JP2003116366A - System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert) - Google Patents

System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert)

Info

Publication number
JP2003116366A
JP2003116366A JP2001363436A JP2001363436A JP2003116366A JP 2003116366 A JP2003116366 A JP 2003116366A JP 2001363436 A JP2001363436 A JP 2001363436A JP 2001363436 A JP2001363436 A JP 2001363436A JP 2003116366 A JP2003116366 A JP 2003116366A
Authority
JP
Japan
Prior art keywords
desert
greenhouse
solar cells
agriculture
walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001363436A
Other languages
Japanese (ja)
Inventor
Shoji Aoki
祥二 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001363436A priority Critical patent/JP2003116366A/en
Publication of JP2003116366A publication Critical patent/JP2003116366A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping

Abstract

PROBLEM TO BE SOLVED: To solve a problem that to carry out agriculture and to carry out a photovoltaic power generation have separately been taken into consideration and the cost performance has, therefore, been poor. SOLUTION: Water is collected and base boards for attaching solar cells are provided by making a green house (cool house) in a desert.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】砂漠での農業と太陽光発電と
を両立させる。 【0002】 【従来の技術】従来、砂漠で点適農法で少量の水で農業
が行なえることは知られていたが、結露による水の獲得
は考えていなかった。又その為の温室の屋根及び壁面が
太陽電池の貼り付ける基盤になることは気付かれていな
かった。 【0003】 【発明が解決しようとする課題】砂漠での点適農法と太
陽光発電は別々に考えられていた。温室(冷室)を導入
することにより2つの事業が両立する。コストパフォー
マンスが良くなる。 【0004】 【問題を解決するための手段】農業も水、太陽光発電の
電力を水素に置換して資源とするのも水。その水を温室
を作ることにより、雨水をためるのと結露による水を集
めることにより解決。又、太陽電池を貼る基盤としても
温室を使い、太陽電池の密度により、作物の最適条件を
作り出す。 【0005】 【発明の実施の形態】砂漠の大平原に屋根・壁面に太陽
電池を貼り付けた無数の温室(冷室)が並び、近くに水
を電気分解して水素を獲得する工場が立ち、そこから消
費地迄パイプラインが伸びる。 【0006】 【実施例】温室(冷室)では農業が行われ、工場では水
素製造が行なわれて、砂漠に産業を持たらす。 【0007】 【発明の効果】途上国の食糧増産に役立ち、先進国では
水素時代の到来を持たらす。それを数字を交えて説明す
るとこうなる。砂漠といっても年200〜300mm程
度の雨量はあるものである。これを大地に浸み込ませず
に温室の屋根と壁面を使って集め、且つ温室の内外の温
度差を利用した結露を集めると(砂漠では大地からの水
の蒸発量が年間2000mmになるような個所がかなり
ある。)1晩で1m当り1lの水を集めることが出来
ると云われている。これを年間量にすると、365mm
である。(これは蒸発量2000mmの約18%であ
る。) 即ち、この365mm+降雨量200mm=565mm
が砂漠で水として確保できる量である。これを1万m平
方での確保水量にすると、 10,000m×10,000m×0.565m=5千
6百50万トン の水を確保できる。即ち、この水を利用して砂漠で点適
農法を行い、且つ太陽電池の電力でこの水を電気分解し
て水素を獲得する。それでは、この1万m平方の電力量
を出して見よう。太陽電池10mで約1200Wを発
電するから、 そして、実際には1万m平方の6割が太陽電池面積とす
ると、 1,200万kw/H×0.6=720万kw/H の発電量となる。これは原発1基の発電量の数倍の発電
量であり十分産業として成り立つ。そして、水素に置換
して管送すれば無公害発電燃料として、又水素自動車の
燃料として重大な役目を果す。
Description: BACKGROUND OF THE INVENTION [0001] The present invention relates to agriculture in the desert and solar power generation. Conventionally, it has been known that agriculture can be carried out in a desert by a small amount of water by a suitable farming method, but no consideration has been given to obtaining water by condensation. Also, it has not been noticed that the roof and walls of the greenhouse for this purpose will be the base on which the solar cells are to be attached. [0003] The suitable farming in the desert and the photovoltaic power generation were considered separately. By introducing a greenhouse (cold room), the two businesses are compatible. Cost performance improves. Means for solving the problem Water is used for agriculture, and water is used for replacing solar power by hydrogen. The solution is to create a greenhouse, collect rainwater and collect dew condensation. A greenhouse is also used as a base for attaching solar cells, and the optimum conditions for crops are created based on the density of the solar cells. DESCRIPTION OF THE PREFERRED EMBODIMENTS A myriad of greenhouses (cooling rooms) with solar cells stuck on the roofs and walls are lined up on a desert large plain, and a nearby factory is established for electrolyzing water to obtain hydrogen. The pipeline extends from there to the consumption area. DESCRIPTION OF THE PREFERRED EMBODIMENTS Agriculture is carried out in a greenhouse (cold room), hydrogen is produced in a factory, and the desert has an industry. [0007] The present invention is useful for increasing food production in developing countries, and brings the coming of the hydrogen age in developed countries. This is explained with numbers. Deserts have a rainfall of about 200 to 300 mm per year. Collecting this using the greenhouse roof and walls without infiltrating it into the ground, and collecting dew condensation using the temperature difference between the inside and outside of the greenhouse (in the desert, the evaporation of water from the ground will be 2000 mm per year) a point is pretty.) is to collect the water of 1m 2 per 1l in one night is said to be. If this is the annual amount, 365mm
It is. (This is about 18% of the evaporation amount of 2000 mm.) That is, this 365 mm + rainfall amount 200 mm = 565 mm
Is the amount that can be secured as water in the desert. If this is the amount of water to be secured in a 10,000 m square, 10,000 mx 10,000 mx 0.565 m = 56 million tons of water can be secured. That is, the water is used to perform a suitable farming method in a desert, and the water is electrolyzed with the power of a solar cell to obtain hydrogen. Then, let's give this 10,000m2 of power. Because to generate electricity about 1200W solar cells 10m 2, If the solar cell area is actually 60% of the 10,000 m square, the power generation amount is 12 million kW / H × 0.6 = 7.2 million kw / H. This is several times the amount of power generated by one nuclear power plant, and is sufficiently industrial. If it is replaced with hydrogen and sent by pipe, it will play an important role as a non-polluting power generation fuel and as a fuel for hydrogen vehicles.

