表面の酸化物被膜
が薄いため、高密度焼結体を得ることが出来るが、概ね
球形状をしているため圧粉体の強度が低い。このよう
に、良好な保形性を有する圧粉体および高密度焼結体を
両立させることは非常に困難であった。 【0003】 【発明が解決しようとする課題】上記課題を解決するた
めには、清浄な表面が得られるガスアトマイズ法により
保形性の良好な不定形状粉が得られれば良い。例えば特
開平10−330806号公報に開示されているよう
に、ガスアトマイズの噴霧ガスに、体積比で不活性ガス
であるアルゴン、窒素、ヘリウムを70〜99%、酸素
を1〜30%からなる混合ガスを用いることにより、擬
球状異形金属粉末を得る方法が提案されている。しかし
ながら、上記特開平10−330806号公報に開示さ
れているような噴霧ガス中に酸素を混合させる方法は表
面に酸化物被膜が生成するために高密度焼結体を得にく
いと言う問題がある。 【0004】 【課題を解決するための手段】上述したような問題を解
消するために、発明者らは鋭意開発を進めた結果、ガス
アトマイズ法により不定形状粉を得ることで粉末表面の
酸化物被膜が薄く焼結性に優れ、かつ保形性に優れる焼
結用粉末を提供することにある。その発明の要旨とする
ところは、希土類元素、Ti、Zr、Hfの少なくとも
1種以上を合計で0.1mass%以上、10mass
%未満含む合金粉末を5vol%以上の窒素ガスと残部
不活性ガスからなるガスを用いてアトマイズすることを
特徴とするプレス焼結用粉末である。 【0005】 【発明の実施の形態】以下、本発明について詳細に説明
する。本発明に係る合金粉末は、希土類元素、Ti、Z
r、Hfの少なくとも1種以上を合計で0.1mass
%以上、10mass%未満含んでいることを必要と
し、希土類元素、Ti、Zr、Hfの合計添加量が0.
1mass%未満の場合、不定形状化の効果が小さいた
め保形性の改善が充分でない。また、10mass%以
上になると窒化物が焼結による緻密化を阻害するため焼
結性が劣化する。従って、希土類元素、Ti、Zr、H
fの少なくとも1種以上を合計で0.1mass%以
上、10mass%未満含有する。 【0006】また、5vol%以上の窒素を含むガスを
用いてアトマイズする理由は、噴霧ガスの窒素混合量が
5%未満では不定形状化の効果が小さいため保形性の改
善が充分でない。5vol%以上の窒素を含むガスによ
ってアトマイズした粉末の形状は不定形状であり、冷間
成形後の保形性が良好である。また、粉末表面の酸化物
被膜も薄く焼結性に優れる。不定形状化の原理について
は定かでないが、希土類元素、Ti、Zr、Hfは窒化
物を生成し易いため、アトマイズ直後にこれらの微細な
窒化物が粉末中に分散し、粉末が表面張力により球状化
するのを防いでいるものと推定される。 【0007】 【実施例】以下、本発明について実施例によって具体的
に説明する。表1に示す成分組成の鋼を真空誘導溶解炉
にて溶解し、溶解量1200gを出湯温度1600℃、
噴霧圧4MPa、噴霧ガスは表1に示すガスを用いてガ
スアトマイズ法により製造した後、−150μmに分級
して粉末を得た。その結果、表2に示すように、合金系
および第三元素添加量の影響について粉末形状、酸素
値、保形性および焼結密度で評価した。また、表3は第
三元素の種類の影響を粉末形状、酸素値、保形性および
焼結密度で評価した。また、表4は噴霧ガスによる影響
を、表5は水アトマイズ法との比較を評価した。 【0008】なお、上記評価方法としては、粉末形状に
ついては、SEM観察により粉末形状を観察した。ま
た、保形性については、ラトラ試験(JPMA P 1
1−1992):5880MPaにてφ10×10Lに
成形した試験片を使用した。さらに、焼結密度について
は、5880MPaにてφ10×10Lに成形した圧粉
体を真空中(1.3×10-2Pa)にて各温度で焼結
し、アルキメデス法にて密度測定し、これを粉末真密度
(ガス置換法にて測定)で割り、100(%)をかけ相
対密度とした。焼結温度は、No.2,4,5以外は1
400℃、No.2は1300℃、No.4は1320
℃、No.5は1250℃とした。なお、これら焼結温
度は融点−50℃程度としている。 【0009】 【表1】【0010】 【表2】 【0011】 【表3】 【0012】 【表4】 【0013】 【表5】 【0014】表1に示すように、No.1〜5,No.
7〜9,No.11〜17は本発明例であり、No.
6,No.10およびNo.18〜19は比較例であ
る。表2は、合金系および第三元素添加量の影響を調べ
たもので、この表に示すように、本発明例であるNo.
1〜5,No.7〜9は、いずれも不定形状の粉末形状
であり、保形性および焼結密度に優れている。これに対
し、比較例No.6は、楕円形状の粉末形状で、保形性
が悪く、また、比較例No.10は、焼結密度が悪いこ
とが判る。 【0015】表3は第三元素の種類の影響を調べたもの
で、本発明例のNo.1,11〜14のいずれも優れた
保形性および優れた焼結性を示していることが判る。表
4は噴霧ガスの影響を調べたもので、本発明例No.
1,15〜17はいずれも不定形状の粉末形状であり、
保形性および焼結密度に優れている。これに対し、比較
例No.18は、楕円形状の粉末形状で、保形性が悪い
ことが判る。表5は、水アトマイズ法との比較であり、
本発明例No.1は保形性および焼結密度に優れてい
る。これに対し、比較例No.19は、焼結密度が劣っ
ていることが判る。 【0016】以上の実施例においては、オーステナイト
系ステンレス、粉末ハイス、Fe−Ni合金、Ni基合
金、Co基合金について記述しているが、これらの合金
系のみに限定されるものではなく、希土類元素、Ti、
Zr、Hfを0.1mass%以上、10mass%未
満含んでいる合金系であれば良い。また、実施例では、
2 +Arの混合ガスについて記述しているが、Heや
2 などとN2 との混合ガスでも良い。さらに、実施例
では、希土類元素、Ti、Zr、Hfの単独添加の例を
記述しているが複合添加でも良い。 【0017】 【発明の効果】以上述べたように、本発明により冷間プ
レス圧粉体の圧粉強度が強いため保形性が良く取扱いが
容易で、また、高密度の焼結体が得られる優れた効果を
奏するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a powder for press sintering which is excellent in shape retention and sinterability of a cold pressed green compact. 2. Description of the Related Art Conventionally, in the field of sintering, irregularly shaped powders having excellent shape retention of a green compact after cold pressing are mainly used. As a method for producing such irregularly shaped powder, a water atomizing method is generally used. However, since the cleanliness of the powder surface greatly affects the sinterability, in the case of a water atomized powder in which the powder surface is covered with a thick oxide film,
