JP2003117640A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JP2003117640A
JP2003117640A JP2001314843A JP2001314843A JP2003117640A JP 2003117640 A JP2003117640 A JP 2003117640A JP 2001314843 A JP2001314843 A JP 2001314843A JP 2001314843 A JP2001314843 A JP 2001314843A JP 2003117640 A JP2003117640 A JP 2003117640A
Authority
JP
Japan
Prior art keywords
rem
concentration
containing alloy
steel
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001314843A
Other languages
Japanese (ja)
Other versions
JP3870743B2 (en
Inventor
Yoichi Ito
陽一 伊藤
Yuji Miki
祐司 三木
Hideji Takeuchi
秀次 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001314843A priority Critical patent/JP3870743B2/en
Publication of JP2003117640A publication Critical patent/JP2003117640A/en
Application granted granted Critical
Publication of JP3870743B2 publication Critical patent/JP3870743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for continuously casting a steel with which secondary deoxidized product at the solidified time is positively applied and γgrain in 1/4-1/2 parts of the product thickness can further be made fine and thus a slab having sufficient quality can be supplied as a blank of steel material for large heat input welding. SOLUTION: One or more kinds among REM, REM-containing alloy, Zr and Zr-containing alloy is added into molten steel near the lower part of an immersion nozzle in a mold while pouring the molten steel into the mold from the immersion nozzle. In the case of singly adding REM and/or REM-containing alloy, the REM concentration in the cast product is made to 0.001-0.01%, and in the case of singly adding Zr and/or Zr-containing alloy, the Zr concentration in the cast product is made to 0.001-0.01%, and in the case of compositely adding REM and/or REM-containing alloy and Zr and/or Zr-containing alloy, the total of the REM concentration and the Zr concentration in the cast product is made to 0.001-0.01%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造方法
に関し、特に、鋳片のオーステナイト粒(γ粒)を有効
に微細化させうる鋼の連続鋳造方法に関する。本発明に
おいて、化学成分含有量 (濃度)の単位記号とした%
は、質量%を意味する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for steel, and more particularly to a continuous casting method for steel capable of effectively refining austenite grains (γ grains) of a slab. In the present invention,% as a unit symbol of chemical component content (concentration)
Means% by mass.

【0002】[0002]

【従来の技術】近年、製品品質上の要求仕様の厳格化に
伴い、連続鋳造における微粒子介在物を積極的に有効利
用する技術が進められている。特に低温靭性に関する仕
様が厳格な材料においては、溶接熱影響部の靭性改善の
ためにγ粒を微細にし、破断径路を複雑にすることが有
効な手法の一つとして挙げられている。
2. Description of the Related Art In recent years, with the stricter specifications required for product quality, techniques for positively and effectively utilizing fine particle inclusions in continuous casting have been advanced. Particularly in the case of a material having strict specifications regarding low temperature toughness, it is mentioned as one of the effective methods to make the γ grain fine and to make the fracture path complicated in order to improve the toughness of the weld heat affected zone.

【0003】γ粒微細化の決定因子としては、連続鋳造
後の熱処理−圧延プロセスによる影響も大きいが、溶接
熱影響部のように1400℃以上の高温に曝される箇所にお
いては、粒粗大化を起こさせないために、凝固〜冷却過
程のスラブ段階でのγ粒を微細にすることが極めて重要
な技術となる。これに関して、凝固時に凝固界面に生成
する二次脱酸生成物を活用した技術が数多提案されてお
り、例えば以下のようなものが挙げられる。
As a determinant factor of γ grain refinement, the heat treatment-rolling process after continuous casting has a great influence, but grain coarsening occurs in a portion exposed to a high temperature of 1400 ° C. or higher, such as a welding heat affected zone. In order to prevent the occurrence of γ, it is an extremely important technique to make the γ grains fine in the slab stage of the solidification-cooling process. In this regard, a number of techniques utilizing secondary deoxidation products generated at the solidification interface during solidification have been proposed, and examples thereof include the following.

【0004】特公平5-17300 号公報では、溶存酸素=0.0
20%、Al、Si= それぞれ0.005 %以下の溶鋼中に、Ti=
0.01 〜0.10%を添加し、粒径3μm 以下のTi酸化物(T
iO あるいはTi2O3 )が0.004 〜0.100 %の範囲で存在
する溶接継手熱影響部靭性の優れた鋼材の製造方法につ
いて開示している。特開昭61-238940 号公報では、Ti≦
0.030 %による脱酸により、0.1 〜3.0 μm の粒子5×
104 〜1×106 個/mm3を含有することを特徴とする溶接
熱影響部靱性の優れた鋼の製造方法について開示してい
る。
In Japanese Examined Patent Publication No. 5-17300, dissolved oxygen = 0.0
20%, Al, Si = 0.005% or less in each molten steel, Ti =
0.01 to 0.10% is added, and Ti oxide (T
Disclosed is a method for producing a steel material having excellent toughness in the heat-affected zone of a welded joint in which iO or Ti 2 O 3 ) is present in the range of 0.004 to 0.100%. In Japanese Patent Laid-Open No. 61-238940, Ti ≦
Deoxidation by 0.030%, particles of 0.1-3.0 μm 5 ×
Disclosed is a method for producing a steel having excellent toughness in a weld heat affected zone, which is characterized by containing 10 4 to 1 × 10 6 pieces / mm 3 .

