JP2003124431A - Wafer-form sheet, a chip-form electronic part, and their manufacturing method - Google Patents

Wafer-form sheet, a chip-form electronic part, and their manufacturing method

Info

Publication number
JP2003124431A
JP2003124431A JP2001319542A JP2001319542A JP2003124431A JP 2003124431 A JP2003124431 A JP 2003124431A JP 2001319542 A JP2001319542 A JP 2001319542A JP 2001319542 A JP2001319542 A JP 2001319542A JP 2003124431 A JP2003124431 A JP 2003124431A
Authority
JP
Japan
Prior art keywords
semiconductor chip
wafer
chip
sheet
electrode surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001319542A
Other languages
Japanese (ja)
Inventor
Morio Misonoo
守男 御園生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2001319542A priority Critical patent/JP2003124431A/en
Publication of JP2003124431A publication Critical patent/JP2003124431A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04105Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer-form sheet, a chip-form electronic part, and a method for manufacturing them where crack and disconnection do not occur with a wiring when heated or cooled. SOLUTION: When a semiconductor chip 13C is cut out of a silicone wafer 11, or at dicing, it is half-cut from the electrode surface side with a thick blade 36 having a V-shape in a tip cross section, and then it is full-cut from the central bottom of the half cut to an opposite surface with a thin blade 38, to chamfer the ridge line of an electrode surface 22. The semiconductor chip 13C along with a semiconductor chip 13D acquired like wise are spaced at a given pitch, and are connected in a thin sheet-form using an epoxy resin 12 to form a wafer- form sheet 10. The wafer-form sheet 10 is diced such that the semiconductor chips 13C and 13D are contained, thus a chip-form electronic part 1 of MCM is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はウェーハ状シ−ト、
チップ状電子部品、およびそれらの製造方法に関するも
のであり、更に詳しくは、所定のピッチに配置された複
数個の半導体チップと、半導体チップの電極面以外の底
面および側面を覆い連結する連続相の合成樹脂層と、電
極面側に層間絶縁膜を介して形成された配線層を有する
ウェーハ状シ−ト、そのウェーハ状シートを単数または
複数の半導体チップが含まれるようにダイシングして得
られるチップ状電子部品、およびそれらの製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a wafer-like sheet,
The present invention relates to a chip-shaped electronic component and a manufacturing method thereof, and more specifically, a plurality of semiconductor chips arranged at a predetermined pitch and a continuous phase that covers and connects the bottom surface and side surfaces other than the electrode surface of the semiconductor chip. Wafer-shaped sheet having a synthetic resin layer and a wiring layer formed on the electrode surface side via an interlayer insulating film, and a chip obtained by dicing the wafer-shaped sheet to include a single or a plurality of semiconductor chips The present invention relates to an electronic component and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、半導体チップは例えばQFP(ク
オッド・フラット・パッケージ)のように周囲に多数本
のリード端子を有する形状の封止体として使用されてき
たが、近年の携帯電話、ノートパソコン等に代表される
可搬性電子機器において小型化、薄型化、軽量化の要請
が大であり、これに応ずるものとして半導体チップをC
SP(チップ・サイズ・パッケージ)化したものが採用
されるようになっている。すなわち、半導体チップをダ
イペーストによってインターポーザ基板の一面にフェイ
スアップに固定し、半導体チップの電極とインターポー
ザ基板の電極を金線でワイヤボンディングして、インタ
ーポーザ基板の他面の電極を例えば半田ボールによって
回路基板(マザーボード)の電極に接続するか、または
インターポーザ基板の電極に対してフェイスダウンとし
た半導体チップの電極に設けたバンプをフリップチップ
的に接続して、インターポーザ基板の他面の電極を回路
基板の電極に接続するものである。
2. Description of the Related Art Conventionally, a semiconductor chip has been used as an encapsulating body having a large number of lead terminals in its periphery such as a QFP (quad flat package). There is a great demand for downsizing, thinning, and weight reduction in portable electronic equipment such as a semiconductor chip.
An SP (chip size package) version has been adopted. That is, the semiconductor chip is fixed face-up on one surface of the interposer substrate by die paste, the electrodes of the semiconductor chip and the electrodes of the interposer substrate are wire-bonded with a gold wire, and the electrodes on the other surface of the interposer substrate are circuited by, for example, solder balls. The electrodes on the other surface of the interposer board are connected to the electrodes of the board (motherboard) or the bumps provided on the electrodes of the semiconductor chip that face down with respect to the electrodes of the interposer board are connected in a flip-chip manner. It is connected to the electrode of.

【0003】上記のCSPは個々の半導体チップを可及
的に小さくパッケージして回路基板に高密度に実装する
ものであるが、これを更に進めて、複数個、複数種の半
導体チップを1個にパッケージしてモジュール化したM
CM(マルチ・チップ・モジュール)の実用化が図られ
ている。例えば、デジタル携帯電話におけるSRAM
(スタティックラム)、フラッシュメモリ、マイクロコ
ンピュータ等の半導体チップを1個にパッケージしたM
CMのチップ状電子部品である。MCMに使用されるチ
ップ状電子部品には上記以外にもあり、例えば発振用の
チップ状LCRはその一例である。
The above-mentioned CSP packages individual semiconductor chips as small as possible and mounts them on a circuit board with a high density. M packaged in and modularized
Commercialization of CM (multi-chip module) has been attempted. For example, SRAM in a digital mobile phone
(Static RAM), Flash memory, Microcomputer, etc.
It is a chip-shaped electronic component of CM. There are other chip-shaped electronic components used in the MCM than the above, and for example, a chip-shaped LCR for oscillation is one example.

【0004】そして、MCM化の技術の中に、半導体チ
ップを個別にMCM化するものがある。図8はその中の
一つの方式を示し、図8のAは斜視図、図8のBは側面
図であるが、半導体チップ60A、60Bをダイペース
トによって回路基板70の一面にフェイスアップに固定
し、半導体チップ60A、60Bの電極パッド61と回
路基板70の電極パッド71を金線62でワイヤボンデ
ィングするものである。回路基板70の他面には接続用
の電極72が設けられている。また同様な図9は、フェ
イスダウンとした半導体チップ60A、60Bのバンプ
63を回路基板70の電極71に対してフリップチップ
的に接続するものであり、半導体チップ60A、60B
と回路基板との間はアンダーフィル64が充填されてい
る。しかし、半導体チップを個別にMCM化する方法は
製造コストの増大を伴い易い。
Among the MCM techniques, there is a technique in which semiconductor chips are individually made into MCMs. FIG. 8 shows one of the methods, and FIG. 8A is a perspective view and FIG. 8B is a side view. The semiconductor chips 60A and 60B are fixed face-up on one surface of the circuit board 70 by die paste. Then, the electrode pad 61 of the semiconductor chips 60A and 60B and the electrode pad 71 of the circuit board 70 are wire-bonded with the gold wire 62. An electrode 72 for connection is provided on the other surface of the circuit board 70. Further, FIG. 9 similarly shows that the bumps 63 of the face-down semiconductor chips 60A and 60B are flip-chip connected to the electrodes 71 of the circuit board 70.
An underfill 64 is filled between the circuit board and the circuit board. However, the method of individually converting the semiconductor chips into MCMs is likely to involve an increase in manufacturing cost.

【0005】これに対し、本出願人が先に出願した特願
2000−122112号には、チップ状電子部品、そ
れを製造するための疑似ウェーハ、およびそれらの製造
方法が開示されている。 図5、図6はその方法による
疑似ウェーハの一例であるウェーハ状シート20の製造
方法をステップ的に示す断面図である。すなわち、図5
のAに示すように、石英基板3上に粘着面を上向きにし
て固定した粘着性シート4に対し、図5のBに示すよう
に、二種の半導体チップ13A、13Bを所定のピッチ
でフェイスダウンに粘着させる。なお図7は、半導体チ
ップ13A、13Bを粘着させた粘着性シート4の全体
を示す斜視図であり、図5のBに対応する図である。続
いて図5のCに示すように、その全面に液状のエポキシ
樹脂12を塗布し、要すれば真空脱泡してボイドが残ら
ないようにした後に加熱して硬化させる。その後、図5
のDに示すように、石英基板3側から紫外線を照射し粘
着剤を紫外線硬化させて(または加熱し粘着剤を熱硬化
させて)粘着性を失わせ、半導体チップ13A、13B
とエポキシ樹脂12とからなるウェーハ状シート20を
粘着性シート4から剥離する。なお本文において、ウェ
ーハ状シート20は、上記の半導体チップ13A、13
Bとエポキシ樹脂12とからなるもののほか、その半導
体チップ13A、13Bの側の面に層間絶縁膜、配線
層、オーバーコート膜を形成させたそれぞれの段階のも
のも含む。
On the other hand, Japanese Patent Application No. 2000-122112 previously filed by the present applicant discloses a chip-shaped electronic component, a pseudo wafer for manufacturing the same, and a manufacturing method thereof. 5 and 6 are cross-sectional views showing stepwise a method for manufacturing a wafer-shaped sheet 20 which is an example of a pseudo wafer by the method. That is, FIG.
As shown in A of FIG. 5, with respect to the adhesive sheet 4 fixed on the quartz substrate 3 with its adhesive surface facing upward, as shown in B of FIG. Stick it down. Note that FIG. 7 is a perspective view showing the entire adhesive sheet 4 to which the semiconductor chips 13A and 13B are adhered, and is a view corresponding to B in FIG. Subsequently, as shown in FIG. 5C, a liquid epoxy resin 12 is applied to the entire surface, and if necessary, vacuum degassing is performed to eliminate voids, and then the resin is heated and cured. After that, FIG.
As shown in D of FIG. 3, the semiconductor chips 13A and 13B are irradiated with ultraviolet rays from the quartz substrate 3 side to cure the adhesive with ultraviolet rays (or heat the adhesive to thermally cure the adhesive) to lose the adhesiveness.
The wafer-shaped sheet 20 including the epoxy resin 12 and the epoxy resin 12 is peeled from the adhesive sheet 4. In the text, the wafer-shaped sheet 20 is the semiconductor chips 13A, 13 described above.
In addition to those composed of B and the epoxy resin 12, those of each stage in which an interlayer insulating film, a wiring layer, and an overcoat film are formed on the surface of the semiconductor chips 13A and 13B are also included.

