JP2004079386A - Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method - Google Patents

Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2004079386A
JP2004079386A JP2002239652A JP2002239652A JP2004079386A JP 2004079386 A JP2004079386 A JP 2004079386A JP 2002239652 A JP2002239652 A JP 2002239652A JP 2002239652 A JP2002239652 A JP 2002239652A JP 2004079386 A JP2004079386 A JP 2004079386A
Authority
JP
Japan
Prior art keywords
particles
cobalt oxide
less
positive electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239652A
Other languages
Japanese (ja)
Inventor
Katsuya Kase
加瀬 克也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002239652A priority Critical patent/JP2004079386A/en
Publication of JP2004079386A publication Critical patent/JP2004079386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode active material for a nonaqueous electrolyte secondary battery stably manufacturable at a low cost by using cobalt oxide having various characteristics and particle size distributions, and having a desired characteristic and excellent coating properties and battery characteristics; to provide cobalt oxide for a nonaqueous electrolyte secondary battery and its manufacturing method; and to provide a nonaqueous electrolyte secondary battery. <P>SOLUTION: This positive electrode active material for a nonaqueous electrolyte secondary battery is expressed by LiCo<SB>1-x</SB>M<SB>x</SB>O<SB>2</SB>, wherein M is at least one kind of metal element selected from Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga. The active material contains more than more than 90 vol.% of primary particles each having a fillet diameter of less than 3 μm in all the primary particles, and more than 90 vol.% of secondary particles each having a fillet diameter of 5-30 μm in all the secondary particles. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水系電解質二次電池用正極活物質用コバルト酸化物及びその製造方法に関し、特に、高容量化、クーロン効率の上昇、不可逆容量の減少及びサイクル特性の向上が可能となるリチウムコバルト複合酸化物の製造方法、及び様々な粒度分布を有する原料酸化コバルトから、目的とする粒度のリチウムコバルト複合酸化物を安定的に製造する方法に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコンなどの携帯情報端末の普及に伴い、高エネルギー密度を有し、小型軽量な二次電池の開発が、強く要請されている。特に、リチウムなどの軽金属を可動イオン種として含む炭素材料を負極として用いたリチウムイオン二次電池は、最も広く研究開発が行われている。リチウムイオン二次電池は、高電圧及び高エネルギー密度を実現することが可能であり、その中でも、正極材料として最も広く用いられている材料は、リチウムコバルト複合酸化物(以下、LiCoO)である。
【0003】
この種のリチウムイオン二次電池については、優れた初期容量特性やサイクル特性を得るための研究開発が広く行われており、既に様々な成果が得られている。しかし、LiCoOは、原料に高価なコバルト化合物を用いており、コバルトは資源の偏在性及び供給の不安定性から高価な金属であるため、LiCoOの製造には安価なコバルト化合物を用いることが、工業的に極めて重要となる。現在、市場にある酸化コバルトは、粒子形状及び粒度分布などが様々であるが、原料酸化コバルトの粒子形状(結晶形状)や粒度分布は、製造されるLiCoOの性状、特に、結晶構造や粒度分布に大きな影響を与える。LiCoOの粒度分布は、電池製造時の塗布性などに大きく影響し、また、LiCoOの結晶構造は、電池特性をも左右するため、様々な性状及び粒度分布の酸化コバルトを用い、所望の性状を有するLiCoOを安定的に得ることは困難なことであった。
【0004】
一般に、酸化コバルトは、塩化コバルト、硫酸コバルト、硝酸コバルトなどのコバルト塩水溶液から、中和、再結晶などにより水酸化物、硫酸鉛、硝酸塩などのコバルト塩を、析出或いは沈殿させ、それを焼成する事で製造される。製造される酸化コバルトの結晶形状及び粒度分布は、焼成前原料の結晶形状、粒度分布及び焼成方法等に左右され、市場に供給されている酸化コバルトの結晶形状及び粒度分布は多岐に渡っている。
【0005】
これらの酸化コバルトの中から安価な酸化コバルトを見い出し、リチウムコバルト複合酸化物を製造する原料として使用しようとしても、原料酸化コバルトの粒子形状(結晶形状)がリチウムコバルト複合酸化物の製造工程を経た後も、ある程度、維持されるため、目的とするリチウムコバルト複合酸化物を得るためには、必ずしも安価な酸化コバルトを使用できない場合があった。
【0006】
また、リチウムコバルト複合酸化物の製造は、原料酸化コバルトと、リチウム原料の炭酸リチウム又は水酸化リチウムとを混合し、大気又は酸素雰囲気下で焼成合成することにより行われる。この時、生成したリチウムコバルト複合酸化物の粒子同士に焼結が進み、原料酸化コバルトよりも大きな粒子が生成する。そのため、原料酸化コバルトの粒度分布よりも小径側の粒度分布を持つリチウムコバルト複合酸化物を得ようとすると、焼成合成後に解砕等の工程を経なければ、所望の粒度分布は得られないし、解砕条件によっては微粒子が多く発生し、粒度分布が小径側に広くなりすぎてしまう場合がある。そこで、目的とする粒度以下にまで粉砕した原料酸化コバルトを、リチウムコバルト複合酸化物を製造する原料に用いることで、リチウムコバルト複合酸化物の合成後、解砕を行わず、目的粒度のリチウムコバルト複合酸化物を得ている。
【0007】
また、前述のように、原料酸化コバルトは、その原料及び製法により、真球状二次粒子、積層板状粒子などの様々な形態を持つ。これにリチウム塩を混合して焼成合成したリチウムコバルト複合酸化物は、過度に粒成長が進まなければ、基本的に原料酸化コバルトと同じ粒子形状を持つ。真球状二次粒子や積層板状粒子が、必ずしも電池特性に悪影響を及ぼすものではなく、ある種の特性値には好影響を与えることもあるが、これらの粒子形状が、目的とするリチウムコバルト複合酸化物として不適格な場合には、原料酸化コバルトの粒子形状を残さないような製造方法が必要となる。
【0008】
【発明が解決しようとする課題】
本発明の目的は、前述した従来技術の問題点に鑑み、様々な性状及び粒度分布の酸化コバルトを用い、安定的に且つ安価に製造でき、所望の性状を有し、塗布性及び電池特性の優れた非水系電解質二次電池用正極活物質用コバルト酸化物及びその製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の非水系電解質二次電池用正極活物質用コバルト酸化物は、任意の粒度分布を有する原料コバルト酸化物を粉砕して得られ、一次粒子および該一次粒子が凝集した二次粒子を合わせた粒子からなり、前記一次粒子はフィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占める。原料コバルト酸化物が、粒子同士の衝突で粉砕され、その二次粒子が破壊されていることが望ましい。ここに、一次粒子は単独に存在している粒子をいい、この一次粒子が凝集して、二次粒子が構成される。
【0010】
本発明の非水系電解質二次電池用正極活物質は、一態様によれば、LiCo1−x(x≧0、但しMはNi、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素)で表され、一次粒子の内、フィレー径が3μm以下の一次粒子が90体積%以上であり、二次粒子の内、フィレー径が5〜30μmである二次粒子が90体積%以上である。
【0011】
また、他の態様によれば、一次粒子および二次粒子を合わせた粒子は球状もしくは板状で、一次粒子はフィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占める粒度のコバルト酸化物と、Ni、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素の酸化物とリチウム塩との混合物を、非還元性雰囲気下で焼成合成して得る。