【0005】特開平4-2713号公報では、転炉出鋼された
取鍋内溶鋼に第一脱酸材としてMn、Si合金を投入し、そ
の後第二脱酸材としてTi、Zr、Ca合金をこの順に投入し
て溶鋼中の溶存酸素を50ppm 以下として溶製し、その際
鋼中成分の重量濃度を特定範囲にすることを特徴とする
製鋼工程での脱酸方法が開示されている。特公平5-2770
3 号公報では、C,Si,Mn,P,S,Al,Ti,Zr,N,
O成分を規定した成分系で、Ti+Zr=0.005 〜0.022 %を
満足させることで粒子径0.05〜10μm 、粒子数3×105
〜1×1010個/mm3のTiとZrの複合酸化物を含有させるこ
とにより溶接熱影響部靭性の優れた高張力鋼の製造が可
能となることを開示している。
In Japanese Patent Laid-Open No. 4-2713, Mn and Si alloys are charged as a first deoxidizing material into molten steel in a ladle discharged from a converter, and then Ti, Zr and Ca alloys are used as a second deoxidizing material. Dissolving oxygen in the molten steel to 50 ppm or less to melt the steel in this order, and at that time, the weight concentration of the components in the steel is set to a specific range, a deoxidizing method in the steel manufacturing process is disclosed. Japanese Patent Fair 5-2770
In the third publication, C, Si, Mn, P, S, Al, Ti, Zr, N,
It is a component system in which the O component is specified, and when Ti + Zr = 0.005 to 0.022% is satisfied, the particle diameter is 0.05 to 10 μm and the number of particles is 3 × 10 5.
It is disclosed that it is possible to produce a high-strength steel having excellent weld heat-affected zone toughness by including a composite oxide of Ti and Zr of up to 1 × 10 10 pieces / mm 3 .

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の技術で鋳造されたスラブでは、熱間圧延後、入熱量
500kJ/cm 以上の大入熱溶接を施された場合、製品厚み1
/4 〜1/2 部の溶接部低温靭性を安定して満足させるこ
とが難しかった。そこで、本発明は、凝固時の二次脱酸
生成物を積極的に活用し、製品厚み1/4 〜1/2 部のγ粒
をさらに微細にできて大入熱溶接用鋼材の素材として十
分な品質のスラブを供給し得る鋼の連続鋳造方法を提供
することを目的とする。
However, in the slab cast by the above-mentioned conventional technique, the heat input amount after hot rolling.
Product thickness 1 when subjected to high heat input welding of 500 kJ / cm or more
It was difficult to stably satisfy the low temperature toughness of the welded part of / 4 to 1/2 part. Therefore, the present invention positively utilizes the secondary deoxidation product at the time of solidification to make the γ grains in the 1/4 to 1/2 part of the product thickness even finer as a material for large heat input welding steel materials. An object of the present invention is to provide a continuous casting method for steel capable of supplying a slab of sufficient quality.

【0007】[0007]

【課題を解決するための手段】本発明者らは、前記目的
を達成するためには、鋳片厚み1/4 〜1/2 部に安定して
二次脱酸生成物などの微細介在物あるいは微細析出物を
安定して存在させることが重要であると考え、それを実
現するための手法を実験により鋭意探究した。まず、RE
M ,Zr添加の影響を確認するために、ラボにおいてAr雰
囲気下で誘導加熱炉を用いた溶解実験およびその後の金
型への鋳造実験を行った。溶解実験では30kgの溶鋼をMg
O 坩堝内で溶解し、成分調整および溶存酸素量調整を行
った。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors have found that fine inclusions such as secondary deoxidation products are stably contained in a slab thickness of 1/4 to 1/2 part. Or, it is important to make the fine precipitates exist stably, and the method for realizing it was eagerly investigated by experiments. First, RE
In order to confirm the effect of M and Zr addition, a melting experiment using an induction heating furnace in an atmosphere of Ar and a subsequent casting experiment in a mold were performed in the laboratory. In the melting experiment, 30 kg of molten steel was Mg
It was dissolved in an O crucible, and the components and dissolved oxygen amount were adjusted.

