JP2003120499A - Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator - Google Patents

Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator

Info

Publication number
JP2003120499A
JP2003120499A JP2001317496A JP2001317496A JP2003120499A JP 2003120499 A JP2003120499 A JP 2003120499A JP 2001317496 A JP2001317496 A JP 2001317496A JP 2001317496 A JP2001317496 A JP 2001317496A JP 2003120499 A JP2003120499 A JP 2003120499A
Authority
JP
Japan
Prior art keywords
flow
flow path
wind turbine
vertical axis
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001317496A
Other languages
Japanese (ja)
Other versions
JP2003120499A5 (en
Inventor
Masaru Ijuin
勝 伊集院
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001317496A priority Critical patent/JP2003120499A/en
Publication of JP2003120499A publication Critical patent/JP2003120499A/en
Publication of JP2003120499A5 publication Critical patent/JP2003120499A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

PROBLEM TO BE SOLVED: To provide a wind mill/water turbine with the vertical axis which is efficiently rotated to both the two-way flow or the one-way flow of the fluid at a relatively constant pressure and low speed, a wave activated generator, a wind power generator, and a micro hydraulic power generator using the wind mill/water turbine. SOLUTION: (A) In the wind mill/water turbine comprising a rotating body 30 with a plurality of recessed rotating blades 5 around a rotary shaft 6 or an inner cylinder 7 integrated therewith and a casing 8 therearound, first to fourth flow passages with an opening/closing passage means built therein are disposed around the casing 8 so that the two-way flow flows each set of flow passages and the pressure fluid always flows only on the recessed surface side of the rotary blades 5. (B) The rotating blades 5 is made to be opened on the side in which the pressure fluid is received by the recessed surface, and to be closed on the opposite side. Wind or river water flow is led to the wind mill/water turbine with the vertical axis for power generation in which the two-way flow of sea water by the wave force is led, or only the out-going flow is present.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流れ方向に
対して直角方向に回転軸を有し、流体が比較的低圧低速
の往復流でも効率よく回転させるようにした垂直軸風水
車、及び該垂直軸風水車を用い、波力による海水の往復
運動をエネルギー源として発電することを特徴とする、
波力利用発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical axis wind turbine having a rotary shaft perpendicular to the flow direction of a fluid so that the fluid can be efficiently rotated even in a reciprocating flow at a relatively low pressure and a low speed. The vertical axis wind turbine is used to generate electric power by using the reciprocating motion of seawater as an energy source due to wave power.
The present invention relates to a wave power generation device.

【0002】[0002]

【従来の技術】流体の流れ方向に対して同一方向に回転
軸を有する軸流形風車は、往復流に対して一方向に回転
する風車として、ウェルズタービン等が公知であるが、
これらの水流に対する応用は知られていない。一方、流
体の流れ方向に対して直角方向に回転軸を有する風水車
は、もともと流れの方角には無関係に一方向に回転する
ものであり、従来構造の垂直軸形風水車をそのまま往復
流に用いることも可能である。しかし、そうした場合、
これらは流体の流れ方向に対する回転翼群の曲面形状に
起因する総抵抗差を越えては、回転エネルギーを得るこ
とができない。このような背景から、従来の波力利用発
電装置では専らプロペラ形等の軸流形風車が用いられ、
一方向風車を用いない場合は空気流を弁機構により一方
向に整流した後に風車を回転させる方法も行われている
が、経済的優位性が得られず、未だ広く実用化されるに
至っていない。
2. Description of the Related Art An axial flow type wind turbine having a rotating shaft in the same direction as the flow direction of a fluid is wells turbine or the like as a wind turbine rotating in one direction with respect to a reciprocating flow.
No application is known for these streams. On the other hand, a wind turbine with a rotating shaft perpendicular to the flow direction of the fluid originally rotates in one direction regardless of the direction of flow. It is also possible to use. But if you do
These cannot obtain rotational energy beyond the total resistance difference due to the curved surface shape of the rotor blade group with respect to the fluid flow direction. From such a background, in the conventional wave power generation device, an axial flow type wind turbine such as a propeller type is exclusively used,
When not using a one-way wind turbine, there is also a method in which the air flow is rectified in one direction by a valve mechanism and then the wind turbine is rotated, but it has not been economically superior and has not yet been widely used. .

【0003】[0003]

【発明が解決しようとする課題】本発明は、流体の流れ
方向に対して直角方向に回転軸を有する風水車の上記の
ような欠点を改善し、従来構造のものよりエネルギーの
変換効率を改善したことを特徴とする垂直軸風水車、及
びそれを用いた波力利用発電装置の提供を目的とするも
のである。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of a wind turbine having a rotating shaft in a direction perpendicular to the direction of fluid flow, and improves energy conversion efficiency as compared with a conventional structure. It is an object of the present invention to provide a vertical axis wind turbine, which is characterized by the above, and a wave power generation device using the same.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1記載の垂直軸風水車は、回転軸6又はそれ
と一体となった内筒7の周りに、それらと直角方向に曲
面又は斜面により凹状を成す複数の回転翼5を有する風
水車において、ケーシング8を左右に二等分する垂直面
を対称面として、片側に回転軸6と直角方向に第1流路
1と第3流路3を設け、反対側に第2流路2と第4流路
4を設け、それら2組の流路内に往流に対して開路する
手段と復流に対して開路する手段を各々設け、第1流路
1及び第2流路2又は該両流路を集合させた第1往復流
管9に往復流を導入し、往流は第1流路1から第3流路
3へ、復流は第4流路から第2流路へ流れるようにする
ことにより、往復流を回転翼5の凹面側にのみ積極的に
当て、凸面側の流体抵抗を軽減したことを特徴とする。
In order to achieve the above object, a vertical axis wind turbine of claim 1 has a curved surface around the rotary shaft 6 or an inner cylinder 7 integrated with the rotary shaft 6 in a direction perpendicular to the rotary shaft 6 and the inner cylinder 7. Alternatively, in a wind turbine having a plurality of rotary blades 5 that are concave due to slopes, a vertical plane that bisects the casing 8 into left and right is used as a symmetry plane, and the first flow path 1 and the third flow path 1 The flow path 3 is provided, and the second flow path 2 and the fourth flow path 4 are provided on the opposite side, and means for opening the forward flow and means for opening the reverse flow are provided in the two sets of flow paths, respectively. A reciprocating flow is introduced into the first reciprocating flow pipe 9 provided with the first flow passage 1 and the second flow passage 2 or the both flow passages, and the outward flow is from the first flow passage 1 to the third flow passage 3. , The return flow is made to flow from the fourth flow passage to the second flow passage, so that the reciprocating flow is positively applied only to the concave surface side of the rotor blade 5 and the flow on the convex surface side It is characterized in that to reduce the resistance.

【0005】請求項2記載の垂直軸風水車は、上記の風
水車を更に改善し、回転翼5がその凹面に流体流れを受
けている側でのみ内筒7の外周面に対して所定角に開
き、その反対側では閉じるようにするとともに、往流と
復流の交替に応じ、回転軸6がケーシング8の中心に対
して常に回転翼5が閉じる側に偏芯するよう、回転軸6
を支持体軸19周りに揺動する回転軸支持体20により
支持することにより、回転翼5の凸面側の流体抵抗を最
少限としたことを特徴とする。
The vertical-axis wind turbine of claim 2 is a further improvement of the above-mentioned wind turbine, in which the rotor blade 5 has a predetermined angle with the outer peripheral surface of the inner cylinder 7 only on the side where the concave surface thereof receives the fluid flow. The rotary shaft 6 is opened on the opposite side and closed on the opposite side, and the rotary shaft 6 is always eccentric to the closed side of the rotary blade 5 with respect to the center of the casing 8 in response to the alternating of the forward flow and the backward flow.
Is supported by a rotary shaft support 20 swinging around a support shaft 19, so that the fluid resistance on the convex side of the rotary blade 5 is minimized.

【0006】波力を原動力として海水、海水以外の液
体、又は空気の3種類の往復流を得ることができるが、
そのうち海水以外の液体の往復流を利用した発電装置と
しては、特願2000−153871で既に出願されて
おり、請求項1又は2の垂直軸風水車は該出願による発
電装置に適用することができる。これに対し、請求項3
記載の波力利用発電装置は、請求項1又は2の垂直軸風
水車を用い、第1流路1及び第2流路2又は第1往復流
管9内に直接又は集波室25を経由して海水の往復流を
導入し、第3流路3及び第4流路4、又は該両流路を集
合させた第2往復流管10を、それらの外側に設けた貯
漕16に接続して発電を行うようにしたことを特徴とす
る。
Three kinds of reciprocating flows of seawater, liquid other than seawater, or air can be obtained by using wave force as a driving force.
Among them, a power generator using a reciprocating flow of a liquid other than seawater has already been applied for in Japanese Patent Application No. 2000-153871, and the vertical axis wind turbine of claim 1 or 2 can be applied to the power generator according to the application. . On the other hand, claim 3
The wave power utilizing power generator described above uses the vertical axis wind turbine of claim 1 or 2, and directly in the first flow path 1 and the second flow path 2 or in the first reciprocating flow pipe 9 or via the wave collecting chamber 25. Then, the reciprocating flow of seawater is introduced to connect the third flow path 3 and the fourth flow path 4 or the second reciprocating flow pipe 10 in which the both flow paths are assembled to the storage tank 16 provided outside them. It is characterized in that it is configured to generate electricity.

【0007】請求項4記載の波力利用発電装置は、請求
項1又は2の垂直軸風水車を用い、第1流路1及び第2
流路2又は第1往復流管9内に波力を利用して得た空気
の往復流を導入し、第3流路3及び第4流路4を外気に
通じさせて発電を行うようにしたことを特徴とする。
The wave power utilizing power generator according to claim 4 uses the vertical axis wind turbine of claim 1 or 2, and uses the first flow path 1 and the second flow path.
A reciprocating flow of air obtained by utilizing wave force is introduced into the flow passage 2 or the first reciprocating flow pipe 9, and the third flow passage 3 and the fourth flow passage 4 are communicated with the outside air to generate electricity. It is characterized by having done.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0009】図1は請求項1に係る垂直軸風水車の実施
例を上側から見た断面図である。先ず回転軸6を設け、
その周りにそれとは直角方向に曲面又は斜面により凹状
を成す複数の回転翼5を内筒7を介して接合し、これら
を左右に二等分する垂直面を対称面として、片側に回転
軸6と直角方向に第1流路1と第3流路3を設け、反対
側に第2流路2と第4流路4を設けている。波力等を原
動力とする海水、海水以外の流体、又は空気の何れかの
流体の往復流を第1往復流管9から第1流路1及び第2
流路2に導き、それらの内圧が加圧状態の時に発生する
往流に対して開路する弁体11を第1流路1内に設け、
該内圧が減圧状態の時に発生する復流に対して開路する
弁体12を第2流路2内に設ける。更に、第3流路3内
に往流に対して開路する弁体13を、第4流路4内に復
流に対して開路する弁体14を設け、該両流路の外側に
それらを集合させた第2往復流管10を設ける。但し、
第1往復流管9及び第2往復流管10は、それらの機能
を後述の集波室25及び貯漕16又は空気室28等に兼
ねさせることにより、省略することも可能である。回転
翼5及び内筒7の外面はそれらとは別体のケーシング8
で覆われ、これに上記4つの流路を各々接合している。
このように構成された垂直軸風水車は、往流が第1流路
1から第3流路3へ、復流が第4流路4から第2流路2
へ流れ、その何れに対しても常に回転翼5の凹状の向き
にのみ流体が圧送されるので、凸面側の流体抵抗を著し
く軽減して効率良く回転エネルギーを取り出すことが出
来る。尚、内筒7は回転軸6を肥大させた部分であっ
て、回転翼5と回転軸6を連結するとともに、風水車内
の流路を外周近傍に寄せて効率良く回転翼5を回転させ
る機能を有し、本実施例では中空体としている。しか
し、内筒7を設けず、回転翼5を回転軸6に直接連結す
る場合もあり得る。また、各弁体11、12、13、1
4にはリング状の弁座15が対になって配されており、
各弁体と共同で各流路1、2、3、4を開閉する機能を
有する。しかし、これら開閉路手段には他にも様々な形
態が考えられ、例えば流体の流れ方向を感知して開閉路
する電磁弁とすることもできるし、図8に示すように弁
体11は往流の時は流体圧により第2流路2を閉じ、弁
体13は第3流路3からの流体圧により押し開けられて
第4流路4を閉じ、復流の時は各々反対側に作動する切
換弁とすることもでき、本発明ではその手段に拘らな
い。
FIG. 1 is a sectional view of an embodiment of a vertical axis wind turbine according to claim 1 as seen from above. First, the rotary shaft 6 is provided,
A plurality of rotary blades 5 having a concave shape formed by a curved surface or a slanted surface in a direction perpendicular to that are joined to each other via an inner cylinder 7, and a vertical surface that bisects these to the left and right is a symmetric surface, and a rotary shaft 6 is provided on one side. The first flow path 1 and the third flow path 3 are provided in the direction perpendicular to the above, and the second flow path 2 and the fourth flow path 4 are provided on the opposite side. A reciprocating flow of seawater, a fluid other than seawater, or air, which is driven by wave force or the like, is supplied from the first reciprocating flow pipe 9 to the first flow path 1 and the second flow path 1.
A valve body 11 is provided in the first flow path 1 that is guided to the flow path 2 and opens in response to an outward flow generated when the internal pressure of the flow path 2 is in a pressurized state.
A valve body 12 is provided in the second flow path 2 to open the return flow generated when the internal pressure is reduced. Further, a valve body 13 that opens to the forward flow is provided in the third flow path 3, and a valve body 14 that opens to the return flow is provided in the fourth flow path 4, and these are provided outside the both flow paths. A second reciprocating flow pipe 10 is provided. However,
The first reciprocating flow pipe 9 and the second reciprocating flow pipe 10 can be omitted by having their functions also as the wave collecting chamber 25, the storage tank 16 or the air chamber 28 described later. The outer surfaces of the rotor blade 5 and the inner cylinder 7 are separate casings 8 from them.
And the above-mentioned four flow paths are joined to each of them.
In the vertical axis wind turbine configured as above, the outward flow is from the first flow path 1 to the third flow path 3, and the return flow is from the fourth flow path 4 to the second flow path 2.
Since the fluid is pumped to only the concave direction of the rotary blade 5 in any case, the fluid resistance on the convex surface side can be significantly reduced and the rotational energy can be efficiently extracted. The inner cylinder 7 is a portion in which the rotary shaft 6 is enlarged, and has a function of connecting the rotary blade 5 and the rotary shaft 6 and bringing the flow passage in the wind turbine into the vicinity of the outer periphery to efficiently rotate the rotary blade 5. And has a hollow body in this embodiment. However, the inner cylinder 7 may not be provided, and the rotary blade 5 may be directly connected to the rotary shaft 6. In addition, each valve body 11, 12, 13, 1
4 has a ring-shaped valve seat 15 arranged in a pair,
It has a function of opening and closing each of the flow paths 1, 2, 3, and 4 in cooperation with each valve body. However, various other forms of these opening / closing means are conceivable. For example, the opening / closing means may be an electromagnetic valve that opens / closes by sensing the flow direction of the fluid, and as shown in FIG. When flowing, the second flow path 2 is closed by fluid pressure, the valve body 13 is pushed open by the fluid pressure from the third flow path 3 and closes the fourth flow path 4, and when returning, they are on opposite sides. It is also possible to use a switching valve that operates, and the present invention does not depend on the means.