It is difficult to obtain a high-density sintered body. On the other hand, gas atomized powder has a thin oxide film on the surface as compared with water atomized powder, so that a high-density sintered body can be obtained. However, the strength of the green compact is low because it has a substantially spherical shape. Thus, it has been very difficult to achieve both a green compact having a good shape-retaining property and a high-density sintered body. [0003] In order to solve the above-mentioned problems, it is only necessary that a gas atomizing method capable of obtaining a clean surface can provide an irregular-shaped powder having good shape retention. For example, as disclosed in Japanese Patent Application Laid-Open No. 10-330806, 70 to 99% of inert gas and 70 to 99% of oxygen and 1 to 30% of oxygen are mixed in a gas atomized spray gas by volume ratio of inert gas. There has been proposed a method for obtaining a pseudospherical deformed metal powder by using a gas. However, the method disclosed in Japanese Patent Application Laid-Open No. 10-330806, in which oxygen is mixed in a spray gas, has a problem that it is difficult to obtain a high-density sintered body because an oxide film is formed on the surface. . Means for Solving the Problems In order to solve the above-mentioned problems, the inventors of the present invention have intensively developed and obtained an oxide film on the powder surface by obtaining an irregular-shaped powder by a gas atomizing method. It is an object of the present invention to provide a sintering powder which is thin and excellent in sinterability and excellent in shape retention. The gist of the invention is that a total of at least one of rare earth elements, Ti, Zr, and Hf is 0.1 mass% or more and 10 mass% or more.
%. The powder for press sintering is characterized in that the alloy powder containing less than 5% is atomized by using a gas composed of nitrogen gas of 5% by volume or more and the balance of inert gas. Hereinafter, the present invention will be described in detail. The alloy powder according to the present invention comprises a rare earth element, Ti, Z
0.1 mass of at least one of r and Hf in total
% Or more and less than 10 mass%, and the total amount of the rare earth elements, Ti, Zr, and Hf added is 0.1%.
When the amount is less than 1 mass%, the effect of forming an indefinite shape is small, and thus the shape retention is not sufficiently improved. On the other hand, if the content exceeds 10 mass%, the sinterability deteriorates because the nitride inhibits densification by sintering. Therefore, rare earth elements, Ti, Zr, H
f is contained in a total of 0.1 mass% or more and less than 10 mass%. [0006] Further, the reason for atomizing using a gas containing 5 vol% or more of nitrogen is that if the amount of nitrogen mixed in the spray gas is less than 5%, the effect of forming an irregular shape is small, and the improvement of shape retention is not sufficient. The shape of the powder atomized by the gas containing 5 vol% or more of nitrogen is irregular, and the shape retention after cold forming is good. Also, the oxide film on the powder surface is thin and excellent in sinterability. Although the principle of irregular shape formation is not clear, rare earth elements, Ti, Zr, and Hf tend to form nitrides, so these fine nitrides are dispersed in powder immediately after atomization, and the powder becomes spherical due to surface tension. It is presumed that this is preventing Now, the present invention will be described in further detail with reference to Examples. Steel having the composition shown in Table 1 was melted in a vacuum induction melting furnace.