【0008】実験水準として、 実験1:REM またはZr金属を成分調整後の溶鋼に添加し
鋳造した場合、 実験2:鋳造時に金型の上部からREM またはZr金属を吹
き込んだ場合、 の比較を行った。鋳造後、得られた鋼塊断面をピクリン
酸腐食液でマクロエッチングし、そのγ粒径を測定し
た。その結果、以下の知見を得た。
As an experimental level, a comparison is made between Experiment 1: when REM or Zr metal is added to molten steel after composition adjustment and casting, and Experiment 2: when REM or Zr metal is blown from the upper part of the mold during casting. It was After casting, the obtained steel ingot cross section was macro-etched with picric acid corrosive liquid, and the γ grain size was measured. As a result, the following findings were obtained.

【0009】(1) 実験2は実験1に比べ、鋳片厚み方向
1/4 〜1/2 部のγ粒径が小さくかつ鋳片厚み方向のγ粒
径分布も均一である。 (2) 実験2においてREM ,Zr金属をそれぞれ鋳片での含
有量が0.001 〜0.01%となるように添加した場合に、顕
著なγ粒微細化効果が認められる。 (3) 実験2において、REM 、Zrは単体金属の代わりにこ
れらの合金(Si金属などとの合金)を添加しても、同様
の効果が得られる。
(1) Experiment 2 is different from Experiment 1 in the thickness direction of the slab
The γ grain size in the 1/4 to 1/2 part is small and the γ grain size distribution in the thickness direction of the cast piece is uniform. (2) In Experiment 2, when REM and Zr metals were added so that the content of each in the slab was 0.001 to 0.01%, a remarkable γ grain refining effect was observed. (3) In Experiment 2, similar effects can be obtained by adding REM and Zr alloys (alloys with Si metal, etc.) instead of elemental metals.

【0010】(4) REM 、Zr複合添加の場合は、鋳片での
合計含有量が0.001 〜0.01%となるように添加した場合
に、顕著なγ粒微細化効果が認められる。 (5) 前記γ粒微細化効果は、溶鋼中の溶存酸素量が10〜
100ppmの場合、特に顕著である。このラボ実験結果を踏
まえて、例えば図1に示すような実際の連続鋳造機を用
いて鋳造を行う場合について、REM 、Zrの添加方法を検
討し、以下の知見を得た。
(4) In the case of the combined addition of REM and Zr, a remarkable effect of refining γ grains is recognized when added so that the total content in the cast piece is 0.001 to 0.01%. (5) The γ-grain refinement effect is that the amount of dissolved oxygen in molten steel is 10 to
It is particularly remarkable in the case of 100 ppm. Based on the results of this laboratory experiment, for example, when casting was performed using an actual continuous casting machine as shown in FIG. 1, the method of adding REM and Zr was examined, and the following findings were obtained.

【0011】(6) REM 、Zrの添加先を浸漬ノズル下方近
傍の溶鋼とすればラボ実験と同様のγ粒微細化効果があ
る。 (7) 浸漬ノズル下方近傍の溶鋼へのREM 、Zrの添加方法
としては、これらの単体金属粉末またはこれらとSi等と
の合金粉末を、例えば図2に示すように、浸漬ノズル5
の側部に設けた添加用孔13から、搬送ガス(Ar等の不活
性ガス)に乗せて吹き込む方法、あるいは、前記粉末を
薄い鉄板で被覆した小径ワイヤを前記添加用孔13から挿
入する方法などが好ましい。
(6) If REM and Zr are added to molten steel near the lower part of the dipping nozzle, the same γ grain refinement effect as in the laboratory experiment can be obtained. (7) As a method of adding REM and Zr to the molten steel near the lower part of the immersion nozzle, as shown in FIG.
A method of blowing the carrier gas (inert gas such as Ar) on the carrier gas through an addition hole 13 provided on the side, or a method of inserting a small-diameter wire coated with a thin iron plate from the addition hole 13 Are preferred.

【0012】本発明は、上記の知見に基づいてなされた
ものであり、その要旨は、以下のとおりである。 〔1〕鋼の連続鋳造方法において、溶鋼を浸漬ノズルか
ら鋳型内に注湯しながら、REM 、REM 含有合金、Zr、Zr
含有合金の1種または2種以上を鋳型内の浸漬ノズル下
方近傍の溶鋼に添加し、REM および/またはREM 含有合
金単独添加の場合は鋳造製品のREM 濃度を0.001 〜0.01
%とし、Zrおよび/またはZr含有合金単独添加の場合は
鋳造製品のZr濃度を0.001 〜0.01%とし、REM および/
またはREM 含有合金ならびにZrおよび/またはZr含有合
金複合添加の場合は鋳造製品のREM 濃度とZr濃度との合
計を0.001 〜0.01%とすることを特徴とする鋼の連続鋳
造方法。
The present invention has been made on the basis of the above findings, and the summary thereof is as follows. [1] In the continuous casting method of steel, while pouring molten steel into the mold from the immersion nozzle, REM, REM containing alloy, Zr, Zr
If one or more of the contained alloys is added to the molten steel near the lower part of the immersion nozzle in the mold, and if REM and / or REM-containing alloy is added alone, the REM concentration of the cast product is 0.001 to 0.01.
%, And when Zr and / or Zr-containing alloy is added alone, the Zr concentration of the cast product is 0.001 to 0.01%, and REM and / or
Alternatively, in the case of adding REM-containing alloy and Zr and / or Zr-containing alloy composite, a method for continuous casting of steel, characterized in that the total of REM concentration and Zr concentration of the cast product is 0.001 to 0.01%.