【0010】図2は請求項2に係る垂直軸風水車の実施
例を上側から見た高さ中央付近での断面図である。図2
において、前述の請求項1の実施例と同様、ケーシング
8の周りに第1流路1から第4流路4の4つの流路と、
それらの内部に流路開閉手段として弁体11、12、1
3、14を設け、往流は第1流路1から第3流路3へ、
復流は第4流路4から第2流路2へ流れるようにする。
また、回転軸6の周りにそれとは直角方向に曲面又は斜
面により凹状を成す複数の回転翼5を設けているが、そ
れらの内筒7への取り付け部分の分解図3、及びX−X
断面図4に示すように、その下部に軸受5−1、5−2
を設けて小軸17により回転翼5は回転自在に内筒7の
側板7−1、7−2に連結されている。そして、小軸1
7は内筒7の外周面から所定の高さの位置に取り付けら
れ、回転翼5の下部は軸受5−1、5−2より所定寸法
だけ突出させているので、回転翼5は所定角に開くと該
突出部分が内筒に当たってそれ以上には開かない。回転
翼5を所定角以上に開かないようにする手段は他にも様
々な形態が考えられ、例えば図5に示すように、内筒7
に軸方向溝21を設け、回転翼5の下部が所定角で溝2
1の側面に接触するようにすることでも良い。本発明で
はその手段には拘らない。このような構造の回転翼5
は、凹面側に流体の流れが当たると自動的に内筒7に対
して所定角に開き、その反対側では凸面側が流体に押さ
れて自動的に閉じるが、回転翼5下部にばね手段を設け
るなどして、閉じる動作を補助しても良い。
FIG. 2 is a cross-sectional view of a vertical axis wind turbine according to a second embodiment of the present invention when viewed from the upper side near the center of height. Figure 2
In the same manner as the above-mentioned embodiment of claim 1, four channels of the first channel 1 to the fourth channel 4 are provided around the casing 8.
Valve bodies 11, 12, and 1 are provided inside them as flow path opening / closing means.
3, 14 are provided, and the outward flow is from the first flow path 1 to the third flow path 3,
The return flow is made to flow from the fourth flow path 4 to the second flow path 2.
Further, a plurality of rotary blades 5 having a concave shape by a curved surface or an inclined surface is provided around the rotary shaft 6 at a right angle to the rotary shaft 6, and an exploded view 3 of the mounting portion of the rotary blades 5 to the inner cylinder 7 and XX.
As shown in the sectional view 4, the bearings 5-1 and 5-2 are provided on the lower portion thereof.
The rotary blade 5 is rotatably connected to the side plates 7-1 and 7-2 of the inner cylinder 7 by the small shaft 17. And the small axis 1
7 is attached at a predetermined height from the outer peripheral surface of the inner cylinder 7, and the lower portion of the rotor blade 5 is protruded from the bearings 5-1 and 5-2 by a predetermined dimension. Therefore, the rotor blade 5 has a predetermined angle. When opened, the protruding portion hits the inner cylinder and cannot be opened further. There are various other possible means for preventing the rotary blade 5 from opening beyond a predetermined angle. For example, as shown in FIG.
An axial groove 21 is provided on the lower surface of the rotor blade 5 at a predetermined angle.
It is also possible to make contact with the side surface of 1. The present invention is not concerned with the means. Rotor blade 5 having such a structure
Is automatically opened to a predetermined angle with respect to the inner cylinder 7 when the flow of the fluid hits the concave side, and the convex side is automatically closed by the fluid on the opposite side, but a spring means is provided below the rotary blade 5. The closing operation may be assisted by providing it.

【0011】回転軸6上端部の詳細図6に示すように、
回転軸6の両端は軸受6−1を介して回転軸支持体20
により回転自在に支持されており、回転軸支持体20の
外側端は図2に示すように支持体軸19を介してケーシ
ング8に連結されている。また、ケーシング8の上下両
側には長穴18が設けられており、回転軸6はこの長穴
18に沿って支持体軸19を中心に仮想線で示すように
揺動できるようになっている。この支持体軸19はケー
シング8の中心線上に置くのでなく、第4流路4又は第
1流路1側へ偏った位置に置くのが良い。これは流出側
(往流では第3流路3、復流では第2流路2)付近では
回転翼5が開き、流入側より大きなスペースを必要とす
るからである。長穴18は図6に示すように、回転軸6
を貫通させた滑り板22によって内側から塞がれてお
り、滑り板22周端とケーシング8の間は弾性シート2
3によって包み、内部流体の漏れを防止している。回転
軸6の上端は自在継手24を介して発電機に連結され
る。
Details of the upper end of the rotary shaft 6 As shown in FIG.
Both ends of the rotary shaft 6 are connected to the rotary shaft support 20 via the bearings 6-1.
It is rotatably supported by, and the outer end of the rotary shaft support 20 is connected to the casing 8 via a support shaft 19 as shown in FIG. Further, elongated holes 18 are provided on both upper and lower sides of the casing 8, and the rotary shaft 6 can be swung along the elongated holes 18 about a support shaft 19 as shown by an imaginary line. . It is preferable that the support shaft 19 is not placed on the center line of the casing 8 but at a position deviated to the side of the fourth flow passage 4 or the first flow passage 1. This is because the rotor blades 5 are opened near the outflow side (the third flow path 3 in the forward flow and the second flow path 2 in the return flow), and a larger space is required than in the inflow side. As shown in FIG. 6, the long hole 18 has the rotating shaft 6
It is closed from the inside by a sliding plate 22 that penetrates through, and the elastic sheet 2 is provided between the peripheral edge of the sliding plate 22 and the casing 8.
It is wrapped with 3 to prevent leakage of internal fluid. The upper end of the rotary shaft 6 is connected to the generator via a universal joint 24.

【0012】流体が液体の場合には上記長穴18周りの
漏れ防止機構を避けるため、図7に示すように回転軸支
持体20を水車内部に設け、ケーシング8の上部又はそ
こに設けた子ケーシング8−1に空気を封じ込めて空気
室とし、回転軸支持体20上に設置した発電機35が空
気室内で揺動するようにすることもできる。このように
すれば、弛ませた電気配線36だけを水車外部に取り出
せばよいので、この部分からの流体の漏れを容易に防止
することができる。このように構成された垂直軸風水車
は、往復流の交替に応じて回転翼5の凹面に流体の流れ
が当たる側だけにケーシング8内のスペースを作るとと
もに、回転翼5を一杯に開かせ、反対側では流体圧力が
内筒7をも押して閉じられた回転軸6を通過させるだけ
のスペースとなるので、回転翼5の凸面側の流体抵抗を
最少限とし、往復流から極めて効率よく回転エネルギー
を取り出すことができる。尚、内筒7の内部は中空体と
しているので、流体を海水、又は海水以外の液体とした
場合には内筒7には大きな浮力が働き、回転軸支持体2
0に掛ける負担を小さくすることができる。また、該実
施例の斜視は図9内に示す。
When the fluid is a liquid, in order to avoid the leakage prevention mechanism around the elongated hole 18, a rotary shaft support 20 is provided inside the water turbine as shown in FIG. It is also possible to enclose air in the casing 8-1 to form an air chamber so that the generator 35 installed on the rotary shaft support 20 swings in the air chamber. By doing so, only the loosened electric wiring 36 needs to be taken out to the outside of the water turbine, so that fluid leakage from this portion can be easily prevented. The vertical axis wind turbine configured as described above creates a space in the casing 8 only on the side where the fluid flow hits the concave surface of the rotary blade 5 according to the alternation of the reciprocating flow, and allows the rotary blade 5 to be fully opened. On the other side, the fluid pressure provides a space for pushing the inner cylinder 7 and allowing the closed rotary shaft 6 to pass therethrough. Therefore, the fluid resistance on the convex side of the rotor blade 5 is minimized, and the reciprocating flow rotates very efficiently. You can extract energy. Since the inside of the inner cylinder 7 is a hollow body, when the fluid is seawater or a liquid other than seawater, a large buoyancy acts on the inner cylinder 7 and the rotary shaft support 2
The burden on 0 can be reduced. A perspective view of this embodiment is shown in FIG.

【0013】図9は請求項3に記載する構造を特徴とす
る波力利用発電装置を海岸に設置する例で、図10は図
9Y−Y線における断面図である。但し、図10では堤
防の記載を省略してある。装置は波動が活発で、海底岩
床が岸側へ斜面を成し、左右が適当規模のV字形を成し
た岩壁に設置するのが好ましく、更にコンクリート又は
鋼板製の底板、側壁及び天井壁等から成る集波室25を
堤防の海側に設けている。そして集波室25中央に第1
往復流管9を接続し、更に前述の請求項1又は2の垂直
軸風水車に接続し、第2往復流管10は貯漕16に接続
している。このようにしたから、集波室25の水位が変
動するに従い、当然貯漕16の水位がそれに追随しよう
として、往流と復流が交互に発生し、その間に垂直軸風
水車を大量の海水で強力に回転させることができる。
FIG. 9 shows an example in which a wave power utilizing power generator having the structure described in claim 3 is installed on a shore, and FIG. 10 is a sectional view taken along the line YY of FIG. However, the levee is not shown in FIG. It is preferable to install the device on a rock wall where the seabed rock slopes toward the shore and the left and right sides are V-shaped on an appropriate scale, and the bottom plate, side wall and ceiling wall made of concrete or steel plate, etc. A collection chamber 25 consisting of is installed on the sea side of the embankment. And in the center of the wave collection room 25
The reciprocating flow pipe 9 is connected, and further connected to the vertical axis wind turbine of claim 1 or 2, and the second reciprocating flow pipe 10 is connected to the storage tank 16. Because of this, as the water level in the collection chamber 25 fluctuates, the water level in the storage tank 16 naturally tries to follow it, and the outflow and the return flow alternately occur, during which a large amount of seawater is generated by the vertical axis wind turbine. It can be rotated strongly with.

【0014】図11は請求項4に記載する構造を特徴と
し、航路標識用ブイに搭載した空気流による波力利用発
電装置の実施例の断面図である。ブイ本体26の中央下
部には円筒27を接続し、その下部には連結棒29を介
して安定板30及び係留索34を設ける。また、円筒2
7の上部には請求項1又は2の垂直軸風水車を設置し、
第3流路3及び第4流路はタワー32の上部に設けた通
気孔33を介して外気に通じている。この場合、水車は
横置き(回転軸6が垂直方向)に設置しても良いが、こ
の例では縦置きに設置している。このようにすると、波
動に従いブイ本体26も上昇又は下降しようとするが、
安定板30と係留索34に因る抵抗によって円筒27上
部の空気室28は加圧又は減圧され、空気流が第1流路
1から第3流路3へ、又は第4流路4から第2流路2へ
流れる間に垂直軸風水車を駆動し、発電する。ブイ本体
26の内部にはバッテリー31や制御機器類が内蔵され
ており、発電された電気エネルギーはこれらにより蓄
積、制御されて標識灯やその他の電気機器を働かせるこ
とができる。
FIG. 11 is a cross-sectional view of an embodiment of a wave power utilizing power generator using an air flow mounted on a traffic sign buoy, which is characterized by the structure described in claim 4. A cylinder 27 is connected to the lower center of the buoy body 26, and a stabilizer 30 and a mooring line 34 are provided below the buoy body 26 via a connecting rod 29. Also, the cylinder 2
The vertical axis wind turbine of claim 1 or 2 is installed on the upper part of 7,
The third flow path 3 and the fourth flow path communicate with the outside air via a ventilation hole 33 provided in the upper portion of the tower 32. In this case, the water turbine may be installed horizontally (the rotating shaft 6 is in the vertical direction), but in this example it is installed vertically. In this way, the buoy body 26 also tries to rise or fall according to the wave motion,
The air chamber 28 above the cylinder 27 is pressurized or depressurized by the resistance caused by the stabilizer 30 and the mooring line 34, and the air flow is changed from the first flow path 1 to the third flow path 3 or from the fourth flow path 4 to the third flow path 4. The vertical axis wind turbine is driven while flowing to the two flow paths 2 to generate electricity. A battery 31 and control devices are built in the buoy body 26, and the generated electric energy can be accumulated and controlled by these to operate the marker lamp and other electric devices.

【0015】[0015]

【発明の効果】本発明による垂直軸風水車及び波力利用
発電装置は、以上説明したように構成されているので、
以下に記載するような効果を有する。
Since the vertical axis wind turbine and the power generator using wave power according to the present invention are configured as described above,
It has the effects described below.

【0016】請求項1記載の垂直軸風水車は、波力等を
原動力とする往復流を回転翼5の凹面側にのみ積極的に
当て、凸面側には風水車内に滞留した流体だけが接触す
るので、従来構造のものより凸面側の流体抵抗を軽減
し、エネルギーの変換効率を大きく改善することができ
る。
In the vertical axis wind turbine of the first aspect, a reciprocating flow driven by wave force or the like is positively applied only to the concave side of the rotor blade 5, and only the fluid retained in the wind turbine contacts the convex side. Therefore, the fluid resistance on the convex surface side can be reduced as compared with the conventional structure, and the energy conversion efficiency can be greatly improved.

【0017】請求項2記載の垂直軸風水車は、流体流れ
を受けない側では回転翼5は閉じてしまうだけでなく、
往流と復流の交替に応じ、回転軸6がケーシング8の中
心に対して常に回転翼5が閉じる側に偏芯するので、回
転翼5の凸面側の流体抵抗を著しく小さくしつつ、流体
がケーシング8と回転翼5との間隙から逃げることを防
止し、極めて効率よく往復流から回転エネルギーを取り
出すことができる。この構造の風水車は特に低圧低速の
液体に対して効果的である。
According to the vertical axis wind turbine of the second aspect, not only the rotor blade 5 is closed on the side not receiving the fluid flow,
The rotating shaft 6 is always eccentric with respect to the center of the casing 8 toward the side where the rotary blades 5 are closed in accordance with the alternating of the forward flow and the backward flow. Therefore, the fluid resistance on the convex side of the rotary blades 5 is significantly reduced, and Can be prevented from escaping from the gap between the casing 8 and the rotary blades 5, and the rotational energy can be extracted from the reciprocating flow very efficiently. The wind turbine of this structure is particularly effective for low pressure and low speed liquids.

【0018】請求項3記載の波力利用発電装置は、上記
垂直軸水車に海水を直接導入するので、他の液体の往復
流に変換する装置に比較して簡単な構造の装置とするこ
とができる。この装置では往復流体を著しく加圧するこ
とは難しいが、集波室25を設けた場合にはその働きに
よりある程度それが達成される。
Since the wave power generation device according to claim 3 directly introduces seawater into the vertical shaft water turbine, it can be a device having a simpler structure as compared with a device for converting into a reciprocating flow of another liquid. it can. Although it is difficult to pressurize the reciprocating fluid remarkably with this device, when the wave collecting chamber 25 is provided, it is achieved to some extent by the action thereof.

【0019】請求項4記載の波力利用発電装置は、従来
の軸流形の風車を使用する場合に比較して、比較的低圧
の空気流で効率よく発電することができる。
The wave power utilizing power generator according to the fourth aspect can efficiently generate power with a relatively low pressure air flow as compared with the case of using a conventional axial flow type wind turbine.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、請求項1記載の垂直軸風水車を示す断
面図、
1 is a sectional view showing a vertical axis wind turbine of claim 1;

【図2】図2は、請求項2記載の垂直軸風水車を示す断
面図、
FIG. 2 is a sectional view showing the vertical axis wind turbine of claim 2;

【図3】図3は、請求項2記載の垂直軸風水車の回転翼
5下部の第1例詳細図、
FIG. 3 is a detailed view of a first example of a lower portion of the rotary blade 5 of the vertical axis wind turbine of claim 2;

【図4】図4は、図3X−X線における断面図、FIG. 4 is a sectional view taken along line XX-X of FIG.

【図5】図5は、請求項2記載の垂直軸風水車の回転翼
5下部の第2例詳細図、
FIG. 5 is a detailed view of a second example of the lower part of the rotary blade 5 of the vertical axis wind turbine of claim 2;

【図6】図6は、請求項2記載の垂直軸風水車の回転軸
軸受6−1付近の詳細図、
FIG. 6 is a detailed view of the vicinity of a rotary shaft bearing 6-1 of the vertical shaft wind turbine of claim 2;

【図7】図7は、請求項2記載の垂直軸風水車に子ケー
シング8−1を設け、発電機35が水車内部で揺動でき
るようにした例を示す断面図、
FIG. 7 is a cross-sectional view showing an example in which a vertical casing wind turbine of claim 2 is provided with a child casing 8-1 so that the generator 35 can swing inside the turbine.

【図8】図8は、弁機構を切換弁とした例を示す断面
図、
FIG. 8 is a cross-sectional view showing an example in which a valve mechanism is a switching valve,

【図9】図9は、請求項3記載の波力利用発電装置の実
施例を示す斜視図、
FIG. 9 is a perspective view showing an embodiment of the wave power utilizing power generator according to claim 3;

【図10】図10は、図9のY−Y線における断面図、10 is a cross-sectional view taken along the line YY of FIG.