The spray pressure was 4 MPa, and the spray gas was produced by a gas atomization method using the gas shown in Table 1, and then classified to -150 μm to obtain a powder. As a result, as shown in Table 2, the effects of the alloy system and the amount of the third element added were evaluated in terms of powder shape, oxygen value, shape retention and sintered density. Table 3 shows the influence of the type of the third element on the powder shape, oxygen value, shape retention and sintering density. Table 4 evaluates the effect of the spray gas, and Table 5 evaluates the comparison with the water atomization method. In the evaluation method, the powder shape was observed by SEM observation. As for the shape retention, the rattra test (JPMA P 1
1-1992): A test piece molded into φ10 × 10 L at 5880 MPa was used. Further, regarding the sintering density, a green compact molded to φ10 × 10 L at 5880 MPa was sintered at each temperature in a vacuum (1.3 × 10 −2 Pa), and the density was measured by Archimedes method. This was divided by the true powder density (measured by the gas replacement method) and multiplied by 100 (%) to obtain a relative density. The sintering temperature is no. 1 except for 2, 4, 5
400 ° C., No. 2 is 1300 ° C., 4 is 1320
° C, No. 5 was 1250 ° C. The sintering temperature is about -50 ° C. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] As shown in Table 1, as shown in FIG. Nos. 1 to 5;
7-9, No. Nos. 11 to 17 are examples of the present invention.
6, No. 10 and No. 18 to 19 are comparative examples. Table 2 shows the effects of the alloy system and the amount of the third element added.
Nos. 1 to 5; Each of Nos. 7 to 9 has an irregular shape powder shape, and is excellent in shape retention and sintered density. On the other hand, in Comparative Example No. Comparative Example No. 6 is an elliptical powder having poor shape retention. 10 indicates that the sintered density is poor. Table 3 shows the effect of the type of the third element. It can be seen that all of 1,11 to 14 show excellent shape retention and excellent sinterability. Table 4 shows the effect of the spray gas.
Each of 1, 15 to 17 is an irregularly shaped powder,
Excellent shape retention and sintered density. On the other hand, in Comparative Example No. Reference numeral 18 indicates an elliptical powder shape having poor shape retention. Table 5 is a comparison with the water atomizing method,
Invention Example No. No. 1 is excellent in shape retention and sintered density. On the other hand, in Comparative Example No. 19 shows that the sintered density was inferior. In the above embodiments, austenitic stainless steel, powdered high-speed steel, Fe-Ni alloy, Ni-based alloy, and Co-based alloy have been described. However, the present invention is not limited to these alloys, but is rare earth. Element, Ti,
Any alloy containing Zr and Hf in an amount of 0.1 mass% or more and less than 10 mass% may be used. In the embodiment,
Although a mixed gas of N 2 + Ar is described, a mixed gas of He or H 2 and N 2 may be used. Further, in the embodiment, the example of the single addition of the rare earth element, Ti, Zr, and Hf is described, but the composite addition may be used. As described above, according to the present invention, the compactness of the cold-pressed green compact is high, so that the shape retention is good and the handling is easy, and a high-density sintered body can be obtained. It has excellent effects.