【0013】〔2〕前記浸漬ノズル下方近傍の溶鋼が溶
存酸素10〜100ppmを含有する溶鋼であることを特徴とす
る〔1〕記載の鋼の連続鋳造方法。
[2] The continuous casting method for steel according to [1], characterized in that the molten steel near the lower part of the immersion nozzle is a molten steel containing 10 to 100 ppm of dissolved oxygen.

【0014】[0014]

【発明の実施の形態】本発明では、例えば図1に示した
ような連続鋳造機を用いて行う鋼の連続鋳造方法におい
て、溶鋼2を浸漬ノズル5から鋳型6内に注湯しなが
ら、REM 、REM含有合金、Zr、Zr含有合金の1種または
2種以上(所要添加物と呼ぶ)を鋳型内の浸漬ノズル下
方近傍の溶鋼に添加する。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, for example, in a continuous casting method of steel using a continuous casting machine as shown in FIG. 1, while pouring molten steel 2 from dipping nozzle 5 into mold 6, REM , REM-containing alloy, Zr, and one or more of Zr-containing alloys (referred to as required additives) are added to the molten steel near the lower part of the immersion nozzle in the mold.

【0015】所要添加物を、REM 、REM 含有合金、Zr、
Zr含有合金の1種または2種以上としたのは、溶鋼中に
REM(O,S)および/またはZr(O,S) を生成させ、その微細
分散により鋼の凝固・冷却過程で生じるγ粒の核生成サ
イトを増加せしめて、γ粒の微細化を図らんがためであ
る。REM(O,S)、Zr(O,S) は、Al、Ti、Si等の酸硫化物に
比して比重が大きく、生成後の浮上性が低く、溶鋼中に
残存して凝固界面に定着しやすいことから、本発明の目
的に最もよく適合する。
The required additives are REM, REM-containing alloy, Zr,
One or more Zr-containing alloys are used in molten steel.
REM (O, S) and / or Zr (O, S) are generated, and the fine dispersion of REM (O, S) increases the nucleation sites of γ grains generated during the solidification / cooling process of steel, and does not aim to refine the γ grains. It is because of REM (O, S) and Zr (O, S) have a larger specific gravity than oxysulfides such as Al, Ti, and Si, and have low floatability after formation, and remain in molten steel to form solidification interfaces. It is most suitable for the purposes of the present invention because it is easy to settle.

【0016】所要添加物の添加箇所は、浸漬ノズル下方
近傍とする。これは、浸漬ノズル下端位置を起点として
鋳込み方向に沿った行程距離で表して、0〜 600mmの範
囲である。この範囲を狙って添加することで、鋳片1/4
〜1/2 厚相当部の凝固界面(デンドライト樹間)に微細
なREM(O,S)および/またはZr(O,S) が安定定着し、十分
なγ粒微細化効果が得られる。従来一般に行われている
ような、取鍋内溶鋼へ添加する方法では、所要添加物
が、添加直後に溶鋼中の溶存酸素と反応して溶鋼中に粗
大な介在物を生成してしまい、微細なREM(O,S)および/
またはZr(O,S) が凝固界面への定着以前に消尽してしま
う。なお、前記添加箇所は、浸漬ノズル下方近傍のなか
でも好ましくは 300〜 600mmの範囲である。
The point of addition of the required additive is near the lower part of the immersion nozzle. This is represented by a stroke distance along the casting direction starting from the lower end position of the immersion nozzle and is in the range of 0 to 600 mm. By adding in this range, the slab 1/4
Fine REM (O, S) and / or Zr (O, S) are stably fixed on the solidification interface (between dendrite trees) in a thickness equivalent to ~ 1/2 thickness, and a sufficient γ grain refinement effect is obtained. In the method of adding to the molten steel in the ladle, which is generally performed in the past, the required additive reacts with the dissolved oxygen in the molten steel immediately after the addition to form coarse inclusions in the molten steel, and REM (O, S) and /
Or Zr (O, S) is exhausted before it is fixed on the solidification interface. The addition location is preferably in the range of 300 to 600 mm in the vicinity of the lower part of the immersion nozzle.