【0006】図6のAは剥離された図5のDのウェーハ
状シート20を裏返しにして上下を反転させた状態を示
し、半導体チップ13Aと半導体チップ13Bが電極面
22a、22b以外の底面と側面を連続相のエポキシ樹
脂12によって覆われて連結されたものである。そし
て、半導体チップ13Aの電極面22aは電極14
1、14a2 、パッシベーション膜15aからなり、
半導体チップ13Bの電極面22bは電極14b1 、1
4b2 、 パッシベーション膜15bからなっている。
続く図6のBは、ウェーハ状シート20の全面に厚さ1
0〜15μm程度の層間絶縁膜16を形成して、半導体
チップ13Aの電極14a1 、14a2 、および半導体
チップ13Bの電極14b1 、14b2 に対応する部分
にビアホール17a1 、17a2 およびビアホール17
1 、17b2 を開孔した状態を示す。更に図6のC
は、全面に成膜した厚さ1〜2μmの配線層をパターニ
ングして、半導体チップ13Aの電極14a2 と半導体
チップ13Bの電極14b1 を接続する配線18ab、
半導体チップ13Aを外部と接続する配線18a、半導
体チップ13Bを外部と接続する配線18bを、例えば
L/S(ラインアンドスペース)30μmで形成させた
状態を示す。更に続く図6のDは、配線18ab、18
a、18bを含む全面にオーバーコート膜19を形成し
た後、オーバーコート膜19を開孔して配線18a、1
8bの電極パッド21a、21bを露出させた状態を示
す。なお、図6のDにおけるウェーハ状シート20は、
半導体チップ13Aの左側と半導体チップ13Bの右側
において示す二点鎖線Dに沿ってダイシングされて、半
導体チップ13Aと半導体チップ13Bとが1個にパッ
ケージされたMCMのチップ状電子部品2が得られる。
FIG. 6A shows a state in which the peeled wafer-like sheet 20 of FIG. 5D is turned upside down and turned upside down. The semiconductor chip 13A and the semiconductor chip 13B have bottom surfaces other than the electrode surfaces 22a and 22b. The side surface is covered with the continuous phase epoxy resin 12 and connected. The electrode surface 22a of the semiconductor chip 13A is connected to the electrode 14
a 1 , 14a 2 , a passivation film 15a,
The electrode surface 22b of the semiconductor chip 13B has electrodes 14b 1 , 1
4b 2 and a passivation film 15b.
Continuing with FIG. 6B, the thickness of 1
The interlayer insulating film 16 having a thickness of 0 to 15 μm is formed, and the via holes 17a 1 and 17a 2 and the via hole 17 are formed in the portions corresponding to the electrodes 14a 1 and 14a 2 of the semiconductor chip 13A and the electrodes 14b 1 and 14b 2 of the semiconductor chip 13B.
The state where b 1 and 17 b 2 are opened is shown. Further, C in FIG.
Is a wiring 18ab for connecting the electrode 14a 2 of the semiconductor chip 13A and the electrode 14b 1 of the semiconductor chip 13B by patterning a wiring layer having a thickness of 1 to 2 μm formed on the entire surface.
A wiring 18a for connecting the semiconductor chip 13A to the outside and a wiring 18b for connecting the semiconductor chip 13B to the outside are formed with an L / S (line and space) of 30 μm, for example. Further, FIG. 6D shows the wirings 18ab, 18
After the overcoat film 19 is formed on the entire surface including a and 18b, the overcoat film 19 is opened to form the wirings 18a and 1a.
8B shows a state in which the electrode pads 21a and 21b of 8b are exposed. The wafer-shaped sheet 20 in D of FIG.
By dicing along a two-dot chain line D shown on the left side of the semiconductor chip 13A and the right side of the semiconductor chip 13B, the chip-shaped electronic component 2 of the MCM in which the semiconductor chip 13A and the semiconductor chip 13B are packaged into one is obtained.

【0007】そして、上記のようなウェーハ状シート2
0によるMCMの技術は次に示すような利点を有してい
る。 開発の最先端にある半導体チップはシリコンウェー
ハ当りの良品の収量が低く、シリコンウェーハ状態で半
導体チップを処理すると、製品にならない半導体チップ
も処理されることになり無駄が多いが、ウェーハ状シー
トによる方法では良品の半導体チップのみを選別して並
べ得るので処理に無駄を生じない。 良品のみの半導体チップを並べてウェーハ状シート
を作製するので、例えば接続用のバンプの形成を一括し
て行うことができ、半導体チップの個々についてバンプ
を形成する場合に比して大幅な合理化が可能である。 自社、他社を問わず製造元が異なる半導体チップを
入手し、同一のウェーハ状シート面に並べて組み合わせ
ることができる。
Then, the wafer-like sheet 2 as described above
The 0-based MCM technology has the following advantages. Semiconductor chips, which are at the forefront of development, have a low yield of non-defective products per silicon wafer, and when semiconductor chips are processed in the silicon wafer state, semiconductor chips that are not products are also processed, which is wasteful. According to the method, only non-defective semiconductor chips can be selected and arranged, so that the processing is not wasted. Wafer-shaped sheets are produced by arranging only good semiconductor chips, so that, for example, bumps for connection can be formed in a batch, which can be significantly rationalized when bumps are formed for each semiconductor chip. Is. It is possible to obtain semiconductor chips from different manufacturers regardless of whether they are in-house or other companies, and arrange and combine them on the same wafer-shaped sheet surface.

【0008】[0008]

【発明が解決しようとする課題】しかるに、図6のAか
らDまでに示すウェーハ状シート20は、熱膨張係数が
一桁近く異なる有機のエポキシ樹脂2と、無機シリコン
の半導体チップ13A、13Bとからなるので、図5の
Cのエポキシ樹脂12が固化されて寸法が定まる硬化時
の温度においては、エポキシ樹脂12と半導体チップ1
3A、13Bとの界面に収縮応力は存在せず、ウェーハ
状シート20は反らないが、この硬化温度から冷却され
ると、半導体チップ13A、13Bに比して熱膨張係数
の大きいエポキシ樹脂12は収縮量が大であるから、エ
ポキシ樹脂12を内側にして反るようになる。そして、
その収縮は、半導体チプチップ13A、13Bの電極面
22a、22bの稜線24部分において曲率半径の小さ
い折り曲げを生じるので、その折り曲げの近傍に存在す
る配線18a、18b、18abにクラックが発生し易
く、発生したクラックは断線に至る怖れが大である。勿
論、温度上昇すれは反りは復元されが、一度発生したク
ラックや断線はそのまま残る。
However, the wafer-like sheet 20 shown in FIGS. 6A to 6D includes an organic epoxy resin 2 having a coefficient of thermal expansion different by almost one digit and inorganic semiconductor chips 13A and 13B. Therefore, the epoxy resin 12 and the semiconductor chip 1 at the curing temperature at which the epoxy resin 12 of FIG.
Although there is no shrinkage stress at the interfaces with 3A and 13B and the wafer-shaped sheet 20 does not warp, when cooled from this curing temperature, the epoxy resin 12 having a larger coefficient of thermal expansion than the semiconductor chips 13A and 13B. Has a large shrinkage amount, so that the epoxy resin 12 warps with the epoxy resin 12 inside. And
The contraction causes a bend with a small radius of curvature at the ridgeline 24 portion of the electrode surfaces 22a, 22b of the semiconductor chip chips 13A, 13B, so that cracks easily occur in the wirings 18a, 18b, 18ab existing in the vicinity of the bend. There is a great fear that the cracks will break. Of course, as the temperature rises, the warp is restored, but cracks and disconnections that have occurred once remain as they are.

【0009】このようなウェーハ状シート20の反りと
復元は、上述した配線18a、18b、18abやオー
バーコート膜19の形成時における加熱と、それらの間
における冷却とによっても繰り返される。更には、この
ような反りと復元は、ウェーハ状シート20から切り出
したチップ状電子部品2を搭載する可搬性電子機器にお
いても、使用される雰囲気温度の上昇と下降によってチ
ップ状電子部品2に反りと復元が同様に発生する。そし
て、そのチップ状電子部品2の実用上の寿命を推定する
ための加速試験である熱衝撃試験(例えばチップ状電子
部品2を−25℃で9分間、常温で1分間、+125℃
で9分間、常温で1分間の保持を行う温度サイクルを1
サイクルとして、この温度サイクルを繰り返す試験)に
よってもチップ状電子部品2に反りと復元が同様に繰り
返される。
Such warpage and restoration of the wafer-shaped sheet 20 are repeated by heating at the time of forming the wirings 18a, 18b, 18ab and the overcoat film 19 and cooling between them. Further, such warpage and restoration causes warpage of the chip-shaped electronic component 2 due to rise and fall of the ambient temperature used even in a portable electronic device in which the chip-shaped electronic component 2 cut out from the wafer-shaped sheet 20 is mounted. And restore occurs as well. Then, a thermal shock test which is an accelerated test for estimating the practical life of the chip-shaped electronic component 2 (for example, the chip-shaped electronic component 2 is -25 ° C. for 9 minutes, room temperature for 1 minute, and + 125 ° C.
1 cycle for 9 minutes at room temperature and 1 minute at room temperature
As a cycle, a warp and restoration are similarly repeated in the chip-shaped electronic component 2 by a test in which this temperature cycle is repeated.