─────────────────────────────────────────────────────
【手続補正書】 【提出日】平成13年10月31日(2001.10.
31) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】特許請求の範囲 【補正方法】変更 【補正内容】 【特許請求の範囲】 【請求項1】 希土類元素の少なくとも1種以上を合計
で0.1mass%以上、10mass%未満含む合金
粉末を5vol%以上の窒素ガスと残部不活性ガスから
なるガスを用いてアトマイズすることを特徴とするプレ
ス焼結用粉末。 【手続補正2】 【補正対象書類名】明細書 【補正対象項目名】0004 【補正方法】変更 【補正内容】 【0004】 【課題を解決するための手段】上述したような問題を解
消するために、発明者らは鋭意開発を進めた結果、ガス
アトマイズ法により不定形状粉を得ることで粉末表面の
酸化物被膜が薄く焼結性に優れ、かつ保形性に優れる焼
結用粉末を提供することにある。その発明の要旨とする
ところは、希土類元素の少なくとも1種以上を合計で
0.1mass%以上、10mass%未満含む合金粉
末を5vol%以上の窒素ガスと残部不活性ガスからな
るガスを用いてアトマイズすることを特徴とするプレス
焼結用粉末である。 【手続補正3】 【補正対象書類名】明細書 【補正対象項目名】0005 【補正方法】変更 【補正内容】 【0005】 【発明の実施の形態】以下、本発明について詳細に説明
する。本発明に係る合金粉末は、希土類元素の少なくと
も1種以上を合計で0.1mass%以上、10mas
s%未満含んでいることを必要とし、希土類元素の合計
添加量が0.1mass%未満の場合、不定形状化の効
果が小さいため保形性の改善が充分でない。また、10
mass%以上になると窒化物が焼結による緻密化を阻
害するため焼結性が劣化する。従って、希土類元素の少
なくとも1種以上を合計で0.1mass%以上、10
mass%未満含有する。 【手続補正4】 【補正対象書類名】明細書 【補正対象項目名】0006 【補正方法】変更 【補正内容】 【0006】また、5vol%以上の窒素を含むガスを
用いてアトマイズする理由は、噴霧ガスの窒素混合量が
5%未満では不定形状化の効果が小さいため保形性の改
善が充分でない。5vol%以上の窒素を含むガスによ
ってアトマイズした粉末の形状は不定形状であり、冷間
成形後の保形性が良好である。また、粉末表面の酸化物
被膜も薄く焼結性に優れる。不定形状化の原理について
は定かでないが、希土類元素は窒化物を生成し易いた
め、アトマイズ直後にこれらの微細な窒化物が粉末中に
分散し、粉末が表面張力により球状化するのを防いでい
るものと推定される。 【手続補正5】 【補正対象書類名】明細書 【補正対象項目名】0009 【補正方法】変更 【補正内容】 【0009】 【表1】 【手続補正6】 【補正対象書類名】明細書 【補正対象項目名】0011 【補正方法】変更 【補正内容】 【0011】 【表3】 【手続補正7】 【補正対象書類名】明細書 【補正対象項目名】0012 【補正方法】変更 【補正内容】 【0012】 【表4】 【手続補正8】 【補正対象書類名】明細書 【補正対象項目名】0013 【補正方法】変更 【補正内容】 【0013】 【表5】 【手続補正9】 【補正対象書類名】明細書 【補正対象項目名】0014 【補正方法】変更 【補正内容】 【0014】表1に示すように、No.1〜5,No.
7〜9,No.11〜14は本発明例であり、No.
6,No.10およびNo.15〜16は比較例であ
る。表2は、合金系および第三元素添加量の影響を調べ
たもので、この表に示すように、本発明例であるNo.
1〜5,No.7〜9は、いずれも不定形状の粉末形状
であり、保形性および焼結密度に優れている。これに対
し、比較例No.6は、楕円形状の粉末形状で、保形性
が悪く、また、比較例No.10は、焼結密度が悪いこ
とが判る。 【手続補正10】 【補正対象書類名】明細書 【補正対象項目名】0015 【補正方法】変更 【補正内容】 【0015】表3は第三元素の種類の影響を調べたもの
で、本発明例のNo.1,11のいずれも優れた保形性
および優れた焼結性を示していることが判る。表4は噴
霧ガスの影響を調べたもので、本発明例No.1,12
〜14はいずれも不定形状の粉末形状であり、保形性お
よび焼結密度に優れている。これに対し、比較例No.
15は、楕円形状の粉末形状で、保形性が悪いことが判
る。表5は、水アトマイズ法との比較であり、本発明例
No.1は保形性および焼結密度に優れている。これに
対し、比較例No.16は、焼結密度が劣っていること
が判る。 【手続補正11】 【補正対象書類名】明細書 【補正対象項目名】0016 【補正方法】変更 【補正内容】 【0016】以上の実施例においては、オーステナイト
系ステンレス、粉末ハイス、Fe−Ni合金、Ni基合
金、Co基合金について記述しているが、これらの合金
系のみに限定されるものではなく、希土類元素を0.1
mass%以上、10mass%未満含んでいる合金系
であれば良い。また、実施例では、N2 +Arの混合ガ
スについて記述しているが、HeやH2 などとN2 との
混合ガスでも良い。さらに、実施例では、希土類元素の
単独添加の例を記述しているが複合添加でも良い。 【手続補正書】 【提出日】平成14年4月24日(2002.4.2
4) 【手続補正1】 【補正対象書類名】明細書 【補正対象項目名】0008 【補正方法】変更 【補正内容】 【0008】なお、上記評価方法としては、粉末形状に
ついては、SEM観察により粉末形状を観察した。ま
た、保形性については、ラトラ試験(JPMA P 1
1−1992):588MPaにてφ10×10Lに成
形した試験片を使用した。さらに、焼結密度について
は、588MPaにてφ10×10Lに成形した圧粉体
を真空中(1.3×10-2Pa)にて各温度で焼結し、
アルキメデス法にて密度測定し、これを粉末真密度(ガ
ス置換法にて測定)で割り、100(%)をかけ相対密
度とした。焼結温度は、No.2,4,5以外は140
0℃、No.2は1300℃、No.4は1320℃、
No.5は1250℃とした。なお、これら焼結温度は
融点−50℃程度としている。
────────────────────────────────────────────────── ───
[Procedure for Amendment] [Date of Submission] October 31, 2001 (2001.10.