【0017】前記所要添加物を前記添加箇所の溶鋼へ正
確に添加するには、該添加物の粉末(好適粒径:0.5 〜
2.0mm 程度)を、例えば図2に示すように、浸漬ノズル
5の側部に設けた添加用孔13から、搬送ガス(Ar等の不
活性ガス)流に乗せて吹き込むか、あるいは、前記粉末
を薄い鉄板(好適厚さ:0.2 〜 0.6mm程度)で被覆した
ワイヤ(好適直径:5〜10mm程度)を前記添加用孔13か
ら挿入するなどの方法によるのが好ましい。なかでも所
要添加物をワイヤで被覆して挿入する方法による方が、
添加箇所に到達する前に所要添加物が溶存酸素で酸化さ
れるのを有効に防止できて添加歩留が向上するので、よ
り好ましい。
In order to accurately add the above-mentioned required additives to the molten steel at the above-mentioned addition points, powders of the above-mentioned additives (preferred particle size: 0.5-
2.0 mm), for example, as shown in FIG. 2, through an addition hole 13 provided on the side of the dipping nozzle 5 while being carried on a carrier gas (inert gas such as Ar) flow, or by the above-mentioned powder. It is preferable to insert a wire (suitable diameter: about 5 to 10 mm) coated with a thin iron plate (suitable thickness: about 0.2 to 0.6 mm) from the addition hole 13. Among them, the method of coating the required additives with a wire and inserting
It is more preferable because the required additive can be effectively prevented from being oxidized by the dissolved oxygen before reaching the adding point and the adding yield is improved.

【0018】所要添加物の添加量は、鋳造製品のREM 濃
度とZr濃度の合計(ただし、REM および/またはREM 含
有合金単独添加の場合はZr濃度=ε(:分析誤差以下の
微小値)、Zrおよび/またはZr含有合金単独添加の場合
はREM 濃度=εとする。)が0.001 〜0.01%となるよう
に設定する。鋳造製品のREM 濃度とZr濃度の合計が0.00
1 %未満となるような添加量としたのでは、REM(O,S)お
よび/またはZr(O,S)の生成量が不足してγ粒微細化効
果が得られず、一方、同合計が0.01%を超えるような添
加量としたのでは、凝固界面のみならず溶鋼中に粗大な
REM(O,S)および/またはZr(O,S) 介在物が現出し、クラ
スター化して鋳片内質の悪化を招来するからである。
The addition amount of the required additive is the sum of the REM concentration and the Zr concentration of the cast product (however, in the case of adding REM and / or REM-containing alloy alone, Zr concentration = ε (: a minute value less than the analysis error), When Zr and / or Zr-containing alloy is added alone, REM concentration = ε) is set to 0.001 to 0.01%. The sum of REM and Zr concentrations of cast products is 0.00
If the amount added is less than 1%, the amount of REM (O, S) and / or Zr (O, S) produced is insufficient, and the γ-grain refining effect cannot be obtained. If the added amount exceeds 0.01%, not only the solidification interface but also the molten steel will be coarse.
This is because REM (O, S) and / or Zr (O, S) inclusions appear and cluster, leading to deterioration of the internal quality of the slab.

【0019】また、所要添加物の添加は、鋳込み方向で
のREM(O,S)および/またはZr(O,S)の定着量を一様にす
る観点から、連続的に行うことが好ましい。また、REM
(O,S)および/またはZr(O,S) の微粒子をさらに安定的
に生成させる観点から、所要添加物添加時の鋳型内溶鋼
(浸漬ノズル下方近傍の溶鋼)は、溶存酸素濃度が10〜
100ppmに調整されたものであることが好ましい。
The addition of the required additives is preferably carried out continuously from the viewpoint of making the fixing amount of REM (O, S) and / or Zr (O, S) in the casting direction uniform. Also, REM
From the viewpoint of more stable generation of fine particles of (O, S) and / or Zr (O, S), the molten steel in the mold (the molten steel near the lower part of the immersion nozzle) when the required additives are added has a dissolved oxygen concentration of 10 ~
It is preferably adjusted to 100 ppm.