【0010】本発明は上述の問題に鑑みてなされ、加
熱、冷却によって配線にクラックないしは断線を生じな
いウェーハ状シート、チップ状電子部品、およびそれら
の製造方法を提供することを課題とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a wafer-shaped sheet, a chip-shaped electronic component, and a manufacturing method thereof, which do not cause cracks or disconnections in wiring due to heating and cooling.

【0011】[0011]

【課題を解決するための手段】上記の課題は請求項1、
請求項3、請求項5、または請求項6の構成によって解
決されるが、その解決手段を説明すれば、次の如くであ
る。
[Means for Solving the Problem]
The problem can be solved by the configuration of claim 3, claim 5, or claim 6, and the solution means will be described below.

【0012】請求項1のウェーハ状シートは、所定のピ
ッチに配置された複数個の半導体チップと、半導体チッ
プの電極面以外の底面および側面を覆い連結する連続相
の合成樹脂層と、電極面側に層間絶縁膜を介して形成さ
れた配線層とを有するウェーハ状シートにおいて、半導
体チップの電極面と側面との間の稜線が面取りされてい
るものである。このようなウェーハ状シートは、温度の
上昇、下降によって反りと復元が繰り返されても、半導
体チップの電極面と側面との間の稜線(以降、電極面の
稜線と略称することがある)が面取りされているので、
稜線部分で小さい曲率半径に折り曲げられることはな
く、近傍の配線にクラックや断線を招かない。
A wafer-like sheet according to a first aspect of the present invention is a plurality of semiconductor chips arranged at a predetermined pitch, a synthetic resin layer of a continuous phase which covers and connects bottom surfaces and side surfaces other than electrode surfaces of the semiconductor chips, and electrode surfaces. In a wafer-shaped sheet having a wiring layer formed on its side with an interlayer insulating film interposed therebetween, a ridgeline between an electrode surface and a side surface of a semiconductor chip is chamfered. Such a wafer-shaped sheet has a ridge line (hereinafter, may be abbreviated as a ridge line of the electrode surface) between the electrode surface and the side surface of the semiconductor chip even if warping and restoration are repeated due to temperature rise and fall. Because it is chamfered,
It is not bent to a small radius of curvature at the ridge portion, and does not cause cracks or breaks in the wiring in the vicinity.

【0013】請求項1に従属する請求項2のウェーハ状
シートは、半導体チップの電極面の稜線の面取りが、半
導体チップをシリコンウェーハから切り出すダイシング
時に、先端断面がV字形状の厚刃ブレードを用いて半導
体チップの電極面側からシリコンウェーハをハーフカッ
トし、続いて細刃ブレードによってハーフカットの中央
底部から反対面までをフルカットして施されたものであ
る。このようなウェーハ状シートは、シリコンウェーハ
からのダイシングによって自ら面取りされる半導体チッ
プを使用するので、面取りによるコスト上昇を伴わな
い。
A wafer-like sheet according to claim 2 which depends on claim 1 is a thick blade blade having a V-shaped cross section when the semiconductor chip electrode surface is chamfered on the ridge line during dicing to cut the semiconductor chip from a silicon wafer. The silicon wafer is half-cut from the electrode surface side of the semiconductor chip by using it, and then a full cut is performed from the center bottom of the half-cut to the opposite surface by a fine blade. Since such a wafer-like sheet uses semiconductor chips that are chamfered by dicing from a silicon wafer, the chamfering does not increase the cost.

【0014】請求項3のチップ状電子部品は、所定のピ
ッチに配置された複数個の半導体チップと、半導体チッ
プの電極面以外の底面および側面を覆い連結する連続相
の合成樹脂層と、電極面側に層間絶縁膜を介して形成さ
れた配線層とを有するウェーハ状シートを、単数または
複数の半導体チップが含まれるように、ダイシングして
得られるチップ状電子部品において、半導体チップの電
極面と側面との間の稜線が面取りされているものであ
る。このようなチップ状電子部品は、温度の上昇、下降
によって反りと復元が繰り返されても、半導体チップの
電極面の稜線が面取りされているので、稜線部分で小さ
い曲率半径に折り曲げられることはなく、近傍の配線に
クラックや断線を招かない。
According to a third aspect of the present invention, in a chip-shaped electronic component, a plurality of semiconductor chips arranged at a predetermined pitch, a continuous-phase synthetic resin layer that covers and connects bottom surfaces and side surfaces other than electrode surfaces of the semiconductor chips, and electrodes. In a chip-shaped electronic component obtained by dicing a wafer-shaped sheet having a wiring layer formed on the surface side via an interlayer insulating film so as to include one or more semiconductor chips, the electrode surface of the semiconductor chip The ridge between the side and the side is chamfered. In such a chip-shaped electronic component, even if warping and restoration are repeated due to temperature rise and fall, the ridge line of the electrode surface of the semiconductor chip is chamfered, so that the ridge portion does not bend to a small radius of curvature. , Does not cause cracks or breaks in nearby wiring.

【0015】請求項3に従属する請求項4のチップ状電
子部品は、半導体チップの電極面の稜線の面取りが、半
導体チップをシリコンウェーハから切り出すダイシング
時に、先端断面がV字形状の厚刃ブレードを用いて半導
体チップの電極面側からシリコンウェーハをハーフカッ
トし、続いて細刃ブレードによってハーフカットの中央
底部から反対面までをフルカットして施されたものであ
る。このようなチップ状電子部品は、シリコンウェーハ
からのダイシングによって自ら面取りされる半導体チッ
プを使用するので、面取りによるコスト上昇を伴わな
い。
According to a fourth aspect of the present invention, in the chip-shaped electronic component, the ridge line of the electrode surface of the semiconductor chip is chamfered at the time of dicing to cut the semiconductor chip from the silicon wafer. Is used to half-cut a silicon wafer from the electrode surface side of a semiconductor chip, and then a half blade is fully cut from the center bottom to the opposite surface of the half-cut with a fine blade. Since such a chip-shaped electronic component uses a semiconductor chip which is chamfered by itself by dicing from a silicon wafer, the chamfering does not increase the cost.

【0016】請求項5のウェーハ状シートの製造方法
は、粘着力を低下させることが可能な粘着性シートを平
板上に粘着面を上向きに固定する工程と、粘着性シート
上に複数の半導体チップを所定のピッチで電極面を下向
きに粘着させる工程と、半導体チップを含む粘着性シー
トの全面に合成樹脂層を形成する工程と、粘着性シート
の粘着力を低下させて半導体チップと共に合成樹脂層を
粘着性シートから剥離する工程と、電極面側に層間絶縁
膜を介して配線層を形成する工程とを有するウェーハ状
シートの製造方法において、半導体チップとして、半導
体チップをシリコンウェーハから切り出すダイシング時
に、先端断面がV字形状の厚刃ブレードを用いて半導体
チップの電極面側からシリコンウェーハをハーフカット
し、続いて細刃ブレードによってハーフカットの中央底
部から反対面までをフルカットしたものを使用する方法
である。このようなウェーハ状シートの製造方法は、シ
リコンウェーハからのダイシング時に自ら面取りされる
半導体チップを使用するので、半導体チップの面取りに
よるコスト上昇を伴わない。
According to a fifth aspect of the present invention, in the method for manufacturing a wafer-shaped sheet, a step of fixing an adhesive sheet capable of reducing the adhesive force on a flat plate with the adhesive surface facing upward, and a plurality of semiconductor chips on the adhesive sheet. A step of adhering the electrode surface downward at a predetermined pitch, a step of forming a synthetic resin layer on the entire surface of an adhesive sheet containing a semiconductor chip, and a step of reducing the adhesive force of the adhesive sheet to form a synthetic resin layer with the semiconductor chip. In the method for manufacturing a wafer-like sheet having a step of peeling the adhesive sheet from the adhesive sheet, and a step of forming a wiring layer on the electrode surface side via an interlayer insulating film, as a semiconductor chip, at the time of dicing to cut the semiconductor chip from a silicon wafer. , A silicon blade is half-cut from the electrode surface side of the semiconductor chip using a thick blade with a V-shaped cross section, It is to use a material obtained by full cut to the opposite side from the bottom middle of the half-cut by de. Since such a wafer-shaped sheet manufacturing method uses the semiconductor chip which is chamfered by itself when dicing from the silicon wafer, the chamfering of the semiconductor chip does not increase the cost.

【0017】請求項6のチップ状電子部品の製造方法
は、粘着力を低下させることが可能な粘着性シートを平
板上に粘着面を上向きに固定する工程と、粘着性シート
上に複数の半導体チップを所定のピッチで電極面を下向
きに粘着させる工程と、半導体チップを含む粘着性シー
トの全面に合成樹脂層を形成する工程と、粘着性シート
の粘着力を低下させて半導体チップと共に合成樹脂層を
粘着性シートから剥離する工程と、電極面側に層間絶縁
膜を介して配線層を形成する工程とによって得られるウ
ェーハ状シートを、単数または複数の半導体チップが含
まれるようにダイシングするチップ状電子部品の製造方
法において、半導体チップとして、半導体チップをシリ
コンウェーハから切り出すダイシング時に、先端断面が
V字形状の厚刃ブレードを用いて半導体チップの電極面
側からシリコンウェーハをハーフカットし、続いて細刃
ブレードによってハーフカットの中央底部から反対面ま
でをフルカットしたものを使用する方法である。このよ
うなチップ状電子部品の製造方法は、シリコンウェーハ
からのダイシング時に自ら面取りされる半導体チップを
使用するので、半導体チップの面取りによるコスト上昇
を伴わない。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a chip-shaped electronic component, which comprises a step of fixing an adhesive sheet capable of reducing an adhesive force on a flat plate with the adhesive surface facing upward, and a plurality of semiconductors on the adhesive sheet. The step of adhering the chip with the electrode surface facing down at a predetermined pitch, the step of forming a synthetic resin layer on the entire surface of the adhesive sheet including the semiconductor chip, and the adhesive force of the adhesive sheet to reduce the synthetic resin together with the semiconductor chip. Chip for dicing a wafer-shaped sheet obtained by a step of peeling a layer from an adhesive sheet and a step of forming a wiring layer on an electrode surface side via an interlayer insulating film so as to include a single or a plurality of semiconductor chips In a method for manufacturing a linear electronic component, a thick blade with a V-shaped cross section is used as a semiconductor chip when dicing the semiconductor chip from a silicon wafer. The silicon wafer half cut from the electrode surface of the semiconductor chip using a draw, followed by Hosoha blade is to use a material obtained by full cut to the opposite side from the bottom middle of the half-cut. Since such a method for manufacturing a chip-shaped electronic component uses a semiconductor chip which is chamfered by itself when dicing from a silicon wafer, the chamfering of the semiconductor chip does not increase the cost.