31) [Procedure amendment 1] [Document name to be amended] Description [Item name to be amended] Claims [Amendment method] Change [Content of amendment] [Claims] [Claim 1] At least one of rare earth elements A powder for press sintering, characterized by atomizing an alloy powder containing a total of 0.1 mass% or more and less than 10 mass% of at least seeds using a gas consisting of nitrogen gas of 5 vol% or more and the balance of inert gas. [Procedure amendment 2] [Document name to be amended] Description [Item name to be amended] 0004 [Correction method] Change [Contents of amendment] [0004] To solve the above-mentioned problems. In addition, as a result of the inventor's intensive development, the present invention provides a powder for sintering in which an oxide film on the powder surface is thin and excellent in sinterability, and excellent in shape retention by obtaining an irregular-shaped powder by a gas atomizing method. It is in. The gist of the invention is that an alloy powder containing at least one or more rare earth elements in total of 0.1 mass% or more and less than 10 mass% is atomized by using a gas composed of nitrogen gas of 5 vol% or more and a balance of inert gas. This is a powder for press sintering. [Procedure amendment 3] [Document name to be amended] Description [Item name to be amended] 0005 [Correction method] Change [Content of amendment] [0005] The present invention will be described in detail below. The alloy powder according to the present invention includes at least one rare earth element in a total of 0.1 mass% or more and 10 mass% or more.
If the total amount of the rare earth elements is less than 0.1 mass%, the effect of forming an irregular shape is small, and the shape retention is not sufficiently improved. Also, 10
If the content is equal to or more than mass%, the sinterability deteriorates because the nitride inhibits densification by sintering. Therefore, a total of at least one or more rare earth elements is 0.1 mass% or more in total.
It contains less than mass%. [Procedure amendment 4] [Document name to be amended] Description [Item name to be amended] 0006 [Amended method] Change [Content of amendment] [0006] The reason for atomizing using a gas containing 5 vol% or more of nitrogen is as follows. If the nitrogen mixture amount of the spray gas is less than 5%, the effect of forming an irregular shape is small, and the shape retention is not sufficiently improved. The shape of the powder atomized by the gas containing 5 vol% or more of nitrogen is irregular, and the shape retention after cold forming is good. Also, the oxide film on the powder surface is thin and excellent in sinterability. Although the principle of irregular shape formation is not clear, rare earth elements tend to form nitrides, so that these fine nitrides disperse in powder immediately after atomization and prevent the powder from spheroidizing due to surface tension. It is estimated that [Procedure amendment 5] [Document name to be amended] Description [Item name to be amended] 0009 [Amendment method] Change [Content of amendment] [Table 1] [Procedure amendment 6] [Document name to be amended] Description [Item name to be amended] 0011 [Amendment method] Change [Content of amendment] [Table 3] [Procedure amendment 7] [Document name to be amended] Description [Item name to be amended] 0012 [Amendment method] Change [Content of amendment] [Table 4] [Procedure amendment 8] [Document name to be amended] Description [Item name to be amended] 0013 [Amendment method] Change [Contents of amendment] [Table 5] [Procedure amendment 9] [Document name to be amended] Description [Item name to be amended] 0014 [Amendment method] Change [Contents of amendment] As shown in Table 1, No. Nos. 1 to 5;
7-9, No. Nos. 11 to 14 are examples of the present invention.
