JP2003119014A - Reformed graphite particle, production method therefor, and electrode material for secondary battery - Google Patents

Reformed graphite particle, production method therefor, and electrode material for secondary battery

Info

Publication number
JP2003119014A
JP2003119014A JP2001355391A JP2001355391A JP2003119014A JP 2003119014 A JP2003119014 A JP 2003119014A JP 2001355391 A JP2001355391 A JP 2001355391A JP 2001355391 A JP2001355391 A JP 2001355391A JP 2003119014 A JP2003119014 A JP 2003119014A
Authority
JP
Japan
Prior art keywords
particles
graphite
raw material
various directions
cabbage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001355391A
Other languages
Japanese (ja)
Other versions
JP4074757B2 (en
Inventor
Tetsushi Kubota
哲史 久保田
Naoki Matoba
直樹 的場
Shingo Asada
真吾 朝田
Junichi Yasumaru
純一 安丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2001355391A priority Critical patent/JP4074757B2/en
Publication of JP2003119014A publication Critical patent/JP2003119014A/en
Application granted granted Critical
Publication of JP4074757B2 publication Critical patent/JP4074757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide reformed graphite particles with a special particle structure which have more improved performance as that of an electrode material for a secondary battery by further improving the spheroidized reformed particles shown in No.1999-263612 in published application by the applicant, to provide a production method therefor, and to provide an electrode material for a secondary battery consisting of the reformed graphite particles obtained thereby. SOLUTION: Raw material particles (x) consisting of flaky graphite particles or the particles obtained by reforming the same particles are mixed with raw material spheroidized particles (y) with a cabbagelike appearance in which graphite cut pieces go toward various directions by microscopic observation in the broken-out section, and they are collided in a flowing state. Thus, the spheroidized particles with a structure where small-sized graphidized particles (a) with a cabbagelike apparance in which graphite cut pieces go toward various directions by microscopic observation in the broken-out section are numerously contained in the internal gaps can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特殊な粒子構造を
有し、殊に二次電池用電極材料として用いたときの二次
電池の性能がすぐれた改質黒鉛粒子およびその製造方法
に関するものである。また、そのようにして得られた改
質黒鉛粒子を用いた二次電池用電極材料に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified graphite particle having a special particle structure and having excellent secondary battery performance when used as an electrode material for a secondary battery, and a method for producing the same. Is. The present invention also relates to an electrode material for a secondary battery using the modified graphite particles obtained in this way.

【0002】[0002]

【従来の技術】近年、電子機器の小型化の観点から、鉛
蓄電池、ニッカド電池に替わる高容量電池、殊にリチウ
ムイオン二次電池が注目され、実用化されている。その
中でも負極に炭素材料を用いたものは、高い安全性、高
容量、高電圧などの点で有利であり、これらの材料が負
極用材料として使用されている。
2. Description of the Related Art In recent years, from the viewpoint of miniaturization of electronic equipment, high-capacity batteries replacing lead-acid batteries and nickel-cadmium batteries, especially lithium-ion secondary batteries, have been attracting attention and put to practical use. Among them, the one using a carbon material for the negative electrode is advantageous in terms of high safety, high capacity, high voltage, etc., and these materials are used as the material for the negative electrode.

【0003】天然黒鉛や人造黒鉛は、二次電池の電極材
料、殊にリチウムイオン二次電池用負極材料として用い
ることができる。特に鱗片状天然黒鉛は、この目的に適
している。
Natural graphite and artificial graphite can be used as an electrode material for secondary batteries, especially as a negative electrode material for lithium ion secondary batteries. In particular, scaly natural graphite is suitable for this purpose.

【0004】鱗片状天然黒鉛をこの用途に用いるとき
は、鱗片状天然黒鉛を溶媒およびバインダーと混合して
スラリー化し、対象物に塗布することが多い。この場
合、鱗片状天然黒鉛が文字通り鱗片状(板状)の形状を
有することから、溶媒およびバインダーとの混合時の流
動性が悪く、所定の粘性を得るためには大量の溶媒の使
用が必要となり、所定厚みの塗布層を形成できないこと
がある。そこで流動性を改善するために、従来は、粒子
径が数μmになるまで粉砕する方法、各種の界面活性剤
を添加して流動性を確保する方法、長時間強撹拌する方
法などがとられていた。
When scaly natural graphite is used for this purpose, it is often the case that scaly natural graphite is mixed with a solvent and a binder to form a slurry, which is then applied to an object. In this case, since the scaly natural graphite literally has a scaly (plate-like) shape, the fluidity when mixed with a solvent and a binder is poor, and it is necessary to use a large amount of solvent to obtain a predetermined viscosity. In some cases, a coating layer having a predetermined thickness cannot be formed. Therefore, in order to improve the fluidity, conventionally, a method of pulverizing to a particle size of several μm, a method of adding various surfactants to ensure fluidity, a method of vigorous stirring for a long time, etc. have been adopted. Was there.

【0005】ところが、流動性を確保するために鱗片状
天然黒鉛を微細に粉砕する方法は、黒鉛が滑りやすいた
めに5μm以下にすること自体が実際には容易ではな
く、またそれ以上の大きさでは流動性の改善効果が小さ
い。そして用途によっては粒子径を過度に小さくするこ
とが制限されることがあるが、そのような場合には対処
しえないことになる。界面活性剤の添加は、流動性の改
善に効果があるものの、界面活性剤の選定とその混合量
のバランスが難しく、たえず最適な状態を保持すること
が困難であることが多い。また用途によっては界面活性
剤の添加が制限されるので、そのような用途には不適当
となる。長時間強撹拌することで流動性を改善する方法
は、時間と労力を要するので工業的に不利となることを
免かれず、また長時間の強撹拌によっても必要な流動性
が得られないことが多い。
However, in the method of finely pulverizing the scaly natural graphite in order to secure the fluidity, it is actually not easy to set the particle size to 5 μm or less because the graphite is slippery, and more than that. The effect of improving liquidity is small. Then, depending on the application, there is a limit to making the particle diameter excessively small, but in such a case, it cannot be dealt with. Although the addition of a surfactant is effective in improving the fluidity, it is often difficult to balance the selection of the surfactant and the mixing amount thereof, and it is often difficult to maintain the optimum state. Further, the addition of the surfactant is limited depending on the application, which makes it unsuitable for such application. The method of improving fluidity by vigorous stirring for a long time requires time and labor, which is unavoidable from an industrial disadvantage, and that the fluidity required cannot be obtained even by vigorous stirring for a long time. There are many.