【0012】
本発明の非水系電解質二次電池用正極活物質用コバルト酸化物の製造方法は、任意の粒度分布を有するコバルト酸化物を乾式ジェットミルで粉砕することにより、二次粒子が球状もしくは板状で、一次粒子および二次粒子を合わせた粒子は、フィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占めるコバルト酸化物を得る。
【0013】
そして、コバルト酸化物と、Ni、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素の酸化物と、リチウム塩との混合物を、非還元性雰囲気下で焼成合成温度を800℃〜1000℃で焼成合成する。
【0014】
本発明の非水系電解質二次電池は、リチウムを含む炭素材料の負極と、非水系電解液と、前記コバルト複合酸化物を正極活物質に用いた正極とから構成される。
【0015】
【発明の実施の形態】
以下、本発明の非水系電解質二次電池用正極活物質及びその製造方法について、詳細に説明する。
【0016】
電池の充放電反応は、正極活物質であるリチウムコバルト複合酸化物中のLiイオンが、負極活物質である炭素材料との間で可逆的に出入りすることで進行する。正極活物質及びその付近でのLiイオンの移動は、リチウムコバルト複合酸化物単結晶の内部の移動、リチウムコバルト複合酸化物結晶表面と電解液との界面の移動、及び電解液内の移動に分けられる。
【0017】
リチウムコバルト複合酸化物結晶表面と電解液との界面におけるLiイオンの移動は、同じ電流量であれば、リチウムコバルト複合酸化物の表面積が大きいほど、単位面積あたりの電流密度が小さくなる。そのため、リチウムコバルト複合酸化物の比表面積が大きいことは、電解液から結晶内部へのLi拡散に有利に働く。
【0018】
しかし、単純にリチウムコバルト複合酸化物の粒度(二次粒子径)を小さくすることで比表面積を大きくすると、粉塵の発生等で製造上の不都合が生じると共に、電極の充填密度の低下による電池容量の低下、充電時に微粉粒子が過充電状態になりやすく、発火及び膨張等による危険性の増大などのデメリットが大きくなる。
【0019】
本発明者らは、様々な方法で合成したリチウムコバルト複合酸化物に対して検討を重ねた結果、リチウムコバルト複合酸化物の二次粒子径を変更することなく、一次粒子径を所定の粒度にすることで、前述のデメリットを発現させず、高容量化、クーロン効率の上昇、不可逆容量の減少及びサイクル特性の向上が可能となることを見出した。
【0020】
本発明者らは、さらに、鋭意、研究を続けた結果、一次粒子の内、90体積%以上の一次粒子のフィレー径が3μm以下であるLiCo1−x(x≧0、但しMはNi、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素)で表されるリチウムコバルト複合酸化物を正極活物質に用いた非水系電解質二次電池の電池特性が良好であることを見いだした。ここで、フィレー径とは、SEMによる投影図形において、粒子を横切る一定方向の線分の中で、最長のものをその粒子の直径とし、当該直径で定義した粒子径をいう。
【0021】
また、原料として様々な粒度分布を有する安価な酸化コバルトを、数μm以下に粉砕した酸化コバルトを用い、リチウム塩を所定量、混合し、800〜1000℃で焼成合成することで、元原料の酸化コバルトの結晶構造、粒度分布に関わらず、目的とする結晶構造と粒度分布を有するリチウムコバルト複合酸化物を、安定的に且つ安価に合成できることを見いだした。
【0022】
リチウム・コバルト複合酸化物の粒径
正極活物質であるリチウムコバルト複合酸化物を粉砕せずに、電解液や導電助剤との混練、電極基材への塗布を行う場合、最適な正極活物質の粒径としては5〜30μm程度である。これより小さいと電解液や導電助剤との混練時の分散性が悪くなり、十分な利用率が得られず、これより大きいと電解液や導電助剤との接触面積が小さくなり、十分な利用率が得られない。これらの作用を決定するのは、リチウムコバルト複合酸化物の二次粒子径であるため、リチウムコバルト複合酸化物の二次粒子径としては、5〜30μm程度が望ましい。
【0023】
通常、非水電解質二次電池用正極活物質として用いられるリチウムコバルト複合酸化物の一次粒子径は、十分の数μm〜数μmが望ましい。これは、一次粒子が10μm以上では、単位質量当たりの電解液との接触面積が小さいために、活物質の利用効率が悪く、また、一次粒子が十分の数μm以下では、一次粒子が凝集した二次粒子の密度が小さく、単位体積当たりの活物質量が少なくなり、電池容量が低下してしまうためである。
【0024】
さらに、結晶内部へのLiイオンの拡散から、一次粒子径としては小さい方が望ましいと考えられるが、極度に微細になった一次粒子からなる二次粒子は、電極作成時に破壊されて、微粉を発生させるおそれがあり、また一次粒子同士の界面での電気的抵抗(Liが移動するのに対する抵抗)が大きくなるため、電池特性を悪化させる可能性がある。リチウムコバルト複合酸化物結晶内でのLiイオンの移動度などを考慮すると、一次粒子径としては0.5μm以上、3μm以下が望ましい。
【0025】
酸化コバルトの粒径
原料酸化コバルトを微粉砕してから、リチウム塩を混合して焼成合成すると、焼成合成中に粒子同士の焼結が進み、原料酸化コバルトの粒度分布よりも大径な粒度分布を持つリチウムコバルト複合酸化物が生成する。生成するリチウム・コバルト複合酸化物の二次粒子は、リチウムコバルト複合酸化物の一次粒子が焼結して出来たもので、微粉砕後の原料酸化コバルトの一次粒子の大きさがほぼ維持される。
【0026】
従って、目的とするリチウムコバルト複合酸化物の一次粒子の粒子径を0.5μm〜3μmにするためには、原料酸化コバルトの一次粒子径もそれ以下にする必要があり、より具体的には、フィレー径1μm以下の一次粒子が全体積の50%以上とする。そして、フィレー径5μm以上の二次粒子が全体積の1%以下を占めるような粒度分布が望ましい。フィレー径1μm以下の一次粒子が全体積の50%より少ないと、焼成合成後のリチウムコバルト複合酸化物の一次粒子径が全体的に大きくなりすぎ、正極活物質の利用効率が低下してしまう。また、フィレー径5μm以上の二次粒子が全体積の1%よりも多いと、焼成合成後の粗大粒子の割合が増加してしまい、正極活物質で均一に充放電が行われず、部分的に過充電が起こりやすくなり、電池の安全性の低下につながる。なお、二次粒子は、単独で存在する粒子であり、一次粒子は二次粒子を構成している粒子である。
【0027】
原料酸化コバルトの粉砕
原料酸化コバルトの粉砕にはジェットミルを使用することが望ましい。振動ミル、パルペライザー及びアトマイザーなどの一般的な粉砕装置も用いることが出来るが、粒子同士の磨砕による十分の数μm以下の微粉が発生しやすく、この微粉は焼成合成後も一次粒子表面に残る。これに対して、ジェットミルでは磨砕が生じないで、粒子同士の衝突で二次粒子が破壊されて粉砕されるので望ましい。
【0028】
焼成合成温度
焼成合成時に生成したリチウムコバルト複合酸化物一次粒子の焼結が進むと、二次粒子の成長が起こるので、焼成合成温度を制御することで、リチウムコバルト複合酸化物二次粒子の粒度分布を、ある程度、制御することが可能である。但し、焼成合成温度が800℃以下では反応速度が遅く、工業上、実用的ではなく、焼成合成温度が1000℃以上では二次粒子が成長しすぎて、数十μmにも達するので、電池特性的に望ましくない。従って、前記リチウムコバルト複合酸化物の焼成合成温度としては、800〜1000℃が望ましく、目的粒度に合わせて最適温度を選ぶことが出来る。
【0029】
【実施例】
(実施例1)
オキシ水酸化コバルトを500℃で熱分解して得られた原料酸化コバルトを、図1にSEM写真(写真下のスケールは100μmを示す。他のSEM写真のスケールも同じ。)に示す。この原料酸化コバルトは、球状一次粒子が凝集し、粗大な真球状の二次粒子を形成したものである。
【0030】
この原料酸化コバルトを、カウンター型ジェットミルで一次粒子付近まで粉砕し、粗大な二次粒子が残らないようにした。
【0031】
粉砕後の酸化コバルトの粒度分布を、レーザー方式粒度分布測定装置(マイクロトラック粒度分布測定装置、日機装(株)製、型式FRA、以下、本装置で測定した粒度分布をマイクロトラック粒度分布と記す)で確認したところ、図2にマイクロトラック粒度分布を示したように、フィレー径が1μm以下の部分が68体積%、フィレー径が5μm以上の部分が0.1体積%以下であった。また、図3のSEM写真に示したように、20〜30μm以上の粗大な球状粒子は見られなかった。また、SEM写真の観察から、二次粒子はフィレー径1μm以下の一次粒子から実質的に構成されていた。
【0032】
この酸化コバルト10kgに炭酸リチウム6.9kgを加え、混合造粒機で混合造粒した。造粒物は、大型昇降炉で空気雰囲気下、960℃で9時間焼成し、LiCoOを得た。得られた焼成物をピンミルにて粉砕し、LiCoOを得た。
【0033】
図4に、得られたLiCoOのマイクロトラック粒度分布を示したように、4μm付近にピークトップを有する粒度分布であった。
【0034】
また、図5のSEM写真に示すように、粉砕前の原料酸化コバルトに見られたような粗大な真球状の二次粒子は認められず、一次粒子と二次粒子からなっていた。一次粒子の内、フィレー径が3μm以下の一次粒子は91体積%であることが確認された。また、二次粒子の内、フィレー径が5〜30μmである二次粒子は92体積%であることが確認された。
【0035】
また、粒子断面を収束イオンビーム(FIB)加工にて研磨露出させて得た走査イオン顕微鏡(SIM)写真(写真下のスケールは5μmを示す。他のSIM写真のスケールも同じ。)を図6に示す。一次粒子の断面のフィレー径は、ほとんどが3μm以下であった。
【0036】
(実施例2)
原料酸化コバルトとして、実施例1と同じものを使用し、実施例1と同様に粉砕した。フィレー径が1μm以下の部分が70体積%、フィレー径が5μm以上の部分が0.1体積%以下であった。SEM写真からは20〜30μm以上の径の粗大な球状粒子は見られなかった。
【0037】
得られた酸化コバルト10kgに炭酸リチウム6.9kgを加え、添加元素Mgの原料として、酸化マグネシウムを0.3kg添加し、混合造粒機で混合造粒した。造粒物は、大型昇降炉で空気雰囲気下、960℃で9時間焼成し、LiCo0.98Mg0.02を得た。得られた焼成物をピンミルにて粉砕し、LiCo0.98Mg0.02を得た。