【図11】図11は、請求項4記載の波力利用発電装置
の実施例を示す断面図である。
FIG. 11 is a cross-sectional view showing an embodiment of the wave power utilizing power generator according to claim 4;

【符号の説明】[Explanation of symbols]

1 第1流路 2 第2流路 3 第3流路 4 第4流路 5 回転翼 5−1 軸受 5−2 軸受 6 回転軸 6−1 軸受 7 内筒 7−1 側板 7−2 側板 8 ケーシング 8−1 子ケーシング 9 第1往復流管 10 第2往復流管 11 弁体 12 弁体 13 弁体 14 弁体 15 弁座 16 貯漕 17 小軸 18 長穴 19 支持体軸 20 回転軸支持体 21 溝 22 滑り板 23 弾性シート 24 自在継手 25 集波室 26 ブイ本体 27 円筒 28 空気室 29 連結棒 30 安定板 31 バッテリー 32 タワー 33 通気孔 34 係留索 35 発電機 36 電気配線 1st flow path 2 Second channel 3rd flow path 4th flow path 5 rotors 5-1 Bearing 5-2 Bearing 6 rotation axes 6-1 Bearing 7 Inner cylinder 7-1 Side plate 7-2 Side plate 8 casing 8-1 Child casing 9 First reciprocating flow tube 10 Second reciprocating flow tube 11 valve body 12 valve bodies 13 valve 14 valve body 15 seat 16 storage 17 small axis 18 slots 19 Support shaft 20 Rotating shaft support 21 groove 22 sliding plate 23 Elastic sheet 24 Universal 25 Wave collection room 26 buoy body 27 cylinders 28 air chambers 29 connecting rod 30 stabilizer 31 battery 32 tower 33 Vent 34 mooring lines 35 generator 36 Electric wiring

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年3月15日(2002.3.1
5)
[Submission date] March 15, 2002 (2002.3.1)
5)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 垂直軸風水車、波力発電装置及び
風力発電装置
Title: Vertical axis wind turbine, wave power generator and wind power generator

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流れ方向に
対して直角方向に回転軸を有し(本発明では垂直軸風水
車の垂直とはこの意味であって、回転軸は垂直に設置す
るとは限らない)、比較的低圧低速の流体流れに対して
も効率よく回転させるようにした、ケーシングを具備す
る垂直軸風水車、及び該垂直軸風水車を用いたことを特
徴とする波力発電装置及び風力発電装置に関する。ま
た、該垂直軸風水車は河川流による水力発電装置にも利
用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a rotating shaft perpendicular to the direction of fluid flow (in the present invention, the vertical axis of a wind turbine means this, and the rotating shaft is installed vertically). However, the vertical axis wind turbine is provided with a casing, and the wave power is characterized by using the vertical axis wind turbine. The present invention relates to a power generator and a wind power generator. The vertical axis wind turbine can also be used in a hydroelectric power generation device using a river flow.

【0002】[0002]

【従来の技術】流体の流れ方向に対して直角方向の回転
軸を有する風水車は、全方向の流れに対し作動して一方
向に回転し、低速流に対して効率が高いという特徴を持
っているが、高速になるにつれ回転翼の凸面側の抵抗が
大きくなり、特に液体流の場合に大きいという欠点があ
る。これに対し、ケーシングを具備しない垂直軸風車の
凸面側を遮蔽板で覆う案は公知であるが、ケーシングと
それに固定した流路を有する風水車を往復流用に特化さ
せた技術は知られていない。このような背景から、従来
の波力発電装置では往復流に対して一方向に回転するウ
ェルズタービン等のプロペラ形が用いられ、一方向風車
を用いない場合は空気流を弁機構により一方向に整流し
た後に軸流形風車を回転させる方法も行われているが、
未だ広く実用化されるほどの経済性が得られていない。
また、風力発電装置については専らプロペラ形風車が用
いられているが、大型にするほどその支柱を高く太くせ
ざるを得ず、装置コストの増大と保守の困難性を増す欠
点がある。
2. Description of the Related Art A wind turbine having an axis of rotation perpendicular to the direction of fluid flow has the characteristic of operating in all directions, rotating in one direction, and being highly efficient for low speed flows. However, there is a drawback in that the resistance on the convex side of the rotary blade increases as the speed increases, especially in the case of a liquid flow. On the other hand, it is known to cover the convex side of a vertical axis wind turbine that does not have a casing with a shielding plate, but there is known a technique in which a casing and a wind turbine having a flow passage fixed to the casing are specialized for reciprocating flow. Absent. From such a background, in the conventional wave power generation device, a propeller type such as a Wells turbine that rotates in one direction with respect to a reciprocating flow is used, and if a one-way wind turbine is not used, the air flow is unidirectional by a valve mechanism. There is also a method of rotating an axial flow wind turbine after rectifying it,
It is not yet economical enough to be widely put into practical use.
Further, although a propeller-type wind turbine is exclusively used for a wind turbine generator, there is a drawback in that the larger the size, the higher the pillars of the propeller must be made, which results in an increase in the cost of the device and an increase in maintenance difficulty.

【0003】[0003]

【発明が解決しようとする課題】本発明は、流体の流れ
方向に対して直角方向の回転軸を有する風水車の上記の
ような欠点を改善し、回転翼凸面側の抵抗を減少させる
ことによりエネルギー変換効率を改善したことを特徴と
する、ケーシングを具備した垂直軸風水車、及びそれを
用いた波力発電装置及び風力発電装置の提供を目的とす
るものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of a wind turbine having a rotating shaft perpendicular to the direction of fluid flow and reduces the resistance on the convex side of the rotor blade. An object of the present invention is to provide a vertical-axis wind turbine equipped with a casing, which has improved energy conversion efficiency, and a wave power generation device and a wind power generation device using the same.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1の垂直軸風水車は、ケーシング8を設ける
ことにより全方向の流れに対して作動する性質を奪い、
改めて4つの流路と開閉路手段を配置することにより、
二方向の流れに対してのみ作動するようにするととも
に、回転翼5の凸面側の抵抗を軽減したものである。即
ち、回転軸6またはそれと一体となった内筒7の周り
に、軸直角方向に曲面または斜面により凹状を成す複数
の回転翼5を配置した回転体30と、その周りにケーシ
ング8を具備した風水車において、ケーシング8を軸方
向に二等分する垂直面より片側に、軸直角方向に第1流
路1と第3流路3を設けて回転翼5凹面を第1流路向き
とし、反対側に第2流路2と第4流路4を設け、それら
2組の流路内に往流に対して開路する開閉路手段と復流
に対して開路する開閉路手段を各々設け、往流は第1流
路1から第3流路3へ、復流は第4流路から第2流路へ
流れるようにすることにより、往復流を回転翼5の凹面
側にのみ積極的に押し当て、凸面側の流体抵抗を軽減し
たことを特徴とする。
In order to achieve the above object, the vertical axis wind turbine of claim 1 is provided with a casing 8 to deprive it of the property of operating in all directions of flow.
By arranging four flow paths and opening / closing means again,
It is designed to operate only in two-direction flow and to reduce the resistance on the convex side of the rotor blade 5. That is, the rotary body 30 is provided around the rotary shaft 6 or the inner cylinder 7 integrated with the rotary shaft 6, and a plurality of rotary blades 5 each having a concave shape due to a curved surface or an inclined surface are arranged in a direction perpendicular to the axis, and a casing 8 is provided around the rotary body 30. In the wind turbine, the first flow path 1 and the third flow path 3 are provided on one side of a vertical surface that bisects the casing 8 in the axial direction in a direction perpendicular to the axis, and the concave surface of the rotor blade 5 is directed toward the first flow path. A second flow path 2 and a fourth flow path 4 are provided on the opposite side, and an opening / closing means for opening the forward flow and an opening / closing means for opening the return flow are respectively provided in the two sets of the passages. The forward flow is made to flow from the first flow path 1 to the third flow path 3, and the return flow is made to flow from the fourth flow path to the second flow path, so that the reciprocating flow is positively applied only to the concave surface side of the rotor blade 5. The feature is that the fluid resistance on the convex side is reduced by pressing.

【0005】請求項2の垂直軸風水車は、上記請求項1
の風水車を更に改善し、回転翼5がその凹面に流体流れ
を受けている側でのみ内筒7の外周面に対して所定角に
開き、その反対側では閉じるようにする(以下、「請求
項2(イ)の特徴」と称する)とともに、往流と復流の
交替に応じ回転軸6がケーシング8の中心に対して常に
回転翼5が閉じる側に偏芯するよう、回転軸6を支持体
軸19周りに所定角に揺動する回転軸支持体20により
支持することにより、回転翼5の凸面側の流体抵抗を最
少限としたことを特徴とする。そして該風水車では開閉
路手段を全て省いた構造としても、実用することができ
る。
The vertical axis wind turbine of claim 2 is the same as that of claim 1 above.
The wind turbine is further improved so that the rotary blade 5 opens at a predetermined angle with respect to the outer peripheral surface of the inner cylinder 7 only on the side where the concave surface receives the fluid flow, and closes on the opposite side (hereinafter, " According to the feature of claim 2 (a)), the rotating shaft 6 is always eccentric with respect to the center of the casing 8 toward the side where the rotating blade 5 is closed according to the alternation of the forward flow and the returning flow. Is supported by a rotary shaft support 20 that swings at a predetermined angle around the support shaft 19, thereby minimizing the fluid resistance on the convex surface side of the rotary blade 5. The wind turbine can be put into practical use even if it has a structure in which all the opening / closing means is omitted.

【0006】請求項3の垂直軸風水車は、請求項2の垂
直軸風水車を一方向流に利用できるようにしたものであ
って、ケーシング8の片側軸方向側面寄りに第1流路1
と第3流路3の1組のみの流路を設け、更に請求項2
(イ)の特徴を有する。該垂直軸風水車は、マイクロ水
力発電装置及び風力発電装置に利用可能である。
The vertical axis wind turbine of claim 3 is adapted to utilize the vertical axis turbine of claim 2 for one-way flow, and the first flow path 1 is provided on one side of the casing 8 in the axial direction.
And only one set of the third and third flow paths 3 is provided, and further,
It has the characteristics of (a). The vertical axis wind turbine can be used for a micro hydraulic power generation device and a wind power generation device.

【0007】波力を原動力として海水、海水以外の液
体、または空気の3種類の往復流を得ることができる
が、そのうち海水以外の液体の往復流を利用した発電装
置としては、特願2000−153871で既に出願さ
れており、請求項1または請求項2の垂直軸風水車は該
出願による発電装置に利用することができる。また、空
気の往復流を利用した発電を行うには同じく上記風水車
をそのまま利用し、第1流路1及び第2流路2内に空気
の往復流を導入し、第3流路3及び第4流路4を外気に
通じさせれば良い。これらに対し、請求項4記載の波力
発電装置は、請求項1または請求項2の垂直軸風水車を
用い、第1流路1及び第2流路2内に海水の往復流を導
入し、第3流路3及び第4流路4または第2往復流管1
0をそれらの外側に設けた貯漕16に接続して発電する
ようにしたことを特徴とする。
Three kinds of reciprocating flows of seawater, liquids other than seawater, or air can be obtained by using wave power as a driving force. Among them, as a power generation device utilizing reciprocating flows of liquids other than seawater, Japanese Patent Application No. 2000- The vertical axis wind turbine of claim 1 or claim 2, which has already been filed in 153871, can be used for the power generation device according to the application. Further, in order to perform power generation using the reciprocal flow of air, the above-mentioned wind turbine is also used as it is, and the reciprocal flow of air is introduced into the first flow path 1 and the second flow path 2, and the third flow path 3 and It suffices if the fourth flow path 4 is communicated with the outside air. On the other hand, the wave power generation device according to claim 4 uses the vertical axis wind turbine of claim 1 or 2, and introduces a reciprocating flow of seawater into the first flow path 1 and the second flow path 2. , Third flow path 3 and fourth flow path 4 or second reciprocating flow tube 1
It is characterized in that 0 is connected to a storage tank 16 provided outside them to generate electric power.

【0008】請求項5記載の風力発電装置は、回転軸6
を水平方向とした請求項3または請求項3(イ)の垂直
軸風水車を用い、ケーシング8中央下部に回転盤28を
設け、第1流路1の入口を常に風向方向とする手段を設
けたことを特徴とする。
The wind turbine generator according to claim 5 has a rotating shaft 6
Using the vertical axis wind turbine of claim 3 or claim 3 (a), a rotary disk 28 is provided in the lower center of the casing 8, and means for constantly setting the inlet of the first flow path 1 in the wind direction is provided. It is characterized by that.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0010】図1は請求項1の垂直軸風水車の実施例を
示す軸直角方向断面図である。先ず回転軸6を設け、そ
の周りにそれとは直角方向に曲面または斜面により凹状
を成す複数の回転翼5を内筒7を介して接合し、これら
を軸方向に二等分する垂直面より片側に軸直角方向に第
1流路1と第3流路3を設け、反対側に第2流路2と第
4流路4を設けている。第1流路1及び第2流路2を集
合させた第1往復流管9へ流体の往復流を導き、往流に
対して開路する弁体11を第1流路1内に設け、復流に
対して開路する弁体12を第2流路2内に設けている。
更に、第3流路3内に往流に対して開路する弁体13
を、第4流路4内に復流に対して開路する弁体14を設
け、該両流路の外側にそれらを集合させた第2往復流管
10を設けている。但し、第1往復流管9及び第2往復
流管10は、それらの機能を後述の集波室25及び貯漕
16等に兼ねさせることにより、省略することも可能で
ある。回転翼5及び内筒7の外側はそれらとは別体のケ
ーシング8で覆われ、これに上記4つの流路を各々接合
している。このように構成された垂直軸風水車は、往流
が第1流路1から第3流路3へ、復流が第4流路4から
第2流路2へ流れ、その何れに対しても常に回転翼5の
凹状の向きにのみ流体が圧送されるので、凸面側の流体
抵抗を著しく軽減して効率良く回転エネルギーを取り出
すことができる。尚、内筒7は回転軸と一体になってお
り、回転翼5と回転軸6を連結するとともに、風水車内
の流路を外周近傍に寄せて回転翼5を回転させる機能を
有し、本実施例では中空体としている。しかし、内筒7
を設けず、回転翼5を回転軸6に直接連結することも可
能である。また、各弁体11、12、13、14には弁
座15が各々配されており、各弁体と共同で各流路を開
閉する機能を有する。しかし、これら開閉路手段には他
の形態が幾つか考えられ、例えば流体流れ方向を感知し
て油圧で開閉する弁とすることもできるし、図2の例で
後述するように2枚の弁体で機能する切換弁とすること
もでき、本発明ではその手段に拘らない。
FIG. 1 is a sectional view in the direction perpendicular to the axis, showing an embodiment of the vertical axis wind turbine of claim 1. First, a rotary shaft 6 is provided, and a plurality of rotary blades 5 having a concave shape by a curved surface or an inclined surface in a direction perpendicular to the rotary shaft 6 are joined via an inner cylinder 7, and these are divided into two parts in the axial direction on one side from a vertical surface. The first flow path 1 and the third flow path 3 are provided in the direction perpendicular to the axis, and the second flow path 2 and the fourth flow path 4 are provided on the opposite side. A valve body 11 that guides a reciprocating flow of a fluid to a first reciprocating flow pipe 9 in which the first flow passage 1 and the second flow passage 2 are gathered and is opened with respect to the outward flow is provided in the first flow passage 1. A valve body 12 that opens to the flow is provided in the second flow path 2.
Furthermore, the valve body 13 that opens in the third flow path 3 with respect to the outward flow
In the fourth flow path 4, a valve body 14 that opens to the return flow is provided, and a second reciprocating flow pipe 10 that collects them is provided outside the both flow paths. However, the first reciprocating flow pipe 9 and the second reciprocating flow pipe 10 can be omitted by having their functions also as the wave collecting chamber 25 and the storage tank 16 described later. The outer sides of the rotor blade 5 and the inner cylinder 7 are covered with a casing 8 which is separate from the rotor blade 5 and the inner cylinder 7, and the four flow paths are joined to the casing 8. In the vertical axis wind turbine configured as described above, the outflow flows from the first flow path 1 to the third flow path 3, and the return flow flows from the fourth flow path 4 to the second flow path 2, and for whichever Since the fluid is always pumped only in the concave direction of the rotary blade 5, the fluid resistance on the convex side can be significantly reduced and the rotational energy can be efficiently extracted. In addition, the inner cylinder 7 is integrated with the rotary shaft, has a function of connecting the rotary blade 5 and the rotary shaft 6 and rotating the rotary blade 5 by bringing the flow passage in the wind turbine into the vicinity of the outer periphery. In the embodiment, it is a hollow body. However, the inner cylinder 7
It is also possible to directly connect the rotary blade 5 to the rotary shaft 6 without providing. Further, a valve seat 15 is arranged on each of the valve bodies 11, 12, 13, 14 and has a function of opening and closing each flow path in cooperation with each valve body. However, some other forms of these opening / closing means are conceivable, for example, a valve that senses the fluid flow direction and opens / closes hydraulically, or two valves as described later in the example of FIG. It can be a switching valve that functions in the body, and the present invention does not depend on the means.

【0011】図2は請求項2の垂直軸風水車の実施例を
示す軸直角方向断面図である。図において、前述の請求
項1の実施例と同様、ケーシング8の周りに第1流路1
から第4流路4の4つの流路と、それらの内部に開閉路
手段を設け、往流は第1流路1から第3流路3へ、復流
は第4流路4から第2流路2へ流れるようにする。但
し、本例では弁体は2枚しかなく、弁体11は往流の時
は流体圧により第2流路2を閉じ、弁体13は第3流路
3からの流体圧により押し開けられて第4流路4を閉
じ、復流の時は各々反対側に作動する切換弁としてい
る。また、回転軸6の周りに軸直角方向に曲面または斜
面により凹状を成す複数の回転翼5を設けているが、図
3及び図4に示すように、その下部に軸受5A、5Bを
設けて小軸17により回転翼5は揺動自在に内筒7の側
板7A、7Bに連結されている。そして、小軸17は内
筒7の外周面から所定の高さの位置に取り付けられ、回
転翼5の下部は軸受5A、5Bより所定寸法だけ突出さ
せているので、回転翼5は所定角に開くと該突出部分が
内筒に突き当たってそれ以上には開かない。回転翼5を
所定角以上に開かないようにする手段は他にも様々な形
態が考えられ、例えば図5に示すように、内筒7に軸方
向溝21を設け、回転翼5の下部が所定角で溝21の側
面に接触するようにすることでも良く、本発明ではその
手段には拘らない。このような構造の回転翼5は、凹面
側に流体が圧送されると自動的に内筒7に対して所定角
に開き、その反対側では凸面側が流体に押されて自動的
に閉じるが、回転翼5下部にばね等を設け、あるいは軸
方向溝21を弾性体として閉じる動作を補助し、または
開く時の衝撃を緩和しても良い。
FIG. 2 is a sectional view in the direction perpendicular to the axis, showing an embodiment of the vertical axis wind turbine of claim 2. In the figure, the first flow path 1 is provided around the casing 8 as in the case of the above-described first embodiment.
From the fourth flow path 4 to the fourth flow path 4, and an opening / closing means is provided inside them. The forward flow is from the first flow path 1 to the third flow path 3, and the return flow is from the fourth flow path 4 to the second flow path. It is made to flow to the flow path 2. However, in this example, there are only two valve bodies, the valve body 11 closes the second flow passage 2 by the fluid pressure in the forward flow, and the valve body 13 is pushed open by the fluid pressure from the third flow passage 3. The fourth flow path 4 is closed as a switching valve, which is operated on the opposite side when returning. Further, a plurality of rotary blades 5 having a concave shape by a curved surface or an inclined surface is provided around the rotary shaft 6 in the direction perpendicular to the axis, but as shown in FIGS. 3 and 4, bearings 5A and 5B are provided below the rotary blades 5. The rotary blade 5 is swingably connected to the side plates 7A and 7B of the inner cylinder 7 by a small shaft 17. The small shaft 17 is attached to the outer peripheral surface of the inner cylinder 7 at a predetermined height, and the lower portion of the rotor blade 5 is protruded from the bearings 5A and 5B by a predetermined dimension, so that the rotor blade 5 has a predetermined angle. When opened, the projecting portion abuts the inner cylinder and cannot be opened further. There are various other possible means for preventing the rotary blade 5 from opening beyond a predetermined angle. For example, as shown in FIG. 5, an axial groove 21 is provided in the inner cylinder 7 so that the lower portion of the rotary blade 5 is It is also possible to contact the side surface of the groove 21 at a predetermined angle, and the present invention is not limited to this means. The rotor blade 5 having such a structure automatically opens to a predetermined angle with respect to the inner cylinder 7 when the fluid is pumped to the concave surface side, and on the opposite side, the convex surface side is pushed by the fluid and automatically closes. A spring or the like may be provided in the lower part of the rotary blade 5, or the axial groove 21 may be used as an elastic body to assist the closing operation or to reduce the impact when opening.

【0012】本構造では揺動する回転軸6の支持方法が
一つの要点であるが、本例では図6に示すように、回転
軸6の両端は軸受6Aを介して回転軸支持体20により
回転自在に支持されており、回転軸支持体20の外側端
は図2に示したように支持体軸19を介してケーシング
8に連結されている。また、ケーシング8の軸方向両側
には長穴18が設けられており、回転軸6はこの長穴1
8に沿って支持体軸19を中心に仮想線で示すように所
定角に揺動できるようになっている。この支持体軸19
はケーシング8の中心線上に置くのでなく、第4流路4
または第1流路1側へ偏った位置に置くのが良い。これ
は流出側(往流では第3流路3、復流では第2流路2)
付近では回転翼5が開き、流入側より大きなスペースを
必要とするからである。長穴18は図6に示すように、
回転軸6を貫通させた滑り板22によって内側から塞が
れており、滑り板22周端とケーシング8の間は弾性シ
ート23によって包み、内部流体の漏れを防止してい
る。回転軸6の上端は自在継手24を介して発電機に連
結される。
In this structure, the method of supporting the swinging rotary shaft 6 is one of the main points, but in this example, as shown in FIG. 6, both ends of the rotary shaft 6 are supported by the rotary shaft support 20 via bearings 6A. It is rotatably supported, and the outer end of the rotary shaft support 20 is connected to the casing 8 via the support shaft 19 as shown in FIG. Further, elongated holes 18 are provided on both sides of the casing 8 in the axial direction, and the rotary shaft 6 has the elongated holes 1
8, the support shaft 19 can be swung at a predetermined angle as indicated by an imaginary line. This support shaft 19
Is not placed on the center line of the casing 8 but the fourth flow path 4
Alternatively, it may be placed at a position deviated to the first flow path 1 side. This is the outflow side (third flow path 3 in the forward flow, second flow path 2 in the return flow)
This is because the rotary blades 5 are opened in the vicinity and require a larger space than the inflow side. The long hole 18 is, as shown in FIG.
It is closed from the inside by a sliding plate 22 penetrating the rotary shaft 6, and an elastic sheet 23 is wrapped between the peripheral edge of the sliding plate 22 and the casing 8 to prevent leakage of internal fluid. The upper end of the rotary shaft 6 is connected to the generator via a universal joint 24.

【0013】流体が液体で本装置を縦形とする場合には
上記長穴18周りの漏れ防止機構を避けるため、図7に
示すように回転軸支持体20を水車内部に設け、ケーシ
ング8の上部またはそこに設けた子ケーシング8Cに空
気を封じ込めて空気室とし、回転軸支持体20上に設置
した発電機26が空気室内で揺動するようにすることも
できる。このようにすれば、弛ませた電気配線27だけ
を水車外部に取り出せばよいので、この部分からの流体
の漏れを容易に防止することができる。このように構成
された垂直軸風水車は、往復流の交替に応じて回転翼5
の凹面に流体が流入する側だけにケーシング8内のスペ
ースを作るとともに、回転翼5を一杯に開かせ、反対側
では流体圧力が内筒7をも押して閉じられた回転翼5を
通過させるだけのスペースとなるので、回転翼5の凸面
側の流体抵抗を最少限とし、往復流から極めて効率よく
回転エネルギーを取り出すことができる。そして該構成
から開閉路手段を全て排除した構造としても、これより
効率低下はあるが、回転翼5が開閉しない従来構造のも
のより遙かに効率が良いことは明らかである。尚、内筒
7の内部は中空体としているので、流体が液体の場合に
は内筒7には大きな浮力が働き、回転軸支持体20に掛
ける負担を小さくすることができる。また、該実施例の
外観斜視は図11に示す。
When the apparatus is vertical and the fluid is liquid, in order to avoid the leakage prevention mechanism around the elongated hole 18, a rotary shaft support 20 is provided inside the turbine as shown in FIG. Alternatively, air can be enclosed in the child casing 8C provided therein to form an air chamber, and the generator 26 installed on the rotary shaft support 20 can be swung in the air chamber. In this way, only the loosened electric wiring 27 needs to be taken out of the water turbine, so that leakage of fluid from this portion can be easily prevented. The vertical axis wind turbine configured as described above has the rotor blades 5 corresponding to the alternating reciprocating flow.
The space inside the casing 8 is made only on the side where the fluid flows into the concave surface of the above, and the rotary blade 5 is fully opened, and on the opposite side, the fluid pressure also pushes the inner cylinder 7 to pass the closed rotary blade 5. Therefore, it is possible to minimize the fluid resistance on the convex surface side of the rotary blade 5 and extract the rotational energy from the reciprocating flow very efficiently. Even if the structure in which the opening / closing means is all removed from the structure, the efficiency is lowered, but it is clear that the structure is far more efficient than the conventional structure in which the rotary blade 5 does not open and close. Since the inside of the inner cylinder 7 is a hollow body, when the fluid is a liquid, a large buoyancy acts on the inner cylinder 7 and the load on the rotary shaft support 20 can be reduced. An external perspective view of this embodiment is shown in FIG.

【0014】図8は請求項3の垂直軸風水車を、マイク
ロ水力発電に利用した実施例を示す断面図である。これ
に示すように、水流が第1流路1から第3流路3へ緩や
かなS字状に流れるよう1組の流路をケーシング8の軸
方向下側側面寄りに設け、請求項2(イ)の特徴を有す
る回転体30を設けている。該垂直軸風水車は回転軸6
を垂直方向にすることも可能ではあるが、本例のように
水平方向とすれば、回転翼5の幅を容易に大きくするこ
とができ、大量の流体からエネルギーを吸収できるの
で、マイクロ水力発電装置及び風力発電装置等に適す
る。該風水車を風力発電装置に利用した実施例は、図1
4で後述する。
FIG. 8 is a cross-sectional view showing an embodiment in which the vertical axis wind turbine of claim 3 is used for micro hydraulic power generation. As shown in the drawing, one set of flow paths is provided near the axially lower side surface of the casing 8 so that the water flow flows from the first flow path 1 to the third flow path 3 in a gentle S-shape. The rotating body 30 having the characteristics of b) is provided. The vertical axis wind turbine has a rotating shaft 6
It is also possible to make the vertical direction, but if it is made horizontal as in this example, the width of the rotary blade 5 can be easily increased, and energy can be absorbed from a large amount of fluid. Suitable for equipment and wind power generators. An example in which the wind turbine is used in a wind turbine generator is shown in FIG.
It will be described later in 4.

【0015】図9は請求項4の波力発電装置を海岸に設
置する実施例で、図10は図9Z−Z線における断面図
である。但し、図10では堤防の記載を省略してある。
装置は波動が活発で、左右が適当規模のV字形を成した
海岸に設置するのが好ましく、更にコンクリートまたは
鋼板製の底板、側壁及び天井壁等から成る集波室25を
堤防の海側に設けている。そしてその岸側に十分な長さ
の回転軸6を水平方向とした請求項3の垂直軸風水車を
設置し、集波室25の後壁に第1往復流管9を接続し、
第2往復流管10は貯漕16に接続している。このよう
にしたから、集波室25の水位が波動で変動するに従
い、当然貯漕16の水位がそれに追随しようとして、往
流と復流が交互に発生し、それにより請求項3の実施例
で述べたと同様にして垂直軸風水車が働き、大量の海水
で強力に回転させることができる。尚、本例では仮想線
で示すように潮汐による水位変動の影響を受けるが、該
波力発電装置を浮体上に設置すれば、潮汐の影響を回避
できる。即ち、浮体を巨大なものとしたり水平抵抗板を
付帯させれば、波による装置の揺動を少なくでき、か
つ、潮汐による水位変動に追随し、装置全体を常に海面
に対し最適な位置に保つことができる。
FIG. 9 shows an embodiment in which the wave power generation device of claim 4 is installed on the coast, and FIG. 10 is a sectional view taken along the line ZZ of FIG. However, the levee is not shown in FIG.
It is preferable that the device is installed on a V-shaped shore where the waves are active and the right and left sides are of a suitable scale. Furthermore, a wave collection chamber 25 consisting of concrete or steel bottom plate, side wall, ceiling wall, etc. is installed on the sea side of the embankment. It is provided. The vertical shaft wind turbine of claim 3 is installed on the bank side of which the rotating shaft 6 having a sufficient length is horizontal, and the first reciprocating flow pipe 9 is connected to the rear wall of the wave collecting chamber 25.
The second reciprocating flow pipe 10 is connected to the storage tank 16. Thus, as the water level in the collection chamber 25 fluctuates due to the vibration, the water level in the storage tank 16 naturally tries to follow it, and the outflow and the backflow alternately occur, whereby the embodiment of claim 3 is realized. The vertical-axis wind turbine works in the same way as described above, and can be powerfully rotated by a large amount of seawater. In this example, as shown by the phantom line, it is affected by the water level fluctuation due to the tide, but if the wave power generation device is installed on a floating body, the effect of the tide can be avoided. That is, if the floating body is made huge or a horizontal resistance plate is attached, it is possible to reduce the fluctuation of the device due to waves, and to follow the water level fluctuation due to the tide, so that the entire device is always kept at the optimum position with respect to the sea surface. be able to.

【0016】図11は回転軸6を垂直方向とする請求項
2の垂直軸風水車を採用した、請求項4の波力発電装置
の実施例を示す。本例では子ケーシング8Cを水車上部
に設けており、図7で示したようにその内部で発電機2
6が揺動する。
FIG. 11 shows an embodiment of the wave power generator of claim 4 which employs the vertical axis wind turbine of claim 2 in which the rotary shaft 6 is in the vertical direction. In this example, the child casing 8C is provided on the upper portion of the water turbine, and as shown in FIG.
6 rocks.

【0017】図12は請求項3(イ)の垂直軸風水車を
用いた請求項5の風力発電装置の実施例を示す斜視図、
図13は図12のZ−Z線における断面図である。図に
示すように回転軸6を水平方向とし、第1流路1及び第
3流路3はケーシング8の下側寄りとし、両流路は外側
に向かって断面積を拡大しているので、第1流路から流
入した風は圧縮されて回転翼5を回転させ、第3流路へ
流出する。ケーシング8中央下部の回転盤28に加え
て、第1流路1入口部を常に風向方向とするための手段
として、本例では左右両端に垂直翼29を設けている
が、この手段は例えば風向きを感知して油圧で回転させ
る方法でも良く、本発明ではその手段に拘らない。この
ような風力発電装置は回転翼5の幅を長くして大量の風
を利用することができるので、大型化しても装置高さを
抑制することができる。
FIG. 12 is a perspective view showing an embodiment of the wind turbine generator of claim 5 using the vertical axis wind turbine of claim 3 (a),
FIG. 13 is a sectional view taken along line ZZ of FIG. As shown in the figure, the rotating shaft 6 is in the horizontal direction, the first flow path 1 and the third flow path 3 are close to the lower side of the casing 8, and both flow paths expand in cross section toward the outside. The wind that has flowed in from the first flow path is compressed, rotates the rotor blades 5, and flows out to the third flow path. In addition to the turntable 28 at the lower center of the casing 8, vertical vanes 29 are provided at the left and right ends in this example as means for keeping the inlet of the first flow path 1 always in the wind direction. It is also possible to use a method in which the oil is sensed to rotate with hydraulic pressure, and the present invention is not concerned with the means. In such a wind power generator, since the width of the rotor blades 5 can be increased and a large amount of wind can be used, the height of the device can be suppressed even if the size is increased.

【0018】図14は請求項3の垂直軸風水車を用い
た、請求項5の風力発電装置の実施例を示す断面図であ
る。本例の斜視は図12と同様である。本装置は上記請
求項3(イ)の垂直軸風水車を用いた場合と同様に働く
が、図に示すように回転体30が請求項2(イ)の特徴
を有するため、回転翼5は下側では自重で開き、そこへ
風圧を受けて回転体30を回転させた後、上側では自重
と風圧により閉じる。このように回転翼5の凸面側の抵
抗を著しく低減するので、更に効率の改善が期待でき
る。但し、本装置は高速回転には不向きであるので、回
転体30を比較的大径とするのが好ましい。
FIG. 14 is a sectional view showing an embodiment of the wind turbine generator of claim 5 using the vertical axis wind turbine of claim 3. The perspective view of this example is similar to that of FIG. This device operates in the same manner as in the case of using the vertical axis wind turbine of claim 3 (a), but as shown in the figure, the rotor 30 has the characteristics of claim 2 (a), so The lower side opens with its own weight, receives the wind pressure there to rotate the rotating body 30, and then closes with its own weight and wind pressure on the upper side. In this way, the resistance on the convex surface side of the rotary blade 5 is significantly reduced, so that further improvement in efficiency can be expected. However, since this device is not suitable for high-speed rotation, it is preferable that the rotating body 30 has a relatively large diameter.

【0019】[0019]

【発明の効果】本発明による垂直軸風水車及び波力発電
装置及び風力発電装置は、以上説明したように構成され
ているので、以下に記載するような効果を有する。
Since the vertical axis wind turbine, the wave power generation device and the wind power generation device according to the present invention are configured as described above, they have the following effects.

【0020】請求項1の垂直軸風水車は、波力等を原動
力とする往復流をケーシング8で囲われた室内で回転翼
5の凹面側にのみ積極的に当て、凸面側にはケーシング
8内に滞留した流体だけが接触するので、従来構造のも
のより凸面側の流体抵抗を軽減し、エネルギーの変換効
率を大きく改善することができる。
In the vertical axis wind turbine of claim 1, a reciprocating flow driven by wave power or the like is positively applied only to the concave side of the rotor blade 5 in the chamber surrounded by the casing 8, and the casing 8 is applied to the convex side. Since only the fluid retained inside is in contact, the fluid resistance on the convex surface side can be reduced and the energy conversion efficiency can be greatly improved as compared with the conventional structure.

【0021】請求項2の垂直軸風水車は、流体流れを受
けない側では回転翼5は閉じてしまうだけでなく、往流
と復流の交替に応じ、回転軸6がケーシング8の中心線
に対して常に回転翼5が閉じる側に偏芯するので、回転
翼5の凸面側の流体抵抗を著しく小さくしつつ、流体が
ケーシング8と回転翼5との間隙から逃げる量を縮減
し、極めて効率よく往復流から回転エネルギーを取り出
すことができる。この構造の風水車は特に低圧低速の液
体に対して効果的である。
In the vertical axis wind turbine of the second aspect, not only the rotor blade 5 is closed on the side where the fluid flow is not received, but also the rotating shaft 6 is rotated by the center line of the casing 8 in accordance with the alternating of the forward flow and the backward flow. On the other hand, since the rotor blade 5 is always eccentric to the closed side, the amount of fluid that escapes from the gap between the casing 8 and the rotor blade 5 is reduced while significantly reducing the fluid resistance on the convex side of the rotor blade 5. Rotational energy can be efficiently extracted from the reciprocating flow. The wind turbine of this structure is particularly effective for low pressure and low speed liquids.

【0022】請求項3の垂直軸風水車は、請求項2の垂
直軸風水車を一方向流に利用できるようにしたもので、
回転翼5の凸面側が閉じる構造をマイクロ水力発電装置
や風力発電装置等に利用し、従来構造のものより効率を
改善することができる。
According to the vertical axis wind turbine of claim 3, the vertical axis wind turbine of claim 2 can be used for unidirectional flow.
The structure in which the convex side of the rotor blade 5 is closed can be used in a micro hydraulic power generation device, a wind power generation device, or the like to improve the efficiency as compared with the conventional structure.

【0023】請求項4の波力発電装置は、請求項1また
は請求項2の何れかの垂直軸風水車に海水を直接導入す
るので、他の液体の往復流に変換する装置に比較して簡
単な構造の装置とすることができる。この装置は縦形と
横形の何れとすることもできるが、特に横形では回転翼
5の長さを大きくすることにより、大型化が比較的容易
である。
Since the wave power generation device of claim 4 directly introduces seawater into the vertical axis wind turbine of any one of claims 1 and 2, as compared with a device for converting into a reciprocating flow of another liquid. The device can have a simple structure. This device can be either a vertical type or a horizontal type, but particularly in the horizontal type, it is relatively easy to increase the size by increasing the length of the rotary blade 5.

【0024】請求項5の風力発電装置は、装置高さに依
らず、横幅を大きくすることにより大型化できるので、
装置コストを抑制し、かつ保守を容易化できる。
Since the wind turbine generator of claim 5 can be made larger by increasing the width regardless of the height of the device,
The device cost can be suppressed and maintenance can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、請求項1の垂直軸風水車の実施例を示
す断面図、
1 is a sectional view showing an embodiment of a vertical axis wind turbine of claim 1;

【図2】図2は、請求項2の垂直軸風水車の実施例を示
す断面図、
FIG. 2 is a sectional view showing an embodiment of the vertical axis wind turbine of claim 2;

【図3】図3は、請求項2の垂直軸風水車の回転翼5下
部の第1例詳細図、
FIG. 3 is a detailed view of a first example of a lower portion of the rotary blade 5 of the vertical axis wind turbine of claim 2;

【図4】図4は、図3X−X線における断面図、FIG. 4 is a sectional view taken along line XX-X of FIG.

【図5】図5は、請求項2の垂直軸風水車の回転翼5下
部の第2例詳細図、
FIG. 5 is a detailed view of a second example of the lower part of the rotary blade 5 of the vertical axis wind turbine of claim 2;

【図6】図6は、請求項2の垂直軸風水車の回転軸軸受
6A付近の詳細図、
FIG. 6 is a detailed view of the vicinity of the rotary shaft bearing 6A of the vertical axis wind turbine of claim 2;

【図7】図7は、請求項2の垂直軸風水車に子ケーシン
グ8Cを設け、発電機26が水車内部の空室で揺動でき
るようにした例を示す断面図、
FIG. 7 is a cross-sectional view showing an example in which a vertical casing wind turbine of claim 2 is provided with a child casing 8C so that the generator 26 can be swung in an empty chamber inside the turbine.

【図8】図8は、請求項3の垂直軸風水車をマイクロ水
力発電装置に利用した実施例を示す断面図、
FIG. 8 is a cross-sectional view showing an embodiment in which the vertical axis wind turbine of claim 3 is used in a micro hydraulic power generation device,

【図9】図9は、請求項4の波力発電装置を横形とした
実施例を示す斜視図、
FIG. 9 is a perspective view showing an embodiment in which the wave power generation device according to claim 4 is horizontal.

【図10】図10は、図9のY−Y線における断面図、10 is a cross-sectional view taken along the line YY of FIG.

【図11】図11は、請求項4の波力発電装置を縦形と
した実施例を示す斜視図、
FIG. 11 is a perspective view showing an embodiment in which the wave power generation device according to claim 4 is made vertical;

【図12】図12は、請求項3(イ)の垂直軸風水車を
用いた請求項5の風力発電装置の実施例を示す斜視図、
FIG. 12 is a perspective view showing an embodiment of the wind turbine generator of claim 5 using the vertical axis wind turbine of claim 3 (a),

【図13】図13は、図12のZ−Z線における断面
図、
13 is a cross-sectional view taken along line ZZ of FIG.

【図14】図14は、請求項3の垂直軸風水車を用いた
請求項5の風力発電装置の実施例を示す断面図である。
FIG. 14 is a sectional view showing an embodiment of the wind turbine generator of claim 5 using the vertical axis wind turbine of claim 3.

【符号の説明】 1 第1流路 2 第2流路 3 第3流路 4 第4流路 5 回転翼 5A 軸受 5B 軸受 6 回転軸 6A 軸受 7 内筒 7A 側板 7B 側板 8 ケーシング 8C 子ケーシング 9 第1往復流管 10 第2往復流管 11 弁体 12 弁体 13 弁体 14 弁体 15 弁座 16 貯漕 17 小軸 18 長穴 19 支持体軸 20 回転軸支持体 21 溝 22 滑り板 23 弾性シート 24 自在継手 25 集波室 26 発電機 27 電気配線 28 回転盤 29 垂直翼 30 回転体[Explanation of symbols] 1st flow path 2 Second channel 3rd flow path 4th flow path 5 rotors 5A bearing 5B bearing 6 rotation axes 6A bearing 7 Inner cylinder 7A side plate 7B side plate 8 casing 8C child casing 9 First reciprocating flow tube 10 Second reciprocating flow tube 11 valve body 12 valve bodies 13 valve 14 valve body 15 seat 16 storage 17 small axis 18 slots 19 Support shaft 20 Rotating shaft support 21 groove 22 sliding plate 23 Elastic sheet 24 Universal 25 Wave collection room 26 generator 27 Electric wiring 28 turntable 29 vertical wings 30 rotating body

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図10】 [Figure 10]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図13】 [Fig. 13]

【図14】 FIG. 14

【手続補正書】[Procedure amendment]

【提出日】平成14年9月11日(2002.9.1
1)
[Submission date] September 11, 2002 (2002.9.1)
1)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 垂直軸風水車、波力発電装置及び
風力発電装置
Title: Vertical axis wind turbine, wave power generator and wind power generator

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流体の流れ方向に
対して直角方向に回転軸を有し(本発明では垂直軸風水
車の垂直とはこの意味であって、回転軸は垂直に設置す
るとは限らない)、比較的低圧低速の流体流れに対して
も効率よく回転させるようにした、ケーシングを具備す
る垂直軸風水車、及び該垂直軸風水車を用いたことを特
徴とする波力発電装置及び風力発電装置に関する。ま
た、該垂直軸風水車は河川流によるマイクロ水力発電装
置にも利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a rotating shaft perpendicular to the direction of fluid flow (in the present invention, the vertical axis of a wind turbine means this, and the rotating shaft is installed vertically). However, the vertical axis wind turbine is provided with a casing, and the wave power is characterized by using the vertical axis wind turbine. The present invention relates to a power generator and a wind power generator. Further, the vertical axis wind turbine can also be used for a micro hydroelectric power generation device using a river flow.

【0002】[0002]

【従来の技術】流体の流れ方向に対して直角方向の回転
軸を有する風水車は、全方向の流れに対し作動して一方
向に回転し、低速流に対して効率が高いという特徴を持
っているが、高速になるにつれ回転翼の凸面側の抵抗が
大きくなり、特に液体流の場合にそれが大きいという欠
点がある。これに対し、ケーシングを具備しない垂直軸
風車の凸面側を遮蔽板で覆う案は公知であるが、ケーシ
ングとそれに固定した流路を有する風水車を往復流用に
特化させた技術は知られていない。このような背景か
ら、従来の波力発電装置では往復流に対して一方向に回
転するウェルズタービン等のプロペラ形が用いられ、一
方向風車を用いない場合は空気流を弁機構により一方向
に整流した後に軸流形風車を回転させる方法も行われて
いるが、未だ広く実用化されるほどの経済性が得られて
いない。また、風力発電装置については専らプロペラ形
風車が用いられているが、大型にするほどその支柱を高
く太くせざるを得ず、装置コストの増大と保守の困難性
を増す欠点がある。
2. Description of the Related Art A wind turbine having an axis of rotation perpendicular to the direction of fluid flow has the characteristic of operating in all directions, rotating in one direction, and being highly efficient for low speed flows. However, there is a drawback in that the resistance on the convex side of the rotary blade increases as the speed increases, and in particular, in the case of a liquid flow, it increases. On the other hand, it is known to cover the convex side of a vertical axis wind turbine that does not have a casing with a shielding plate, but there is known a technique in which a casing and a wind turbine having a flow passage fixed to the casing are specialized for reciprocating flow. Absent. From such a background, in the conventional wave power generation device, a propeller type such as a Wells turbine that rotates in one direction with respect to a reciprocating flow is used, and if a one-way wind turbine is not used, the air flow is unidirectional by a valve mechanism. Although a method of rotating an axial-flow wind turbine after rectifying it is also used, it is not yet economical enough to be widely used. Further, although a propeller-type wind turbine is exclusively used for a wind turbine generator, there is a drawback in that the larger the size, the higher the pillars of the propeller must be made, which results in an increase in the cost of the device and an increase in maintenance difficulty.

【0003】[0003]

【発明が解決しようとする課題】本発明は、流体の流れ
方向に対して直角方向の回転軸を有する風水車の上記の
ような欠点を改善し、回転翼凸面側の抵抗を減少させる
ことによりエネルギー変換効率を改善したことを特徴と
する、ケーシングを具備した垂直軸風水車、及びそれを
用いた波力発電装置及び風力発電装置の提供を目的とす
るものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned drawbacks of a wind turbine having a rotating shaft perpendicular to the direction of fluid flow and reduces the resistance on the convex side of the rotor blade. An object of the present invention is to provide a vertical-axis wind turbine equipped with a casing, which has improved energy conversion efficiency, and a wave power generation device and a wind power generation device using the same.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1の垂直軸風水車は、ケーシング8を設ける
ことにより全方向の流れに対して作動する性質を奪い、
改めて4つの流路と開閉路手段を配置することにより、
二方向の流れに対してのみ作動するようにするととも
に、回転翼5の凸面側の抵抗を軽減したものである。即
ち、回転軸6またはそれと一体となった内筒7の周り
に、軸直角方向に曲面または斜面により凹状を成す複数
の回転翼5を配置した回転体20と、その周りにケーシ
ング8を具備した風水車において、ケーシング8を軸方
向に二等分する垂直面より片側に、軸直角方向に第1流
路1と第3流路3を設けて回転翼5凹面を第1流路向き
とし、反対側に第2流路2と第4流路4を設け、それら
2組の流路内に往流に対して開路する開閉路手段と復流
に対して開路する開閉路手段を各々設け、往流は第1流
路1から第3流路3へ、復流は第4流路から第2流路へ
流れるようにすることにより、往復流を回転翼5の凹面
側にのみ積極的に押し当て、凸面側は滞留した流体にの
み面してその流体抵抗を減じたことを特徴とする。
In order to achieve the above object, the vertical axis wind turbine of claim 1 is provided with a casing 8 to deprive it of the property of operating in all directions of flow.
By arranging four flow paths and opening / closing means again,
It is designed to operate only in two-direction flow and to reduce the resistance on the convex side of the rotor blade 5. That is, the rotary body 20 is provided around the rotary shaft 6 or the inner cylinder 7 integrated with the rotary shaft 6, in which a plurality of rotary blades 5 each having a concave shape due to a curved surface or an inclined surface is arranged in a direction perpendicular to the axis, and a casing 8 is provided around the rotary body 20. In the wind turbine, the first flow path 1 and the third flow path 3 are provided on one side of a vertical surface that bisects the casing 8 in the axial direction in a direction perpendicular to the axis, and the concave surface of the rotor blade 5 is directed toward the first flow path. A second flow path 2 and a fourth flow path 4 are provided on the opposite side, and an opening / closing means for opening the forward flow and an opening / closing means for opening the return flow are respectively provided in the two sets of the passages. The forward flow is made to flow from the first flow path 1 to the third flow path 3, and the return flow is made to flow from the fourth flow path to the second flow path, so that the reciprocating flow is positively applied only to the concave surface side of the rotor blade 5. It is characterized in that the convex surface faces only the staying fluid and the fluid resistance is reduced.

【0005】請求項2の垂直軸風水車は、上記請求項1
の風水車を更に改善し、回転翼5がその凹面に流体流れ
を受けている側で内筒7の外周面に対して所定角に開
き、その反対側では閉じることができるようにする(以
下、「請求項2(イ)の特徴」と称する)とともに、第
1流路1と第2流路2間のケーシング8Aはその間の流
体流れを最少限とするよう回転翼5との間隙を第1流路
1側に向かって滑らかに縮小したものとし、これらと回
転軸6を基軸として軸対称に第4流路4と第3流路3側
についても同様とすることにより、回転翼5の凸面側の
流体抵抗を著しく軽減したことを特徴とする。
The vertical axis wind turbine of claim 2 is the same as that of claim 1 above.
The wind turbine is further improved so that the rotary blade 5 can be opened at a predetermined angle with respect to the outer peripheral surface of the inner cylinder 7 on the side where the concave surface receives the fluid flow, and can be closed on the opposite side. , "The characteristics of claim 2 (a)", the casing 8A between the first flow path 1 and the second flow path 2 has a gap between the first flow path 1 and the second flow path 2 which is minimized so as to minimize the fluid flow therebetween. It is assumed that the blades 1 and 2 are smoothly reduced toward the side of the first flow path 1, and the same is true for the fourth flow path 4 and the third flow path 3 side with respect to these and the rotation axis 6 as a base axis. The feature is that the fluid resistance on the convex side is remarkably reduced.

【0006】請求項3の垂直軸風水車は、請求項2の垂
直軸風水車を一方向流に利用できるようにしたものであ
って、軸直角方向にケーシング8の片側側面寄りに第1
流路1と第3流路3の1組のみの流路を設け、更に請求
項2(イ)の特徴を有し、弁機構は不要としたことを特
徴とする。
A vertical axis wind turbine of claim 3 is adapted to utilize the vertical axis wind turbine of claim 2 for unidirectional flow, and the first vertical axis turbine is provided on one side surface of the casing 8 in a direction perpendicular to the axis.
Only one set of the flow passage 1 and the third flow passage 3 is provided, and further, the feature of claim 2 is provided, and the valve mechanism is not required.

【0007】請求項4の垂直軸風水車は、回転軸6を水
平方向とし、該軸より上側で回転翼5が開くようにした
請求項3の垂直軸風水車であって、回転翼5の先端寄り
に空洞を設けるなどして浮力を与えたことを特徴とす
る。
The vertical axis wind turbine of claim 4 is a vertical axis wind turbine of claim 3, wherein the rotary shaft 6 is horizontal and the rotary blades 5 are opened above the rotary shaft 6. The feature is that buoyancy is given by providing a cavity near the tip.

【0008】波力を原動力として海水、海水以外の液
体、または空気の3種類の往復流を得ることができる
が、そのうち海水以外の液体の往復流を利用した発電装
置としては、特願2000−153871で既に出願さ
れており、請求項1または請求項2の垂直軸風水車は該
出願による発電装置に利用することができる。また、空
気の往復流を利用した発電を行うには同じく上記風水車
をそのまま利用し、第1流路1及び第2流路2内に空気
の往復流を導入し、第3流路3及び第4流路4を外気に
通じさせれば良い。これらに対し、請求項5記載の波力
発電装置は、請求項1または請求項2の垂直軸風水車を
用い、第1流路1及び第2流路2内に海水の往復流を導
入し、第3流路3及び第4流路4または第2往復流管1
0をそれらの外側に設けた貯漕16に接続して発電する
ようにしたことを特徴とする。
Three kinds of reciprocating flows of seawater, liquids other than seawater, or air can be obtained by using wave power as a driving force. Among them, as a power generation device using the reciprocating flow of liquids other than seawater, Japanese Patent Application No. 2000- The vertical axis wind turbine of claim 1 or claim 2, which has already been filed in 153871, can be used for the power generation device according to the application. Further, in order to perform power generation using the reciprocal flow of air, the above-mentioned wind turbine is also used as it is, and the reciprocal flow of air is introduced into the first flow path 1 and the second flow path 2, and the third flow path 3 and It suffices if the fourth flow path 4 is communicated with the outside air. On the other hand, the wave power generator according to claim 5 uses the vertical axis wind turbine of claim 1 or 2, and introduces a reciprocal flow of seawater into the first flow passage 1 and the second flow passage 2. , Third flow path 3 and fourth flow path 4 or second reciprocating flow tube 1
It is characterized in that 0 is connected to a storage tank 16 provided outside them to generate electric power.

【0009】請求項6記載の風力発電装置は、回転軸6
を水平方向とした請求項3または請求項3(イ)の特徴
を有する垂直軸風水車を用い、ケーシング8中央下部に
回転盤22、または第1流路1入口部に偏向板24を設
け、常に第1流路1入口を風向にする手段を設けたこと
を特徴とする。
The wind turbine generator according to claim 6 has a rotating shaft 6
Is used as a horizontal direction, and a vertical axis wind turbine having the characteristics of claim 3 or claim 3 (a) is used, and a rotating plate 22 is provided at the lower center of the casing 8 or a deflecting plate 24 is provided at the inlet of the first flow path 1. It is characterized in that means for always making the inlet of the first flow path 1 in the wind direction is provided.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0011】図1は請求項1の垂直軸風水車の実施例を
示す軸直角方向断面図である。先ず回転軸6を設け、そ
の周りにそれとは直角方向に曲面または斜面により凹状
を成す複数の回転翼5を内筒7を介して接合し、これら
を軸方向に二等分する垂直面より片側に軸直角方向に第
1流路1と第3流路3を設け、反対側に第2流路2と第
4流路4を設けている。第1流路1及び第2流路2を集
合させた第1往復流管9へ流体の往復流を導き、往流に
対して開路する弁体11を第1流路1内に設け、復流に
対して開路する弁体12を第2流路2内に設けている。
更に、第3流路3内に往流に対して開路する弁体13
を、第4流路4内に復流に対して開路する弁体14を設
け、該両流路の外側にそれらを集合させた第2往復流管
10を設けている。但し、第1往復流管9及び第2往復
流管10は必須要素ではなく、それらの接合環境に応じ
省略することも可能である。回転翼5、回転軸6及び内
筒7から成る回転体20の外側はケーシング8で覆わ
れ、これに上記4つの流路を各々接合している。このよ
うに構成された垂直軸風水車は、往流が第1流路1から
第3流路3へ、復流が第4流路4から第2流路2へ流
れ、その何れに対しても常に回転翼5の凹面向きにのみ
流体が圧送されるので、凸面側の流体抵抗を著しく軽減
して効率良く回転エネルギーを取り出すことができる。
尚、内筒7は回転軸6と一体になっており、回転翼5と
回転軸6を連結するとともに、各流路を回転体20の外
周近傍に集中させる機能を有し、更にこれを中空体とす
れば、流体が液体の場合その浮力により回転軸軸受6A
への負荷を軽減する機能も有するが、これを省略するこ
とも可能である。また、各弁体には弁座15が各々配さ
れており、各弁体と共同で各流路を開閉する機能を有す
る。しかし、これら開閉路手段には他の形態が幾つか考
えられ、例えば流体流れ方向を感知して油圧で開閉する
弁とすることもできるし、1枚の弁体で隣り合う2つの
流路を開閉する切換弁とすることもでき、本発明ではそ
の手段に拘らない。
FIG. 1 is a sectional view in the direction perpendicular to the axis, showing an embodiment of the vertical axis wind turbine of claim 1. First, a rotary shaft 6 is provided, and a plurality of rotary blades 5 having a concave shape by a curved surface or an inclined surface in a direction perpendicular to the rotary shaft 6 are joined via an inner cylinder 7, and these are divided into two parts in the axial direction on one side from a vertical surface. The first flow path 1 and the third flow path 3 are provided in the direction perpendicular to the axis, and the second flow path 2 and the fourth flow path 4 are provided on the opposite side. A valve body 11 that guides a reciprocating flow of a fluid to a first reciprocating flow pipe 9 in which the first flow passage 1 and the second flow passage 2 are gathered and is opened with respect to the outward flow is provided in the first flow passage 1. A valve body 12 that opens to the flow is provided in the second flow path 2.
Furthermore, the valve body 13 that opens in the third flow path 3 with respect to the outward flow
In the fourth flow path 4, a valve body 14 that opens to the return flow is provided, and a second reciprocating flow pipe 10 that collects them is provided outside the both flow paths. However, the first reciprocating flow pipe 9 and the second reciprocating flow pipe 10 are not essential elements, and may be omitted depending on their bonding environment. The outer side of the rotary body 20 including the rotary blades 5, the rotary shaft 6 and the inner cylinder 7 is covered with a casing 8 to which the above-mentioned four flow paths are respectively joined. In the vertical axis wind turbine configured as described above, the forward flow flows from the first flow path 1 to the third flow path 3 and the reverse flow flows from the fourth flow path 4 to the second flow path 2, for whichever Since the fluid is always pumped only toward the concave surface of the rotary blade 5, the fluid resistance on the convex surface side can be significantly reduced and the rotational energy can be efficiently extracted.
The inner cylinder 7 is integrated with the rotary shaft 6, has a function of connecting the rotary blades 5 and the rotary shaft 6 and concentrating each flow path in the vicinity of the outer periphery of the rotary body 20. As for the body, when the fluid is a liquid, the buoyancy of the fluid causes the rotary shaft bearing 6A
Although it also has a function of reducing the load on, it can be omitted. Further, a valve seat 15 is arranged on each valve body, and has a function of opening and closing each flow path in cooperation with each valve body. However, some other forms of these opening / closing means are conceivable. For example, a valve that senses a fluid flow direction and opens / closes hydraulically can be used. A switching valve that opens and closes can also be used, and the present invention does not concern the means.

【0012】図2は請求項2の垂直軸風水車の実施例を
示す軸直角方向断面図である。図において、前述の請求
項1の実施例と同様、ケーシング8の周りに第1流路1
から第4流路4の4つの流路と、それらの内部に開閉路
手段を設け、往流は第1流路1から第3流路3へ、復流
は第4流路4から第2流路2へ流れるようにしている。
そして、内筒7の周りに軸直角方向に曲面または斜面に
より凹状を成す複数の回転翼5を設けて回転軸6ととも
に回転体20を構成し、図3に示すようにその下部に翼
軸受5Aを設けて小軸17により回転翼5は揺動自在に
内筒7の両側板7A及び周方向リブ7Bに連結されてい
る。また、小軸17は内筒7の外周面から所定の高さの
位置に取り付けられ、回転翼5の下部は翼軸受5Aより
所定寸法だけ突出させて翼足5Bを設けているので、回
転翼5は所定角に開くと翼足5Bが内筒7に突き当たっ
てそれ以上には開かない。回転翼5を所定角以上に開か
ないようにする手段は他にも様々な形態が考えられ、例
えば図3で仮想線で示すように、内筒7に軸方向リブ7
Cを設け、回転翼5の下部が所定角でリブ7Cの側面に
接触するようにすることでも良く、本発明ではその手段
には拘らない。このような構造の回転翼5は、凹面側に
流体が圧送されると自動的に内筒7に対して所定角に開
き、その反対側では凸面側が流体に押されて自動的に閉
じる方向の力を受けるが、回転数が大きくなると遠心力
により閉じ難くなったり、開いた時の衝撃が大きくなる
現象も起こるので、図14に示すように設計条件に応じ
て回転翼5下部にばね28を設け、閉じる動作を補助す
るとともに開く時の衝撃を緩和しても良い。
FIG. 2 is a sectional view in the direction perpendicular to the axis, showing an embodiment of the vertical axis wind turbine of claim 2. In the figure, the first flow path 1 is provided around the casing 8 as in the case of the above-described first embodiment.
From the fourth flow path 4 to the fourth flow path 4, and an opening / closing means is provided inside them. The forward flow is from the first flow path 1 to the third flow path 3, and the return flow is from the fourth flow path 4 to the second flow path. It is made to flow to the flow path 2.
Then, a plurality of rotary blades 5 having a curved surface or a slanted surface are provided around the inner cylinder 7 in the direction perpendicular to the axis to form a rotary body 20 together with the rotary shaft 6, and a blade bearing 5A is provided under the rotary body 5 as shown in FIG. The rotary blade 5 is swingably connected to the side plates 7A and the circumferential ribs 7B of the inner cylinder 7 by the small shaft 17. Further, the small shaft 17 is attached at a position of a predetermined height from the outer peripheral surface of the inner cylinder 7, and the lower portion of the rotary blade 5 is provided with the blade foot 5B protruding from the blade bearing 5A by a predetermined dimension. When 5 is opened at a predetermined angle, the wing feet 5B hit the inner cylinder 7 and cannot be opened any further. There are various other possible means for preventing the rotary blades 5 from opening beyond a predetermined angle. For example, as shown by phantom lines in FIG.
It is also possible to provide C so that the lower portion of the rotary blade 5 contacts the side surface of the rib 7C at a predetermined angle, and the present invention is not limited to that means. The rotary blade 5 having such a structure automatically opens to a predetermined angle with respect to the inner cylinder 7 when the fluid is pumped to the concave side, and on the opposite side, the convex side is pushed by the fluid to automatically close. Although a force is applied, if the number of rotations increases, it may be difficult to close due to centrifugal force, or the impact when opening may increase. Therefore, as shown in FIG. 14, the spring 28 is provided below the rotary blade 5 according to the design conditions. It may be provided to assist the closing operation and reduce the impact when opening.

【0013】本構造では回転翼5が閉じる側のケーシン
グとの間隙が大きくなるので、その方向への流体流れを
防止することが必要となるが、前述の弁機構に加えて図
2に示すように、第1流路1と第2流路2間のケーシン
グ8Aは閉じた回転翼5との間隙を第1流路1側に向か
って滑らかに縮小したものとし、更に該ケーシング8A
の壁肉が最も内筒に接近した辺に弾性遮蔽板19を設
け、その前端辺は流体圧により回転翼5に押しつけられ
ている。これらと回転軸6を基軸として軸対称に第4流
路4と第3流路3側についても同様としているので、往
復流何れの場合にも回転翼5が閉じる側への流体流れを
防止することができる。該弾性遮蔽板19は不可欠なも
のではなく、これを設けずとも弁機構により往流に対し
ては第4流路4、復流に対しては第1流路1が閉鎖され
ているので、多量の流体漏れは起こらない。このように
構成された垂直軸風水車は、回転翼5の凸面側ではそれ
が閉じるうえに流体を滞留状態にするので、流体抵抗を
最少限とし、往復流から極めて効率よく回転エネルギー
を取り出すことができる。尚、本実施例の外観斜視は図
8及び図10に示すようなものとなる。
In this structure, the gap between the casing on the side where the rotor blades 5 are closed becomes large, so it is necessary to prevent the fluid flow in that direction. In addition to the valve mechanism described above, as shown in FIG. In addition, the casing 8A between the first flow passage 1 and the second flow passage 2 is configured such that the gap between the closed rotary blade 5 is smoothly reduced toward the first flow passage 1 side.
An elastic shield plate 19 is provided on the side where the wall thickness of the is closest to the inner cylinder, and the front end side thereof is pressed against the rotary blades 5 by fluid pressure. The same applies to the fourth flow path 4 and the third flow path 3 side symmetrically with respect to these and the rotary shaft 6 as a base axis, so that in any reciprocating flow, fluid flow to the side where the rotor blade 5 is closed is prevented. be able to. The elastic shield plate 19 is not indispensable, and the fourth flow path 4 for the forward flow and the first flow path 1 for the return flow are closed by the valve mechanism without providing the elastic shield plate 19. Large amount of fluid does not leak. In the vertical axis wind turbine constructed in this way, the convex surface of the rotor blade 5 closes and the fluid is retained, so that the fluid resistance is minimized and the rotational energy can be extracted very efficiently from the reciprocating flow. You can The external perspective view of this embodiment is as shown in FIGS. 8 and 10.

【0014】図5は請求項3の垂直軸風水車を、マイク
ロ水力発電に利用した実施例を示す断面図である。これ
に示すように、水流が第1流路1から第3流路3へ緩や
かなS字状に流れるよう1組の流路をケーシング8の下
側面寄りに設け、請求項2(イ)の特徴を有する回転体
20を設けている。該垂直軸風水車は回転軸6を垂直方
向にすることも可能ではあるが、本例のように水平方向
とすれば、回転翼5の幅を容易に大きくすることがで
き、大量の流体からエネルギーを吸収できるので、マイ
クロ水力発電装置及び風力発電装置等に適する。また、
回転翼5は下方向に移動するにつれ自重により開き、逆
に上方向に移動するにつれ閉じる力が働き、回転翼5の
開閉動作がより円滑に行われる利点がある。堰下部に設
けた第1流路1から流入した圧力水は回転翼5に突き当
たって回転体20を回転させ、回転体20の外側に設け
た発電機18により発電する。堰への砂礫の堆積防止策
として、本例では排砂門26を設けており、増水時には
排砂扉27を上方向にスライドさせて開門させる構造と
している。排砂門26の容量以上の増水時には、堰を自
由に越えて流出させる。このような構造のマイクロ水力
発電装置は、比較的落差の大きい堰が設置できる場合に
適する。
FIG. 5 is a sectional view showing an embodiment in which the vertical axis wind turbine of claim 3 is used for micro-hydropower generation. As shown in this figure, one set of flow paths is provided near the lower side surface of the casing 8 so that the water flow flows from the first flow path 1 to the third flow path 3 in a gentle S-shape. A rotating body 20 having characteristics is provided. In the vertical axis wind turbine, the rotating shaft 6 can be set in the vertical direction, but if the rotating shaft 6 is set in the horizontal direction as in this example, the width of the rotary blade 5 can be easily increased, and a large amount of fluid can be used. Since it can absorb energy, it is suitable for a micro hydraulic power generation device, a wind power generation device, and the like. Also,
There is an advantage that the rotary blade 5 opens due to its own weight as it moves downward and conversely acts as it closes as it moves upward, so that the rotary blade 5 can be opened and closed more smoothly. The pressure water flowing from the first flow path 1 provided in the lower part of the weir hits the rotary blades 5 to rotate the rotating body 20, and the generator 18 provided outside the rotating body 20 generates electric power. As a measure for preventing the accumulation of sand and gravel on the weir, a sand discharging gate 26 is provided in this example, and the sand discharging door 27 is slid upward to open the gate when the water level increases. When the amount of water exceeds the capacity of the sand discharge gate 26, the weir is allowed to flow freely over the weir. The micro hydraulic power generation device having such a structure is suitable when a weir having a relatively large head can be installed.

【0015】図6は請求項4の垂直軸風水車を、マイク
ロ水力発電に利用した実施例を示す斜視図、図7はその
X-X線における断面図、図4は該水車用の回転翼5の
断面図である。回転翼5内部の先端寄りには翼空洞5C
が設けられており、流体が液体の場合には浮力が発生す
る。これにより、前記図5の例とは逆に回転翼5は上方
向に移動するにつれ開き、逆に下方向に移動するにつれ
閉じる力が働き、回転翼5の開閉動作が円滑に行われ
る。第1流路1及び第3流路3はケーシング8の上側に
設け、第1流路1へ通ずる堰内の流路は上流側水面近傍
から傾斜させているので、水流は加速しつつ上側回転翼
5に衝突し回転体20を回転させる。排砂門26及び排
砂扉27の働きは前記例と同様である。浮遊物は側溝を
設けるなどして除去する。このような構造のマイクロ水
力発電装置は流れの速い河川に設置し、その運動エネル
ギーを利用して効率的に発電することができる。
FIG. 6 is a perspective view showing an embodiment in which the vertical axis wind turbine of claim 4 is used for micro hydraulic power generation, FIG. 7 is a sectional view taken along line XX, and FIG. 4 is a rotation for the turbine. It is a cross-sectional view of the blade 5. A blade cavity 5C near the tip inside the rotor blade 5
Is provided, and buoyancy is generated when the fluid is a liquid. As a result, contrary to the example of FIG. 5, the rotary blade 5 opens as it moves upward, and conversely as it moves downward, a force acts to close it, and the opening / closing operation of the rotary blade 5 is smoothly performed. Since the first flow path 1 and the third flow path 3 are provided on the upper side of the casing 8 and the flow path inside the weir leading to the first flow path 1 is inclined from the vicinity of the upstream water surface, the water flow accelerates and rotates upward. It collides with the wing 5 and rotates the rotating body 20. The functions of the sand removal gate 26 and the sand removal door 27 are the same as in the above example. Floating materials are removed by providing a gutter. The micro-hydroelectric power generator having such a structure can be installed in a fast-flowing river, and the kinetic energy can be used to efficiently generate power.

【0016】図8は請求項5の波力発電装置を海岸に設
置する実施例で、図9は図8Y−Y線における断面図で
ある。但し、図8では堤防の記載を省略してある。装置
は波動が活発で、左右が適当規模のV字形を成した海岸
に設置するのが好ましく、更にコンクリートまたは鋼板
製の底板、側壁及び天井壁等から成る集波室21を堤防
の海側に設けている。そしてその岸側に十分な長さの回
転軸6を水平方向とした請求項2の垂直軸風水車を設置
し、集波室21の後壁に第1往復流管9を接続し、第2
往復流管10は貯漕16に接続している。このようにし
たから、集波室21の水位が波動で変動するに従い、当
然貯漕16の水位がそれに追随しようとして、往流と復
流が交互に発生し、それにより請求項2の実施例で述べ
たと同様にして垂直軸風水車が働き、大量の海水で強力
に回転させることができる。尚、本例では仮想線で示す
ように潮汐による水位変動の影響を受けるが、該波力発
電装置を十分な大きさの浮体上に設置すれば、潮汐によ
る水位変動に追随して潮汐の影響を回避でき、かつ、波
による装置の揺動を少なくできる。本実施例では請求項
2の垂直軸風水車を用いたが、効率の低下はあるもの
の、これを請求項1の垂直軸風水車に置き換えることも
可能である。
FIG. 8 is an embodiment in which the wave power generation device of claim 5 is installed on the shore, and FIG. 9 is a sectional view taken along the line YY of FIG. However, the levee is not shown in FIG. It is preferable that the device is installed on a V-shaped shore where the waves are active and the right and left sides are of a suitable size. Furthermore, a wave collection chamber 21 consisting of concrete or steel bottom plates, side walls, ceiling walls, etc. is installed on the sea side of the embankment. It is provided. The vertical axis wind turbine of claim 2 is installed on the shore side of the rotary shaft 6 having a sufficient length in the horizontal direction, and the first reciprocating flow pipe 9 is connected to the rear wall of the wave collecting chamber 21,
The reciprocating flow pipe 10 is connected to the storage tank 16. Thus, as the water level in the collection chamber 21 fluctuates due to the wave motion, the water level in the storage tank 16 naturally tries to follow it, and the outflow and the backflow alternately occur, whereby the embodiment of claim 2 is realized. The vertical-axis wind turbine works in the same way as described above, and can be powerfully rotated by a large amount of seawater. In this example, as shown by the phantom line, it is affected by the water level fluctuation due to the tide, but if the wave power generation device is installed on a sufficiently large floating body, it will follow the water level fluctuation due to the tidal effect. Can be avoided, and the oscillation of the device due to waves can be reduced. Although the vertical axis wind turbine of claim 2 is used in the present embodiment, the vertical axis turbine of claim 1 can be replaced with this although the efficiency is reduced.

【0017】図10は回転軸6を垂直方向とする請求項
2の垂直軸風水車を採用した、請求項5の波力発電装置
の実施例を示す。前記例と同様にして往流は集波室21
から第1流路1と第3流路3を経て貯漕16へ流れ、復
流は貯漕16から第4流路4と第2流路2を経て集波室
21へ流れ、その間に回転体20と発電機18を回転さ
せ、発電する。本実施例では往復流に対し流路の上下の
差が生じないので、前記例に比して均一な回転が得られ
る利点があるものの、縦方向寸法に制限があるため、比
較的小規模の装置にしか適用できない不利点がある。
FIG. 10 shows an embodiment of the wave power generation device of claim 5 which employs the vertical axis wind turbine of claim 2 in which the rotary shaft 6 is in the vertical direction. In the same way as the above example, the outflow is the collection chamber 21
Flows from the storage tank 16 through the first flow path 1 and the third flow path 3 into the storage tank 16, and the return flow flows from the storage tank 16 through the fourth flow path 4 and the second flow path 2 into the wave collecting chamber 21 and rotates between them. The body 20 and the generator 18 are rotated to generate electricity. In this embodiment, since there is no difference between the upper and lower sides of the flow path with respect to the reciprocating flow, there is an advantage that uniform rotation can be obtained as compared with the above-mentioned example, but there is a limitation in the vertical dimension, so a relatively small It has the disadvantage that it can only be applied to devices.

【0018】図11は請求項3(イ)の特徴を有する垂
直軸風水車を用いた請求項6の風力発電装置の実施例を
示す斜視図、図12は図11のZ−Z線における断面図
である。本例では回転軸6を水平方向とし、第1流路1
及び第3流路3はケーシング8の下側寄りとし、両流路
は開口部に向かって各々断面積を拡大しているので、第
1流路から流入した風流は圧縮されて回転翼5を回転さ
せ、第3流路へ流出する。第1流路1入口を常に風向に
するための手段として、ケーシング8中央下部の回転盤
22及び左右両端の風向板23を設けているが、この手
段は例えば風向を感知して油圧で回転盤22を回転させ
る方法でも良く、本発明ではその手段に拘らない。ま
た、風向が常に殆ど一定の地域に本装置を設置する場合
には、図13に示すように回転盤22に代わって複数の
偏向板24を第1流路1入口部に設け、これらを連結棒
25で連結し、中央の風向板23と連動するようにして
も良い。このような風力発電装置は回転翼5の幅を長く
して大量の風を利用することができるので、大型化して
も装置高さを抑制することができる。
FIG. 11 is a perspective view showing an embodiment of the wind turbine generator of claim 6 using the vertical axis wind turbine having the features of claim 3 (a), and FIG. 12 is a cross section taken along line ZZ of FIG. It is a figure. In this example, the rotating shaft 6 is horizontal and the first flow path 1
The third flow passage 3 is located closer to the lower side of the casing 8, and the cross-sectional areas of both flow passages are enlarged toward the opening. Therefore, the airflow flowing from the first flow passage is compressed and the rotor blades 5 are compressed. It is rotated and flows out to the third flow path. As means for keeping the inlet of the first flow path 1 always in the wind direction, a rotary disk 22 at the lower center of the casing 8 and wind direction plates 23 at the left and right ends are provided. This means detects the wind direction and hydraulically rotates the rotary disk. A method of rotating 22 may be used, and the present invention is not concerned with the means. When the present device is installed in an area where the wind direction is almost constant, a plurality of deflection plates 24 are provided at the inlet of the first flow path 1 instead of the turntable 22 as shown in FIG. You may make it connect with the rod 25 and interlock with the central wind direction plate 23. In such a wind power generator, since the width of the rotor blades 5 can be increased and a large amount of wind can be used, the height of the device can be suppressed even if the size is increased.

【0019】請求項3の特徴を有する垂直軸風水車を用
いた請求項6の風力発電装置は、図12に示した前記実
施例において回転体20を請求項2(イ)の特徴を有す
る回転体20に置き換えたものであるが、回転翼5の下
部は図14に示したようにばね28を設けた構造とし、
無負荷時には全ての回転翼5は開いた状態とさせるのが
よい。即ち、流体が気体の場合は、一部の回転翼5のみ
が開いて不均衡となった回転体20では返って大きなエ
ネルギーを消耗するため、無負荷乃至微風の場合には全
ての回転翼5はばね28により軸方向リブ7Cに沿って
全開し、回転体20の均衡を保っている。風圧が上がる
と気体流を凸面に受ける側では、回転翼5は風圧に応じ
て閉じる側に回転移動する。このように回転翼5の凸面
側の抵抗を軽減するので、前記実施例より更に効率を上
げることができる。ただし、回転数の増大に伴い、遠心
力のため回転翼5は閉じ難くなるため、回転翼5は極力
軽量とする。
A wind turbine generator of claim 6 using a vertical axis wind turbine having the features of claim 3 has a rotor 20 in the embodiment shown in FIG. 12 which has the feature of claim 2 (a). Although replaced with the body 20, the lower part of the rotary blade 5 has a structure in which a spring 28 is provided as shown in FIG.
When there is no load, it is preferable that all the rotor blades 5 be in an open state. That is, when the fluid is gas, only a part of the rotor blades 5 is opened and the rotor 20 in an imbalance state consumes a large amount of energy to return. Is fully opened by the spring 28 along the axial rib 7C to keep the rotor 20 in balance. When the wind pressure rises, on the side where the gas flow is received by the convex surface, the rotary blade 5 rotationally moves to the closing side according to the wind pressure. Since the resistance on the convex surface side of the rotary blade 5 is reduced in this way, the efficiency can be further increased as compared with the above-mentioned embodiment. However, as the number of rotations increases, it becomes difficult to close the rotor blades 5 due to centrifugal force, so the rotor blades 5 are made as light as possible.

【0020】[0020]

【発明の効果】本発明による垂直軸風水車及び波力発電
装置及び風力発電装置は、以上説明したように構成され
ているので、以下に記載するような効果を有する。
Since the vertical axis wind turbine, the wave power generation device and the wind power generation device according to the present invention are configured as described above, they have the following effects.

【0021】請求項1の垂直軸風水車は、波力等を原動
力とする往復流をケーシング8で囲われた室内で回転翼
5の凹面側にのみ積極的に当て、凸面側にはケーシング
8内に滞留した流体だけが接するので、従来構造のもの
より凸面側の流体抵抗を軽減し、エネルギーの変換効率
を大きく改善することができる。
In the vertical axis wind turbine of claim 1, a reciprocating flow driven by wave power or the like is positively applied only to the concave side of the rotor blade 5 in the chamber surrounded by the casing 8, and the casing 8 is applied to the convex side. Since only the fluid that stays inside is in contact, the fluid resistance on the convex side can be reduced and the energy conversion efficiency can be greatly improved compared to the conventional structure.

【0022】請求項2の垂直軸風水車は、流体流れを受
けない側では回転翼5は閉じるだけでなく、ケーシング
8内に滞留した流体にのみ接するので、回転翼5の凸面
側の流体抵抗を著しく縮減し、極めて効率よく往復流か
ら回転エネルギーを取り出すことができる。この構造の
風水車は特に低圧低速の液体に対して効果的である。
In the vertical axis wind turbine of claim 2, not only is the rotor blade 5 closed on the side not receiving the fluid flow, but it is only in contact with the fluid accumulated in the casing 8. Therefore, the fluid resistance on the convex side of the rotor blade 5 is increased. The rotational energy can be extracted from the reciprocating flow very efficiently. The wind turbine of this structure is particularly effective for low pressure and low speed liquids.

【0023】請求項3の垂直軸風水車は、請求項2の垂
直軸風水車を一方向流に利用できるようにしたもので、
回転翼5の凸面側が閉じる構造をマイクロ水力発電装置
や風力発電装置等に利用し、従来構造のものより効率を
改善することができる。
According to the vertical axis wind turbine of claim 3, the vertical axis wind turbine of claim 2 can be used for one-way flow.
The structure in which the convex side of the rotor blade 5 is closed can be used in a micro hydraulic power generation device, a wind power generation device, or the like to improve the efficiency as compared with the conventional structure.

【0024】請求項4の垂直軸風水車は、回転軸6を水
平方向に限定し回転翼5に浮力を与えたから、マイクロ
水力発電装置等において上側の回転翼5で流体圧を受
け、回転体20を回転させるようにすることができる。
この構造は水流の激しい環境で、その表層部の運動エネ
ルギーを捕捉するのに適する。
In the vertical axis wind turbine of the fourth aspect, since the rotary shaft 6 is limited to the horizontal direction and the buoyancy is given to the rotary blades 5, the rotor 5 on the upper side receives fluid pressure in the micro hydraulic power generator or the like, and the rotary body is rotated. 20 can be rotated.
This structure is suitable for capturing the kinetic energy of the surface layer in a violent water environment.

【0025】請求項5の波力発電装置は、請求項1また
は請求項2の何れかの垂直軸風水車に海水を直接導入す
るので、海草による汚損の危惧があるものの、他の液体
の往復流に変換する装置に比較して簡単な構造の装置と
することができる。この装置は縦形と横形の何れとする
こともできるが、特に横形では回転翼5の長さを大きく
することにより、大型化が比較的容易である。
Since the wave power generator of claim 5 directly introduces seawater into the vertical axis wind turbine of claim 1 or 2, there is a risk of contamination by seaweed, but the reciprocation of other liquids. A device having a simple structure can be provided as compared with a device for converting into a flow. This device can be either a vertical type or a horizontal type, but particularly in the horizontal type, it is relatively easy to increase the size by increasing the length of the rotary blade 5.

【0026】請求項6の風力発電装置は、装置高さに依
らず横幅を大きくすることにより大型化できるので、装
置コストを抑制し、かつ保守を容易化できる。
The wind turbine generator according to claim 6 can be upsized by increasing the width regardless of the height of the wind turbine, so that the cost of the wind turbine generator can be suppressed and the maintenance can be facilitated.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、請求項1の垂直軸風水車の実施例を示
す断面図、
1 is a sectional view showing an embodiment of a vertical axis wind turbine of claim 1;

【図2】図2は、請求項2の垂直軸風水車の実施例を示
す断面図、
FIG. 2 is a sectional view showing an embodiment of the vertical axis wind turbine of claim 2;

【図3】図3は、請求項2の垂直軸風水車の回転翼5下
部の例を示す斜視図、
FIG. 3 is a perspective view showing an example of a lower portion of the rotary blade 5 of the vertical axis wind turbine of claim 2;

【図4】図4は、請求項4に係る浮力を有する回転翼5
の例を示す断面図、
FIG. 4 is a rotor 5 having buoyancy according to claim 4;
Cross section showing an example of

【図5】図5は、請求項3の垂直軸風水車をマイクロ水
力発電装置に利用した実施例を示す断面図、
FIG. 5 is a cross-sectional view showing an embodiment in which the vertical axis wind turbine of claim 3 is used in a micro hydraulic power generation device,

【図6】図6は、請求項4の垂直軸風水車をマイクロ水
力発電装置に利用した実施例を示す斜視図、
FIG. 6 is a perspective view showing an embodiment in which the vertical axis wind turbine of claim 4 is used in a micro hydraulic power generation device;

【図7】図7は、図6のX−X線における断面図、FIG. 7 is a cross-sectional view taken along line XX of FIG.

【図8】図8は、請求項5の波力発電装置を横形とした
実施例を示す斜視図、
FIG. 8 is a perspective view showing an embodiment in which the wave power generation device of claim 5 is horizontal.