【0020】[0020]

【実施例】容量約300tonの転炉でフルに溶製し、Si、Mn
によって予備脱酸した溶鋼をRH処理後、図1に示した
連続鋳造機にて鋳造速度0.85m/minで鋳造し、鋳片厚み
215mm ×鋳片幅2150mmのスラブとする操業において、本
発明を以下のような種々の場合について実施した。 (実施例1)タンディッシュ内でAl、Ti添加により溶存
酸素濃度=50ppm に制御された後鋳型へ注入された溶鋼
に対し、図2に示した添加用孔から、鋳片REM 濃度=0.
005 %相当量のREM 金属粉粒体(粒径0.5 〜2.0mm )を
Arガス流(流量5.0 L/min )搬送により0.8kg/min の速
さで浸漬ノズル下方近傍に連続供給した場合。 (実施例2)実施例1において、鋳片REM 濃度=0.005
%相当量のREM 金属に代えて、鋳片Zr濃度=0.005 %相
当量のZr金属とした場合。 (実施例3)実施例1において、Arガス流搬送に代え
て、シースワイヤ送給(REM 金属粉粒体を0.2mm 厚の鉄
板でくるんでワイヤ(線径6mm)となしたものを送り込
むこと)とした場合。 (実施例4)タンディッシュ内でAl、Ti添加により溶存
酸素濃度=50ppm に制御された後鋳型へ注入された溶鋼
に対し、図2に示した添加用孔から、鋳片REM 濃度=0.
003 %相当量のREM 金属粉粒体(粒径0.5 〜2.0mm )お
よび鋳片Zr濃度=0.002 %相当量のZr-Si 合金粉粒体
(粒径0.5 〜2.0mm )をArガス流(流量5.0L/min )搬
送により0.8kg/min の速さで浸漬ノズル下方近傍に連続
供給した場合。 (実施例5)実施例1において、溶存酸素濃度=50ppm
に代えて溶存酸素濃度=5ppm とした場合。 (実施例6)実施例2において、溶存酸素濃度=50ppm
に代えて溶存酸素濃度=150ppmとした場合。
[Example] Si and Mn were fully melted in a converter with a capacity of about 300 tons.
The molten steel pre-deoxidized by RH was subjected to RH treatment and then cast at a casting speed of 0.85 m / min with the continuous casting machine shown in Fig. 1 to obtain a slab thickness.
The present invention was carried out in the following various cases in the operation of a slab having a width of 215 mm and a slab width of 2150 mm. (Example 1) For molten steel injected into the mold after the dissolved oxygen concentration was controlled to 50 ppm by adding Al and Ti in the tundish, the REM concentration of cast slab = 0.
005% equivalent amount of REM metal powder (particle size 0.5-2.0mm)
When continuously supplied near the bottom of the immersion nozzle at a speed of 0.8 kg / min by conveying Ar gas flow (flow rate 5.0 L / min). (Example 2) In Example 1, the REM concentration of the cast slab = 0.005
% When using slab Zr concentration = 0.005% equivalent Zr metal instead of equivalent REM metal. (Embodiment 3) In Embodiment 1, instead of Ar gas flow conveyance, sheath wire feeding (feeding wire (wire diameter 6 mm) wrapping REM metal powder with a 0.2 mm thick iron plate) And when. (Example 4) For molten steel injected into the mold after the dissolved oxygen concentration was controlled to 50 ppm by adding Al and Ti in the tundish, the REM concentration of cast slab was 0.
003% equivalent REM metal powder (particle size 0.5 to 2.0 mm) and slab Zr concentration = 0.002% equivalent Zr-Si alloy powder (particle size 0.5 to 2.0 mm) in Ar gas flow (flow rate) 5.0L / min) When continuously fed near the bottom of the dipping nozzle at a speed of 0.8kg / min. (Example 5) In Example 1, the dissolved oxygen concentration = 50 ppm
When the dissolved oxygen concentration is 5 ppm instead of. (Example 6) In Example 2, the dissolved oxygen concentration = 50 ppm
When the dissolved oxygen concentration is 150 ppm instead of.

【0021】また、比較のため、次のような場合につい
ても実施した。 (比較例1)Si、Mn脱酸実施後、金属成分添加なしとし
た場合。 (比較例2)Si、Mn脱酸実施後、溶存酸素を50ppm に調
整し、RH脱ガス時に鋳片REM 濃度=0.005 %相当量の
REM 金属粉粒体を添加した場合。 (比較例3)Si、Mn脱酸実施後、溶存酸素を50ppm に調
整し、RH脱ガス時に鋳片Zr濃度=0.005 %相当量のZi
金属粉粒体を添加した場合。
For comparison, the following cases were also carried out. (Comparative Example 1) When no metal component is added after Si and Mn deoxidation. (Comparative Example 2) After deoxidizing Si and Mn, the dissolved oxygen was adjusted to 50 ppm, and the REM concentration of the slab was 0.005% when the RH was degassed.
When REM metal powder is added. (Comparative Example 3) After performing Si and Mn deoxidation, the dissolved oxygen was adjusted to 50 ppm, and during RH degassing, the Zr concentration of the slab was 0.005% equivalent to Zi.
When metal powder is added.