【図面の簡単な説明】 【図1】本発明の側面図である。 (土台、柱は省略) 【符号の説明】 温室 内壁に出来た結露 太陽電池の落下方向[Brief description of the drawings] FIG. 1 is a side view of the present invention. (Base and pillar are omitted) [Explanation of symbols]   greenhouse   Condensation formed on the inner wall   Solar cell falling direction

Claims (1)

【特許請求の範囲】 【請求項1】砂漠に日本の温室(砂漠では昼は冷室、夜
は温室)を作り、この中で農業をし且つ屋根及び壁面の
外面には太陽電池を取付けて電力を獲得し、又雨水を蓄
え、更に屋根及び壁面の内側では温室の内外の温度差を
利用した結露による水適を集めて点適農業を行い、且つ
屋根及び壁に貼り付ける太陽電池の密度を利用して温室
(冷室)の中の温度と太陽光を調節し、更にこの水の1
部を太陽電池の電力で電気分解して、水素資源を獲得
し、パイプラインで消費地迄管送する2事業の複合経営
の為のシステム構成。もちろん地下水も利用する。
Claims: 1. A Japanese greenhouse (a cold room during the day in the desert and a greenhouse at night) in the desert, where farming is performed and solar cells are mounted on the roof and outer surfaces of the walls. Obtain electricity, store rainwater, and collect water in the roof and walls by condensation using the temperature difference between the inside and outside of the greenhouse to perform point farming, and the density of solar cells attached to the roof and walls The temperature and sunlight in the greenhouse (cold room) are adjusted using
A system configuration for the combined management of the two businesses in which the department is electrolyzed with the power of solar cells to obtain hydrogen resources and send it to the consumption area by pipeline. Of course, groundwater is also used.
JP2001363436A 2001-10-15 2001-10-15 System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert) Pending JP2003116366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001363436A JP2003116366A (en) 2001-10-15 2001-10-15 System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001363436A JP2003116366A (en) 2001-10-15 2001-10-15 System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert)

Publications (1)

Publication Number Publication Date
JP2003116366A true JP2003116366A (en) 2003-04-22

Family

ID=19173774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001363436A Pending JP2003116366A (en) 2001-10-15 2001-10-15 System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert)

Country Status (1)

