JP2003121530A - Radar reflector apparatus and method for designing reflector incorporated into the same - Google Patents

Radar reflector apparatus and method for designing reflector incorporated into the same

Info

Publication number
JP2003121530A
JP2003121530A JP2001312860A JP2001312860A JP2003121530A JP 2003121530 A JP2003121530 A JP 2003121530A JP 2001312860 A JP2001312860 A JP 2001312860A JP 2001312860 A JP2001312860 A JP 2001312860A JP 2003121530 A JP2003121530 A JP 2003121530A
Authority
JP
Japan
Prior art keywords
reflector
radar
dielectric lens
designing
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001312860A
Other languages
Japanese (ja)
Inventor
Satoru So
宗  哲
Masato Tadokoro
眞人 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2001312860A priority Critical patent/JP2003121530A/en
Publication of JP2003121530A publication Critical patent/JP2003121530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radar reflector apparatus for enabling a fixed radar sectional area to be returned to a radiation side, regardless of the incident angle, and to provide a designing method of a reflector that is built into the radar reflection apparatus. SOLUTION: The radar reflector apparatus incorporates a spherical dielectric lens 2, and a reflector consisting of a reflection plate 3 for covering the half of the rear surface. The dielectric lens 2 is a sphere, where the permittivity decreases in a layer from the center core to the outer periphery. In this case, preferably, the dielectric lens is in an N-layer structure where the permittivity of a center core section 2a1 is set to 2 and that of an outer periphery section 2aN is set to 1. Additionally, the size of the dielectric lens 2 is determined quantitatively, based on the wavelength of radio waves to be reflected according to a desired radar sectional area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、レ−ダリフレク
タ装置およびそれに内蔵する反射体の設計方法に係わ
り、更に詳しくは放射された電波を的確に入射方向に反
射するレ−ダリフレクタ装置およびそれに内蔵する反射
体の設計方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radar reflector device and a method of designing a reflector incorporated therein, and more particularly, to a radar reflector device which accurately reflects radiated radio waves in an incident direction, and a radar reflector device incorporated therein. The present invention relates to a method for designing a reflector.

【0002】[0002]

【従来の技術】近年、ITS(Intelligent Traffic Sy
stem) の一分野として車両の自動走行と衝突防止に関わ
るACC(Adaptive Cruise Control)レ−ダの実用化に
向けての開発が進んでいるが、前方の走行車両の姿勢に
よっては反射波の受信レベルが一定しないことがシステ
ム開発における問題となっている。
2. Description of the Related Art In recent years, ITS (Intelligent Traffic System)
Stem) is being developed for the practical application of ACC (Adaptive Cruise Control) radar, which is related to automatic vehicle traveling and collision prevention, but the reception of reflected waves depends on the posture of the traveling vehicle ahead. Inconsistent level is a problem in system development.

【0003】即ち、かかるレ−ダシステムでは後方車両
の前面に設置されたレ−ダ装置が前方車両に向けて電波
を放射し、その反射波を後方車両が検出することにより
前方車両との相対位置や相対速度を知るように構成され
ている。
That is, in such a radar system, a radar device installed on the front surface of a rear vehicle emits a radio wave toward the front vehicle, and the reflected wave is detected by the rear vehicle, so that the radar apparatus is relatively opposed to the front vehicle. It is configured to know position and relative velocity.

【0004】従って、電波の入射角度次第では反射方向
が放射側(後方車両)からずれるため、一定のレ−ダ断
面積(Radar Cross Section)(以下、RCSという)を
放射側に返すことができず、後方車両が前方車両の相対
位置や相対速度を正確に把握することができなかった。
Therefore, the reflection direction deviates from the radiation side (vehicle behind) depending on the incident angle of the radio wave, so that a constant Radar Cross Section (hereinafter referred to as RCS) can be returned to the radiation side. Therefore, the rear vehicle could not accurately grasp the relative position and relative speed of the front vehicle.

【0005】これを解決する方法として、例えば、レ−
ダ装置のリフレクタの向きを車両の操舵に応じた角度に
制御する方法(特開平6−60299号)、反射アンテ
ナとして3つの反射板を利用する方法(特開平8−12
5434号)、反射板として3面または2面のコ−ナリ
フレクタを使用する方法(特開2000−103283
号)等、多くの提案がなされてきた。
As a method for solving this, for example,
A method of controlling the direction of the reflector of the da device to an angle according to the steering of the vehicle (Japanese Patent Laid-Open No. 6-60299), and a method of using three reflectors as a reflecting antenna (Japanese Patent Laid-Open No. 8-12).
No. 5434), a method of using a three-sided or two-sided corner reflector as a reflector (Japanese Patent Laid-Open No. 2000-103283).
No.) and many other proposals have been made.

【0006】[0006]

【発明が解決しようとする課題】然しながら、何れの方
法もリフレクタの構造の複雑さを招くほか、リフレクタ
の向きを変えるためのアクチュエ−タや、その制御装置
を付加することが必要になるためコスト高となる、等多
くの解決すべき問題を残している。
However, any of the methods causes the complexity of the structure of the reflector, and it is necessary to add an actuator for changing the direction of the reflector and its control device, which results in cost reduction. It leaves many problems to be solved, such as going high.

【0007】この発明の目的は、放射された電波を入射
方向に的確に反射することを可能にしたレ−ダリフレク
タ装置およびそれに内蔵する反射体の設計方法を提供す
るものである。
An object of the present invention is to provide a radar reflector device capable of accurately reflecting radiated radio waves in the incident direction and a method for designing a reflector incorporated therein.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するレ−
ダリフレクタ装置の発明は、球状の誘電体レンズとその
背面の半面を覆う反射板からなる反射体を内蔵すること
を要旨とする。
[Means for Solving the Problems]
The gist of the invention of the diffractor device is to incorporate a reflector composed of a spherical dielectric lens and a reflecting plate that covers the back half surface thereof.

【0009】ここで誘電体レンズは中芯部から外周面に
向かって層状に減少する誘電率を有し、特に誘電体レン
ズを誘電率の異なる複層構造として中芯部の誘電率を2
とし最外周部の誘電率を1とすることが好ましい。
Here, the dielectric lens has a dielectric constant that decreases in layers from the central portion toward the outer peripheral surface, and in particular, the dielectric lens is formed as a multi-layer structure having different permittivities, and the dielectric constant of the central portion is 2
It is preferable that the outermost peripheral portion has a dielectric constant of 1.

【0010】これにより、誘電体側から入射した電波は
反射板上の1点に焦点を結び、そこから電波が再放射さ
れ入射方向に反射される。入射方向に反射するというこ
の特性は概ね60°以上の範囲まで維持され、その結果
常に一定のRCSをレ−ダ放射側に返すことを可能にす
る。
As a result, the electric wave incident from the dielectric side is focused on one point on the reflection plate, from which the electric wave is re-emitted and reflected in the incident direction. This property of reflection in the incident direction is maintained up to a range of approximately 60 ° or more, so that it is possible to always return a constant RCS to the radar emission side.

【0011】また、レ−ダリフレクタ装置に内蔵する反
射体の設計方法の発明は、反射体を構成する球状の誘導
体レンズを設計するに際して、あらかじめ所望のRCS
σを設定しておき、反射すべき電波の波長λに基づいて
以下の式から誘電体レンズの半径Rを求めることを要旨
とする。
Further, according to the invention of a method of designing a reflector incorporated in a radar reflector device, when designing a spherical dielectric lens which constitutes the reflector, a desired RCS is prepared in advance.
The point is to set σ and obtain the radius R of the dielectric lens from the following formula based on the wavelength λ of the radio wave to be reflected.

【0012】σ=4π(πR2 2 /λ2 これにより、内蔵する反射体を構成する誘電体レンズの
大きさは、所望するRCSおよび反射すべき電波の波長
を基準として定量的に決定することができるため、常に
安定したレ−ダリフレクタ装置の設計が可能となる。
Σ = 4π (πR 2 ) 2 / λ 2 As a result, the size of the dielectric lens forming the built-in reflector is quantitatively determined based on the desired RCS and the wavelength of the radio wave to be reflected. Therefore, it is possible to always design a stable radar reflector device.

【0013】ここで、反射体の設計にあたってRCSを
1〜4m2に設定しておくことが好ましい。
In designing the reflector, it is preferable to set RCS to 1 to 4 m 2 .

【0014】これにより、誘導体レンズをある程度以下
の大きさに抑えながら、誘導体レンズへの電波の入射角
度にずれが生じても放射電波を放射方向に反射すること
を可能にした。
With this, it is possible to reflect the radiated radio wave in the radiation direction even if the incident angle of the radio wave to the dielectric lens is deviated while suppressing the size of the dielectric lens to a certain extent or less.

【0015】従って、この発明によるレ−ダリフレクタ
装置を車両の後部等に装着しておくことにより前後車両
の挙動が±30°程度であれば常に一定のRCSを放射
側(後方車両)に返すことができ、放射側では常に安定
して対象を把握することが可能となる。
Therefore, if the radar reflector device according to the present invention is mounted on the rear portion of the vehicle or the like, a constant RCS is always returned to the radiation side (rear vehicle) if the behavior of the front and rear vehicles is about ± 30 °. Therefore, the radiation side can always stably grasp the target.

【0016】[0016]

【発明の実施の形態】以下、添付図面に基づき、この発
明の実施形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】図1は、この発明のレ−ダリフレクタ装置
の反射体の構成を説明するための反射体の断面図を示
し、反射体1は球状の誘電体レンズ2とその背面の半面
を覆う金属等からなる反射板3で構成されている。
FIG. 1 is a cross-sectional view of a reflector for explaining the structure of the reflector of the radar reflector device of the present invention. The reflector 1 is a spherical dielectric lens 2 and a metal covering the half surface of the rear surface thereof. And the like.

【0018】前記誘電体レンズ2は、中芯から外周面に
向かってN層状に誘電率の異なるレンズ体(2a1,2a
2 ・・・2an ・・・2aN )によって構成され、中芯
の誘電率が最も大きく外周面に向かって誘電率が減少す
るように構成される。
The dielectric lens 2 comprises lens bodies (2a 1, 2a) having different dielectric constants in N layers from the center to the outer peripheral surface.
2 ... 2a n ... 2a N ) and is configured such that the dielectric constant of the core is the largest and the dielectric constant decreases toward the outer peripheral surface.

【0019】好ましい実施形態は、図1に示すように誘
電体レンズ2を誘電率の異なるN層構造として、中芯部
のレンズ体2a1 の誘電率を2とし、その周囲を2a2
・・・2an のレンズ体に形成して、外周部のレンズ体
2aN の誘電率を1とする。
In the preferred embodiment, as shown in FIG. 1, the dielectric lens 2 has an N layer structure having different permittivities, the lens body 2a 1 at the center has a permittivity of 2, and the periphery thereof is 2a 2.
Formed on the lens body · · · 2a n, the dielectric constant of the lens body 2a N of the outer peripheral portion 1.

【0020】ここで、誘電率の異なる複層構造の誘電体
レンズ2の各層の誘電率を求めるには、N層の誘電体レ
ンズ2の任意のレンズ体2an 層目の半径をrn 、最外
周部の半径をR、とすれば、任意のn層目の誘電率εn
は、下記の式で求めることが出来る。
Here, in order to obtain the dielectric constant of each layer of the dielectric lens 2 having a multi-layer structure having different dielectric constants, the radius of an arbitrary lens body 2a n layer of the dielectric lens 2 of N layers is r n , Assuming that the radius of the outermost peripheral portion is R, the dielectric constant ε n of an arbitrary n-th layer
Can be calculated by the following formula.

【0021】 εn =2−(rn +rn-1 /2R)2 (1) (n=1,2,・・・,N、ro =0、rN =R) 反射板3で覆われていない誘電体レンズ2側から入射し
た電波は反射板3上の1点に焦点を結び、そこから電波
が再放射され入射方向に反射される。入射方向と反射方
向が同じ方向であるというこの特性は概ね±60°以上
の範囲まで維持される。
Ε n = 2- (r n + r n-1 / 2R) 2 (1) (n = 1, 2, ..., N, r o = 0, r N = R) Covered with the reflection plate 3. The radio wave incident from the side of the dielectric lens 2 not covered is focused on one point on the reflection plate 3, and the radio wave is re-emitted from there and reflected in the incident direction. This characteristic that the incident direction and the reflection direction are the same direction is generally maintained up to a range of ± 60 ° or more.

【0022】従って、このような反射機構を有するレ−
ダリフレクタ装置を車両の後部等に装着させると、車両
の姿勢に関わらず後方車両の放射した電波がそのまま反
射されて戻ってくることになる。
Therefore, a laser having such a reflection mechanism is used.
When the diffractor device is attached to the rear part of the vehicle or the like, the radio waves emitted by the rear vehicle are reflected and returned regardless of the posture of the vehicle.

【0023】一般的な乗用車のRCSは、後方車両が真
後ろから追尾した場合、すなわち垂直入射時で6〜7d
Bsm(4〜5m2相当)であり、20°程度斜行して
入射角が20°となると垂直入射時の50分の1程度
(0.1m2相当)に低下すると報告されている。
The RCS of a typical passenger car is 6 to 7 d when a rear vehicle is tracking from directly behind, that is, at a vertical incidence.
It is Bsm (corresponding to 4 to 5 m 2 ), and it is reported that when the angle of incidence becomes 20 ° by skewing about 20 °, it decreases to about 1/50 (corresponding to 0.1 m 2 ) of vertical incidence.

【0024】より安定したACCレ−ダシステムのため
には入射角が20°でも1〜4m2程度のRCSを維持
することが望ましい。
For a more stable ACC radar system, it is desirable to maintain RCS of about 1 to 4 m 2 even when the incident angle is 20 °.

【0025】この発明による反射機構を有するレ−ダリ
フレクタ装置は、誘電体レンズ2の半径をR、電波の波
長をλとすると次式(2)に示すRCSσを与える。
The radar reflector device having the reflection mechanism according to the present invention gives RCSσ shown in the following equation (2), where R is the radius of the dielectric lens 2 and λ is the wavelength of the radio wave.

【0026】 σ=4π(πR2 2 /λ2 (2) 従って、この発明によるレ−ダリフレクタ装置に内蔵す
る反射体1の設計にあっては、反射体1を構成する球状
の誘導体レンズ2の大きさを決めるに際して、あらかじ
め所望のRCSを設定しておき、反射すべき電波の波長
に基づいて上記式(2)から誘導体レンズ2の半径を求
めることとなる。
Σ = 4π (πR 2 ) 2 / λ 2 (2) Therefore, in the design of the reflector 1 incorporated in the radar reflector device according to the present invention, the spherical derivative lens 2 forming the reflector 1 is used. When deciding the size of R, a desired RCS is set in advance, and the radius of the dielectric lens 2 is obtained from the above formula (2) based on the wavelength of the radio wave to be reflected.

【0027】このように、誘導体レンズ2の大きさを定
量的に決定することができるため、常に安定したレ−ダ
リフレクタ装置の設計が可能となる。
As described above, since the size of the dielectric lens 2 can be quantitatively determined, it is possible to always design a stable radar reflector device.

【0028】上記(2)式が示すように、大きなRCS
σを得るためには誘電体レンズ2の半径Rを大きくする
必要がある。
As indicated by the above equation (2), a large RCS
In order to obtain σ, it is necessary to increase the radius R of the dielectric lens 2.

【0029】一方、ACCレ−ダシステムにあっては、
誘電体レンズ2をある程度以下の大きさに抑える必要が
あるため、RCSσの上限は4m2程度に抑えて、下限
は対象物の挙動を正確に把握することのできる目安とな
る1m2程度に設定することが好ましい。
On the other hand, in the ACC radar system,
Since it is necessary to suppress the size of the dielectric lens 2 to a certain extent or less, the upper limit of RCSσ is suppressed to about 4 m 2 and the lower limit is set to about 1 m 2 which is a guideline for accurately grasping the behavior of the object. Preferably.

【0030】現在我が国で認可されているACCレ−ダ
の周波数は60GHzおよび76GHzであることか
ら、上記(1)式より1〜4m2のRCSを得るために
は、誘電体レンズ2を60GHz用の場合には直径が4
0〜60mm、76GHz用の場合には直径が37〜5
4mmになるようにそれぞれ形成すれば良いことにな
る。
Since the frequencies of ACC radars currently approved in Japan are 60 GHz and 76 GHz, in order to obtain RCS of 1 to 4 m 2 from the above formula (1), the dielectric lens 2 for 60 GHz is used. In case of, the diameter is 4
0 to 60 mm, diameter of 37 to 5 for 76 GHz
It is sufficient to form each of them to have a thickness of 4 mm.

【0031】上記から、ACCレ−ダシステムにおける
レ−ダリフレクタ装置の反射体としての誘電体レンズ2
の直径は、37〜60mmに設定することにより現在我
が国で認可されている全ての周波数帯域について適合す
ることとなる。
From the above, the dielectric lens 2 as the reflector of the radar reflector device in the ACC radar system.
The diameter of is set to 37 to 60 mm so that it is suitable for all frequency bands currently approved in Japan.

【0032】以下に、この発明の誘電体レンズの実施例
について説明する。 〔実施例〕中芯部半径が5mm、2層目半径が10m
m、最外周部半径が20mm、即ち、直径40mmの3
層構造の誘電体レンズとすれば、上記(1)式から、中
心部の誘電率ε1 が1.98、2層目の誘電率ε2
1.86、最外周部誘電率ε3が1.44となる材料を
使用すれば良い。
Examples of the dielectric lens of the present invention will be described below. [Example] The core radius is 5 mm, the second layer radius is 10 m
m, the outermost radius is 20 mm, that is, 3 with a diameter of 40 mm
In the case of a dielectric lens having a layered structure, from the above formula (1), the dielectric constant ε 1 of the central portion is 1.98, the dielectric constant ε 2 of the second layer is 1.86, and the dielectric constant ε 3 of the outermost peripheral portion is A material having a value of 1.44 may be used.

【0033】誘電率が、1〜2を実現できる材料として
は、フッ素樹脂、発泡ポリエチレン、発泡ポリウレタ
ン、発泡スチロール、シンタクチックフォーム等があ
り、単独または任意に組合せて使用することが出来る。
また、これらの材料の発泡率、空隙率を変化させる事に
より誘電率を調節することが出来る。
Materials capable of realizing a dielectric constant of 1 to 2 include fluororesin, expanded polyethylene, expanded polyurethane, expanded polystyrene, syntactic foam and the like, and they can be used alone or in any combination.
Further, the dielectric constant can be adjusted by changing the foaming rate and porosity of these materials.

【0034】この発明の導入によりACCレ−ダの安定
性は飛躍的に向上し、自動走行技術の確立と走行安定性
の大幅な向上をもたらすことが可能になる。
By the introduction of the present invention, the stability of the ACC radar is dramatically improved, and it becomes possible to establish the automatic traveling technique and to greatly improve the traveling stability.

【0035】[0035]

【発明の効果】この発明のレ−ダリフレクタ装置は、入
射角度に関係なく電波の反射方向が入射方向と同じ方向
となる反射機構を採用しているため、正確なレ−ダ機能
が発揮される。特に、この発明のレ−ダリフレクタ装置
を車両の後部等に装着しておくことにより前方の走行車
両の姿勢に関わらず反射波の受信レベルが変化しないた
め、ACCレ−ダの安定性が飛躍的に向上し、自動走行
技術の確立と走行安定性の大幅な向上をもたらすことが
可能になる。
Since the radar reflector device of the present invention employs a reflection mechanism in which the radio wave reflection direction is the same as the incident direction regardless of the incident angle, an accurate radar function is exhibited. . Particularly, by mounting the radar reflector device of the present invention on the rear portion of the vehicle or the like, the reception level of the reflected wave does not change regardless of the posture of the traveling vehicle in front, so that the stability of the ACC radar is dramatically improved. It will be possible to bring about the establishment of automatic driving technology and a great improvement in driving stability.

【0036】また、レ−ダリフレクタ装置に内蔵する反
射体を構成する誘電体レンズの大きさは、所望するRC
Sに応じて、反射すべき電波の波長を基準として定量的
に決定することができるため、常に安定したレ−ダリフ
レクタ装置の設計が可能となる。
Further, the size of the dielectric lens forming the reflector incorporated in the radar reflector device is the desired RC.
Since the wavelength can be quantitatively determined based on the wavelength of the radio wave to be reflected according to S, it is possible to always design a stable radar reflector device.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明によるレ−ダリフレクタ装置の反射体
の構成を説明するための反射体の断面図である。
FIG. 1 is a cross-sectional view of a reflector for explaining the structure of the reflector of a radar reflector device according to the present invention.

【符号の説明】[Explanation of symbols]

1 反射体 2 誘電体レンズ 2a1,2a2 ・・・2an ・・・2aN 誘電率の異な
るレンズ体 3 反射板
DESCRIPTION OF SYMBOLS 1 Reflector 2 Dielectric lens 2a 1, 2a 2 ... 2a n ... 2a N Lens body 3 with different permittivity 3 Reflector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01Q 15/23 H01Q 15/23 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) H01Q 15/23 H01Q 15/23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】球状の誘電体レンズとその背面の半面を覆
う反射板とからなる反射体を内蔵して成るレ−ダリフレ
クタ装置。
1. A radar reflector device having a built-in reflector composed of a spherical dielectric lens and a reflection plate covering the rear half surface thereof.
【請求項2】前記誘電体レンズが、中芯部から外周面に
向かって層状に減少する誘電率を有する請求項1に記載
のレ−ダリフレクタ装置。
2. The radar reflector device according to claim 1, wherein the dielectric lens has a dielectric constant that decreases in layers from the central portion toward the outer peripheral surface.
【請求項3】前記誘電体レンズが、誘電率の異なる複層
構造からなり、中芯部の誘電率が2で最外周部の誘電率
が1である請求項1または2に記載のレ−ダリフレクタ
装置。
3. The laser according to claim 1, wherein the dielectric lens has a multi-layer structure having different permittivities, wherein the permittivity of the central portion is 2 and the permittivity of the outermost periphery is 1. Dull reflector device.
【請求項4】反射体を構成する球状の誘導体レンズを設
計する方法であって、該設計に際して、あらかじめ所望
のレ−ダ断面積σを設定しておき、反射すべき電波の波
長λに基づいて以下の式から誘電体レンズの半径Rを求
めるレ−ダリフレクタ装置に内蔵する反射体の設計方
法。 σ=4π(πR2 2 /λ2
4. A method for designing a spherical dielectric lens constituting a reflector, wherein a desired radar cross-sectional area .sigma. Is set in advance at the time of designing, and based on the wavelength .lamda. And a method for designing a reflector incorporated in the radar reflector device, which calculates the radius R of the dielectric lens from the following equation. σ = 4π (πR 2 ) 2 / λ 2
【請求項5】前記レ−ダ断面積を1〜4m2に設定する
請求項4に記載のレ−ダリフレクタ装置に内蔵する反射
体の設計方法。
5. The method for designing a reflector incorporated in a radar reflector device according to claim 4, wherein the radar cross-sectional area is set to 1 to 4 m 2 .
JP2001312860A 2001-10-10 2001-10-10 Radar reflector apparatus and method for designing reflector incorporated into the same Pending JP2003121530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001312860A JP2003121530A (en) 2001-10-10 2001-10-10 Radar reflector apparatus and method for designing reflector incorporated into the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001312860A JP2003121530A (en) 2001-10-10 2001-10-10 Radar reflector apparatus and method for designing reflector incorporated into the same