【0022】各例における鋳片の化学組成を表1に示
す。これらの鋳片の厚み方向の表層部、1/4 厚部、1/2
厚部から採取したサンプル断面をピクリン酸腐食液でマ
クロエッチングしてγ粒界を現出させ、画像解析装置に
よりγ粒径を測定した。その結果を表1に示す。なお、
表1には、比較例1(Si、Mn脱酸のみ)の1/4 厚部のγ
粒径を1とし、他例各部のγ粒径を比較例1の1/4 厚部
のγ粒径との相対比で表したγ粒径指数を示した。
Table 1 shows the chemical composition of the cast pieces in each example. Surface layer in the thickness direction of these slabs, 1/4 thickness, 1/2
A sample cross section taken from the thick portion was macro-etched with picric acid corrosive liquid to reveal γ grain boundaries, and the γ grain size was measured by an image analyzer. The results are shown in Table 1. In addition,
Table 1 shows γ of 1/4 thick part of Comparative Example 1 (only Si and Mn deoxidized).
The particle size was set to 1, and the γ particle size index was shown, in which the γ particle size of each part of the other example was expressed as a relative ratio to the γ particle size of the 1/4 thick part of Comparative Example 1.

【0023】同表より、比較例2,3では1/4 厚部およ
び1/2 厚部のγ粒径が比較例1の1/2 程度までの低減に
とどまったのに対し、実施例では、さらにその1/2 程度
近くあるいはそれ以下まで低減し、それぞれ1/4〜1/2
厚部のγ粒が自表層部のそれと同程度近くまで微細化さ
れたことが明らかである。また、各例の鋳片を圧延して
鋼板とした製品の1/4 厚部からJIS Z 3112に準拠したシ
ャルピー試験片を採取し、入熱量 500kJ/cm の大入熱溶
接に相当する800-500 ℃間冷却時間200 秒の条件で再現
熱サイクル試験を行った。溶接ボンド部相当のピーク温
度1400℃で処理した試験片の vTrs値は、表1に示すと
おりであり、本発明により、低温靭性に優れた大入熱用
鋼に適合しうる鋼スラブが得られることが示された。
From the table, in Comparative Examples 2 and 3, the γ grain size in the 1/4 thick portion and the 1/2 thick portion was reduced to about 1/2 of that in Comparative Example 1, while in the Examples. , And it is reduced to about 1/2 or less, 1/4 to 1/2 respectively.
It is clear that the γ grains in the thick portion are refined to a degree close to that of the surface layer portion. In addition, a Charpy test piece conforming to JIS Z 3112 was taken from the 1/4 thick part of the product obtained by rolling the cast piece of each example into a steel plate, and 800-equivalent to large heat input welding with a heat input of 500 kJ / cm. A simulated thermal cycle test was conducted under the condition of a cooling time of 500 ℃ and 200 seconds. The vTrs value of the test piece treated at the peak temperature of 1400 ° C. corresponding to the weld bond is shown in Table 1. According to the present invention, a steel slab that is excellent in low temperature toughness and can be applied to high heat input steel can be obtained. Was shown.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明によれば、従来困難であった鋳片
1/4 〜1/2 厚部におけるγ粒微細化の実現が可能とな
り、母材および溶接熱影響部の低温靭性要求仕様が厳格
な鋼板を安定製造できるようになるという優れた効果を
奏する。
EFFECTS OF THE INVENTION According to the present invention, a cast piece which has been difficult in the past
It is possible to realize γ grain refinement in the 1/4 to 1/2 thick part, and it is possible to stably manufacture a steel plate having strict low temperature toughness specifications of the base metal and the weld heat affected zone.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に適した連続鋳造機の例を示す模
式図である。
FIG. 1 is a schematic view showing an example of a continuous casting machine suitable for carrying out the present invention.

【図2】所要添加物の添加方法の例を示す模式図であ
る。
FIG. 2 is a schematic diagram showing an example of a method for adding required additives.

【符号の説明】 1 取鍋 2 溶鋼 3 ロングノズル 4 タンディッシュ 5 浸漬ノズル 6 鋳型 7 凝固シェル 8 ガイドロール 9 ピンチロール 10 鋳片 11 モールドパウダ 12 溶鋼吐出孔 13 添加用孔 14 所要添加物 15 高REM および/またはZr濃度域[Explanation of symbols] 1 ladle 2 Molten steel 3 long nozzle 4 tundish 5 immersion nozzle 6 molds 7 solidification shell 8 guide rolls 9 pinch rolls 10 slab 11 Mold powder 12 Molten steel discharge hole 13 Addition hole 14 Required additives 15 High REM and / or Zr concentration range