【0006】そこで本出願人は、原料である鱗片状天然
黒鉛粒子の良さを維持しながらもそれを改質加工して、
独特の構造および特性を有する球形化粒子からなる鱗片
状天然黒鉛改質粒子を提案している。すなわち、特開平
11−263612号公報には、鱗片状天然黒鉛粒子を
球形に近づくように改質した球形化粒子であって、該球
形化粒子が、円形度が0.86以上であること、破断面
の顕微鏡観察では、黒鉛切片が種々の方向に向かうキャ
ベツ状の外観を有していること、および、配向のランダ
ム性の指標となるX線回折(反射法)による002面
(黒鉛層と水平な面)と110面(黒鉛層に垂直な面)
のピーク強度比Ih110/Ih002が0.0050
以上であること、の要件を全て満たしている鱗片状天然
黒鉛改質粒子が開示されている。
[0006] Therefore, the applicant of the present invention, while maintaining the goodness of the raw material flake-like natural graphite particles, modified it,
We have proposed flake-shaped natural graphite modified particles consisting of spherical particles with unique structure and properties. That is, Japanese Patent Laid-Open No. 11-263612 discloses a spherical particle obtained by modifying scaly natural graphite particles so as to approximate a spherical shape, and the spherical particle has a circularity of 0.86 or more, In the microscopic observation of the fracture surface, the graphite slices have a cabbage-like appearance facing various directions, and the 002 plane (with the graphite layer) by X-ray diffraction (reflection method), which is an index of orientation randomness. Horizontal surface) and 110 surface (surface vertical to the graphite layer)
Peak intensity ratio Ih 110 / Ih 002 is 0.0050
The scaly natural graphite-modified particles satisfying all the above requirements are disclosed.

【0007】[0007]

【発明が解決しようとする課題】上述の特開平11−2
63612号公報に開示の鱗片状天然黒鉛改質粒子は、
これを二次電池用電極材料として用いたときには、その
独特の構造のため、スラリー特性が良好で、大きな放電
電流値での放電容量の低下が小さいという性質を有して
いる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The scale-like natural graphite-modified particles disclosed in Japanese Patent No. 63612,
When this is used as an electrode material for a secondary battery, due to its unique structure, it has properties of good slurry characteristics and small reduction in discharge capacity at large discharge current values.

【0008】しかしながら、この鱗片状天然黒鉛改質粒
子は、黒鉛切片が種々の方向に向かうキャベツ状の外観
を有しているという独特の構造を持っているため、微視
的には粒子内部に複数の黒鉛層からなる空隙が生じてお
り、二次電池用電極材料としての性能に一定の限界があ
ることが判明した。
However, the scaly natural graphite-modified particles have a unique structure in which the graphite pieces have a cabbage-like appearance in various directions. It was found that voids composed of a plurality of graphite layers were generated, and the performance as an electrode material for a secondary battery had a certain limit.

【0009】本発明は、このような背景下において、本
出願人の出願にかかる特開平11−263612号公報
に開示の球形化改質粒子をさらに改良することにより、
二次電池用電極材料としての性能が一段と向上した特殊
な粒子構造を有する改質黒鉛粒子およびその製造法を提
供すること、および、そのようにして得られた改質黒鉛
粒子からなる二次電池用電極材料を提供することを目的
とするものである。
Under such a background, the present invention further improves the spheroidized modified particles disclosed in Japanese Patent Application Laid-Open No. 11-263612 of the applicant of the present invention.
PROBLEM TO BE SOLVED: To provide a modified graphite particle having a special particle structure with further improved performance as an electrode material for a secondary battery and a method for producing the same, and a secondary battery comprising the modified graphite particle thus obtained. The purpose is to provide a material for electrodes.

【0010】[0010]

【課題を解決するための手段】本発明の改質黒鉛粒子
は、鱗片状黒鉛粒子を球形に近づくように改質した球形
化改質黒鉛粒子であって、該球形化改質黒鉛粒子が、破
断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャ
ベツ状の外観を有している大径の球形化粒子(A)の内
部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向
に向かうキャベツ状の外観を有する小径の球形化粒子
(a)が多数包含された構造を有していることを特徴と
するものである。
The modified graphite particles of the present invention are spheroidized modified graphite particles obtained by modifying scaly graphite particles so that they are close to spherical, and the spheroidized modified graphite particles are Microscopic observation of fracture surface makes graphite slices in various directions In the internal voids of large spherical particles (A) that have a cabbage-like appearance. It is characterized by having a structure in which a large number of small-diameter spherical particles (a) having an outward cabbage-like appearance are included.

【0011】本発明の改質黒鉛粒子の製造法は、鱗片状
黒鉛粒子またはそれを改質した粒子からなる原料粒子
(x)に、破断面の顕微鏡観察で黒鉛切片が種々の方向
に向かうキャベツ状の外観を有する原料球形化粒子
(y)を混合して流動状態で衝突させることにより、破
断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキャ
ベツ状の外観を有している大径の球形化粒子(A)の内
部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向
に向かうキャベツ状の外観を有する小径の球形化粒子
(a)が多数包含された構造を有する球形化粒子を得る
ことを特徴とするものである。
The method for producing modified graphite particles of the present invention is a cabbage in which graphite slices are directed in various directions on a raw material particle (x) made of scaly graphite particles or particles obtained by modifying the scaly graphite particles by observing the fracture surface with a microscope. By mixing the raw material spheroidized particles (y) having a circular appearance and making them collide in a fluidized state, a graphite section has a cabbage-like appearance in which various directions are observed by microscopic observation of the fracture surface. Spheroidized particles having a structure in which a large number of small-sized spherical particles (a) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces are included in the internal voids of the spherical particles (A). It is characterized by obtaining.

【0012】本発明の二次電池用電極材料は、上記の改
質黒鉛粒子からなることを特徴とするものである。
The secondary battery electrode material of the present invention is characterized by comprising the above-mentioned modified graphite particles.

【0013】[0013]

【発明の実施の形態】以下本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0014】〈改質黒鉛粒子〉本発明の改質黒鉛粒子
は、鱗片状黒鉛粒子を球形に近づくように改質した球形
化改質黒鉛粒子であり、次のような特殊な粒子構造を有
する。すなわち、本発明の改質黒鉛粒子は、破断面の顕
微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の
外観を有している大径の球形化粒子(A)の内部空隙
に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向か
うキャベツ状の外観を有する小径の球形化粒子(a)が
多数包含された構造を有する。
<Modified Graphite Particles> The modified graphite particles of the present invention are spheroidized modified graphite particles obtained by modifying scaly graphite particles so as to approximate a spherical shape, and have the following special particle structure. . That is, the modified graphite particles of the present invention have a fracture surface in the internal voids of large-diameter spherical particles (A) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of the fracture surface. In a microscopic observation, the graphite section has a structure in which a large number of small-sized spherical particles (a) having a cabbage-like appearance in various directions are included.

【0015】〈改質黒鉛粒子の製造法〉上記の特殊な粒
子構造を有する改質黒鉛粒子、つまり、キャベツ状の外
観を有している大径の球形化粒子(A)の内部空隙に、
キャベツ状の外観を有する小径の球形化粒子(a)が多
数包含された構造を有する改質黒鉛粒子は、典型的に
は、鱗片状黒鉛粒子またはそれを改質した粒子からなる
原料粒子(x)に、破断面の顕微鏡観察で黒鉛切片が種
々の方向に向かうキャベツ状の外観を有する原料球形化
粒子(y)を混合して流動状態で衝突させることにより
製造される。
<Method of Producing Modified Graphite Particles> In the internal voids of the modified graphite particles having the above-mentioned special particle structure, that is, large-diameter spherical particles (A) having a cabbage-like appearance,
The modified graphite particles having a structure in which a large number of small-sized spherical particles (a) having a cabbage-like appearance are included are typically flaky graphite particles or raw material particles (x ) Is mixed with raw material spheroidized particles (y) having a cabbage-like appearance in which the graphite section faces in various directions by microscopic observation of the fracture surface, and the particles are collided in a fluidized state.

【0016】まず、原料粒子(x)である鱗片状黒鉛粒
子としては、好適には、鱗片状天然黒鉛が用いられる。
鱗片状天然黒鉛は、通常85%から99%を上まわる程
度の純度で入手できるので、もし必要なら、適当な手段
でさらに純度を高めておくことができる。鱗片状黒鉛粒
子の粒度は、用途によっても異なるので一概には決めら
れないが、二次電池の電極材料に用いる場合には、平均
粒子径で1〜200μm程度、殊に10〜100μm程
度とすることが多い。原料粒子(x)である鱗片状黒鉛
粒子としては、鱗片状人工黒鉛を用いることもできる。
First, as the scaly graphite particles which are the raw material particles (x), scaly natural graphite is preferably used.
Since the flake-like natural graphite is usually available in a purity of 85% to 99% or more, the purity can be further increased by an appropriate means if necessary. The particle size of the flake graphite particles cannot be unconditionally determined because it depends on the application, but when used as an electrode material of a secondary battery, the average particle size is about 1 to 200 μm, particularly about 10 to 100 μm. Often. As the flake graphite particles that are the raw material particles (x), flake artificial graphite can also be used.

【0017】原料粒子(x)としては、上記の鱗片状黒
鉛粒子のほか、その鱗片状黒鉛粒子を任意の方法により
球形化改質したものを用いることもできる。
As the raw material particles (x), in addition to the scaly graphite particles, scaly graphite particles obtained by spheroidizing and modifying by any method can be used.

【0018】次に、破断面の顕微鏡観察で黒鉛切片が種
々の方向に向かうキャベツ状の外観を有する原料球形化
粒子(y)は、鱗片状黒鉛粒子を原料として用い、先に
述べた特開平11−263612号公報に開示の方法あ
るいはそれに類する方法を実施することにより得られ
る。
Next, the raw material spheroidized particles (y) having a cabbage-like appearance in which the graphite sections face in various directions by microscopic observation of the fracture surface are obtained by using scaly graphite particles as a raw material. It can be obtained by carrying out the method disclosed in JP-A No. 11-263612 or a method similar thereto.

【0019】すなわち、ジェット気流同士が衝突する衝
突域と流動域とを有する槽(1)を用い、フィーダー
(2)から槽(1)内に原料となる鱗片状黒鉛粒子を仕
込むと共に、槽(1)の下部側に設けた対向ノズル
(3)からジェット気流を吹き込むことにより、槽
(1)内の下部側の衝突域では粒子同士を衝突させ、槽
(1)内の上部側の流動域では粒子を循環流動させ、一
方分級限界以下の微粉は槽(1)の上部に設けた分級機
(4)により槽外に排出させる。この操作は、バッチで
行うことが好ましい。これにより、破断面の顕微鏡観察
で黒鉛切片が種々の方向に向かうキャベツ状の外観を有
する球形化粒子(y)が得られる。この方法を、後述の
図1を参照しながらもう少し詳しく説明する。
That is, using a tank (1) having a collision area and a flow area where jet streams collide with each other, flake graphite particles as a raw material are charged from the feeder (2) into the tank (1) and the tank ( By injecting a jet stream from a counter nozzle (3) provided on the lower side of 1), particles collide with each other in the lower collision area of the tank (1), and the upper flow area of the tank (1). Then, the particles are circulated and flowed, while fine powder below the classification limit is discharged to the outside of the tank by a classifier (4) provided in the upper part of the tank (1). This operation is preferably performed in batch. As a result, spheroidized particles (y) having a cabbage-like appearance in which the graphite sections are oriented in various directions can be obtained by microscopic observation of the fracture surface. This method will be described in more detail with reference to FIG. 1 described later.

【0020】上記の槽(1)としては、たとえば、市場
にある流動層式カウンタージェットミルを転用したり、
それを本発明の目的に改良したりしたものを用いること
ができる。フィーダー(2)からは、槽(1)内に原料
となる鱗片状黒鉛粒子を仕込む。フィーダー(2)は、
ホッパー式として槽(1)の適当個所に設置することが
好ましく、その場合にはフィーダー(2)を球形化黒鉛
粒子(y)の取出口として利用することができる。また
フィーダー(2)は、スクリュー式として槽(1)の下
部に設けることもできる。槽(1)内への原料となる鱗
片状黒鉛粒子の仕込み量は、槽(1)の有効スペースを
考慮して決定されるが、それほどの厳密性は要求されな
い。ただし、仕込み量が極端に少ないときは粒子の流動
が円滑に行われず、仕込み量が極端に多いときは粒子の
破砕が過多となって目的性状の原料球形化粒子(y)が
得られがたくなる。
As the above-mentioned tank (1), for example, a fluidized bed type counter jet mill available on the market can be diverted,
It can be used by improving it for the purpose of the present invention. From the feeder (2), flake graphite particles as a raw material are charged into the tank (1). The feeder (2)
The hopper type is preferably installed at an appropriate place in the tank (1), and in that case, the feeder (2) can be used as an outlet for the spheroidized graphite particles (y). Further, the feeder (2) can be provided in the lower part of the tank (1) as a screw type. The amount of the flake graphite particles as a raw material charged into the tank (1) is determined in consideration of the effective space of the tank (1), but not so strict. However, when the charged amount is extremely small, the particles do not flow smoothly, and when the charged amount is extremely large, the particles are excessively crushed and it is difficult to obtain the target raw material spherical particles (y). Become.

【0021】槽(1)の下部側には槽壁を貫通して対向
ノズル(3)を設け、対向ノズル(3)からジェット気
流を吹き込むことにより、槽(1)内の下部側の衝突域
では気流に入った粒子同士を衝突させる。この対向ノズ
ル(3)は、複数個、殊に3個を配することが好まし
い。対向ノズル(3)から吹き込むジェット気流の速
度、吹き込みガス量、槽圧などは、円滑な衝突と流動が
達成できるように設定され、操作時間を適宜に設定する
ことにより所望の程度の球形化が図られるようにする。
A counter nozzle (3) is provided on the lower side of the tank (1) so as to penetrate the tank wall, and a jet stream is blown from the counter nozzle (3) to collide with the lower collision area in the tank (1). Then, the particles that have entered the airflow collide with each other. It is preferable to dispose a plurality of counter nozzles (3), especially three nozzles. The velocity of the jet stream blown from the opposed nozzle (3), the amount of blown gas, the tank pressure, etc. are set so that smooth collision and flow can be achieved, and the desired degree of spheroidization can be achieved by appropriately setting the operation time. Be prepared.

【0022】槽(1)内の下部側の衝突域では粒子同士
の衝突が起こるが、槽(1)内の上部側の流動域では粒
子の循環流動が起こる。定常状態においては、粒子は概
ね、槽(1)の中心部で吹き上がり、槽(1)の壁際に
沿って舞い降りる。
Particles collide with each other in the lower collision area of the tank (1), but circulating flow of particles occurs in the upper flow area of the tank (1). In the steady state, the particles generally blow up in the center of the tank (1) and descend along the wall of the tank (1).

【0023】槽(1)の上部には分級機(4)を設け、
分級限界以下の微粉を槽外に排出させる。分級機(4)
は、高速回転分級機を用いるのが通常である。このとき
の排出量は、原料となる鱗片状黒鉛粒子の粒度によって
異なる。
A classifier (4) is provided above the tank (1),
Discharge fine powder below the classification limit to the outside of the tank. Classifier (4)
Usually uses a high-speed rotary classifier. The amount discharged at this time varies depending on the particle size of the flake graphite particles as a raw material.

【0024】上記の操作はバッチで行うことが好まし
い。通常のジェットミル粉砕のように操作を連続で行
い、原料となる鱗片状黒鉛粒子を連続的に供給し、槽の
上部から粉砕後の粒子を連続的に取り出したのでは、目
的とする原料球形化粒子(y)を得ることができない。
The above operation is preferably performed in batch. The operation was carried out continuously like ordinary jet mill crushing, the flake graphite particles as the raw material were continuously supplied, and the crushed particles were continuously taken out from the upper part of the tank. The compound particles (y) cannot be obtained.

【0025】上記の操作を、条件を調節して行うことに
より、原料球形化粒子(y)が得られる。原料球形化粒
子(y)の粒度は、平均粒子径で1〜200μm程度、
殊に10〜100μm程度とすることが多い。なお、こ
の原料球形化粒子(y)は、先に述べた原料粒子(x)
よりも平均粒子径の小さいものを用いるようにする。
By performing the above operation under controlled conditions, the raw material spherical particles (y) can be obtained. The particle size of the raw material spherical particles (y) is about 1 to 200 μm in average particle diameter,
Especially, it is often about 10 to 100 μm. The raw material spherical particles (y) are the raw material particles (x) described above.
The average particle size should be smaller than that.

【0026】そして本発明においては、先に述べた鱗片
状黒鉛粒子またはそれを球形化改質した粒子からなる原
料粒子(x)に、上記のようにして得た原料球形化粒子
(y)(破断面の顕微鏡観察で黒鉛切片が種々の方向に
向かうキャベツ状の外観を有する原料球形化粒子
(y))を混合して流動状態で衝突させる。
In the present invention, the raw material spherical particles (y) (obtained as described above) are added to the raw material particles (x) which are composed of the above-described scaly graphite particles or the spherically modified particles thereof. The raw material spheroidized particles (y) having a cabbage-like appearance in which graphite sections are oriented in various directions by microscopic observation of fracture surfaces are mixed and collided in a fluidized state.

【0027】このときの条件は、上述の原料球形化粒子
(y)の製造法と同様にして行うことができる。ただ
し、原料球形化粒子(y)を得るときの原料となる鱗片
状黒鉛粒子に代えて、原料粒子(x)と原料球形化粒子
(y)との混合物を用いるわけである。槽(1)への仕
込みは、両者を混合してから行ってもよく、それぞれを
別々に仕込んでもよい。
The conditions at this time can be the same as in the above-mentioned method for producing the raw material spherical particles (y). However, a mixture of the raw material particles (x) and the raw material spherical particles (y) is used instead of the flaky graphite particles that are the raw material when the raw material spherical particles (y) are obtained. The tank (1) may be charged after mixing both, or may be charged separately.

【0028】原料粒子(x)と原料球形化粒子(y)と
の混合割合は、両者の合計量を100重量部とすると
き、原料粒子(x)が95〜40重量部(好ましくは9
0〜45重量部)、原料球形化粒子(y)が5〜60重
量部(好ましくは10〜55重量部)とすることが望ま
しい。原料粒子(x)の過多(原料球形化粒子(y)の
過少)は、目的物である改質黒鉛粒子の内部の空隙が充
分には埋められないため、導電性が不足する傾向があ
る。一方、原料粒子(x)の過少(原料球形化粒子
(y)の過多)は、空隙を埋めてもなお余りがあるの
で、材料の無駄使いを招く上、原料平均径の小径化によ
り、改質黒鉛粒子の粒度低下等物性が大幅に変わってし
まうおそれがある。
When the total amount of the raw material particles (x) and the raw material spherical particles (y) is 100 parts by weight, the raw material particles (x) are 95-40 parts by weight (preferably 9 parts by weight).
0 to 45 parts by weight) and the raw material spherical particles (y) are preferably 5 to 60 parts by weight (preferably 10 to 55 parts by weight). When the amount of the raw material particles (x) is excessive (the amount of the raw material spheroidized particles (y) is insufficient), the voids inside the target modified graphite particles are not sufficiently filled, and thus the conductivity tends to be insufficient. On the other hand, if the amount of raw material particles (x) is too small (the amount of raw material spherical particles (y) is too large), there is still excess even if the voids are filled. There is a possibility that physical properties such as a decrease in the particle size of the fine graphite particles may be significantly changed.

【0029】このようにして、破断面の顕微鏡観察で黒
鉛切片が種々の方向に向かうキャベツ状の外観を有して
いる大径の球形化粒子(A)の内部空隙に、破断面の顕
微鏡観察で黒鉛切片が種々の方向に向かうキャベツ状の
外観を有する小径の球形化粒子(a)が多数包含されて
いる球形化粒子(改質黒鉛粒子)を得ることができる。
この球形化粒子(改質黒鉛粒子)の粒度は、平均粒子径
で1〜200μm程度、殊に10〜100μm程度とす
ることが好ましい。なお、球形化粒子(改質黒鉛粒子)
の粒度は、分級操作により任意に調整することができ
る。
In this way, the microscopic observation of the fractured surface is observed in the internal voids of the large-diameter spherical particles (A) having a cabbage-like appearance in which the graphite section faces in various directions in the microscopic observation of the fractured surface. It is possible to obtain spheroidized particles (modified graphite particles) in which a large number of small-diameter spheroidized particles (a) having a cabbage-like appearance in which the graphite pieces are oriented in various directions are included.
The average particle size of the spherical particles (modified graphite particles) is about 1 to 200 μm, preferably about 10 to 100 μm. Spherical particles (modified graphite particles)
The particle size of can be adjusted arbitrarily by a classification operation.

【0030】〈用途、二次電池用電極材料、二次電池〉
このようにして得られた改質黒鉛粒子は、二次電池用の
電極材料、殊にリチウムイオン二次電池用の負極材料と
して有用である。リチウムイオン二次電池用の負極材料
のほか、ポリマー電池(ペーパー電池)などの電極材料
としても用いることができる。このような電極材料に限
らず、導電性塗料、ブレーキディスク用摺動材、電気粘
性流体の構成粒子をはじめとする種々の用途にも使うこ
とができる。
<Use, secondary battery electrode material, secondary battery>
The modified graphite particles thus obtained are useful as an electrode material for a secondary battery, particularly as a negative electrode material for a lithium ion secondary battery. In addition to a negative electrode material for lithium ion secondary batteries, it can also be used as an electrode material for polymer batteries (paper batteries) and the like. Not limited to such electrode materials, it can be used for various applications such as conductive paints, sliding materials for brake discs, and particles of electrorheological fluid.

【0031】リチウムイオン二次電池における正極材料
としては、たとえば、改質MnO2、LiCoO 、L
iNiO、LiNi1−yCo、LiMn
、LiMn、LiFeOなどが用いられ
る。電解液としては、たとえば、エチレンカーボネート
などの有機溶媒や、該有機溶媒とジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシメタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF、Li
BF、LiClO、LiCFSOなどの電解液
溶質を溶解した溶液が用いられる。
Examples of the positive electrode material in the lithium ion secondary battery include modified MnO 2, LiCoO 2 and L.
iNiO 2 , LiNi 1-y Co y O 2 , LiMn
O 2 , LiMn 2 O 4 , LiFeO 2 or the like is used. As the electrolytic solution, for example, an organic solvent such as ethylene carbonate or a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane or ethoxymethoxyethane. LiPF 6 , Li in the mixed solvent
A solution in which an electrolytic solution solute such as BF 4 , LiClO 4 , or LiCF 3 SO 3 is dissolved is used.

【0032】リチウムイオン二次電池の場合の充放電反
応は下式の通りであり(左辺から右辺への反応が充電反
応、右片から左辺への反応が放電反応)、リチウムイオ
ンが正極と負極の間を行き来する。 C+LiCoO=CLi+Li1−xCoO
(0<X<1)
The charging / discharging reaction in the case of a lithium ion secondary battery is as follows (reaction from left side to right side is charging reaction, reaction from right side to left side is discharging reaction), and lithium ion is positive electrode and negative electrode. Go back and forth between C + LiCoO 2 = CLi x + Li 1-x CoO 2
(0 <X <1)

【0033】〈作用〉本発明の改質黒鉛粒子(球形化粒
子)は、破断面の顕微鏡観察で黒鉛切片が種々の方向に
向かうキャベツ状の外観を有している大径の球形化粒子
(A)の内部空隙に、破断面の顕微鏡観察で黒鉛切片が
種々の方向に向かうキャベツ状の外観を有する小径の球
形化粒子(a)が多数包含されているという特異な構造
を有している。
<Function> The modified graphite particles (spherical particles) of the present invention are large-diameter spherical particles (having a cabbage-like appearance in which graphite sections are oriented in various directions by microscopic observation of fracture surfaces ( It has a peculiar structure in which a large number of small spherical particles (a) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces are included in the internal voids of A). .

【0034】そして、その特異な粒子構造のため、粒子
の空隙量、粒子の密度、粒子の硬さが最適範囲にコント
ロールされ、本発明の改質黒鉛粒子(球形化粒子)を二
次電池用の電極材料(殊にリチウムイオン二次電池用の
負極材料)として用いた場合、特開平11−26361
2号公報に開示の改質黒鉛粒子に比し、導電性、サイク
ル特性が一段と向上し、さらには、極板に作製した場合
に粒子が潰れにくくなるので、電解液の吸液が良くな
る。また、負荷特性も向上する。
Due to the unique particle structure, the void volume of particles, the density of particles, and the hardness of particles are controlled within the optimum ranges, and the modified graphite particles (spherical particles) of the present invention are used for secondary batteries. When used as an electrode material (particularly, a negative electrode material for lithium ion secondary batteries) of JP-A-11-26361
Compared with the modified graphite particles disclosed in Japanese Patent Publication No. 2, the conductivity and the cycle characteristics are further improved, and the particles are less likely to be crushed when they are made into an electrode plate, so that the absorption of the electrolytic solution is improved. Also, the load characteristics are improved.

【0035】[0035]

【実施例】次に実施例をあげて本発明をさらに説明す
る。以下、「部」とあるのは「重量部」である。
EXAMPLES The present invention will be further described with reference to examples. Hereinafter, "parts" means "parts by weight".

【0036】(製造装置)図1は球形化粒子の製造装置
の模式図である。この試験装置は円筒状の槽(1)から
なり、槽(1)の下部側には3個の対向ノズル(3)
(ノズル内径2.5mm)を中心を向くように対向配置
してあり(図1にはそのうちの1個のみを示してあ
る)、槽(1)の頂部には分級機(4)の一例としての
高速回転分級機を配置してある。フィーダー(2)は槽
(1)の側壁に設けてあり、槽(1)の底部には吹き上
げノズル(5)を設けてある。
(Manufacturing Device) FIG. 1 is a schematic view of a manufacturing device for spherical particles. This test device consists of a cylindrical tank (1), and on the lower side of the tank (1) are three opposed nozzles (3).
(Nozzle inner diameter 2.5 mm) is arranged so as to face the center (only one of them is shown in FIG. 1), and as an example of a classifier (4) at the top of the tank (1) The high-speed rotary classifier is installed. The feeder (2) is provided on the side wall of the tank (1), and the blowing nozzle (5) is provided at the bottom of the tank (1).

【0037】(球形化粒子の製造)中国産の鱗片状天然
黒鉛(粒度:100メッシュ90%以上通過、純度:9
9%以上)をカウンター式ジェットミルにて平均粒子径
が60μmになるまで粉砕し、純度99.9%以上の高
純度化処理を行ってから、これを原料となる鱗片状黒鉛
粒子として用いた。
(Production of Spherical Particles) Scale-like natural graphite produced in China (particle size: 100 mesh, 90% or more passed, purity: 9
(9% or more) was pulverized with a counter type jet mill until the average particle size became 60 μm, and subjected to high purification treatment with a purity of 99.9% or more, and then used as raw material flake graphite particles. .

【0038】この鱗片状黒鉛粒子をフィーダー(2)か
ら槽(1)に仕込み、3個の対向ノズル(3)のそれぞ
れから空気を吹き込み、所定時間かけて粒子の改質加工
を行った。その間、頂部に設けた分級機(4)からは、
吹き込んだ空気の排気と共に、約5μm以下の微粉が排
出された。なお、改質加工時の条件は次のように設定し
た。 原料仕込み量:200g ノズル吐出空気圧:0.13MPa 操作時間:30min
The scaly graphite particles were charged into the tank (1) from the feeder (2), and air was blown from each of the three opposed nozzles (3) to modify the particles for a predetermined time. Meanwhile, from the classifier (4) installed at the top,
Along with the exhaust of the blown air, fine powder of about 5 μm or less was discharged. The conditions during the modification process were set as follows. Raw material charge: 200 g Nozzle discharge air pressure: 0.13 MPa Operating time: 30 min

【0039】上記の操作後、槽(1)から粒子を取り出
し、分級操作を行って、平均粒子径10μmの球形化粒
子を得、これを原料球形化黒鉛粒子(y)として用い
た。
After the above operation, the particles were taken out of the tank (1) and classified to obtain spherical particles having an average particle diameter of 10 μm, which were used as the raw spherical graphite particles (y).

【0040】実施例1〜3、比較例1 (改質黒鉛粒子の製造)原料粒子(x)として、上記の
球形化粒子の製造に用いた原料の鱗片状黒鉛粒子と同じ
平均粒子径60μmの粒子を用いた。そして、この原料
粒子(x)を、上記で取得した平均粒子径10μmの球
形化粒子(原料球形化粒子(y))と混合した。
(x):(y)の混合割合は、50部:50部(実施例
1)、70部:30部(実施例2)、85部:15部
(実施例3)、100部:0部(比較例1)に設定し
た。
Examples 1 to 3 and Comparative Example 1 (Production of Modified Graphite Particles) As raw material particles (x), the same average particle diameter of 60 μm as that of the raw flake graphite particles used in the production of the above spheroidized particles was used. Particles were used. Then, the raw material particles (x) were mixed with the spherical particles (raw material spherical particles (y)) having an average particle diameter of 10 μm obtained above.
The mixing ratio of (x) :( y) is 50 parts: 50 parts (Example 1), 70 parts: 30 parts (Example 2), 85 parts: 15 parts (Example 3), 100 parts: 0 parts. It was set to (Comparative Example 1).

【0041】これらの混合物を用いたほかは、先に述べ
た球形化粒子の製造のときと同じ条件で改質操作を行っ
た。改質加工終了後の球形化粒子(改質黒鉛粒子)を槽
(1)から取り出し、粒子径を揃えるため分級操作を行
い、平均粒子径44μmの試料を得た。
The modification operation was carried out under the same conditions as in the production of the spheronized particles described above, except that these mixtures were used. The spheroidized particles (modified graphite particles) after the completion of the modification process were taken out of the tank (1), and a classification operation was performed to make the particle sizes uniform, to obtain a sample having an average particle size of 44 μm.

【0042】(外観)得られた球形化粒子(改質黒鉛粒
子)につき、破断面の顕微鏡観察を行った。すなわち、
球形化粒子(改質黒鉛粒子)をエポキシ樹脂で固定し、
液体窒素で冷凍固化後、破断し、その破断面を顕微鏡写
真で判断した。
(Appearance) The fractured surfaces of the obtained spherical particles (modified graphite particles) were observed with a microscope. That is,
Fix spherical particles (modified graphite particles) with epoxy resin,
After freezing and solidifying with liquid nitrogen, it fractured and the fracture surface was judged by a micrograph.

【0043】実施例1〜3で得られた球形化粒子(改質
黒鉛粒子)は、いずれも、破断面の顕微鏡観察で黒鉛切
片が種々の方向に向かうキャベツ状の外観を有している
大径の球形化粒子(A)の内部空隙に、破断面の顕微鏡
観察で黒鉛切片が種々の方向に向かうキャベツ状の外観
を有する小径の球形化粒子(a)が多数包含された構造
を有していた。図2に、実施例1で得た球形化粒子(改
質黒鉛粒子)の顕微鏡写真を示す。倍率は2000倍で
ある。
The spheroidized particles (modified graphite particles) obtained in Examples 1 to 3 all had a cabbage-like appearance in which the graphite sections were oriented in various directions by microscopic observation of fracture surfaces. Having a structure in which a large number of small-sized spherical particles (a) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces are included in the internal voids of the spherical particles (A) Was there. FIG. 2 shows a micrograph of the spherical particles (modified graphite particles) obtained in Example 1. The magnification is 2000 times.

【0044】一方、比較例1で得た球形化粒子(改質黒
鉛粒子)は、破断面の顕微鏡観察で黒鉛切片が種々の方
向に向かうキャベツ状の外観を有していたが、空隙を多
く含んでいた。図3に、比較例1の改質黒鉛粒子の顕微
鏡写真を示す。倍率は2000倍である。
On the other hand, the spheroidized particles (modified graphite particles) obtained in Comparative Example 1 had a cabbage-like appearance in which graphite sections were oriented in various directions by microscopic observation of fracture surfaces, but many voids were present. Included. FIG. 3 shows a micrograph of the modified graphite particles of Comparative Example 1. The magnification is 2000 times.

【0045】実施例1〜3および比較例1のいずれの改
質黒鉛粒子も、黒鉛切片が種々の方向に向かうキャベツ
状の外観を有していて、鱗片状天然黒鉛の層状構造を含
みながらも、その構造がキメラ状に改質されている点で
は共通していた。ちなみに、最初の操作の個所で述べた
球形化粒子の製造のために用いた原料となる鱗片状黒鉛
粒子についても顕微鏡観察を行ったが、黒鉛切片が単に
ほぼ同一方向にのみ層状になっていた。
The modified graphite particles of each of Examples 1 to 3 and Comparative Example 1 had a cabbage-like appearance in which the graphite pieces were oriented in various directions, and contained the layered structure of scaly natural graphite. , It was common in that the structure was modified to be chimeric. By the way, microscopic observation was also performed on the flaky graphite particles that were the raw material used for the production of the spheroidized particles described in the first operation, but the graphite slices were layered only in almost the same direction. .

【0046】(性状、電極特性)実施例1〜3および比
較例1で得られた改質黒鉛粒子の性状(平均粒子径、ピ
ーク強度比、表面積、導電性の程度(電気抵抗))およ
び電極性能(放電容量、初期効率、負荷特性、充電特
性)を調べた。結果を表1および表2に分けて示す。
(Properties, Electrode Properties) Properties (average particle size, peak intensity ratio, surface area, degree of conductivity (electrical resistance)) and electrodes of the modified graphite particles obtained in Examples 1 to 3 and Comparative Example 1. The performance (discharge capacity, initial efficiency, load characteristics, charging characteristics) was examined. The results are shown separately in Table 1 and Table 2.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】(ピーク強度比)配向のランダム性の指標
となるX線回折(反射法)による002面(黒鉛層と水
平な面)と110面(黒鉛層に垂直な面)のピーク強度
比Ih110/Ih002である(本出願人の出願にか
かる特開平11−263612号公報の段落0045を
参照)。
(Peak intensity ratio) The peak intensity ratio Ih of the 002 plane (plane parallel to the graphite layer) and the 110 plane (plane perpendicular to the graphite layer) by X-ray diffraction (reflection method), which is an index of orientation randomness. 110 / Ih 002 (see paragraph 0045 of Japanese Patent Application Laid-Open No. 11-263612) filed by the present applicant.

【0050】(表面積)株式会社島津製作所製の「AS
AP−2405」を用いて測定。
(Surface area) "AS manufactured by Shimadzu Corporation
AP-2405 ".