【0018】[0018]

【発明の実施の形態】本発明は、上述したように、複数
個の半導体チップが所定のピッチで配置され、それらの
電極面以外の底面および側面が連続相の合成樹脂層で覆
われて連結されており、かつ電極面側に層間絶縁膜を介
して形成された配線層を有するウェーハ状シート、およ
びそのウェーハ状シートを単数または複数の半導体チッ
プが含まれるようにダイシングして得られるチップ状電
子部品、およびそれらの製造方法に関するものである。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, according to the present invention, a plurality of semiconductor chips are arranged at a predetermined pitch, and bottom surfaces and side surfaces other than the electrode surfaces thereof are covered with a continuous phase synthetic resin layer and connected. And a wafer-shaped sheet having a wiring layer formed on the electrode surface side via an interlayer insulating film, and a chip-shaped sheet obtained by dicing the wafer-shaped sheet to include one or more semiconductor chips The present invention relates to electronic components and manufacturing methods thereof.

【0019】複数個の半導体チップは単一種の半導体チ
ップの複数個であってもよく、また複数種の半導体チッ
プであってもよく、更には単一種の複数個の半導体チッ
プに他種の半導体チップが追加されたものであってもよ
い。そして使用する半導体チップは、その電極面と側面
との間の稜線が面取りされていることを必要とする。詳
しくは後述するが、半導体チップの電極面の稜線をあら
かじめ面取りしておくことにより、合成樹脂と半導体チ
ップとの熱膨張係数の違いによってウェーハ状シート
(またはチップ状電子部品)が反りを生じる場合におい
ても、半導体チップの電極面の稜線が面取りされている
のでウェーハ状シート(またはチップ状電子部品)が小
さい曲率半径で折り曲げられることはなく、従って近傍
の配線にクラックや断線を生じることはない。
The plurality of semiconductor chips may be a plurality of semiconductor chips of a single type, or may be semiconductor chips of a plurality of types. Further, a plurality of semiconductor chips of a single type may be used together with a semiconductor of another type. A chip may be added. The semiconductor chip to be used requires that the ridgeline between the electrode surface and the side surface be chamfered. As will be described later in detail, when the ridgeline of the electrode surface of the semiconductor chip is chamfered in advance, the wafer-shaped sheet (or the chip-shaped electronic component) warps due to the difference in the thermal expansion coefficient between the synthetic resin and the semiconductor chip. Also, since the ridge line of the electrode surface of the semiconductor chip is chamfered, the wafer-shaped sheet (or chip-shaped electronic component) is not bent with a small radius of curvature, and therefore, cracks or disconnections do not occur in the nearby wiring. .

【0020】合成樹脂は、紫外線硬化性または熱硬化性
であって、後の層間絶縁膜、配線層、オーバーコート膜
等の形成時の加熱温度に耐えるものであればよく、その
種類は特に限定されない。通常的には半導体チップの封
止に広く採用されているエポキシ樹脂が好適に使用され
る。そのほか、熱可塑性の合成樹脂であっても、耐熱温
度が高くエンジニアリング樹脂に分類されるものも、加
熱温度との兼ね合いで使用され得る。また、合成樹脂に
はフィーラーとして例えば粉末状シリカを容積比で30
〜60%添加し、合成樹脂の見掛け上の熱膨張係数を低
下させたものが使用され得る。
Any synthetic resin may be used as long as it is ultraviolet curable or thermosetting and can withstand the heating temperature during the subsequent formation of an interlayer insulating film, a wiring layer, an overcoat film, etc., and the kind thereof is not particularly limited. Not done. Usually, an epoxy resin widely used for sealing semiconductor chips is preferably used. In addition, even thermoplastic synthetic resins having high heat resistance and classified as engineering resins can be used in consideration of the heating temperature. Further, as a feeler for the synthetic resin, for example, powdered silica is used in a volume ratio of 30.
It is possible to use the one in which -60% is added and the apparent thermal expansion coefficient of the synthetic resin is lowered.

【0021】そして、本発明のウェーハ状シートは、所
定のピッチで配列された複数の半導体チップの底面と側
面を合成樹脂層で覆うように適用し連結して製造され
る。そして、このようなウェーハ状シートの電極面側に
層間絶縁膜、配線層、更に好ましくはオーバーコート層
を設けたものについて、単数または複数の半導体チップ
が含まれるように、半導体チップ間で合成樹脂層をダイ
シングしてチップ状電子部品とすることは従来例の場合
と全く同様である。
The wafer-like sheet of the present invention is manufactured by applying and connecting the bottom and side surfaces of a plurality of semiconductor chips arranged at a predetermined pitch with a synthetic resin layer. Then, regarding such a wafer-shaped sheet provided with an interlayer insulating film, a wiring layer, and more preferably an overcoat layer on the electrode surface side, a synthetic resin is used between the semiconductor chips so as to include a single or a plurality of semiconductor chips. Dicing the layers into chip-shaped electronic components is exactly the same as in the conventional example.

【0022】半導体チップの電極面の稜線は、どのよう
に面取りしてもよいが、半導体チップの電極面と側面と
に交差する傾斜平面を形成させるのが最も簡便である。
面取り角を45度としたもの、すなわち、電極面と傾斜
平面との内角、および傾斜平面と側面との内角が何れも
135度となるように面取りしたものは、両内角の角度
を非対称に面取りしたものと比較して、配線のクラッ
ク、断線を一層効果的に抑制する。更には、如何なる稜
線も残らないように、稜線を凸曲面で面取りし、電極面
と側面との間を連続的な曲面で繋いだものは配線のクラ
ック、断線を最も効果的に抑制する。
The ridgeline of the electrode surface of the semiconductor chip may be chamfered in any way, but it is most convenient to form an inclined flat surface that intersects the electrode surface and the side surface of the semiconductor chip.
The chamfering angle is 45 degrees, that is, the chamfering is such that the inside angle between the electrode surface and the inclined plane and the inside angle between the inclined plane and the side surface are both 135 degrees. As compared with the above, the cracks and breaks in the wiring can be suppressed more effectively. Further, a chamfered ridge line so that no ridge line remains and the electrode surface and the side surface are connected by a continuous curved surface most effectively suppresses cracks and breaks in the wiring.

【0023】また本発明のウェーハ状シート、チップ状
電子部品に使用される半導体チップの電極面の稜線の面
取りはどのような方法で行ってもよいが、次のようにし
て簡易に行い得る。すなわち、シリコンウェーハから半
導体チップを切り出す時に、先端断面がV字形状の厚刃
ブレードを用いて半導体チップの電極面側からシリコン
ウェーハをハーフカットし、続いて細刃ブレードによっ
てハーフカットの中央底部から反対面までをフルカット
することによって得られる。上記のように二種のブレー
ドを使用して二段カットすることにより、半導体チップ
の電極面の稜線は自ら面取りされるのである。なお、二
段カットはシリコンウェーハをダイシングする時に半導
体チップにチッピング(細片割れ)を発生させないよう
に一般的に採用されている技術であり、デュアル・ダイ
サーとして市販されている二段カットのダイサーの一段
目のブレードを上記のような厚刃ブレードに交換し、二
段目のブレードは一般的な薄刃ブレードとすることによ
り、通常的なダイシングを行うだけで、電極面の稜線を
面取りされた半導体チップが容易に得られる。
Further, the chamfering of the ridgeline of the electrode surface of the semiconductor chip used in the wafer-shaped sheet or chip-shaped electronic component of the present invention may be carried out by any method, but it can be easily carried out as follows. That is, when cutting a semiconductor chip from a silicon wafer, the silicon wafer is half-cut from the electrode surface side of the semiconductor chip using a thick blade having a V-shaped tip cross section, and then from the center bottom of the half cut with a thin blade. Obtained by full cutting up to the opposite side. As described above, the ridge lines on the electrode surface of the semiconductor chip are chamfered by themselves by cutting in two stages using two kinds of blades. The two-step cutting is a technology that is generally adopted to prevent chipping (fragment breaks) in semiconductor chips when dicing a silicon wafer. By replacing the blade of the first stage with a thick blade as described above, the blade of the second stage is a general thin blade, and only by performing a normal dicing, the semiconductor with a chamfered ridge line of the electrode surface Chips are easily obtained.

【0024】[0024]

【実施例】次に、本発明のウェーハ状シート、チップ状
電子部品、およびそれらの製造方法を実施例によって図
面を参照し具体的に説明する。
EXAMPLES Next, the wafer-shaped sheet, the chip-shaped electronic component, and the manufacturing method thereof according to the present invention will be specifically described by way of examples with reference to the drawings.