6, No. 10 and No. 15 and 16 are comparative examples. Table 2 shows the effects of the alloy system and the amount of the third element added.
Nos. 1 to 5; Each of Nos. 7 to 9 has an irregular shape powder shape, and is excellent in shape retention and sintered density. On the other hand, in Comparative Example No. Comparative Example No. 6 is an elliptical powder having poor shape retention. 10 indicates that the sintered density is poor. [Procedure amendment 10] [Document name to be amended] Description [Item name to be amended] 0015 [Amendment method] Change [Content of amendment] Table 3 shows the effect of the type of the third element. No. of the example. It can be seen that both Nos. 1 and 11 show excellent shape retention and excellent sinterability. Table 4 shows the effect of the spray gas. 1, 12
Nos. To 14 are powders of irregular shapes, and are excellent in shape retention and sintered density. On the other hand, in Comparative Example No.
Reference numeral 15 indicates an elliptical powder shape having poor shape retention. Table 5 shows a comparison with the water atomizing method. No. 1 is excellent in shape retention and sintered density. On the other hand, in Comparative Example No. 16 shows that the sintered density was inferior. [Procedure amendment 11] [Document name to be amended] Description [Item name to be amended] 0016 [Correction method] Change [Content of amendment] In the above embodiments, austenitic stainless steel, powdered high-speed steel, Fe-Ni alloy , Ni-based alloys, and Co-based alloys are described, but the invention is not limited only to these alloy systems,
Any alloy containing at least mass% and less than 10 mass% may be used. Further, in the embodiment, a mixed gas of N 2 + Ar is described, but a mixed gas of He, H 2 , and the like and N 2 may be used. Further, in the embodiment, the example of the single addition of the rare earth element is described, but the composite addition may be used. [Procedure amendment] [Date of submission] April 24, 2002 (2002.4.2.2)
4) [Procedure amendment 1] [Document name to be amended] Description [Item name to be amended] 0008 [Correction method] Change [Content of amendment] [0008] In the above evaluation method, the powder shape is determined by SEM observation. The powder shape was observed. As for the shape retention, the rattra test (JPMA P 1
1-1992 ): A test piece molded at 588 MPa to φ10 × 10 L was used. Further, with respect to the sintering density, a green compact compacted to φ10 × 10 L at 588 MPa was sintered at each temperature in a vacuum (1.3 × 10 −2 Pa),
The density was measured by the Archimedes method, divided by the true powder density (measured by the gas replacement method), and multiplied by 100 (%) to obtain a relative density. The sintering temperature is no. 140 except for 2, 4 and 5
0 ° C, No. No. 2 is 1300 ° C., 4 is 1320 ° C,
No. 5 was 1250 ° C. The sintering temperature is about -50 ° C.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福本 新吾 兵庫県姫路市飾磨区中島字一文字3007番地 山陽特殊製鋼株式会社内 Fターム(参考) 4K018 BA18 BC09 BC10 BC12    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shingo Fukumoto             3007 one character of Nakajima character in Shima, Himeji city, Hyogo prefecture               Sanyo Special Steel Co., Ltd. F term (reference) 4K018 BA18 BC09 BC10 BC12