【0051】(電気抵抗)試料を上下面の面積が各0.
12cm、高さが2cm、密度が1.25g/cm
の円柱体に圧縮成形して、成形体を得、その成形体の上
下両面間の電気抵抗を測定。
(Electrical Resistance) The area of the upper and lower surfaces of the sample was 0.
12 cm 2 , height 2 cm, density 1.25 g / cm 3
The molded product is obtained by compression molding into a cylindrical body, and the electrical resistance between the upper and lower surfaces of the molded product is measured.

【0052】(電極性能)負極材料100重量部と、バ
インダーとしてのポリフッ化ビニリデン3重量部と、溶
媒としてのN−メチルピロリドンの適量とを混合し、液
相で均一に撹拌した。得られたスラリーを銅箔上に塗布
し、乾燥後、プレス機により加圧成形し、負極極板を作
製してから、150℃で6時間真空乾燥を行った。次
に、リチウム箔をステンレス板に圧着したものをセパレ
ータを介して対極とし、2極式セルを組み立てた。組み
立ては、水分値20ppm以下に調整したドライボック
ス内で行い、電解液としては1M−LiPF/(EC
+DEC(1:1))、すなわちエチレンカーボネート
とジエチルカーボネートとの容積比で1:1の混合溶媒
にLiPFを1Mの割合で溶解したものを用いた。
(Electrode Performance) 100 parts by weight of the negative electrode material, 3 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methylpyrrolidone as a solvent were mixed and uniformly stirred in a liquid phase. The obtained slurry was applied onto a copper foil, dried, and then pressure-molded with a press to prepare a negative electrode plate, which was then vacuum dried at 150 ° C. for 6 hours. Next, a lithium foil was pressure-bonded to a stainless steel plate, which was used as a counter electrode via a separator to assemble a bipolar cell. The assembly was performed in a dry box adjusted to have a water content of 20 ppm or less, and 1 M-LiPF 6 / (EC
+ DEC (1: 1)), that is, LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 at a ratio of 1M was used.

【0053】充電は、0.2mA/cm(0.05
C)の定電流値で0Vになるまで充電した後、0Vの定
電位で電流値が0.01mA/cmとなるまで行っ
た。放電は、0.2mA/cmの電流値で1Vになる
まで行った。各サンプルの1回目の充電容量と放電容量
とにより、 初期効率(%)=100×放電容量/充電容量 を計算した。
Charging is performed at 0.2 mA / cm 2 (0.05
After charging until the constant current value of C) became 0 V, it was performed at a constant potential of 0 V until the current value became 0.01 mA / cm 2 . The discharge was performed at a current value of 0.2 mA / cm 2 to 1 V. The initial efficiency (%) = 100 × discharge capacity / charge capacity was calculated from the charge capacity and discharge capacity at the first time of each sample.

【0054】負荷特性は、10時間で放電した放電容量
に対する30分で放電した放電容量の割合(%)であ
る。
The load characteristic is the ratio (%) of the discharge capacity discharged in 30 minutes to the discharge capacity discharged in 10 hours.

【0055】充電特性は、10時間で充電した定電流充
電容量に対する1時間で充電した定電流充電容量の割合
(%)である。
The charge characteristic is the ratio (%) of the constant current charge capacity charged in 1 hour to the constant current charge capacity charged in 10 hours.

【0056】[0056]

【発明の効果】本発明の改質黒鉛粒子は、基本的には、
球形化している上、キャベツ状の外観を有していること
から、スラリー化時に固形分濃度を高くしても(つまり
溶媒の使用量を少なくしても)、塗布に適した粘度にす
ることができ、スラリーの操作性が良く、銅箔等に塗布
して極板を作るときの塗布性、結着性が容易である。
The modified graphite particles of the present invention are basically
Since it has a spherical shape and has a cabbage-like appearance, it should have a viscosity suitable for coating even if the solid content concentration is increased during slurry formation (that is, the amount of solvent used is reduced). In addition, the slurry has good operability, and the coating property and the binding property when the electrode plate is prepared by coating it on a copper foil or the like are easy.

【0057】しかも、本発明の改質黒鉛粒子は、破断面
の顕微鏡観察で黒鉛切片が種々の方向に向かうキャベツ
状の外観を有している大径の球形化粒子(A)の内部空
隙に、破断面の顕微鏡観察で黒鉛切片が種々の方向に向
かうキャベツ状の外観を有する小径の球形化粒子(a)
が多数包含されているという特殊な粒子構造を有してい
るため、粒子の空隙量、粒子の密度、粒子の硬さが最適
範囲にコントロールされ、この改質黒鉛粒子を二次電池
用の電極材料(殊にリチウムイオン二次電池用の負極材
料)として用いた場合、特開平11−263612号公
報に開示の改質黒鉛粒子に比し、導電性、負荷特性、サ
イクル特性をはじめとする二次電池用電極材料としての
性能が一段と向上している。さらには、極板に作製した
ときに粒子が潰れにくくなるので、電解液の通液性が良
くなっている。
Moreover, the modified graphite particles of the present invention have a large diameter of spherical particles (A) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces. , Small-diameter spherical particles (a) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces
Since it has a special particle structure in which a large number of particles are included, the void volume of particles, the density of particles, and the hardness of particles are controlled within the optimum range, and these modified graphite particles are used as electrodes for secondary batteries. When used as a material (particularly as a negative electrode material for a lithium ion secondary battery), compared with the modified graphite particles disclosed in Japanese Patent Application Laid-Open No. 11-263612, conductivity, load characteristics, cycle characteristics, etc. The performance as an electrode material for secondary batteries is further improved. Furthermore, since the particles are less likely to be crushed when the electrode plate is manufactured, the liquid permeability of the electrolytic solution is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】球形化粒子の製造装置の模式図である。FIG. 1 is a schematic view of an apparatus for producing spherical particles.

【図2】実施例1で得た球形化粒子(改質黒鉛粒子)の
顕微鏡写真である(倍率は2000倍)。
FIG. 2 is a micrograph of spherical particles (modified graphite particles) obtained in Example 1 (magnification: 2000 times).

【図3】比較例1の改質黒鉛粒子の顕微鏡写真である
(倍率は2000倍)。
FIG. 3 is a micrograph of the modified graphite particles of Comparative Example 1 (magnification: 2000 times).