【0025】(実施例1)図1は配線層が設けられた実
施例1のウェーハ状シート10(中央の断面図で示した
チップ状電子部品1の部分と、その左右の一点鎖線で示
す部分を含むもの)から、半導体チップ13Cの左側と
半導体チップ13Dの右側の二点鎖線Dで示す位置でダ
イシングして得られたチップ状電子部品1の断面図であ
る。すなわち、チップ状電子部品1は、半導体チップ1
3Cと半導体チップ13Dが電極面以外の底面と側面を
連続相のエポキシ樹脂12によって覆われて連結されて
いるものである。半導体チップ13Cの電極面は電極1
4a1 、14a2 、パッシベーション膜15aからな
り、半導体チップ13Bの電極面は電極14b1 、14
2 、 パッシベーション膜15bからなっている。そ
して、半導体チップ13C、13Dを含む全面に厚さ1
0〜15μm程度の層間絶縁膜16が形成されて、ビア
ホール17a1 、17a2 、17b1 、17b2 が開孔
され、続いて、厚さ1〜2μm程度に設けた配線層をパ
ターニングして、半導体チップ13Aの電極14a2
半導体チップ13Bの電極14b1 を接続する配線18
ab、半導体チップ13Cを外部と接続する配線18
a、半導体チップ13Dを外部と接続する配線18bを
形成し、更に、配線18ab、18a、18bを含む全
面にオーバーコート膜19を形成し、次いで配線18
a、18bの電極パッド21a、21bを露出させるよ
うにオーバーコート膜19を開孔したものである。すな
わちチップ状電子部品1は、基本的には、従来例の図6
のDのウェーハ状シート20をダイシングして得られる
チップ状電子部品2と同様に構成されている。
(Embodiment 1) FIG. 1 shows a wafer-like sheet 10 of Embodiment 1 in which a wiring layer is provided (the portion of the chip-shaped electronic component 1 shown in the central sectional view, and the portion shown by the one-dot chain line on the left and right sides thereof Is a cross-sectional view of the chip-shaped electronic component 1 obtained by dicing at positions on the left side of the semiconductor chip 13C and the right side of the semiconductor chip 13D at positions indicated by two-dot chain line D from FIG. That is, the chip-shaped electronic component 1 is the semiconductor chip 1
3C and the semiconductor chip 13D are connected by being covered with the continuous phase epoxy resin 12 on the bottom surface and side surfaces other than the electrode surface. The electrode surface of the semiconductor chip 13C is electrode 1
4a 1 and 14a 2 and a passivation film 15a, and the electrode surface of the semiconductor chip 13B has electrodes 14b 1 and 14a 1 .
b 2 and a passivation film 15b. Then, a thickness of 1 is formed on the entire surface including the semiconductor chips 13C and 13D.
The interlayer insulating film 16 having a thickness of 0 to 15 μm is formed, the via holes 17a 1 , 17a 2 , 17b 1 and 17b 2 are opened, and then the wiring layer having a thickness of 1 to 2 μm is patterned. Wiring 18 for connecting the electrode 14a 2 of the semiconductor chip 13A and the electrode 14b 1 of the semiconductor chip 13B
ab, wiring 18 for connecting the semiconductor chip 13C to the outside
a, a wiring 18b for connecting the semiconductor chip 13D to the outside is formed, and further, an overcoat film 19 is formed on the entire surface including the wirings 18ab, 18a, 18b, and then the wiring 18 is formed.
The overcoat film 19 is opened to expose the electrode pads 21a and 21b of a and 18b. That is, the chip-shaped electronic component 1 is basically the same as that shown in FIG.
It is configured in the same manner as the chip-shaped electronic component 2 obtained by dicing the wafer-shaped sheet 20 of D.

【0026】実施例1のウェーハ状シート10ないしは
チップ状電子部品1が従来例のウェーハ状シート20な
いしはチップ状電子部品2と異なるところは、従来例で
使用されている半導体チップ13A、13Bがシリコン
ウェーハから切り出したままの直方体形状であるに対し
て、実施例1で使用されている半導体チップ13C、1
3Dは電極面の稜線が面取りされたものであるというこ
とである。図2は従来例の半導体チップ13Aと実施例
1の半導体チップ13Cを比較して示す図であり、図2
のAは平面図、図2のBは図2のAにおける[B]−
[B]線方向の断面図である。なお、簡明化のために電
極等の表示は省略している。半導体チップ13Aと半導
体チップ13Cを比較して明らかなように、実施例1の
半導体チップ13Cは従来例の半導体チップ13Aの電
極面22と側面23との間の稜線24が面取りされてお
り、半導体チップ13Cにおいては電極面22と側面2
3とに交差する傾斜平面25が形成されている。
The wafer-shaped sheet 10 or the chip-shaped electronic component 1 of the first embodiment is different from the wafer-shaped sheet 20 or the chip-shaped electronic component 2 of the conventional example in that the semiconductor chips 13A and 13B used in the conventional example are made of silicon. The semiconductor chip 13C used in the first embodiment has a rectangular parallelepiped shape as it is cut out from the wafer,
3D means that the ridge line of the electrode surface is chamfered. FIG. 2 is a diagram showing a comparison between the conventional semiconductor chip 13A and the semiconductor chip 13C of the first embodiment.
2A is a plan view, and FIG. 2B is [B] -in FIG. 2A.
It is a sectional view of the [B] line direction. The electrodes and the like are omitted for the sake of simplicity. As is clear from comparison between the semiconductor chip 13A and the semiconductor chip 13C, the semiconductor chip 13C of the first embodiment has a chamfered ridge line 24 between the electrode surface 22 and the side surface 23 of the semiconductor chip 13A of the conventional example. In the chip 13C, the electrode surface 22 and the side surface 2
An inclined plane 25 intersecting with 3 is formed.

【0027】そして、上記のような実施例1のウェーハ
状シート10またはチップ状電子部品1を熱衝撃試験に
かけた時、300サイクルを経過しても、配線18a
b、18a、18bのクラックや断線等の異常は認めら
れない。実施例1のウェーハ状シート10およびチップ
状電子部品1は半導体チップ13C、13Dと配線18
a、18b、18abとの間に厚さ10〜15μmの層
間絶縁層16を介在させているので配線18a、18
b、18abはクラックや断線を生じにくい環境にある
と言えるが、将来的に一層の薄型化が望まれ層間絶縁膜
16の厚さを2〜3μm程度とするような場合には、電
極面22の稜線を面取りした半導体チップ13C、13
Dを使用する本発明のウェーハ状シート10またはチッ
プ状電子部品1は一層効果的なものになると思考され
る。
Then, when the wafer-shaped sheet 10 or the chip-shaped electronic component 1 of Example 1 as described above is subjected to a thermal shock test, the wiring 18a remains even after 300 cycles have passed.
No abnormalities such as cracks, disconnections, etc. of b, 18a, 18b were observed. The wafer-shaped sheet 10 and the chip-shaped electronic component 1 according to the first embodiment are the semiconductor chips 13C and 13D and the wiring 18.
Since the interlayer insulating layer 16 having a thickness of 10 to 15 μm is interposed between the wirings 18a, 18b and 18ab.
It can be said that b and 18ab are in an environment where cracks and disconnections are unlikely to occur, but when further thinning is desired in the future and the thickness of the interlayer insulating film 16 is set to about 2 to 3 μm, the electrode surface 22 Semiconductor chips 13C, 13 with chamfered ridgelines
It is considered that the wafer-like sheet 10 or the chip-like electronic component 1 of the present invention using D becomes more effective.

【0028】(実施例2)実施例1のウェーハ状シート
10ないしはチップ状電子部品1で使用されている半導
体チップ13C、13Dは次に示すような方法で電極面
22の稜線の面取りを施した。図3はその面取り加工の
ステップを示す図である。すなわち、図3のAは例えば
半導体チップ13Cを切り出す前のシリコンウェーハ1
1の断面図である。そして、図3のBに示すように、こ
のシリコンウェーハ11内に作り込まれている半導体チ
ップの電極側の面の所定の位置に、デュアル・ダイサー
の一段目のブレードとして取り付けた、先端断面が角度
90度のV字形状で、幅100〜120μm程度の厚刃
ブレード36を当てがいハーフカットした状態を示す。
続いて、図3のCは、厚刃ブレード6でカットされた溝
の中央底部から裏面側までを、幅30〜40μm程度の
通常の細刃ブレード38によってフルカットした状態を
示す図であり、ダイシングされた半導体ウェーハ13C
は電極面22の稜線が面取り角度45度に面取りされ
て、電極面22と側面23とに交差する傾斜平面25が
形成された状態で得られる。すなわち、二段カットして
ダイシングする場合の一段目のカットに適切なブレード
を選択することにより、シリコンウェーハ5から半導体
チップ13Cを通常的な二段カットでダイシングするだ
けで、電極面22の稜線24が面取りされた半導体チッ
プ13Cが得られるので、面取り加工によるコストの上
昇は無いに等しい。
(Embodiment 2) The semiconductor chips 13C and 13D used in the wafer-shaped sheet 10 or the chip-shaped electronic component 1 of Embodiment 1 are chamfered on the ridge line of the electrode surface 22 by the following method. . FIG. 3 is a diagram showing steps of the chamfering process. That is, FIG. 3A shows, for example, the silicon wafer 1 before cutting the semiconductor chip 13C.
2 is a sectional view of FIG. Then, as shown in FIG. 3B, the tip cross section attached as a first stage blade of the dual dicer is attached at a predetermined position on the electrode side surface of the semiconductor chip formed in the silicon wafer 11. It shows a state in which a thick blade 36 having a V-shape with an angle of 90 degrees and a width of about 100 to 120 μm is applied and half-cut.
Subsequently, FIG. 3C is a diagram showing a state in which the central bottom portion of the groove cut by the thick blade blade 6 to the back surface side is fully cut by a normal fine blade blade 38 having a width of about 30 to 40 μm, Dicing semiconductor wafer 13C
Is obtained in a state where the ridgeline of the electrode surface 22 is chamfered at a chamfering angle of 45 degrees, and an inclined flat surface 25 intersecting the electrode surface 22 and the side surface 23 is formed. That is, the ridge line of the electrode surface 22 can be obtained by simply dicing the semiconductor chip 13C from the silicon wafer 5 by a normal two-step cut by selecting an appropriate blade for the first-step cut in the two-step cut and dicing. Since the semiconductor chip 13C having the chamfered portion 24 is obtained, the chamfering process does not increase the cost.