Publications (1)

Publication Number Publication Date
JP2003121530A true JP2003121530A (en) 2003-04-23

Family

ID=19131444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001312860A Pending JP2003121530A (en) 2001-10-10 2001-10-10 Radar reflector apparatus and method for designing reflector incorporated into the same

Country Status (1)

Country Link
JP (1) JP2003121530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715325B1 (en) * 2006-05-29 2007-05-08 주식회사 서남 Omni-directional lens reflector
CN105807405A (en) * 2016-04-26 2016-07-27 中国科学院西安光学精密机械研究所 Constant resolution multi-spectral optical system applicable to large dynamic range and nearly-hemispherical view field
CN114597670A (en) * 2022-03-22 2022-06-07 中国人民解放军空军工程大学 Broadband RCS adjustable luneberg lens scatterer based on reflecting surface control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715325B1 (en) * 2006-05-29 2007-05-08 주식회사 서남 Omni-directional lens reflector
CN105807405A (en) * 2016-04-26 2016-07-27 中国科学院西安光学精密机械研究所 Constant resolution multi-spectral optical system applicable to large dynamic range and nearly-hemispherical view field
CN114597670A (en) * 2022-03-22 2022-06-07 中国人民解放军空军工程大学 Broadband RCS adjustable luneberg lens scatterer based on reflecting surface control
CN114597670B (en) * 2022-03-22 2023-10-03 中国人民解放军空军工程大学 Broadband RCS adjustable Luneberg lens scatterer based on reflection surface control

Similar Documents

Publication Publication Date Title
CN107042799B (en) Vehicle
EP0840140B1 (en) Antenna apparatus
JP5264888B2 (en) Active radar system
US20080238790A1 (en) Rotating Screen Dual Reflector Antenna
JP2012118072A (en) Automotive radar system and method for using same
US20220393341A1 (en) Two-dimensional radar for millimeter wave applications
JP2000216623A (en) Multiple pattern antenna having frequency selection zone or polarized wave sensing zone
US20030052810A1 (en) Device to conceal a radar representing a pattern in relief, equipping especially a vehicle, and detection system comprising such a device
US11467279B2 (en) Road identification system using enhanced cross-section targets
JP7382395B2 (en) Vehicle body parts with at least one directional antenna
CN112042053A (en) Radar system with plastic antenna having reduced sensitivity to interference waves on the antenna and reflections from sensor cover
EP4088343A1 (en) Reflectarray antenna with two-dimensional beam scanning
US20210296764A1 (en) Continuously steering phased array and headlight radars
JPH10293175A (en) Collision avoidance system and collision avoidance method of vehicle
JP2001519024A (en) Radar systems especially for automotive use
EP4012439A1 (en) Facia supporting an ultra-wide radar field-of-view
JP2003121530A (en) Radar reflector apparatus and method for designing reflector incorporated into the same
US20220013885A1 (en) Radar antenna for vehicle bumper fascia
WO2020075422A1 (en) Radome
EP1417512B1 (en) Near object detection system
JP2003133784A (en) Electromagnetic absorber and material thereof
KR20180085890A (en) Transmission Member of Electromagnetic Wave of Radar For Vehicle
JP2004125746A (en) Horn antenna for radar
US11749883B2 (en) Waveguide with radiation slots and parasitic elements for asymmetrical coverage
JP2015190810A (en) Radar device and radar method