【符号の説明】[Explanation of symbols]

(1)…槽、 (2)…フィーダー、 (3)…対向ノズル、 (4)…分級機、 (5)…吹き上げノズル (1) ... tank, (2) ... feeder, (3) ... Counter nozzle, (4) ... Classifier, (5) ... Blow-up nozzle

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝田 真吾 兵庫県三田市友が丘2−8−6 (72)発明者 安丸 純一 兵庫県三田市つつじが丘南4−9−9 Fターム(参考) 4G046 EA05 EB13 EC02 EC06 5H050 AA02 AA19 BA17 CA07 CB08 FA12 FA17 FA19 GA02 GA05 GA06 HA05 HA13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shingo Asada             2-8-6 Tomogaoka, Sanda City, Hyogo Prefecture (72) Inventor Junichi Yasumaru             4-9-9 Tsutsujigaoka Minami, Sanda City, Hyogo Prefecture F-term (reference) 4G046 EA05 EB13 EC02 EC06                 5H050 AA02 AA19 BA17 CA07 CB08                       FA12 FA17 FA19 GA02 GA05                       GA06 HA05 HA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鱗片状黒鉛粒子を球形に近づくように改質
した球形化改質黒鉛粒子であって、該球形化改質黒鉛粒
子が、 破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキ
ャベツ状の外観を有している大径の球形化粒子(A)の
内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方
向に向かうキャベツ状の外観を有する小径の球形化粒子
(a)が多数包含された構造を有していることを特徴と
する改質黒鉛粒子。
1. A sphere-shaped modified graphite particle obtained by modifying scaly graphite particles so as to be closer to a sphere, wherein the sphere-shaped modified graphite particles have graphite slices in various directions observed by a microscopic observation of a fracture surface. In the internal voids of the large-diameter spherical particles (A) having a cabbage-like appearance, a small-diameter spherical particle having a cabbage-like appearance in which the graphite section faces in various directions by microscopic observation of a fracture surface ( Modified graphite particles having a structure including a large number of a).
【請求項2】鱗片状黒鉛粒子またはそれを改質した粒子
からなる原料粒子(x)に、破断面の顕微鏡観察で黒鉛
切片が種々の方向に向かうキャベツ状の外観を有する原
料球形化粒子(y)を混合して流動状態で衝突させるこ
とにより、 破断面の顕微鏡観察で黒鉛切片が種々の方向に向かうキ
ャベツ状の外観を有している大径の球形化粒子(A)の
内部空隙に、破断面の顕微鏡観察で黒鉛切片が種々の方
向に向かうキャベツ状の外観を有する小径の球形化粒子
(a)が多数包含された構造を有する球形化粒子を得る
ことを特徴とする改質黒鉛粒子の製造法。
2. A raw material spherical particle (x) having a cabbage-like appearance in which a graphite section is oriented in various directions by microscopic observation of a fracture surface of a raw material particle (x) composed of scaly graphite particles or modified particles thereof ( By mixing y) and making them collide in a fluidized state, it is possible to observe in a microscopic observation of the fracture surface that the graphite slices have cabbage-like appearances in various directions, into the internal voids of large spherical particles (A). A modified graphite having a structure in which a large number of small-diameter spherical particles (a) having a cabbage-like appearance in which graphite sections face in various directions by microscopic observation of fracture surfaces are obtained. Particle manufacturing method.
【請求項3】請求項1の改質黒鉛粒子からなることを特
徴とする二次電池用電極材料。
3. A secondary battery electrode material comprising the modified graphite particles of claim 1.
JP2001355391A 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery Expired - Lifetime JP4074757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355391A JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355391A JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Publications (2)

Publication Number Publication Date
JP2003119014A true JP2003119014A (en) 2003-04-23
JP4074757B2 JP4074757B2 (en) 2008-04-09

Family

ID=19167104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355391A Expired - Lifetime JP4074757B2 (en) 2001-10-16 2001-10-16 Modified graphite particles, production method thereof, and electrode material for secondary battery

Country Status (1)

Country Link
JP (1) JP4074757B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
JP2005222867A (en) * 2004-02-06 2005-08-18 Kansai Coke & Chem Co Ltd Manufacturing method and manufacturing device for electrode material for secondary battery
JP2006083030A (en) * 2004-09-17 2006-03-30 Sony Corp Graphite powder and nonaqueous electrolyte secondary battery
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method
EP2913299A1 (en) * 2014-02-27 2015-09-02 Kangwon National University University Industry Coorporation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2017050184A (en) * 2015-09-02 2017-03-09 三菱化学株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050807A (en) * 2003-07-16 2005-02-24 Kansai Coke & Chem Co Ltd Negative electrode material for lithium ion secondary battery and its manufacturing method, as well as negative electrode for lithium ion secondary battery and lithium ion secondary battery using negative electrode material
JP4499498B2 (en) * 2003-07-16 2010-07-07 関西熱化学株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
JP2005222867A (en) * 2004-02-06 2005-08-18 Kansai Coke & Chem Co Ltd Manufacturing method and manufacturing device for electrode material for secondary battery
JP2006083030A (en) * 2004-09-17 2006-03-30 Sony Corp Graphite powder and nonaqueous electrolyte secondary battery
US7976984B2 (en) 2004-09-17 2011-07-12 Sony Corporation Powdered graphite and nonaqueous electrolyte secondary battery
KR101211072B1 (en) * 2004-09-17 2012-12-11 소니 가부시키가이샤 Powdered graphite and nonaqueous electrolyte secondary battery
JP2009242196A (en) * 2008-03-31 2009-10-22 Ibiden Co Ltd Graphite elastic body and its manufacturing method
EP2913299A1 (en) * 2014-02-27 2015-09-02 Kangwon National University University Industry Coorporation Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP2017050184A (en) * 2015-09-02 2017-03-09 三菱化学株式会社 Carbon material for nonaqueous secondary battery, and lithium ion secondary battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP4074757B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
KR100284952B1 (en) Flaky Natural Graphite Reforming Particles, Manufacturing Method And Secondary Battery
JP5403925B2 (en) Solid electrolyte and method for producing the same
US6617073B1 (en) Active material of positive electrode for non-aqueous electrode secondary battery and method for preparing the same and non-aqueous electrode secondary battery using the same
JP5740079B2 (en) Graphite particles with a potato shape and a small amount of impurities on the surface, and a method for producing the same
WO2012164752A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
JP3718072B2 (en) Secondary battery electrode material and method for producing coated body using the same
JP6777989B2 (en) A method for producing lithium ion conductive sulfide, the lithium ion conductive sulfide produced thereby, a solid electrolyte containing the same, and an all-solid-state battery.
JP4499498B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode material
WO2005020354A1 (en) Positive electrode active material powder for lithium secondary battery
WO2007069664A1 (en) Graphite particle, carbon-graphite composite particle and their production processes
JPWO2008155989A1 (en) Lithium-containing composite oxide powder and method for producing the same
WO2011033731A1 (en) Silicon oxide, and negative electrode material for lithium ion secondary battery
JP2016139569A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same, and nonaqueous electrolyte secondary battery
JP6080653B2 (en) Negative electrode composite
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2004111109A (en) Electrode material for secondary battery, electrode for secondary battery containing the electrode material, and lithium ion secondary battery using the electrode
JP4074757B2 (en) Modified graphite particles, production method thereof, and electrode material for secondary battery
CN104604000A (en) Active substance for use in negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery and lithium ion secondary battery using same
JP2004079386A (en) Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method
JP2010064907A (en) Lithium transition metal compound oxide, method for producing the same and lithium ion secondary battery using the same
JP2002179419A (en) Method for manufacturing reformed graphite particle and electrode material for secondary battery
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP4133151B2 (en) Manufacturing method for secondary battery electrode materials
KR100793691B1 (en) Material for negative electrode of lithium ion secondary battery, process for manufacturing the same, and negative electrode using the same and lithium ion secondary battery using the negative electrode
JP2004111110A (en) Manufacturing method of electrode material for secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350