【0029】(実施例3)実施例2においては、図3の
Cに示したように、面取り角45度の傾斜平面25が形
成されるよう、半導体チップ13Cの電極面22の稜線
を面取りしたものであるが、電極面22と傾斜平面25
との間に内角135度の稜線26、および傾斜平面25
と側面23の間に内角135度の稜線27が新たに形成
されて残る。図4は、電極面22の稜線の面取り後に如
何なる稜線も残らないように、稜線を凸曲面で面取り
し、電極面22と側面23との間を連続的な凸曲面28
で繋いだ半導体チップ13C’を製造するステップを示
す図である。
(Embodiment 3) In Embodiment 2, as shown in FIG. 3C, the ridge line of the electrode surface 22 of the semiconductor chip 13C is chamfered so that the inclined flat surface 25 having the chamfering angle of 45 degrees is formed. However, the electrode surface 22 and the inclined flat surface 25
A ridge 26 having an internal angle of 135 degrees between the and
A ridge line 27 having an internal angle of 135 degrees is newly formed and remains between the side surface 23 and the side surface 23. In FIG. 4, the ridgeline is chamfered with a convex curved surface so that no ridgeline remains after chamfering the ridgeline of the electrode surface 22, and a continuous convex curved surface 28 is provided between the electrode surface 22 and the side surface 23.
It is a figure which shows the step which manufactures the semiconductor chip 13C 'connected by.

【0030】すなわち、図4のAは半導体チップ13C
を切り出す前のシリコンウェーハ11の断面図である。
そして、図4のBに示すように、このシリコンウェーハ
11内に作り込まれている半導体チップの電極側の面の
所定の位置に、デュアル・ダイサーの一段目のブレード
として取り付けた、先端のV字形状の両面が凹曲面とさ
れた厚刃ブレード37を当てがいハーフカットした状態
を示す。続いて、図4のCは、厚刃ブレード37でカッ
トされた溝の中央底部から裏面側までを、通常の細刃ブ
レード38によってフルカットした状態を示す図であ
り、ダイシングされた半導体ウェーハ13C’は電極面
22の稜線24が滑らかな凸曲面28で面取りされたも
のとなる。そしてこのような半導体ウェーハ13C’を
使用して製造されるウェーハ状シートやチップ状電子部
品は雰囲気温度の上昇、下降に起因する配線18ab、
18a、18bのクラックないしは断線を最も効果的に
抑制する。
That is, FIG. 4A shows the semiconductor chip 13C.
It is sectional drawing of the silicon wafer 11 before cutting out.
Then, as shown in FIG. 4B, the tip V which is attached as a first stage blade of the dual dicer to a predetermined position on the electrode side surface of the semiconductor chip formed in the silicon wafer 11 A state in which a thick blade blade 37 whose both sides are shaped like a concave curve is applied and half-cut is shown. Subsequently, FIG. 4C is a view showing a state in which the central bottom portion of the groove cut by the thick blade blade 37 to the back surface side is fully cut by the normal thin blade blade 38, and the dicing semiconductor wafer 13C is shown. ′ Means that the ridgeline 24 of the electrode surface 22 is chamfered with a smooth convex curved surface 28. Wafer-shaped sheets and chip-shaped electronic components manufactured using such a semiconductor wafer 13C ′ have wirings 18ab due to rise and fall of ambient temperature,
The cracks or disconnection of 18a and 18b are most effectively suppressed.

【0031】以上、本発明のウェーハ状シート、チップ
状電子部品、およびそれらの製造方法を実施例によって
説明したが、勿論、本発明はこれらに限られることな
く、本発明の技術的思想に基づいて種々の変形が可能で
ある。
Although the wafer-shaped sheet, the chip-shaped electronic component, and the manufacturing method thereof according to the present invention have been described above with reference to the embodiments, the present invention is not limited to these and is based on the technical idea of the present invention. And various modifications are possible.

【0032】例えば本実施例においては、チップ状電子
部品として、二種の半導体チップを1個にパッケージし
たMCMのチップ状電子部品を例示したが、単一品種で
複数個の半導体チップをパッケージしたチップ状電子部
品も含む。勿論、1個の半導体チップを含むものであっ
てもよい。また本実施例においては、シリコンが主体の
複数の半導体チップと比較して熱膨張係数の大きい連続
相の合成樹脂としてエポキシ樹脂が使用されたチップ状
電子部品とを例示したが、エポキシ樹脂に換えてポリイ
ミド樹脂、ポリイミドアミド樹脂等の耐熱性高分子が使
用され得る。また、ウェーハ状シートの製造において連
続相のエポキシ樹脂は塗布し硬化して適用されものとし
て説明したが、半導体チップと一体成形したエポキシ樹
脂であってもよい。
For example, in this embodiment, as the chip-shaped electronic component, an MCM chip-shaped electronic component in which two kinds of semiconductor chips are packaged into one is exemplified, but a plurality of semiconductor chips are packaged in a single type. Including chip-shaped electronic components. Of course, it may include one semiconductor chip. Further, in the present embodiment, a chip-shaped electronic component in which an epoxy resin is used as a continuous phase synthetic resin having a large thermal expansion coefficient as compared with a plurality of semiconductor chips mainly composed of silicon is exemplified. For example, a heat resistant polymer such as a polyimide resin or a polyimide amide resin may be used. Further, in the production of the wafer-shaped sheet, the continuous phase epoxy resin is applied, cured and applied, but the epoxy resin integrally molded with the semiconductor chip may be used.

【0033】また本実施例においては、半導体チップの
平面形状が正方形または長方形のものを例示したが、例
えば正六角形や円形の平面形状を有するものであっても
よく、半導体チップの平面形状は限定されない。勿論、
立体形状も限定されない。また本実施例においては、半
導体チップ上に単層の配線が設けられる場合に付いて説
明したが、多層配線が設けられるものであってもよい。
In this embodiment, the semiconductor chip having a square or rectangular planar shape is exemplified, but the semiconductor chip may have a regular hexagonal or circular planar shape, and the planar shape of the semiconductor chip is limited. Not done. Of course,
The three-dimensional shape is also not limited. Further, in the present embodiment, the case where the single layer wiring is provided on the semiconductor chip has been described, but the multilayer wiring may be provided.

【0034】[0034]

【発明の効果】本発明のウェーハ状シート、チップ状電
子部品、およびそれらの製造方法は以上に説明したよう
な形態で実施され、次に述べるような効果を奏する。
The wafer-shaped sheet, the chip-shaped electronic component, and the manufacturing method thereof according to the present invention are carried out in the form as described above, and have the following effects.

【0035】請求項1のウェーハ状シートによれば、使
用されている半導体チップは電極面と側面との間の稜線
が面取りされているので、温度の上昇、下降によって反
りと復元が繰り返されても、稜線部分で小さい曲率半径
に折り曲げられることはなく、近傍の配線にクラックや
断線を招かない。
According to the wafer-shaped sheet of the first aspect, since the ridge line between the electrode surface and the side surface of the used semiconductor chip is chamfered, warping and restoration are repeated due to temperature rise and fall. However, the ridge portion is not bent to have a small radius of curvature, and the adjacent wiring is not cracked or broken.

【0036】請求項2のウェーハ状シートによれば、半
導体チップをシリコンウェーハからダイシングする時
に、先端断面がV字形状の厚刃ブレードを用いて半導体
チップの電極面側からシリコンウェーハをハーフカット
し、続いて細刃ブレードによってハーフカットの中央底
部から反対面までをフルカットすることにより、電極面
の稜線が自ら面取りされた半導体チップを使用している
ので、面取りしたものを使用することによるコスト上昇
はない。
According to the wafer-shaped sheet of claim 2, when dicing a semiconductor chip from a silicon wafer, the silicon wafer is half-cut from the electrode surface side of the semiconductor chip by using a thick blade having a V-shaped tip cross section. , Then, by fully cutting from the center bottom part of the half cut to the opposite surface with a thin blade, the ridge line of the electrode surface uses a chamfered semiconductor chip itself, so the cost of using a chamfered one There is no rise.

【0037】請求項3のチップ状電子部品によれば、使
用されている半導体チップは電極面と側面との間の稜線
が面取りされているので、温度の上昇、下降によって反
りと復元が繰り返されても、稜線部分で小さい曲率半径
に折り曲げられることはなく、近傍の配線にクラックや
断線を招かない。
According to the chip-shaped electronic component of claim 3, since the ridge line between the electrode surface and the side surface of the used semiconductor chip is chamfered, warping and restoration are repeated due to temperature rise and fall. However, the ridgeline portion is not bent to have a small radius of curvature, and the adjacent wiring is not cracked or broken.

【0038】請求項4のチップ状電子部品によれば、半
導体チップをシリコンウェーハからダイシングする時
に、先端断面がV字形状の厚刃ブレードを用いて半導体
チップの電極面側からシリコンウェーハをハーフカット
し、続いて細刃ブレードによってハーフカットの中央底
部から反対面までをフルカットすることにより、電極面
の稜線が自ら面取りされた半導体チップを使用している
ので、面取りしたものを使用することによるコスト上昇
はない。
According to the chip-shaped electronic component of claim 4, when the semiconductor chip is diced from the silicon wafer, the silicon wafer is half-cut from the electrode surface side of the semiconductor chip by using a thick blade having a V-shaped cross section. Then, by fully cutting from the center bottom part of the half cut to the opposite surface with a fine blade, the ridge line of the electrode surface uses the chamfered semiconductor chip itself, so by using the chamfered one There is no cost increase.

【0039】請求項5のウェーハ状シート製造方法によ
れば、シリコンウェーハからのダイシング時に電極面の
稜線が自ら面取りされた半導体チップを使用するので、
製造されるウェーハ状シートは温度の上昇、下降によっ
て反りと復元が繰り返されても、稜線部分で小さい曲率
半径に折り曲げられることはなく、従って近傍の配線に
クラックや断線を招かず、また、面取りされた半導体チ
ップを使用することによるウェーハ状シートのコスト上
昇もない。
According to the wafer-like sheet manufacturing method of the fifth aspect, since the semiconductor chip in which the ridgeline of the electrode surface is chamfered by itself is used during dicing from the silicon wafer,
Even if the manufactured wafer-shaped sheet is repeatedly warped and restored due to temperature rise and fall, it will not be bent to a small radius of curvature at the ridge portion, so it will not cause cracks or breaks in the wiring in the vicinity and chamfering. There is no increase in the cost of the wafer-like sheet due to the use of the semiconductor chip thus manufactured.

【0040】請求項6のチップ状電子部品の製造方法に
よれば、シリコンウェーハからのダイシング時に、電極
面の稜線が自ら面取りされた半導体チップを使用するの
で、製造されるチップ状電子部品は温度の上昇、下降に
よって反りと復元が繰り返されても、稜線部分で小さい
曲率半径に折り曲げられることはなく、従って近傍の配
線にクラックや断線を招かず、また、面取りされた半導
体チップを使用することによるウェーハ状シートのコス
ト上昇もない。
According to the method for manufacturing a chip-shaped electronic component of claim 6, since the semiconductor chip in which the ridgeline of the electrode surface is chamfered by itself is used during dicing from the silicon wafer, the manufactured chip-shaped electronic component is not Even if warping and restoration are repeated by rising and falling, the ridge does not bend to a small radius of curvature, so it does not cause cracks or disconnections in nearby wiring, and use chamfered semiconductor chips. There is no increase in the cost of the wafer-like sheet due to.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のMCM化させたチップ状電子部品の断
面図である。
FIG. 1 is a cross-sectional view of an MCM-type chip-shaped electronic component of an example.

【図2】電極面の稜線が面取りされない半導体チップと
面取りされた半導体チップの形状を並べて示す図であ
り、Aは平面図、BはAにおける[B]−[B]線方向
の断面図である。
2A and 2B are views showing side by side the shapes of a semiconductor chip in which a ridgeline of an electrode surface is not chamfered and a chamfered semiconductor chip. is there.

【図3】シリコンウェーハの二段カットのダイシングに
よって半導体チップが面取りされる過程を示す断面図で
あり、Aはシリコンウェーハ、Bは先端断面が直線的な
V字形状の厚刃ブレードによってハーフカットした状
態、続くCはハーフカットした底部中央から反対面まで
を細刃ブレードによってフルカットすることにより、半
導体チップの稜線が自ら面取りされた状態を示す。
FIG. 3 is a cross-sectional view showing a process in which a semiconductor chip is chamfered by dicing a two-step cut of a silicon wafer, where A is a silicon wafer and B is a half-cut by a V-shaped thick blade blade having a linear tip cross section. The state C is a state in which the edge line of the semiconductor chip is chamfered by itself by fully cutting from the center of the half-cut bottom portion to the opposite surface with a fine blade.

【図4】図3と同様な図であり、厚刃ブレードの先端断
面を内側へ凹曲面のV字形状とした場合のダイシングを
示す断面図である。
FIG. 4 is a view similar to FIG. 3, and is a cross-sectional view showing dicing when the tip cross-section of the thick blade blade is inwardly curved into a V-shape.

【図5】図6と共にウェーハ状シートの製造工程をステ
ップ的に示す断面図であり、Aは半導体チップを粘着さ
せるための粘着性シートが固定された石英基板を示し、
Bは粘着性シートに半導体チップをフェイスダウンに粘
着させた状態、Cは半導体チップを含む全面にエポキシ
樹脂を適用して硬化させた状態、Dは石英基板側から紫
外線照射して粘着剤を硬化させ粘着性を失わせて、半導
体チップとエポキシ樹脂からなるウェーハ状シートを剥
離した状態を示す。
FIG. 5 is a cross-sectional view showing a step of manufacturing a wafer-shaped sheet together with FIG. 6, wherein A shows a quartz substrate to which an adhesive sheet for adhering a semiconductor chip is fixed,
B is a state where the semiconductor chip is face-down adhered to the adhesive sheet, C is a state where epoxy resin is applied to the entire surface including the semiconductor chip and cured, and D is ultraviolet irradiation from the quartz substrate side to cure the adhesive. Then, the adhesive property is lost and the wafer-like sheet made of the semiconductor chip and the epoxy resin is peeled off.

【図6】図5に続いて、Aはウェーハ状シートの上下を
裏返しにした状態、Bは全面に層間絶縁膜を設けビアホ
ールを開孔した状態、Cは層間絶縁膜の上に配線を形成
した状態、Dはオーバーコート膜を設けて、配線の電極
パッドを露出させた状態を示す。
FIG. 6 is a continuation of FIG. 5, in which A is a state in which the upper and lower sides of the wafer-like sheet are turned upside down, B is a state in which an interlayer insulating film is provided on the entire surface and a via hole is opened, and C is a wiring formed on the interlayer insulating film. In the state D, the overcoat film is provided to expose the electrode pads of the wiring.

【図7】図5のBに対応する斜視図であり、粘着性シー
トに半導体チップを並べて配置した状態を示す。
FIG. 7 is a perspective view corresponding to FIG. 5B, showing a state in which semiconductor chips are arranged side by side on an adhesive sheet.

【図8】従来例のMCM化された半導体チップの実装状
態を示す図であり、Aは斜視図、Bは側面図である。
8A and 8B are views showing a mounting state of a semiconductor chip that has been converted to an MCM in a conventional example, in which A is a perspective view and B is a side view.

【図9】他の従来例のMCM化された半導体チップの実
装状態を示す図であり、Aは斜視図、Bは部分破断側面
図である。
9A and 9B are views showing a mounting state of another conventional MCM semiconductor chip, in which A is a perspective view and B is a partially cutaway side view.

【符号の説明】[Explanation of symbols]

1……チップ状電子部品、3……石英基板、4……粘着
性シート、10……ウェーハ状シート、11……シリコ
ンウェーハ、12……エポキシ樹脂、13C、13D…
…半導体チップ、16……層間絶縁膜、18a、18
b、18ab……配線、21a、21b……電極パッ
ド、22a、22b……電極面、23……側面、36、
37……厚刃ブレード、38……薄刃ブレード。
1 ... Chip-shaped electronic parts, 3 ... Quartz substrate, 4 ... Adhesive sheet, 10 ... Wafer sheet, 11 ... Silicon wafer, 12 ... Epoxy resin, 13C, 13D ...
... Semiconductor chip, 16 ... Interlayer insulating film, 18a, 18
b, 18ab ... Wiring, 21a, 21b ... Electrode pad, 22a, 22b ... Electrode surface, 23 ... Side surface, 36,
37 ... thick blade, 38 ... thin blade.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定のピッチに配置された複数個の半導
体チップと、前記半導体チップの電極面以外の底面およ
び側面を覆い連結する連続相の合成樹脂層と、前記電極
面側に層間絶縁膜を介して形成された配線層とを有する
ウェーハ状シートにおいて、 前記半導体チップの前記電極面と前記側面との間の稜線
が面取りされていることを特徴とするウェーハ状シー
ト。
1. A plurality of semiconductor chips arranged at a predetermined pitch, a continuous-phase synthetic resin layer covering and connecting a bottom surface and side surfaces other than the electrode surface of the semiconductor chip, and an interlayer insulating film on the electrode surface side. A wafer-like sheet having a wiring layer formed through the above, wherein a ridgeline between the electrode surface and the side surface of the semiconductor chip is chamfered.
【請求項2】 前記面取りが、前記半導体チップをシリ
コンウェーハから切り出すダイシング時に、先端断面が
V字形状の厚刃ブレードを用いて前記半導体チップの電
極面側から前記シリコンウェーハをハーフカットし、続
いて細刃ブレードによってハーフカットの中央底部から
反対面までをフルカットして施されたものであることを
特徴とする請求項1に記載のウェーハ状シート。
2. The chamfering, when dicing to cut the semiconductor chip from the silicon wafer, half-cuts the silicon wafer from the electrode surface side of the semiconductor chip using a thick blade blade having a V-shaped cross section, The wafer-like sheet according to claim 1, wherein the wafer-like sheet is formed by performing full cutting from a central bottom portion of the half cut to the opposite surface with a fine blade.
【請求項3】 所定のピッチに配置された複数個の半導
体チップと、前記半導体チップの電極面以外の底面およ
び側面を覆い連結する連続相の合成樹脂層と、前記電極
面側に層間絶縁膜を介して形成された配線層とを有する
ウェーハ状シートを、単数または複数の前記半導体チッ
プが含まれるように、ダイシングして得られるチップ状
電子部品において、 前記半導体チップの前記電極面と前記側面との間の稜線
が面取りされていることを特徴とするチップ状電子部
品。
3. A plurality of semiconductor chips arranged at a predetermined pitch, a continuous phase synthetic resin layer that covers and connects bottom surfaces and side surfaces other than the electrode surface of the semiconductor chip, and an interlayer insulating film on the electrode surface side. In a chip-shaped electronic component obtained by dicing a wafer-shaped sheet having a wiring layer formed via, so as to include one or more of the semiconductor chips, the electrode surface and the side surface of the semiconductor chip. A chip-shaped electronic component, characterized in that a ridgeline between and is chamfered.
【請求項4】 前記面取りが、前記半導体チップをシリ
コンウェーハから切り出すダイシング時に、先端断面が
V字形状の厚刃ブレードを用いて前記半導体チップの電
極面側から前記シリコンウェーハをハーフカットし、続
いて細刃ブレードによってハーフカットの中央底部から
反対面までをフルカットして施されたものであることを
特徴とする請求項3に記載のチップ状電子部品。
4. The chamfering, when dicing to cut out the semiconductor chip from the silicon wafer, half-cuts the silicon wafer from the electrode surface side of the semiconductor chip using a thick blade blade having a V-shaped cross section, The chip-shaped electronic component according to claim 3, wherein the chip-shaped electronic component is formed by fully cutting from a central bottom portion of the half cut to the opposite surface with a fine blade.
【請求項5】 粘着力を低下させることが可能な粘着性
シートを平板上に粘着面を上向きに固定する工程と、前
記粘着性シート上に複数の半導体チップを所定のピッチ
で電極面を下向きに粘着させる工程と、前記半導体チッ
プを含む前記粘着性シートの全面に合成樹脂層を形成す
る工程と、前記粘着性シートの粘着力を低下させて前記
半導体チップと共に前記合成樹脂層を前記粘着性シート
から剥離する工程と、前記電極面側に層間絶縁膜を介し
て配線層を形成する工程とを有するウェーハ状シートの
製造方法において、 前記半導体チップとして、前記半導体チップをシリコン
ウェーハから切り出すダイシング時に、先端断面がV字
形状の厚刃ブレードを用いて前記半導体チップの電極面
側から前記シリコンウェーハをハーフカットし、続いて
細刃ブレードによってハーフカットの中央底部から反対
面までをフルカットしたものを使用することを特徴とす
るウェーハ状シートの製造方法。
5. A step of fixing a pressure-sensitive adhesive sheet capable of reducing the pressure-sensitive adhesive force on a flat plate with the pressure-sensitive adhesive surface facing upward, and a plurality of semiconductor chips on the pressure-sensitive adhesive sheet facing downward with an electrode surface at a predetermined pitch. And a step of forming a synthetic resin layer on the entire surface of the adhesive sheet including the semiconductor chip, the adhesive force of the adhesive sheet is reduced to reduce the adhesive strength of the synthetic resin layer together with the semiconductor chip. In a method for manufacturing a wafer-shaped sheet having a step of peeling from a sheet, and a step of forming a wiring layer on the electrode surface side via an interlayer insulating film, as the semiconductor chip, at the time of dicing to cut the semiconductor chip from a silicon wafer , Using a thick blade having a V-shaped cross section, the silicon wafer is half-cut from the electrode surface side of the semiconductor chip, Wafer sheet manufacturing method, characterized by using a material obtained by full cut to the opposite side from the bottom middle of the half-cut by Hosoha blade.
【請求項6】 粘着力を低下させることが可能な粘着性
シートを平板上に粘着面を上向きに固定する工程と、前
記粘着性シート上に複数の半導体チップを所定のピッチ
で電極面を下向きに粘着させる工程と、前記半導体チッ
プを含む前記粘着性シートの全面に合成樹脂層を形成す
る工程と、前記粘着性シートの粘着力を低下させて前記
半導体チップと共に前記合成樹脂層を前記粘着性シート
から剥離する工程と、前記電極面側に層間絶縁膜を介し
て配線層を形成する工程とによって得られるウェーハ状
シートを、単数または複数の前記半導体チップが含まれ
るようにダイシングするチップ状電子部品の製造方法に
おいて、 前記半導体チップとして、前記半導体チップをシリコン
ウェーハから切り出すダイシング時に、先端断面がV字
形状の厚刃ブレードを用いて前記半導体チップの電極面
側から前記シリコンウェーハをハーフカットし、続いて
細刃ブレードによってハーフカットの中央底部から反対
面までをフルカットしたものを使用することを特徴とす
るチップ状電子部品の製造方法。
6. A step of fixing a pressure-sensitive adhesive sheet capable of reducing the pressure-sensitive adhesive force on a flat plate with the pressure-sensitive adhesive surface facing upward, and a plurality of semiconductor chips on the pressure-sensitive adhesive sheet facing downward with a predetermined pitch of the electrode surface. And a step of forming a synthetic resin layer on the entire surface of the adhesive sheet including the semiconductor chip, the adhesive force of the adhesive sheet is reduced to reduce the adhesive strength of the synthetic resin layer together with the semiconductor chip. Chip-shaped electronic for dicing a wafer-shaped sheet obtained by a step of peeling from a sheet and a step of forming a wiring layer on the electrode surface side via an interlayer insulating film so as to include one or a plurality of the semiconductor chips. In the method of manufacturing a component, as the semiconductor chip, a thickness of a V-shaped tip cross section is obtained when dicing the semiconductor chip from a silicon wafer. Half-cutting the silicon wafer from the electrode surface side of the semiconductor chip using a blade, then using a thin blade to fully cut from the center bottom of the half-cut to the opposite surface Electronic component manufacturing method.
JP2001319542A 2001-10-17 2001-10-17 Wafer-form sheet, a chip-form electronic part, and their manufacturing method Pending JP2003124431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319542A JP2003124431A (en) 2001-10-17 2001-10-17 Wafer-form sheet, a chip-form electronic part, and their manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319542A JP2003124431A (en) 2001-10-17 2001-10-17 Wafer-form sheet, a chip-form electronic part, and their manufacturing method

Publications (1)

Publication Number Publication Date
JP2003124431A true JP2003124431A (en) 2003-04-25

Family

ID=19137074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319542A Pending JP2003124431A (en) 2001-10-17 2001-10-17 Wafer-form sheet, a chip-form electronic part, and their manufacturing method

Country Status (1)

Country Link
JP (1) JP2003124431A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142763A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
JP2012531058A (en) * 2009-06-25 2012-12-06 アイメック Biocompatible packaging
WO2013145555A1 (en) * 2012-03-30 2013-10-03 国立大学法人東北大学 Integrated device
JP2014168096A (en) * 2009-06-24 2014-09-11 Intel Corp Multi-chip package, and method of providing die-to-die interconnects in multi-chip package
JP2020517089A (en) * 2016-12-23 2020-06-11 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Heterogeneous integration of components into compact devices using moire-based metrology and vacuum-based pick-and-place
JP2021150537A (en) * 2020-03-19 2021-09-27 株式会社東芝 Semiconductor device and manufacturing method for the same
US11824032B2 (en) * 2021-03-18 2023-11-21 Taiwan Semiconductor Manufacturing Company Limited Die corner removal for underfill crack suppression in semiconductor die packaging

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008142763A1 (en) * 2007-05-18 2008-11-27 Kabushiki Kaisha Nihon Micronics Stacked package and method of forming stacked package
US11824008B2 (en) 2009-06-24 2023-11-21 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
JP2014168096A (en) * 2009-06-24 2014-09-11 Intel Corp Multi-chip package, and method of providing die-to-die interconnects in multi-chip package
US9875969B2 (en) 2009-06-24 2018-01-23 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US10510669B2 (en) 2009-06-24 2019-12-17 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US10763216B2 (en) 2009-06-24 2020-09-01 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US10923429B2 (en) 2009-06-24 2021-02-16 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
US11876053B2 (en) 2009-06-24 2024-01-16 Intel Corporation Multi-chip package and method of providing die-to-die interconnects in same
JP2012531058A (en) * 2009-06-25 2012-12-06 アイメック Biocompatible packaging
WO2013145555A1 (en) * 2012-03-30 2013-10-03 国立大学法人東北大学 Integrated device
JP2013211365A (en) * 2012-03-30 2013-10-10 Tohoku Univ Integrated device
US9478503B2 (en) 2012-03-30 2016-10-25 Tohoku University Integrated device
JP2020517089A (en) * 2016-12-23 2020-06-11 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Heterogeneous integration of components into compact devices using moire-based metrology and vacuum-based pick-and-place
JP7348062B2 (en) 2016-12-23 2023-09-20 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム Heterogeneous integration of components into compact devices using moiré-based metrology and vacuum-based pick-and-place
JP7282710B2 (en) 2020-03-19 2023-05-29 株式会社東芝 Semiconductor device manufacturing method
JP2021150537A (en) * 2020-03-19 2021-09-27 株式会社東芝 Semiconductor device and manufacturing method for the same
US11824032B2 (en) * 2021-03-18 2023-11-21 Taiwan Semiconductor Manufacturing Company Limited Die corner removal for underfill crack suppression in semiconductor die packaging

Similar Documents

Publication Publication Date Title
US7944049B2 (en) Semiconductor device and manufacturing method thereof
US6737300B2 (en) Chip scale package and manufacturing method
JP4659660B2 (en) Manufacturing method of semiconductor device
US7361972B2 (en) Chip packaging structure for improving reliability
US8253258B2 (en) Semiconductor device with hollow and throughhole and method of manufacturing same
US8802507B2 (en) Fabrication method of semiconductor package device, and fabrication method of semiconductor package structure
US10978408B2 (en) Semiconductor package and manufacturing method thereof
US7148081B2 (en) Method of manufacturing a semiconductor device
JP5543086B2 (en) Semiconductor device and manufacturing method thereof
US20110209908A1 (en) Conductor package structure and method of the same
JP5518789B2 (en) Multi-chip module
TW201511209A (en) Semiconductor device and method of manufacturing the semiconductor device
JP2009049410A (en) Semiconductor chip package, manufacturing method thereof, and electronic element comprising the same
US10811384B2 (en) Semiconductor package and method of manufacturing the same
TW201903992A (en) Package structure and manufacturing method thereof
KR20150060758A (en) Semiconductor device and method for manufacturing same
JP2012009655A (en) Semiconductor package and method of manufacturing the semiconductor package
JP2002299546A (en) Chip-like electronic component, manufacturing method therefor, pseudo wafer used for manufacturing and manufacturing method therefor
JP2003124431A (en) Wafer-form sheet, a chip-form electronic part, and their manufacturing method
JP3618330B2 (en) Semiconductor device and manufacturing method thereof
US20070114672A1 (en) Semiconductor device and method of manufacturing the same
JP2005142452A (en) Semiconductor device and its manufacturing method
JP4131256B2 (en) Semiconductor device and manufacturing method thereof
JP4214969B2 (en) Manufacturing method of semiconductor device
JP6988360B2 (en) Manufacturing method of semiconductor device and semiconductor device