Claims (1)

【特許請求の範囲】 【請求項1】 希土類元素、Ti、Zr、Hfの少なく
とも1種以上を合計で0.1mass%以上、10ma
ss%未満含む合金粉末を5vol%以上の窒素ガスと
残部不活性ガスからなるガスを用いてアトマイズするこ
とを特徴とするプレス焼結用粉末。
Claims: 1. A total of at least one of rare earth elements, Ti, Zr, and Hf is 0.1 mass% or more and 10 ma.
A powder for press sintering, wherein an alloy powder containing less than ss% is atomized using a gas composed of nitrogen gas of 5 vol% or more and an inert gas in the balance.
JP2001325880A 2001-10-24 2001-10-24 Powder for press sintering Withdrawn JP2003129101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001325880A JP2003129101A (en) 2001-10-24 2001-10-24 Powder for press sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325880A JP2003129101A (en) 2001-10-24 2001-10-24 Powder for press sintering

Publications (1)

Publication Number Publication Date
JP2003129101A true JP2003129101A (en) 2003-05-08

Family

ID=19142357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325880A Withdrawn JP2003129101A (en) 2001-10-24 2001-10-24 Powder for press sintering

Country Status (1)

Country Link
JP (1) JP2003129101A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570508A1 (en) * 2011-09-19 2013-03-20 Sandvik Intellectual Property AB A roll for hot rolling

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570508A1 (en) * 2011-09-19 2013-03-20 Sandvik Intellectual Property AB A roll for hot rolling

Similar Documents

Publication Publication Date Title
JP4871406B1 (en) Magnetron sputtering target and method for manufacturing the same
JP2004533543A5 (en)
CA2569973A1 (en) Powder metallurgical compositions and parts made therefrom
JPH044362B2 (en)
JP2004253787A (en) Complex soft magnetic sintered material with high strength, high magnetic flux density, and high resistance, and method of manufacturing same
JP2003129101A (en) Powder for press sintering
JP6741153B2 (en) Partially diffused alloy steel powder
RU2005132992A (en) METAL POWDER BASED ON COBALT AND METHOD FOR PRODUCING ITEMS FROM IT
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JP4121383B2 (en) Iron-base metal bond excellent in dimensional accuracy, strength and sliding characteristics and method for manufacturing the same
US4015947A (en) Production of sintered aluminum alloy articles from particulate premixes
JP2003293014A (en) Powder for press sintering
JP2004068077A (en) Low thermal expansion alloy powder for press sintering
JP4140083B2 (en) NiAlMo sputtering target and manufacturing method thereof
JPH0359122B2 (en)
JP2001295004A (en) Iron base sintered alloy
JP7156193B2 (en) Hard particles and sintered sliding member using the same
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JP2579171B2 (en) Manufacturing method of sintered material
JPS6049079B2 (en) Joining method for metal parts
JPH075921B2 (en) Method for producing composite alloy steel powder with excellent compressibility
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPH0195894A (en) Copper-based brazing filler alloy for sintering alloy
WO2001087521A3 (en) High conductivity copper/refractory metal composites and method for making same
JPS5919981B2 (en) W-based high toughness sintered alloy

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104