Country Link
JP (1) JP2003116366A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1026241C2 (en) * 2004-05-19 2005-11-22 Markus Cornelis Maria Van Veen Greenhouse, as in a domestic garden, comprises support structure and roof with ridges, barn and panels extending between ridge and support structure
US20110005128A1 (en) * 2009-07-10 2011-01-13 Lite-On Green Technologies, Inc. Solar energy greenhouse
GB2472041A (en) * 2009-07-22 2011-01-26 Questor Group Ltd C Greenhouse having a system of watering by collecting condensate
CN103270914A (en) * 2013-06-21 2013-09-04 常州市亚美电气制造有限公司 Agricultural greenhouse combined with tower-type concentrating solar thermal energy-storage generating station
CN103749206A (en) * 2013-12-26 2014-04-30 贵州绿卡能科技实业有限公司 Solar energy nursery room
JP2017526358A (en) * 2014-08-26 2017-09-14 アルハッサン アルクハズラジ,サイード Solar distillation system and associated solar driven irrigation system
CN107318520A (en) * 2017-07-05 2017-11-07 佛山杰致信息科技有限公司 Photovoltaic agricultural greenhouse
CN110720383A (en) * 2019-10-17 2020-01-24 南昌大学 Environment-friendly water conservancy device capable of achieving lifting of solar photovoltaic panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1026241C2 (en) * 2004-05-19 2005-11-22 Markus Cornelis Maria Van Veen Greenhouse, as in a domestic garden, comprises support structure and roof with ridges, barn and panels extending between ridge and support structure
US20110005128A1 (en) * 2009-07-10 2011-01-13 Lite-On Green Technologies, Inc. Solar energy greenhouse
GB2472041A (en) * 2009-07-22 2011-01-26 Questor Group Ltd C Greenhouse having a system of watering by collecting condensate
CN103270914A (en) * 2013-06-21 2013-09-04 常州市亚美电气制造有限公司 Agricultural greenhouse combined with tower-type concentrating solar thermal energy-storage generating station
CN103749206A (en) * 2013-12-26 2014-04-30 贵州绿卡能科技实业有限公司 Solar energy nursery room
JP2017526358A (en) * 2014-08-26 2017-09-14 アルハッサン アルクハズラジ,サイード Solar distillation system and associated solar driven irrigation system
CN107318520A (en) * 2017-07-05 2017-11-07 佛山杰致信息科技有限公司 Photovoltaic agricultural greenhouse
CN110720383A (en) * 2019-10-17 2020-01-24 南昌大学 Environment-friendly water conservancy device capable of achieving lifting of solar photovoltaic panel

Similar Documents

Publication Publication Date Title
Mahmoudi et al. Weather data and analysis of hybrid photovoltaic–wind power generation systems adapted to a seawater greenhouse desalination unit designed for arid coastal countries
Qiblawey et al. Solar thermal desalination technologies
Philibert The present and future use of solar thermal energy as a primary source of energy
Angappan et al. An extensive review of performance enhancement techniques for pyramid solar still for solar thermal applications
US4244189A (en) System for the multipurpose utilization of solar energy
CN2630515Y (en) Chimney type solar generating apparatus
JP2003116366A (en) System assembly of multiple management for agriculture and acquiring hydrogen resource (in desert)
Velmurugan et al. A review of heat batteries based PV module cooling—case studies on performance enhancement of large-scale solar PV system
CN101147456A (en) Automatic circulating multifunctional comprehensive application system
Suraparaju et al. A mini state of art survey on photovoltaic/thermal desalination systems
Singh Performance evaluation of a integrated single slope solar still with solar water heater
CN202990011U (en) Weatherproof multi-way fresh water collecting device
Kedar et al. Design and analysis of solar desalination system using compound parabolic concentrator
CN1331765C (en) Comprehensive system for preparing fresh water and hydraelectric generation by solar energy chimney indirect condensing heat-exchange
US20140338657A1 (en) Flat termo-solar collector and manufacturing process
Rajesh et al. Hybrid thermal desalination systems for sustainable development–A critical review
CN207622190U (en) A kind of direct-expansion-type heating system and air-conditioning for air-conditioning
Ayub et al. Design and Fabrication of Solar Updraft Tower and Estimation of Power Generation; Initially Focused on Bangladesh
CN205975948U (en) Assembled room
NWOSU et al. Extended experimental investigation of a double-effect active solar still with a paraffin wax, in Owerri, Nigeria
Bokiyev USE OF SOLAR ENERGY IN THE DESIGN OF ENERGY-EFFICIENT BUILDINGS IN THE CLIMATE CONDITIONS OF UZBEKISTAN
CN215050723U (en) Hydrogen collecting device for water electrolysis hydrogen production equipment
CN108455630B (en) Comprehensive utilization system for solar photovoltaic salt production
Mackey et al. Solar dome
Ahmeda et al. Saltwater desalination by direct solar energy in Madinah, Saudi Arabia