【0038】
図7に、得られたLiCo0.98Mg0.02のマイクロトラック粒度分布を示したように、3μm付近にピークトップを有する粒度分布であった。
【0039】
また、図8のSEM写真に示すように、粉砕前の原料酸化コバルトに見られたような粗大な真球状の二次粒子は認められず、一次粒子と二次粒子からなっていた。一次粒子の内、フィレー径が3μm以下の一次粒子は92体積%であることが確認された。また、二次粒子の内、フィレー径が5〜30μmである二次粒子は91体積%であることが確認された。
【0040】
また、粒子断面を収束イオンビーム(FIB)加工にて研磨露出させて得た走査イオン顕微鏡を図9に示す。一次粒子の断面のフィレー径は、ほとんどが3μm以下であった。
【0041】
(実施例3)
原料酸化コバルトとして、実施例1と同じものを使用し、実施例1と同様に粉砕した。フィレー径が1μm以下の部分が71体積%、フィレー径が5μm以上の部分が0.1体積%以下であった。SEM写真からは20〜30μm以上の径の粗大な球状粒子は見られなかった。
【0042】
得られた酸化コバルト10kgに炭酸コバルト6.9kgを加え、添加元素Alの原料として、酸化アルミニウムを0.4kg添加し、混合造粒機で混合造粒した。造粒物は大型昇降炉で空気雰囲気下、960℃で9時間焼成し、LiCo0.98Al0.02を得た。得られた焼成物をピンミルにて粉砕し、LiCo0.98Al0.02を得た。
【0043】
図10に、得られたLiCo0.98Al0.02のマイクロトラック粒度分布を示したように、4μm付近にピークトップを有する粒度分布であった。
【0044】
また、図11のSEM写真に示すように、粉砕前の原料酸化コバルトに見られたような粗大な真球状の二次粒子は認められず、一次粒子と二次粒子からなっていた。一次粒子の内、フィレー径が3μm以下の一次粒子は92体積%であることが確認された。また、二次粒子の内、フィレー径が5〜30μmである二次粒子は93体積%であることが確認された。
【0045】
また、粒子断面を収束イオンビーム(FIB)加工にて研磨露出させて得た走査イオン顕微鏡を図12に示す。一次粒子の断面のフィレー径は、ほとんどが3μm以下であった。
【0046】
(比較例)
原料オキシ水酸化コバルトを粉砕せずに用いた以外は、実施例1と同様にLiCoOを製造した。
【0047】
図13に、得られたLiCoOのマイクロトラック粒度分布を示したように、10〜30μm付近にピークトップを有する粒度分布であった。
【0048】
また、図14にSEM写真を示したように、原料酸化コバルトに見られたような粗大な真球状の二次粒子が認められた。
【0049】
【発明の効果】
本発明に拠れば、LiCo1−x(但しMはNi、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素)で表される非水系電解質二次電池用正極活物質を、任意の結晶形状及び粒度分布を持つ酸化コバルトから、目的粒度のLiCo1−xとして製造することが出来て、結果的に、高容量化、クーロン効率の上昇、不可逆容量の減少及びサイクル特性の向上が可能となるリチウムコバルト複合酸化物を、安定的に製造することができるようになり、安価な原料コバルト酸化物を使用することも出来て、工業上、極めて有効である。
【図面の簡単な説明】
【図1】実施例1の酸化コバルトのSEM写真である。
【図2】実施例1の粉砕酸化コバルトのマイクロトラック粒度分布である。
【図3】実施例1の粉砕後の酸化コバルトSEM写真である。
【図4】実施例1のLiCoOのマイクロトラック粒度分布である。
【図5】実施例1のLiCoOのSEM写真である。
【図6】実施例1のLiCoOのSIM写真である。
【図7】実施例2のLiCo0.98Mg0.02のマイクロトラック粒度分布である。
【図8】実施例2のLiCo0.98Mg0.02のSEM写真である。
【図9】実施例2のLiCo0.98Mg0.02のSIM写真である。
【図10】実施例3のLiCo0.98Al0.02のマイクロトラック粒度分布である。
【図11】実施例3のLiCo0.98Al0.02のSEM写真である。
【図12】実施例3のLiCo0.98Al0.02のSIM写真である。
【図13】比較例のLiCoOのマイクロトラック粒度分布である。
【図14】比較例のLiCoOのSEM写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same. Particularly, lithium cobalt capable of increasing capacity, increasing Coulomb efficiency, decreasing irreversible capacity, and improving cycle characteristics. The present invention relates to a method for producing a composite oxide and a method for stably producing a lithium-cobalt composite oxide having a target particle size from raw material cobalt oxide having various particle size distributions.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the spread of portable information terminals such as mobile phones and notebook personal computers, development of small and lightweight secondary batteries having high energy density has been strongly demanded. In particular, lithium ion secondary batteries using a carbon material containing a light metal such as lithium as a mobile ion species as a negative electrode have been most widely researched and developed. A lithium ion secondary battery can realize a high voltage and a high energy density, and among them, a material most widely used as a cathode material is a lithium-cobalt composite oxide (hereinafter, LiCoO 2 ). .
[0003]
With respect to this type of lithium ion secondary battery, research and development for obtaining excellent initial capacity characteristics and cycle characteristics have been widely performed, and various results have already been obtained. However, LiCoO 2 uses an expensive cobalt compound as a raw material, and cobalt is an expensive metal due to uneven distribution of resources and instability of supply. Therefore, an inexpensive cobalt compound may be used for producing LiCoO 2. Is extremely important industrially. Cobalt oxide currently on the market has various particle shapes and particle size distributions. The particle shape (crystal shape) and particle size distribution of the raw material cobalt oxide are determined by the properties of the produced LiCoO 2 , particularly, the crystal structure and particle size. Significantly affects distribution. The particle size distribution of LiCoO 2 greatly affects the applicability at the time of manufacturing the battery, and the crystal structure of LiCoO 2 also affects the battery characteristics. It has been difficult to stably obtain LiCoO 2 having properties.
[0004]
Generally, cobalt oxide precipitates or precipitates cobalt salts such as hydroxides, lead sulfates, and nitrates from aqueous solutions of cobalt salts such as cobalt chloride, cobalt sulfate, and cobalt nitrate by neutralization, recrystallization, and the like, and is calcined. It is manufactured by doing. The crystal shape and the particle size distribution of the manufactured cobalt oxide depend on the crystal shape, the particle size distribution and the firing method of the raw material before firing, and the crystal shape and the particle size distribution of the cobalt oxide supplied on the market are various. .
[0005]
Even if an inexpensive cobalt oxide was found from among these cobalt oxides and used as a raw material for producing a lithium-cobalt composite oxide, the particle shape (crystal shape) of the raw-material cobalt oxide passed through the production process of the lithium-cobalt composite oxide. In some cases, inexpensive cobalt oxide cannot always be used in order to obtain the desired lithium-cobalt composite oxide, because the temperature is maintained to some extent.
[0006]
The production of the lithium-cobalt composite oxide is carried out by mixing a raw material cobalt oxide and a lithium raw material, lithium carbonate or lithium hydroxide, and firing and synthesizing the mixture in the air or oxygen atmosphere. At this time, sintering progresses among the particles of the generated lithium-cobalt composite oxide, and particles larger than the raw material cobalt oxide are generated. Therefore, when trying to obtain a lithium-cobalt composite oxide having a particle size distribution smaller than the particle size distribution of the raw material cobalt oxide, a desired particle size distribution cannot be obtained unless a process such as crushing is performed after the firing synthesis. Depending on the crushing conditions, a large amount of fine particles are generated, and the particle size distribution may be too wide toward the small diameter side. Therefore, by using the raw material cobalt oxide crushed to the target particle size or less as the raw material for producing the lithium cobalt composite oxide, after the lithium cobalt composite oxide is synthesized, the lithium cobalt of the target particle size is not disintegrated. A composite oxide has been obtained.
[0007]
As described above, the raw material cobalt oxide has various forms such as spherical secondary particles and laminated plate-like particles depending on the raw material and the production method. The lithium-cobalt composite oxide synthesized by mixing a lithium salt with the lithium salt has basically the same particle shape as the raw material cobalt oxide unless the grain growth proceeds excessively. Spherical secondary particles and laminated plate-like particles do not necessarily have an adverse effect on battery characteristics, and may have a favorable effect on certain characteristic values. If the composite oxide is not suitable, a production method that does not leave the particle shape of the raw material cobalt oxide is required.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, an object of the present invention is to use cobalt oxide of various properties and particle size distribution, to be able to be manufactured stably and inexpensively, to have desired properties, to have applicability and battery characteristics. It is to provide an excellent cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery and a method for producing the same.
[0009]
[Means for Solving the Problems]
The cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is obtained by pulverizing a raw material cobalt oxide having an arbitrary particle size distribution, and combining primary particles and secondary particles obtained by aggregating the primary particles. The primary particles substantially have a fillet diameter of 1 μm or less, particles having a fillet diameter of 1 μm or less occupy 50% or more of the entire volume, and particles having a fillet diameter of 5 μm or more represent a total volume. Accounts for less than 1%. It is desirable that the raw material cobalt oxide is pulverized by collision of the particles and the secondary particles are destroyed. Here, the primary particles refer to particles that exist alone, and the primary particles aggregate to form secondary particles.
[0010]
According to one aspect, the positive electrode active material for a nonaqueous electrolyte secondary battery of the present invention is LiCo 1-x M x O 2 (x ≧ 0, where M is Ni, Mn, Fe, Mg, Al, Ti, Cu , At least one metal element selected from Zn and Ga), of which primary particles having a fillet diameter of 3 μm or less account for 90% by volume or more of the primary particles, and a secondary particle having a fillet diameter of 5 to 5%. The secondary particles having a size of 30 μm account for 90% by volume or more.
[0011]
Further, according to another aspect, the particles obtained by combining the primary particles and the secondary particles are spherical or plate-like, and the primary particles have a fillet diameter substantially equal to or less than 1 μm, and particles having a fillet diameter of 1 μm or less have a total volume. Of cobalt oxide having a particle size of 50% or more and having a fillet diameter of 5 μm or more and 1% or less of the total volume, and Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga. A mixture of an oxide of at least one selected metal element and a lithium salt is obtained by calcining under a non-reducing atmosphere.
[0012]
The method for producing a cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that the secondary particles are spherical or plate-like by pulverizing a cobalt oxide having an arbitrary particle size distribution by a dry jet mill. , The combined primary and secondary particles have a fillet diameter of substantially 1 μm or less, particles having a fillet diameter of 1 μm or less occupy 50% or more of the total volume, and particles having a fillet diameter of 5 μm or more. Occupies less than 1% of the total volume.
[0013]
Then, a mixture of a cobalt oxide, an oxide of at least one metal element selected from Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga, and a lithium salt is subjected to a non-reducing atmosphere. At a firing synthesis temperature of 800 ° C to 1000 ° C.
[0014]
The non-aqueous electrolyte secondary battery of the present invention includes a negative electrode of a carbon material containing lithium, a non-aqueous electrolyte, and a positive electrode using the cobalt composite oxide as a positive electrode active material.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention and a method for producing the same will be described in detail.
[0016]
The charge / discharge reaction of the battery proceeds as Li ions in the lithium-cobalt composite oxide as the positive electrode active material reversibly enter and exit with the carbon material as the negative electrode active material. The movement of Li ions in and around the positive electrode active material is divided into movement inside the lithium cobalt composite oxide single crystal, movement at the interface between the lithium cobalt composite oxide crystal surface and the electrolyte, and movement within the electrolyte. Can be
[0017]
As for the movement of Li ions at the interface between the lithium cobalt composite oxide crystal surface and the electrolyte, the current density per unit area decreases as the surface area of the lithium cobalt composite oxide increases, as long as the current amount is the same. Therefore, the large specific surface area of the lithium-cobalt composite oxide has an advantageous effect on Li diffusion from the electrolytic solution to the inside of the crystal.
[0018]
However, if the specific surface area is increased by simply reducing the particle size (secondary particle size) of the lithium-cobalt composite oxide, inconveniences in production such as generation of dust occur, and the battery capacity due to a decrease in the packing density of the electrodes. In addition, the fine particles are liable to be overcharged at the time of charging, and disadvantages such as increased danger due to ignition and expansion are increased.
[0019]
The present inventors have repeated studies on lithium cobalt composite oxides synthesized by various methods, and found that the primary particle diameter can be reduced to a predetermined particle size without changing the secondary particle diameter of the lithium cobalt composite oxide. By doing so, it has been found that it is possible to increase the capacity, increase the Coulomb efficiency, decrease the irreversible capacity, and improve the cycle characteristics without expressing the above-mentioned disadvantages.
[0020]
The present inventors have further conducted intensive studies and found that among the primary particles, 90% by volume or more of primary particles have a fillet diameter of 3 μm or less in LiCo 1-x M x O 2 (x ≧ 0, where M is at least one metal element selected from the group consisting of Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn, and Ga). It has been found that the battery has good battery characteristics. Here, the fillet diameter refers to the particle diameter defined by the diameter of the longest one among the line segments in a certain direction crossing the particle in the projected figure by the SEM.
[0021]
In addition, as a raw material, inexpensive cobalt oxide having various particle size distributions is used, a predetermined amount of a lithium salt is mixed and baked and synthesized at 800 to 1000 ° C. by using cobalt oxide crushed to several μm or less, so that the raw material Regardless of the crystal structure and particle size distribution of cobalt oxide, it has been found that a lithium-cobalt composite oxide having a target crystal structure and particle size distribution can be stably and inexpensively synthesized.
[0022]
Particle size of lithium-cobalt composite oxide Suitable for pulverizing the lithium-cobalt composite oxide, which is the positive electrode active material, with an electrolytic solution or a conductive additive and applying it to the electrode substrate without grinding The particle size of the positive electrode active material is about 5 to 30 μm. If it is smaller than this, the dispersibility at the time of kneading with the electrolytic solution or the conductive auxiliary becomes worse, and a sufficient utilization rate cannot be obtained.If it is larger than this, the contact area with the electrolytic solution or the conductive auxiliary becomes small, and The utilization rate cannot be obtained. These functions are determined by the secondary particle diameter of the lithium-cobalt composite oxide. Therefore, the secondary particle diameter of the lithium-cobalt composite oxide is preferably about 5 to 30 μm.
[0023]
Usually, the primary particle diameter of the lithium-cobalt composite oxide used as the positive electrode active material for the non-aqueous electrolyte secondary battery is desirably a sufficient several μm to several μm. This is because when the primary particles are 10 μm or more, the contact area with the electrolytic solution per unit mass is small, so that the use efficiency of the active material is poor, and when the primary particles are sufficiently several μm or less, the primary particles are aggregated. This is because the density of the secondary particles is small, the amount of active material per unit volume is small, and the battery capacity is reduced.
[0024]
Furthermore, from the diffusion of Li ions into the inside of the crystal, it is considered that a smaller primary particle size is preferable.However, secondary particles composed of extremely fine primary particles are destroyed at the time of electrode formation, and fine particles are reduced. There is a possibility that the battery may be generated, and the electrical resistance (resistance to the movement of Li + ) at the interface between the primary particles increases, which may deteriorate the battery characteristics. Considering the mobility of Li ions in the lithium-cobalt composite oxide crystal, the primary particle diameter is desirably 0.5 μm or more and 3 μm or less.
[0025]
Particle size of cobalt oxide When the raw material cobalt oxide is finely pulverized, and then mixed with a lithium salt and fired and synthesized, sintering of the particles proceeds during the firing synthesis and the particle size distribution is larger than the particle size distribution of the raw material cobalt oxide. A lithium cobalt composite oxide having a large particle size distribution is produced. The secondary particles of the lithium-cobalt composite oxide are formed by sintering the primary particles of the lithium-cobalt composite oxide, and the size of the primary particles of the raw material cobalt oxide after pulverization is almost maintained. .
[0026]
Therefore, in order to make the primary particle diameter of the target lithium-cobalt composite oxide 0.5 μm to 3 μm, the primary particle diameter of the raw material cobalt oxide also needs to be smaller, and more specifically, Primary particles having a fillet diameter of 1 μm or less are 50% or more of the total volume. The particle size distribution is preferably such that the secondary particles having a fillet diameter of 5 μm or more occupy 1% or less of the total volume. If the primary particles having a fillet diameter of 1 μm or less are less than 50% of the total volume, the primary particle diameter of the lithium-cobalt composite oxide after firing synthesis becomes too large as a whole, and the utilization efficiency of the positive electrode active material is reduced. Further, when the secondary particles having a fillet diameter of 5 μm or more are more than 1% of the total volume, the ratio of the coarse particles after firing and synthesis increases, and the positive electrode active material is not uniformly charged / discharged, and partially. Overcharging is likely to occur, leading to a reduction in battery safety. The secondary particles are particles that exist alone, and the primary particles are particles that constitute the secondary particles.
[0027]
Grinding of raw material cobalt oxide It is desirable to use a jet mill for grinding of raw material cobalt oxide. General crushing equipment such as a vibration mill, a pulperizer and an atomizer can also be used, but sufficient fines of several μm or less are liable to be generated due to grinding of the particles, and the fines remain on the surface of the primary particles even after firing synthesis. . On the other hand, a jet mill is desirable because grinding does not occur and secondary particles are destroyed and crushed by collision of particles.
[0028]
Firing synthesis temperature As the sintering of the primary particles of the lithium-cobalt composite oxide produced during the firing synthesis proceeds, secondary particles grow. Therefore, by controlling the firing synthesis temperature, the lithium-cobalt composite oxide The particle size distribution of the secondary particles can be controlled to some extent. However, if the firing synthesis temperature is 800 ° C. or lower, the reaction rate is slow, and it is not practically industrial. If the firing synthesis temperature is 1000 ° C. or higher, the secondary particles grow too much and reach several tens μm. Undesirable. Therefore, the firing and synthesis temperature of the lithium-cobalt composite oxide is desirably 800 to 1000 ° C., and the optimum temperature can be selected according to the target particle size.
[0029]
【Example】
(Example 1)
The raw material cobalt oxide obtained by thermally decomposing the cobalt oxyhydroxide at 500 ° C. is shown in the SEM photograph (the scale under the photograph is 100 μm, and the scale of other SEM photographs is the same). In this raw material cobalt oxide, spherical primary particles are aggregated to form coarse true spherical secondary particles.
[0030]
This raw material cobalt oxide was pulverized to the vicinity of primary particles by a counter-type jet mill so that coarse secondary particles did not remain.
[0031]
The particle size distribution of the pulverized cobalt oxide is measured by a laser type particle size distribution analyzer (Microtrac particle size distribution analyzer, model FRA, manufactured by Nikkiso Co., Ltd .; hereinafter, the particle size distribution measured by this device is referred to as Microtrac particle size distribution). As shown in FIG. 2, the microtrack particle size distribution was 68% by volume for the portion having a fillet diameter of 1 μm or less, and 0.1% by volume or less for the portion having a fillet diameter of 5 μm or more. Further, as shown in the SEM photograph of FIG. 3, coarse spherical particles of 20 to 30 μm or more were not observed. Also, from observation of the SEM photograph, the secondary particles were substantially composed of primary particles having a fillet diameter of 1 μm or less.
[0032]
6.9 kg of lithium carbonate was added to 10 kg of this cobalt oxide and mixed and granulated by a mixing granulator. The granulated product was fired in a large elevating furnace at 960 ° C. for 9 hours in an air atmosphere to obtain LiCoO 2 . The obtained fired product was pulverized with a pin mill to obtain LiCoO 2 .
[0033]
As shown in FIG. 4, the obtained LiCoO 2 had a particle size distribution having a peak top near 4 μm as shown in the micro track particle size distribution.
[0034]
In addition, as shown in the SEM photograph of FIG. 5, coarse true spherical secondary particles such as those observed in the raw material cobalt oxide before pulverization were not recognized, but were composed of primary particles and secondary particles. It was confirmed that among the primary particles, the primary particles having a fillet diameter of 3 μm or less were 91% by volume. In addition, among the secondary particles, the secondary particles having a fillet diameter of 5 to 30 μm were confirmed to be 92% by volume.
[0035]
FIG. 6 shows a scanning ion microscope (SIM) photograph obtained by polishing and exposing the particle cross section by focused ion beam (FIB) processing (the scale under the photograph is 5 μm, and the scale of other SIM photographs is the same). Shown in The fillet diameter of the cross section of the primary particles was almost 3 μm or less.
[0036]
(Example 2)
The same raw material cobalt oxide as in Example 1 was used and pulverized in the same manner as in Example 1. The portion having a fillet diameter of 1 μm or less was 70% by volume, and the portion having a fillet diameter of 5 μm or more was 0.1% by volume or less. From the SEM photograph, no coarse spherical particles having a diameter of 20 to 30 μm or more were found.
[0037]
6.9 kg of lithium carbonate was added to 10 kg of the obtained cobalt oxide, and 0.3 kg of magnesium oxide was added as a raw material of the additional element Mg, followed by mixing and granulating with a mixing granulator. The granulated product was fired in a large elevating furnace at 960 ° C. for 9 hours in an air atmosphere to obtain LiCo 0.98 Mg 0.02 O 2 . The obtained fired product was pulverized with a pin mill to obtain LiCo 0.98 Mg 0.02 O 2 .
[0038]
As shown in FIG. 7, the microtrack particle size distribution of the obtained LiCo 0.98 Mg 0.02 O 2 was a particle size distribution having a peak top near 3 μm.
[0039]
In addition, as shown in the SEM photograph of FIG. 8, coarse true spherical secondary particles such as those observed in the raw material cobalt oxide before pulverization were not observed, but consisted of primary particles and secondary particles. It was confirmed that among the primary particles, the primary particles having a fillet diameter of 3 μm or less accounted for 92% by volume. In addition, among the secondary particles, the secondary particles having a fillet diameter of 5 to 30 μm were confirmed to be 91% by volume.
[0040]
FIG. 9 shows a scanning ion microscope obtained by polishing and exposing the particle cross section by focused ion beam (FIB) processing. The fillet diameter of the cross section of the primary particles was almost 3 μm or less.
[0041]
(Example 3)
The same raw material cobalt oxide as in Example 1 was used and pulverized in the same manner as in Example 1. The portion having a fillet diameter of 1 μm or less was 71% by volume, and the portion having a fillet diameter of 5 μm or more was 0.1% by volume or less. From the SEM photograph, no coarse spherical particles having a diameter of 20 to 30 μm or more were found.
[0042]
6.9 kg of cobalt carbonate was added to 10 kg of the obtained cobalt oxide, and 0.4 kg of aluminum oxide was added as a raw material for the additional element Al, followed by mixing and granulation by a mixing granulator. The granulated material was fired in a large elevating furnace at 960 ° C. for 9 hours in an air atmosphere to obtain LiCo 0.98 Al 0.02 O 2 . The obtained fired product was pulverized with a pin mill to obtain LiCo 0.98 Al 0.02 O 2 .
[0043]
As shown in FIG. 10, the microtrack particle size distribution of the obtained LiCo 0.98 Al 0.02 O 2 was a particle size distribution having a peak top near 4 μm.
[0044]
In addition, as shown in the SEM photograph of FIG. 11, coarse true spherical secondary particles as observed in the raw material cobalt oxide before pulverization were not recognized, but were composed of primary particles and secondary particles. It was confirmed that among the primary particles, the primary particles having a fillet diameter of 3 μm or less accounted for 92% by volume. In addition, among the secondary particles, the secondary particles having a fillet diameter of 5 to 30 μm were confirmed to be 93% by volume.
[0045]
FIG. 12 shows a scanning ion microscope obtained by polishing and exposing the particle cross section by focused ion beam (FIB) processing. The fillet diameter of the cross section of the primary particles was almost 3 μm or less.
[0046]
(Comparative example)
LiCoO 2 was produced in the same manner as in Example 1 except that the raw material cobalt oxyhydroxide was used without being pulverized.
[0047]
As shown in FIG. 13, the obtained LiCoO 2 had a particle size distribution having a peak top around 10 to 30 μm as shown in the microtrack particle size distribution.
[0048]
Further, as shown in the SEM photograph in FIG. 14, coarse true spherical secondary particles as observed in the raw material cobalt oxide were observed.
[0049]
【The invention's effect】
According to the present invention, a non-metal compound represented by LiCo 1-x M x O 2 (where M is at least one metal element selected from Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga) A positive electrode active material for an aqueous electrolyte secondary battery can be produced from cobalt oxide having an arbitrary crystal shape and particle size distribution as LiCo 1-x M x O 2 having a desired particle size, resulting in a higher capacity. Thus, it is possible to stably produce a lithium-cobalt composite oxide capable of increasing the Coulomb efficiency, reducing the irreversible capacity and improving the cycle characteristics, and using an inexpensive raw material cobalt oxide. Therefore, it is extremely effective industrially.
[Brief description of the drawings]
FIG. 1 is an SEM photograph of cobalt oxide of Example 1.
FIG. 2 is a microtrack particle size distribution of the ground cobalt oxide of Example 1.
FIG. 3 is an SEM photograph of cobalt oxide after grinding in Example 1.
FIG. 4 is a microtrack particle size distribution of LiCoO 2 of Example 1.
FIG. 5 is a SEM photograph of LiCoO 2 of Example 1.
FIG. 6 is a SIM photograph of LiCoO 2 of Example 1.
FIG. 7 is a microtrack particle size distribution of LiCo 0.98 Mg 0.02 O 2 of Example 2.
FIG. 8 is a SEM photograph of LiCo 0.98 Mg 0.02 O 2 of Example 2.
FIG. 9 is a SIM photograph of LiCo 0.98 Mg 0.02 O 2 of Example 2.
FIG. 10 is a microtrack particle size distribution of LiCo 0.98 Al 0.02 O 2 of Example 3.
FIG. 11 is a SEM photograph of LiCo 0.98 Al 0.02 O 2 of Example 3.
FIG. 12 is a SIM photograph of LiCo 0.98 Al 0.02 O 2 of Example 3.
FIG. 13 is a microtrack particle size distribution of LiCoO 2 of a comparative example.
FIG. 14 is an SEM photograph of LiCoO 2 of a comparative example.

Claims (8)

任意の粒度分布を有する原料コバルト酸化物を粉砕して得られ、一次粒子および該一次粒子が凝集した二次粒子を合わせた粒子からなり、前記一次粒子はフィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占めることを特徴とする非水系電解質二次電池用正極活物質用コバルト酸化物。It is obtained by pulverizing a raw material cobalt oxide having an arbitrary particle size distribution, and is composed of particles obtained by combining primary particles and secondary particles obtained by aggregating the primary particles, and the primary particles have a fillet diameter of substantially 1 μm or less. Wherein the particles having a fillet diameter of 1 μm or less occupy 50% or more of the total volume, and the particles having a fillet diameter of 5 μm or more occupy 1% or less of the total volume. Cobalt oxide for materials. 原料コバルト酸化物が、粒子同士の衝突で粉砕され、その二次粒子が破壊されていることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質用コバルト酸化物。2. The cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the raw material cobalt oxide is pulverized by collision of the particles to break secondary particles thereof. 3. LiCo1−x(x≧0、但しMはNi、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素)で表される非水系電解質二次電池用正極活物質において、一次粒子の内、フィレー径が3μm以下の一次粒子が90体積%以上であり、二次粒子の内、フィレー径が5〜30μmである二次粒子が90体積%以上であることを特徴とする非水系電解質二次電池用正極活物質。Non-aqueous electrolyte represented by LiCo 1-x M x O 2 (x ≧ 0, where M is at least one metal element selected from Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga) In the positive electrode active material for a secondary battery, 90% by volume or more of primary particles having a fillet diameter of 3 μm or less among primary particles and 90 volumes of secondary particles having a fillet diameter of 5 to 30 μm among secondary particles. % Of the positive electrode active material for a non-aqueous electrolyte secondary battery. 球状もしくは板状で、一次粒子および該一次粒子が凝集した二次粒子を合わせた粒子からなり、前記一次粒子はフィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占める粒度のコバルト酸化物と、Ni、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素の酸化物とリチウム塩との混合物を、非還元性雰囲気下で焼成合成して得られることを特徴とする請求項3に記載の非水系電解質二次電池用正極活物質。Spherical or plate-like, consisting of particles obtained by combining primary particles and secondary particles obtained by aggregating the primary particles, wherein the primary particles have a fillet diameter of substantially 1 μm or less, and a particle having a fillet diameter of 1 μm or less has a total volume of 1 μm or less. Of cobalt oxide having a particle size of 50% or more and having a fillet diameter of 5 μm or more and 1% or less of the total volume, and Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga. The positive electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the positive electrode is obtained by baking and synthesizing a mixture of an oxide of at least one selected metal element and a lithium salt in a non-reducing atmosphere. Active material. 任意の粒度分布を有するコバルト酸化物を乾式ジェットミルで粉砕することにより、二次粒子が球状もしくは板状で、一次粒子および該一次粒子が凝集した二次粒子を合わせた粒子からなり、前記一次粒子はフィレー径が1μm以下から実質的になり、フィレー径が1μm以下の粒子が全体積の50%以上を占め、且つ、フィレー径が5μm以上の粒子が全体積の1%以下を占めるコバルト酸化物を得ることを特徴とする非水系電解質二次電池用正極活物質用コバルト酸化物の製造方法。By pulverizing a cobalt oxide having an arbitrary particle size distribution with a dry jet mill, the secondary particles are spherical or plate-like, and are composed of particles obtained by combining primary particles and secondary particles obtained by aggregating the primary particles, The particles substantially have a fillet diameter of 1 μm or less, and particles having a fillet diameter of 1 μm or less occupy 50% or more of the total volume, and particles having a fillet diameter of 5 μm or more occupy 1% or less of the total volume. A method for producing a cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by obtaining a product. コバルト酸化物と、Ni、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素の酸化物と、リチウム塩との混合物を、非還元性雰囲気下で焼成合成温度を800℃〜1000℃で焼成合成することを特徴とする請求項5に記載の非水系電解質二次電池用正極活物質用コバルト酸化物の製造方法。A mixture of a cobalt oxide, an oxide of at least one metal element selected from Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga, and a lithium salt is fired in a non-reducing atmosphere. The method for producing a cobalt oxide for a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, wherein the synthesis is performed by firing at a synthesis temperature of 800C to 1000C. リチウムを含む炭素材料の負極と、非水系電解液と、請求項1または2に記載のコバルト酸化物を正極活物質に用いた正極とから構成されることを特徴とする非水系電解質二次電池。A non-aqueous electrolyte secondary battery comprising a negative electrode of a carbon material containing lithium, a non-aqueous electrolyte, and a positive electrode using the cobalt oxide according to claim 1 as a positive electrode active material. . 原料酸化コバルトを粒子同士の衝突で粉砕し、これにより原料酸化コバルトの二次粒子を破壊し、実質的に99体積%が5μm未満の粒子になっている酸化コバルトを得て、該酸化コバルトと、Ni、Mn、Fe、Mg、Al、Ti、Cu、Zn及びGaから選ばれた少なくとも一種の金属元素の酸化物と、リチウム塩との混合物を、非還元性雰囲気下で焼成合成温度を800℃〜1000℃で焼成合成して、二次粒子の内、フィレー径が5〜30μmの二次粒子が90体積%以上であるリチウムコバルト複合酸化物を得ることを特徴とする非水系電解質二次電池用正極活物質の製造方法。The raw material cobalt oxide is pulverized by collision of particles, thereby breaking secondary particles of the raw material cobalt oxide, and obtaining substantially 99% by volume of cobalt oxide having a particle size of less than 5 μm. A mixture of an oxide of at least one metal element selected from Ni, Mn, Fe, Mg, Al, Ti, Cu, Zn and Ga, and a lithium salt is fired in a non-reducing atmosphere at a synthesis temperature of 800. Non-aqueous electrolyte secondary, characterized in that it is fired and synthesized at a temperature of from 1000C to 1000C to obtain a lithium-cobalt composite oxide in which secondary particles having a fillet diameter of 5 to 30 m are 90% by volume or more among secondary particles. A method for producing a positive electrode active material for a battery.
JP2002239652A 2002-08-20 2002-08-20 Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method Pending JP2004079386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239652A JP2004079386A (en) 2002-08-20 2002-08-20 Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239652A JP2004079386A (en) 2002-08-20 2002-08-20 Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004079386A true JP2004079386A (en) 2004-03-11

Family

ID=32022697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239652A Pending JP2004079386A (en) 2002-08-20 2002-08-20 Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004079386A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
JP2008501220A (en) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35V or higher lithium secondary battery
JP2010532075A (en) * 2007-06-29 2010-09-30 ユミコア ソシエテ アノニム High density lithium cobalt oxide for secondary batteries
US8003256B2 (en) 2007-07-20 2011-08-23 Nippon Chemical Industrial Co., Ltd Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
US8137844B2 (en) 2006-11-17 2012-03-20 Nippon Chemical Industrial Co., Ltd. Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
US10854878B2 (en) 2016-08-02 2020-12-01 Samsung Sdi Co., Ltd. Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the same
US10930935B2 (en) 2017-11-30 2021-02-23 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
US10985367B2 (en) 2016-08-02 2021-04-20 Samsung Sdi Co., Ltd. Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the lithium cobalt composite oxide
US11621423B2 (en) 2017-11-29 2023-04-04 Lg Energy Solution, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023052A (en) * 2004-05-28 2012-02-02 Lg Chem Ltd Lithium secondary batteries with charge-cutoff voltages over 4.35
JP2008501220A (en) * 2004-05-28 2008-01-17 エルジー・ケム・リミテッド 4.35V or higher lithium secondary battery
JP2006298699A (en) * 2005-04-20 2006-11-02 Seimi Chem Co Ltd Method for manufacturing lithium cobalt composite oxide having large particle size
JP2007302504A (en) * 2006-05-10 2007-11-22 Honjo Chemical Corp Lithium cobaltate particle and method for producing the same
US8137844B2 (en) 2006-11-17 2012-03-20 Nippon Chemical Industrial Co., Ltd. Cathode active material for lithium rechargeable battery, manufacturing method thereof and lithium rechargeable battery
JP2010532075A (en) * 2007-06-29 2010-09-30 ユミコア ソシエテ アノニム High density lithium cobalt oxide for secondary batteries
KR101419097B1 (en) 2007-06-29 2014-07-16 유미코르 High density lithium cobalt oxide for rechargeable batteries
US8003256B2 (en) 2007-07-20 2011-08-23 Nippon Chemical Industrial Co., Ltd Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
JP2013073829A (en) * 2011-09-28 2013-04-22 Sumitomo Chemical Co Ltd Production method of micro positive electrode material powder for lithium secondary battery
US10854878B2 (en) 2016-08-02 2020-12-01 Samsung Sdi Co., Ltd. Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the same
US10985367B2 (en) 2016-08-02 2021-04-20 Samsung Sdi Co., Ltd. Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode including the lithium cobalt composite oxide
US11621423B2 (en) 2017-11-29 2023-04-04 Lg Energy Solution, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
US10930935B2 (en) 2017-11-30 2021-02-23 Lg Chem, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same

Similar Documents

Publication Publication Date Title
JP4100785B2 (en) LITHIUM COMPOUND OXIDE, PROCESS FOR PRODUCING THE SAME AND LITHIUM ION SECONDARY BATTERY HAVING ANODE USING LITHIUM COMPOUND OXIDE
JP4915488B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5458886B2 (en) Compound powder, its production method and its use in lithium secondary battery
WO2016175268A1 (en) Aluminum-coated nickel cobalt-containing composite hydroxide and method for manufacturing same, cathode active material for nonaqueous electrolyte secondary battery and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP2010092848A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR NONAQUEOUS ELECTROLYTE SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP4673287B2 (en) Spinel type lithium manganese oxide and method for producing the same
JP2005347134A (en) Manufacturing method of positive electrode active material for lithium ion secondary battery
JP2004292264A (en) Trimanganese tetroxide particle, its production method, nonaqueous electrolyte secondary battery, positive electrode active substance therefor and its preparation method
JP4250886B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6479632B2 (en) Method for producing nickel lithium metal composite oxide
JP6479634B2 (en) Method for producing nickel lithium metal composite oxide
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
JPWO2016148096A1 (en) Method for producing lithium metal composite oxide having layer structure
JP5813277B1 (en) Spinel-type lithium cobalt manganese-containing composite oxide
JP2004281253A (en) Cathode active material for nonaqueous system lithium secondary battery, its manufacturing method and nonaqueous system lithium secondary battery using the material
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2004079386A (en) Cobalt oxide for positive electrode active material for nonaqueous electrolyte secondary battery, and its manufacturing method
JP3048352B1 (en) Method for producing lithium manganate
JP2002124258A (en) Lithium manganate particle powder and its manufacturing method
JPH09251854A (en) Manufacture of positive active material for non-aqueous electrolyte secondary battery
JP2003137547A (en) Lithium titanate and its use
KR100261509B1 (en) Lithium composite oxides, producing method thereof, and lithium secondary battery having the same as active material of cathode
JP2005011588A (en) Positive electrode activator for nonaqueous electrolyte secondary battery and its manufacturing method
JPWO2016175310A1 (en) Method for producing 5V-class spinel type lithium manganese-containing composite oxide