【図9】図9は、図8のY−Y線における断面図、9 is a cross-sectional view taken along line YY of FIG.

【図10】図10は、請求項5の波力発電装置を縦形と
した実施例を示す斜視図、
FIG. 10 is a perspective view showing an embodiment in which the wave power generation device according to claim 5 is a vertical type;

【図11】図11は、請求項6の風力発電装置の実施例
を示す斜視図、
FIG. 11 is a perspective view showing an embodiment of the wind turbine generator of claim 6;

【図12】図12は、図13のZ−Z線における断面
図、
12 is a cross-sectional view taken along line ZZ of FIG.

【図13】図13は、風向板23及び偏向板24を示す
斜視図、
FIG. 13 is a perspective view showing a wind direction plate 23 and a deflection plate 24;

【図14】図14は、回転翼5の下部にばね28を設け
た実施例を示す断面図である。
FIG. 14 is a cross-sectional view showing an embodiment in which a spring 28 is provided below the rotary blade 5.

【符号の説明】 1 第1流路 2 第2流路 3 第3流路 4 第4流路 5 回転翼 5A 翼軸受 5B 翼足 5C 翼空洞 6 回転軸 6A 回転軸軸受 7 内筒 7A 側板 7B 周方向リブ 7C 軸方向リブ 8 ケーシング 8A 第1流路と第2流路間のケーシング 9 第1往復流管 10 第2往復流管 11 (第1流路用)弁体 12 (第2流路用)弁体 13 (第3流路用)弁体 14 (第4流路用)弁体 15 弁座 16 貯漕 17 小軸 18 発電機 19 弾性遮蔽板 20 回転体 21 集波室 22 回転盤 23 風向板 24 偏向板 25 連結棒 26 排砂門 27 排砂扉 28 ばね[Explanation of symbols] 1st flow path 2 Second channel 3rd flow path 4th flow path 5 rotors 5A wing bearing 5B wings 5C wing cavity 6 rotation axes 6A rotating shaft bearing 7 Inner cylinder 7A side plate 7B Circumferential rib 7C axial rib 8 casing 8A Casing between first flow path and second flow path 9 First reciprocating flow tube 10 Second reciprocating flow tube 11 (for 1st flow path) valve body 12 (for 2nd flow path) valve body 13 (for 3rd flow path) valve body 14 (for 4th flow path) valve body 15 seat 16 storage 17 small axis 18 generator 19 Elastic shield plate 20 rotating body 21 Wave collection room 22 turntable 23 Wind direction plate 24 deflection plate 25 connecting rod 26 Exhaust gate 27 Sand door 28 springs

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図13】 [Fig. 13]

【図14】 FIG. 14

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F03D 3/06 F03D 3/06 D E 7/06 7/06 B 9/00 9/00 G Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F03D 3/06 F03D 3/06 D E 7/06 7/06 B 9/00 9/00 G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (イ)回転軸(6)又はそれと一体とな
った内筒(7)の周りに、それらと直角方向に曲面又は
斜面により凹状を成す複数の回転翼(5)を配した風水
車において、ケーシング(8)を左右に二等分する垂直
面を対称面として、片側に回転軸(6)と直角方向に第
1流路(1)と第3流路(3)を設け、反対側に第2流
路(2)と第4流路(4)を設け、波力等を原動力とす
る流体の往復流を第1流路(1)及び第2流路(2)、
又は該両流路を集合させた第1往復流管(9)に導き、
第1流路(1)から流入する流れ(以下、「往流」と称
する)に対して開路する手段を第1流路(1)と第3流
路(3)内に設ける。 (ロ)往流とは反対方向の流れ(以下、「復流」と称す
る)に対して開路する手段を第2流路(2)と第4流路
(4)内に設け、往流は第1流路(1)から第3流路
(3)へ、復流は第4流路(4)から第2流路(2)へ
流れるよう、ケーシング(8)の周りに各流路を配す
る。 以上の構成を特徴とする垂直軸風水車。
1. A rotary shaft (6) or a plurality of rotary blades (5) having a concave shape formed by a curved surface or an inclined surface in a direction perpendicular to the rotary shaft (6) or an inner cylinder (7) integrated with the rotary shaft (6). In the wind turbine, the first flow path (1) and the third flow path (3) are provided on one side in a direction perpendicular to the rotation axis (6), with a vertical plane that divides the casing (8) into left and right as a symmetrical plane. , A second flow path (2) and a fourth flow path (4) are provided on the opposite side, and a reciprocal flow of a fluid driven by wave force or the like is applied to the first flow path (1) and the second flow path (2),
Or, it is led to a first reciprocating flow pipe (9) in which the both flow paths are assembled,
Means for opening the flow (hereinafter, referred to as “outgoing flow”) flowing from the first flow path (1) is provided in the first flow path (1) and the third flow path (3). (B) A means for opening the flow in the opposite direction to the outward flow (hereinafter referred to as “return flow”) is provided in the second flow path (2) and the fourth flow path (4), and the forward flow is Each flow channel is arranged around the casing (8) so that the first flow channel (1) flows from the third flow channel (3) and the return flow flows from the fourth flow channel (4) to the second flow channel (2). Distribute. A vertical axis wind turbine with the above configuration.
【請求項2】 (イ)回転翼(5)がその凹面で流体の
流れを受けている側でのみ内筒(7)の外周面に対して
開き、その反対側では閉じるよう、その下部を小軸(1
7)を介して内筒(7)に連結するとともに、所定角以
上に開かないようにする手段を設ける。 (ロ)往流と復流の交替に応じ回転軸(6)がケーシン
グ(8)の中心に対して常に回転翼(5)が閉じる側に
偏芯するよう、回転軸(6)を支持体軸(19)周りに
揺動する回転軸支持体(20)により支持する。 以上の構成を特徴とする請求項1の垂直軸風水車。
2. The lower part of the rotary blade (5) is opened so that the rotary blade (5) opens to the outer peripheral surface of the inner cylinder (7) only on the side where the concave surface receives the fluid flow, and closes on the opposite side. Small axis (1
Means for connecting to the inner cylinder (7) via 7) and for preventing it from opening beyond a predetermined angle are provided. (B) Supporting the rotating shaft (6) so that the rotating shaft (6) is always eccentric to the side where the rotating blade (5) is closed with respect to the center of the casing (8) in response to the alternating of the forward flow and the backward flow. It is supported by a rotating shaft support (20) that swings around the shaft (19). The vertical axis wind turbine of claim 1, wherein the vertical axis wind turbine is characterized.
【請求項3】 請求項1又は請求項2記載の垂直軸風水
車を用い、第1流路(1)及び第2流路(2)又は第1
往復流管(9)内に直接又は集波室(25)を経由して
波力による海水の往復流を導入し、第3流路(3)及び
第4流路(4)又は該両流路を集合させた第2往復流管
(10)を、それらの外側に設けた貯漕(16)に接続
して発電を行うようにしたことを特徴とする波力利用発
電装置。
3. A vertical axis wind turbine according to claim 1 or 2, wherein the first flow path (1) and the second flow path (2) or the first flow path (1) is used.
The reciprocating flow of seawater by wave force is introduced into the reciprocating flow pipe (9) directly or via the wave collecting chamber (25), and the third flow path (3) and the fourth flow path (4) or both the flow paths are introduced. A power generator using wave power, characterized in that a second reciprocating flow pipe (10) having a set of passages is connected to a storage tank (16) provided outside them to generate electricity.
【請求項4】 請求項1又は請求項2記載の垂直軸風水
車を用い、第1流路(1)及び第2流路(2)又は第1
往復流管(9)内に波力を利用して得た空気の往復流を
導入し、第3流路(3)及び第4流路(4)を外気に通
じさせて発電を行うようにしたことを特徴とする波力利
用発電装置。
4. The vertical axis wind turbine according to claim 1 or 2, wherein the first flow path (1) and the second flow path (2) or the first flow path (1) is used.
A reciprocating flow of air obtained by utilizing wave force is introduced into the reciprocating flow pipe (9), and the third flow path (3) and the fourth flow path (4) are communicated with the outside air to generate electricity. A power generator using wave power characterized by the above.
JP2001317496A 2001-10-15 2001-10-15 Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator Withdrawn JP2003120499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317496A JP2003120499A (en) 2001-10-15 2001-10-15 Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317496A JP2003120499A (en) 2001-10-15 2001-10-15 Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator

Publications (2)

Publication Number Publication Date
JP2003120499A true JP2003120499A (en) 2003-04-23
JP2003120499A5 JP2003120499A5 (en) 2004-11-18

Family

ID=19135357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317496A Withdrawn JP2003120499A (en) 2001-10-15 2001-10-15 Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator

Country Status (1)

Country Link
JP (1) JP2003120499A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423339A (en) * 2004-12-23 2006-08-23 Sub Sea Turbines Ltd Bi-directional turbine
WO2009076704A1 (en) * 2007-12-19 2009-06-25 Etergen Limited Apparatus for power generation using wave and wind energy
WO2009135247A1 (en) * 2008-05-08 2009-11-12 Atlantis Resources Corporation Pte Limited Vertical axis turbine system
CN1828042B (en) * 2006-03-10 2010-04-21 清华大学 Runner of opposite-rotating through flow turbine capable of bidirectionally generating electricity
KR100997589B1 (en) 2008-07-31 2010-11-30 조남열 Generating electricity device using waves
JP2011085003A (en) * 2009-10-16 2011-04-28 Hiromitsu Tejima Coast wide area tide-preventive breakwater revetment zone system with built-in wind motion wind tunnel power generation system
WO2011066625A1 (en) * 2009-12-04 2011-06-09 Oceanlinx Ltd. Improvements in turbines
WO2012171344A1 (en) * 2011-06-13 2012-12-20 Lei Ming Symmetrical rotary wave energy based power generating system
JP2013015086A (en) * 2011-07-05 2013-01-24 Yasuhiro Fujita Wind power generation apparatus and movable body mounted with the same
CN103016236A (en) * 2011-09-25 2013-04-03 达胡巴雅尔 Impeller convergent-divergent type fluid dynamic power generation device
CN103061959A (en) * 2013-01-16 2013-04-24 广东海洋大学 Double-channel ocean current energy power generating device
JP2013544332A (en) * 2010-12-03 2013-12-12 オーシャンリンクス リミテッド Improvements in turbines
CN104775966A (en) * 2014-01-13 2015-07-15 谢宛芝 Multipurpose integrated turbine generator/motor
JP5826354B1 (en) * 2014-10-02 2015-12-02 株式会社東産商 Power generator
JP2016142125A (en) * 2015-02-04 2016-08-08 尚栄 浅野 Seawater using marine industrial facility construction structure
CN106567836A (en) * 2016-10-20 2017-04-19 江苏大学镇江流体工程装备技术研究院 Reversible axial-flow waterpower blower fan
CN110173389A (en) * 2019-05-08 2019-08-27 中北大学 The self-adapting flow energy power generator of low start velocity
WO2019233378A1 (en) * 2018-06-08 2019-12-12 Zhang Junsheng Power generation device integrating wind power and hydropower
RU2755959C1 (en) * 2020-12-16 2021-09-23 Юрий Владимирович Безруков Wind turbine
CN114776507A (en) * 2022-05-05 2022-07-22 江苏天鑫中冶环保设备有限公司 But changes paddle turbine of automatically regulated paddle angle

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2423339A (en) * 2004-12-23 2006-08-23 Sub Sea Turbines Ltd Bi-directional turbine
CN1828042B (en) * 2006-03-10 2010-04-21 清华大学 Runner of opposite-rotating through flow turbine capable of bidirectionally generating electricity
WO2009076704A1 (en) * 2007-12-19 2009-06-25 Etergen Limited Apparatus for power generation using wave and wind energy
WO2009135247A1 (en) * 2008-05-08 2009-11-12 Atlantis Resources Corporation Pte Limited Vertical axis turbine system
KR100997589B1 (en) 2008-07-31 2010-11-30 조남열 Generating electricity device using waves
JP2011085003A (en) * 2009-10-16 2011-04-28 Hiromitsu Tejima Coast wide area tide-preventive breakwater revetment zone system with built-in wind motion wind tunnel power generation system
US9574542B2 (en) 2009-12-04 2017-02-21 Wave Power Renewables Limited Turbines
WO2011066625A1 (en) * 2009-12-04 2011-06-09 Oceanlinx Ltd. Improvements in turbines
AU2010327325B2 (en) * 2010-12-03 2017-01-05 Wave Power Renewables Limited Improvements in turbines
AU2017202256B2 (en) * 2010-12-03 2020-01-02 Wave Power Renewables Limited Improvements in turbines
JP2013544332A (en) * 2010-12-03 2013-12-12 オーシャンリンクス リミテッド Improvements in turbines
CN103477067A (en) * 2010-12-03 2013-12-25 海洋能源技术有限公司 Improvements in turbines
WO2012171344A1 (en) * 2011-06-13 2012-12-20 Lei Ming Symmetrical rotary wave energy based power generating system
JP2013015086A (en) * 2011-07-05 2013-01-24 Yasuhiro Fujita Wind power generation apparatus and movable body mounted with the same
CN103016236B (en) * 2011-09-25 2016-01-06 达胡巴雅尔 Impeller convergent-divergenttype type fluid dynamic power generation device
CN103016236A (en) * 2011-09-25 2013-04-03 达胡巴雅尔 Impeller convergent-divergent type fluid dynamic power generation device
CN103061959A (en) * 2013-01-16 2013-04-24 广东海洋大学 Double-channel ocean current energy power generating device
CN104775966A (en) * 2014-01-13 2015-07-15 谢宛芝 Multipurpose integrated turbine generator/motor
JP5826354B1 (en) * 2014-10-02 2015-12-02 株式会社東産商 Power generator
JP2016142125A (en) * 2015-02-04 2016-08-08 尚栄 浅野 Seawater using marine industrial facility construction structure
CN106567836A (en) * 2016-10-20 2017-04-19 江苏大学镇江流体工程装备技术研究院 Reversible axial-flow waterpower blower fan
CN106567836B (en) * 2016-10-20 2019-08-02 江苏大学镇江流体工程装备技术研究院 A kind of reversible axis stream hydraulic power blower fan
WO2019233378A1 (en) * 2018-06-08 2019-12-12 Zhang Junsheng Power generation device integrating wind power and hydropower
CN110173389A (en) * 2019-05-08 2019-08-27 中北大学 The self-adapting flow energy power generator of low start velocity
RU2755959C1 (en) * 2020-12-16 2021-09-23 Юрий Владимирович Безруков Wind turbine
CN114776507A (en) * 2022-05-05 2022-07-22 江苏天鑫中冶环保设备有限公司 But changes paddle turbine of automatically regulated paddle angle
CN114776507B (en) * 2022-05-05 2023-10-03 江苏天鑫中冶环保设备有限公司 Rotary blade water turbine capable of automatically adjusting blade angle

Similar Documents

Publication Publication Date Title
JP2003120499A (en) Wind mill/water turbine with vertical axis, wave activated generator, and wind power generator
US5947678A (en) Water wheel with cylindrical blades
US4960363A (en) Fluid flow driven engine
US5451138A (en) Unidirecional reaction turbine operable under reversible fluid from flow
EP2136072B1 (en) Hydraulic power generating apparatus
US6109863A (en) Submersible appartus for generating electricity and associated method
US5451137A (en) Unidirectional helical reaction turbine operable under reversible fluid flow for power systems
RU2502890C2 (en) Turbine plant and power plant
KR101551479B1 (en) Device for conversion of energy of incident wave of water to electricity and housing device
JP6257617B2 (en) Vertical axis wind turbine and water turbine with flow control
NO328222B1 (en) Underwater ducted turbine.
TWI490406B (en) Water wheel impeller type power generator
JP2003307173A (en) Buoyancy type power generation device
JP2003120499A5 (en)
KR20140085561A (en) Rotor blade for a water turbine, in particular for a tidal power station, and method for operating same
KR101289271B1 (en) Wave activied power device and method
JP2013024049A (en) Small-scaled hydropower generation apparatus
CN101265865A (en) Sea hydraulic drive apparatus
KR100335651B1 (en) Generation of electric power using tide kinetic emergy
US5575587A (en) Tide-operated driving system
CN108468459B (en) Tuning liquid column type damping device with power generation function
KR101527458B1 (en) Natural energy extraction device
JPS5867969A (en) Wave power generator
US20220381216A1 (en) Hydroelectric turbine for generating electricity by converting energy of ocean waves
JP3120021U (en) Underwater water turbine for power generation using water flow

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050616