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 秀次 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4E004 MB14 MB20 NC01    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuji Takeuchi             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. F-term (reference) 4E004 MB14 MB20 NC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼の連続鋳造方法において、溶鋼を浸漬
ノズルから鋳型内に注湯しながら、REM 、REM 含有合
金、Zr、Zr含有合金の1種または2種以上を鋳型内の浸
漬ノズル下方近傍の溶鋼に添加し、REM および/または
REM 含有合金単独添加の場合は鋳造製品のREM 濃度を0.
001 〜0.01%とし、Zrおよび/またはZr含有合金単独添
加の場合は鋳造製品のZr濃度を0.001 〜0.01%とし、RE
M および/またはREM 含有合金ならびにZrおよび/また
はZr含有合金複合添加の場合は鋳造製品のREM 濃度とZr
濃度との合計を0.001 〜0.01%とすることを特徴とする
鋼の連続鋳造方法。
1. In a continuous casting method for steel, one or more of REM, REM-containing alloy, Zr, and Zr-containing alloy is poured into a mold while pouring molten steel into the mold through a dipping nozzle. Add to nearby molten steel and remove REM and / or
When adding REM-containing alloy alone, the REM concentration of the cast product should be 0.
001 to 0.01%, and when Zr and / or Zr-containing alloy is added alone, the Zr concentration of the cast product is 0.001 to 0.01%.
When M and / or REM containing alloy and Zr and / or Zr containing alloy composite addition, REM concentration and Zr of cast product
A method for continuous casting of steel, characterized in that the total of the concentration and the content is 0.001 to 0.01%.
【請求項2】 前記浸漬ノズル下方近傍の溶鋼が溶存酸
素10〜100ppmを含有する溶鋼であることを特徴とする請
求項1記載の鋼の連続鋳造方法。
2. The continuous casting method for steel according to claim 1, wherein the molten steel near the lower part of the immersion nozzle is a molten steel containing dissolved oxygen of 10 to 100 ppm.
JP2001314843A 2001-10-12 2001-10-12 Steel continuous casting method Expired - Fee Related JP3870743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314843A JP3870743B2 (en) 2001-10-12 2001-10-12 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314843A JP3870743B2 (en) 2001-10-12 2001-10-12 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2003117640A true JP2003117640A (en) 2003-04-23
JP3870743B2 JP3870743B2 (en) 2007-01-24

Family

ID=19133095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314843A Expired - Fee Related JP3870743B2 (en) 2001-10-12 2001-10-12 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP3870743B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451462A (en) * 2020-04-09 2020-07-28 苏州大学 Method for refining solidification structure of continuous casting billet by utilizing submerged nozzle to spray magnesium powder
WO2021203851A1 (en) * 2020-04-09 2021-10-14 苏州大学 Method for magnesium and calcium treatments of molten steel by spraying powder using elongated nozzle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111451462A (en) * 2020-04-09 2020-07-28 苏州大学 Method for refining solidification structure of continuous casting billet by utilizing submerged nozzle to spray magnesium powder
CN111451462B (en) * 2020-04-09 2021-09-28 苏州大学 Method for refining solidification structure of continuous casting billet by utilizing submerged nozzle to spray magnesium powder
WO2021203851A1 (en) * 2020-04-09 2021-10-14 苏州大学 Method for magnesium and calcium treatments of molten steel by spraying powder using elongated nozzle

Also Published As

Publication number Publication date
JP3870743B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
KR20100025003A (en) Steel for steel pipes excellent in sour resistance and process for manufacturing the same
JP5277556B2 (en) Method for producing Ti-containing ultra-low carbon steel and method for producing Ti-containing ultra-low carbon steel slab
JP5589516B2 (en) Steel for thick plate
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
JP4858295B2 (en) Continuous casting method of high strength steel with finely dispersed precipitates and slab for high strength steel
JP4323166B2 (en) Metallurgical products of carbon steel especially for the purpose of galvanization, and methods for producing the same
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
CN111032248B (en) Method for continuously casting steel and method for manufacturing thin steel plate
JP2008264802A (en) Method of continuous casting
JP2008274347A (en) Method for refining nickel-based alloy and continuous casting method therefor
JP4569458B2 (en) Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP2003117640A (en) Method for continuously casting steel
JP4475166B2 (en) Method for continuous casting of molten metal
JP3124469B2 (en) Method for producing slabs with few inclusion defects
JP7031634B2 (en) Manufacturing method of sour resistant steel
JP4227478B2 (en) Low carbon steel slab manufacturing method
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
RU2782193C1 (en) Method for smelting khn33kv alloy
JP3631629B2 (en) Mild steel for strips and its manufacturing method
JPH08238544A (en) Production of steel excellent in toughness at welding heat affected zone
JP6728933B2 (en) Continuous casting method for molten steel
JP3474451B2 (en) Manufacturing method of continuous cast billet of mild steel
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
JP2001252747A (en) Method for treating molten steel excellent in quality characteristic
JPH10296409A (en) Manufacture of continuously cast slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Effective date: 20050214

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A131 Notification of reasons for refusal

Effective date: 20060808

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060926

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees