JP2003115331A - Measurement method and device of pure resistance of on board battery - Google Patents

Measurement method and device of pure resistance of on board battery

Info

Publication number
JP2003115331A
JP2003115331A JP2002153670A JP2002153670A JP2003115331A JP 2003115331 A JP2003115331 A JP 2003115331A JP 2002153670 A JP2002153670 A JP 2002153670A JP 2002153670 A JP2002153670 A JP 2002153670A JP 2003115331 A JP2003115331 A JP 2003115331A
Authority
JP
Japan
Prior art keywords
current
value
voltage
pure resistance
peak value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002153670A
Other languages
Japanese (ja)
Other versions
JP4383020B2 (en
Inventor
Yoichi Arai
洋一 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002153670A priority Critical patent/JP4383020B2/en
Publication of JP2003115331A publication Critical patent/JP2003115331A/en
Application granted granted Critical
Publication of JP4383020B2 publication Critical patent/JP4383020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement method and device of pure resistance of on board battery wherein the pure resistance of the battery can be measured even if the vehicle is in use. SOLUTION: During the period in which monotonously decreasing rush current to flow after monotonously increase from 0 to the peak value in a constant load prescribed beforehand among loads of the vehicle, discharging current of the battery and this terminal voltage corresponding to this discharging current are periodically measured by a current/voltage measurement means 23a-1. The first approximation equation of current-voltage characteristic against increasing discharging current and the second approximation equation of current-voltage characteristic against decreasing discharging current are calculated by an approximation equation calculating means 23a-2. In case voltage reduction by concentration polarization component is included, an intermediate value of two terminal voltage change values per unit current change at the point corresponding to the peak value of the first and the second approximation equations excluding this voltage reduction is calculated by a calculating means 23a-3, and the measurement is made as the pure resistance value of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両の負荷に電力
を供給するため車両に搭載されたバッテリの純抵抗を測
定する車載バッテリ純抵抗測定方法及び装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-vehicle battery pure resistance measuring method and apparatus for measuring a pure resistance of a battery mounted on a vehicle for supplying electric power to a load of the vehicle.

【0002】[0002]

【従来の技術】一般に、バッテリは放電電流をカバーす
る充電を行うことによって、その充電容量の範囲内にお
いて繰り返し使用できることになっているが、過放電や
電解液不足などの不測の事態を招いた場合は勿論のこ
と、これらの事態を招かなくても、長期間にわたって使
用し経年変化が起こると、放電によって負荷に供給でき
る電力量である放電可能容量が急激に低下するようにな
る。このため、経年変化によって放電可能容量の低下し
ている状態においては、充電を上回る放電がわずかな期
間発生しても、エンジン停止後にスタータモータを起動
してエンジンを再始動できなくなる事態を招きかねな
い。
2. Description of the Related Art Generally, a battery can be repeatedly used within the range of its charge capacity by charging it so as to cover the discharge current, but it has caused an unexpected situation such as over-discharge and lack of electrolyte. Of course, even if these situations are not brought about, if the battery is used for a long period of time and aged, the dischargeable capacity, which is the amount of electric power that can be supplied to the load by discharge, will suddenly decrease. Therefore, in the state where the dischargeable capacity has decreased due to aging, even if a discharge exceeding the charge occurs for a short period of time, it may not be possible to start the starter motor and restart the engine after the engine is stopped. Absent.

【0003】因みに、新品と経年変化の生じているバッ
テリとを比較した場合、新品に比べて経年変化の生じて
いるバッテリでは、その純抵抗が大きくなることが知ら
れている。そのため、車両の定期点検時などに、バッテ
リ交換の目安としてバッテリの純抵抗を測定することが
考えられている。これは、純抵抗を知ることによって、
純抵抗と分極抵抗成分との割合などを考慮し、劣化度を
定めることができるからである。また、純抵抗が分かる
と、バッテリの開回路電圧を推定するためにも利用でき
る。
Incidentally, when comparing a new battery with an aged battery, it is known that the battery with an aged battery has a larger net resistance than the new battery. Therefore, it has been considered to measure the pure resistance of the battery as a guide for battery replacement, for example, at the time of periodic inspection of the vehicle. This is because by knowing the pure resistance,
This is because the degree of deterioration can be determined in consideration of the ratio between the pure resistance and the polarization resistance component. Also, knowing the pure resistance can be used to estimate the open circuit voltage of the battery.

【0004】一般に、バッテリから電流が放電されると
バッテリの端子電圧に降下を生じる。その電圧降下はバ
ッテリの内部インピーダンス(合成抵抗)によるもので
あるが、バッテリの構造などに基因するIR損(純抵
抗、すなわち、オーミック抵抗による電圧降下)と、化
学的な反応に基因する分極抵抗成分(活性化分極、濃度
分極)による電圧降下に分けることができる。電流−電
圧(I−V)特性を求めた場合、図12に示すように、
IR損による電圧降下は、バッテリの状態が同じであれ
ば変化しないが、分極抵抗成分による電圧降下は電流の
大きさと電流の放電している時間によって変化する。こ
のような分極抵抗成分を含んだI−V特性から、バッテ
リの様々な状態を推定すると、不正確な推定結果となる
ことがわかっている。そこで、分極抵抗成分を分離した
純抵抗のみを測定する技術が必要とされる。
Generally, when a current is discharged from a battery, the terminal voltage of the battery drops. The voltage drop is due to the internal impedance (composite resistance) of the battery, but IR loss (pure resistance, that is, voltage drop due to ohmic resistance) due to the structure of the battery and polarization resistance due to chemical reaction. It can be divided into voltage drops due to components (activation polarization, concentration polarization). When the current-voltage (IV) characteristic is obtained, as shown in FIG.
The voltage drop due to IR loss does not change if the battery state is the same, but the voltage drop due to the polarization resistance component changes depending on the magnitude of the current and the time during which the current is discharged. It is known that when various states of the battery are estimated from the IV characteristics including such a polarization resistance component, an inaccurate estimation result is obtained. Therefore, a technique for measuring only the pure resistance obtained by separating the polarization resistance component is required.

【0005】従来、バッテリの純抵抗を測定するために
一般に使用されている測定器では、バッテリが静的な状
態にあるとき、すなわち、充放電により電解液に分極な
どの電圧上昇や電圧降下が生じていない平衡状態にある
ときに、バッテリの純抵抗を測定している。
Conventionally, in a measuring instrument generally used for measuring the pure resistance of a battery, when the battery is in a static state, that is, when the battery is charged or discharged, a voltage rise or voltage drop such as polarization occurs in the electrolyte. The net resistance of the battery is being measured when it is in the unbalanced state.

【0006】その一例として、バッテリに1kHz〜1
00kHz程度の周波数の交流を印加して充放電を繰り
返し、充電及び放電のいずれの分極も蓄積しない状況
で、たとえば1μ秒程度の一定時間内に変化する電圧と
電流の関係から純抵抗を求める方法がある。これは、図
13に示すように、放電を止めた後、電圧が急激に回復
し、その後に緩やかに回復する現象を捉え、一定時間Δ
t内の急激な電圧の回復が純抵抗Rによる成分のみによ
り生じ、その後の緩やかな変化は純抵抗を除く分極を含
むその他の要素による成分(キャパシタンスおよびイン
ダクタンス成分)により生じているとみなし、1kHz
〜100kHz程度の周波数の交流の各印加サイクルの
短い時間内における電圧と電流の変化を捉えて純抵抗を
測定しようとするものである。
As an example thereof, the battery has a frequency of 1 kHz to 1 kHz.
A method of obtaining a pure resistance from the relationship between a voltage and a current that changes within a fixed time of, for example, about 1 μsec in a situation in which charging / discharging is repeated by applying an alternating current with a frequency of about 00 kHz and neither polarization of charging nor discharging is accumulated. There is. This is because, as shown in FIG. 13, after the discharge is stopped, the voltage recovers sharply and then gradually recovers.
It is considered that the rapid voltage recovery within t is caused only by the component due to the pure resistance R, and the gradual change thereafter is caused by the components (capacitance and inductance components) other than the pure resistance including polarization, and 1 kHz.
It is intended to measure the pure resistance by catching the change of voltage and current within a short time of each application cycle of alternating current having a frequency of about 100 kHz.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、車両に
搭載したバッテリを対象として用いる場合には、静的な
状態は限られた場合にしか存在せず、車両が使用状態に
あるときには適用することができない。
However, when the battery mounted on the vehicle is used as a target, the static state exists only in a limited case, and it is applicable when the vehicle is in the used state. Can not.

【0008】また、上述した例の場合、短時間内に電圧
Vおよび電流Iのデータを収集する必要から、非常に周
期の短いサンプリングを行ってA/D変換を行うことを
一定時間Δt内に行わなければならず、単独で使用する
測定器として実現できるものの、車両に搭載して使用す
ることは非常に難しい。しかも、求めるΔV/ΔIが精
度のよいものとなるためには、ΔV、ΔIの各々が大き
な値を示さなければならないが、車両では限られた場合
にしかこのようなものは測定できない。さらに、車両動
作中に任意の交流をバッテリに印加することができな
い。したがって、上述した方法は、車両使用中のバッテ
リの純抵抗を測定するために適用できないという現実が
ある。
Further, in the case of the above-mentioned example, since it is necessary to collect the data of the voltage V and the current I within a short time, it is necessary to perform sampling with a very short cycle and perform A / D conversion within a certain time Δt. Although it has to be carried out and can be realized as a measuring instrument used alone, it is very difficult to mount it on a vehicle and use it. Moreover, in order for the obtained ΔV / ΔI to be accurate, each of ΔV and ΔI must show a large value, but such a thing can be measured only when the vehicle is limited. Furthermore, any alternating current cannot be applied to the battery during vehicle operation. Therefore, there is the reality that the method described above cannot be applied to measure the net resistance of a battery during vehicle use.

【0009】よって、本発明は上述した状況に鑑み、車
両使用中でもバッテリの純抵抗を測定できる車載バッテ
リ純抵抗測定方法及び装置を提供することを課題として
いる。
Therefore, in view of the above situation, it is an object of the present invention to provide an on-vehicle battery pure resistance measuring method and device capable of measuring the pure resistance of a battery even during use of the vehicle.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する請求
項1乃至請求項12記載の本発明は車載バッテリ純抵抗
測定方法に関するものであり、請求項13記載の本発明
は車載バッテリ純抵抗測定装置に関するものである。
In order to achieve the above object, the present invention according to any one of claims 1 to 12 relates to a method for measuring the on-vehicle battery pure resistance, and the invention according to claim 13 relates to the on-vehicle battery pure resistance measurement. It relates to the device.

【0011】上記課題を解決するためなされた請求項1
記載の発明は、車両の負荷に電力を供給するため車両に
搭載されたバッテリの純抵抗を測定する車載バッテリ純
抵抗測定方法において、前記負荷のうち予め定めた定負
荷に、0からピーク値まで単調増加した後、ピーク値か
ら定常値まで単調減少する突入電流が流れている期間、
前記バッテリの放電電流と該放電電流に対応する端子電
圧とを周期的に測定し、該測定した放電電流と端子電圧
との相関を示す前記増加する放電電流に対する電流−電
圧特性の第1の近似式と前記減少する放電電流に対する
電流−電圧特性の第2の近似式とを求め、前記第1及び
第2の近似式に濃度分極成分による電圧降下を含む場
合、該電圧降下を除いた前記第1及び第2の近似式の前
記ピーク値に対応する点における単位電流変化当たりの
2つの端子電圧変化の値の中間の値を求め、該求めた中
間の値をバッテリの純抵抗の値として測定することを特
徴とする車載バッテリ純抵抗測定方法に存する。
Claim 1 which was made in order to solve the above-mentioned topic
The described invention is an in-vehicle battery pure resistance measuring method for measuring a pure resistance of a battery mounted in a vehicle for supplying electric power to a load of the vehicle, wherein a predetermined constant load among the loads is from 0 to a peak value. After the monotonous increase, during the period when the inrush current flows, which monotonically decreases from the peak value to the steady value,
A first approximation of a current-voltage characteristic with respect to the increasing discharge current, which periodically measures a discharge current of the battery and a terminal voltage corresponding to the discharge current and shows a correlation between the measured discharge current and the terminal voltage. And a second approximation formula of the current-voltage characteristic with respect to the decreasing discharge current, and when the first and second approximation formulas include a voltage drop due to a concentration polarization component, the first and second approximation formulas exclude the voltage drop. The intermediate value of the two terminal voltage change values per unit current change at the point corresponding to the peak value of the first and second approximate expressions is obtained, and the obtained intermediate value is measured as the pure resistance value of the battery. The present invention resides in a method of measuring a vehicle battery pure resistance.

【0012】上述した請求項1記載の手順によれば、車
両の負荷のうち予め定めた定負荷に、0からピーク値ま
で単調増加した後、ピーク値から定常値まで単調減少す
る突入電流が流れている期間、バッテリの放電電流と該
放電電流に対応する端子電圧とを周期的に測定してこれ
ら放電電流と端子電圧との相関を示す増加する放電電流
に対する電流−電圧特性の第1の近似式と前記減少する
放電電流に対する電流−電圧特性の第2の近似式とを求
める。
According to the above-mentioned procedure of claim 1, an inrush current that monotonically increases from 0 to a peak value and then monotonically decreases from a peak value to a steady value flows to a predetermined constant load of the vehicle load. The discharge current of the battery and the terminal voltage corresponding to the discharge current are periodically measured during the charging period, and the first approximation of the current-voltage characteristic with respect to the increasing discharge current showing the correlation between the discharge current and the terminal voltage. A formula and a second approximation formula of the current-voltage characteristic with respect to the decreasing discharge current are obtained.

【0013】次に、第1及び第2の近似式に濃度分極成
分による電圧降下を含む場合、第1及び第2の近似式か
らこの電圧降下を除き、純抵抗と活性化分極のみの近似
式にした上で、増加方向と減少方向に共通の点であるピ
ーク値に着目し、濃度分極成分による電圧降下を除いた
両近似式のピーク値に対応する点における単位電流変化
当たりの2つの端子電圧変化の値の中間の値を求め、求
めた中間の値をバッテリの純抵抗の値として測定するよ
うにしている。したがって、車両の通常の使用状態で負
荷に電力を供給したときのバッテリの放電電流と端子電
圧とを測定し、この測定の結果得られるデータを処理す
るだけで、バッテリの純抵抗を測定することができる。
Next, when the voltage drop due to the concentration polarization component is included in the first and second approximation formulas, this voltage drop is removed from the first and second approximation formulas, and the approximation formula of pure resistance and activation polarization only. Then, paying attention to the peak value that is common to the increasing and decreasing directions, two terminals per unit current change at the points corresponding to the peak values of both approximate expressions excluding the voltage drop due to the concentration polarization component. An intermediate value of the voltage change values is obtained, and the obtained intermediate value is measured as the value of the pure resistance of the battery. Therefore, by measuring the discharge current and terminal voltage of the battery when power is supplied to the load under the normal use condition of the vehicle and processing the data obtained as a result of this measurement, it is possible to measure the pure resistance of the battery. You can

【0014】請求項2記載の発明は、請求項1記載の車
載バッテリ純抵抗測定方法において、前記中間の値を、
前記濃度分極成分による電圧降下を除いた前記第1及び
第2の近似式の前記ピーク値に対応する点における単位
電流変化当たりの2つの端子電圧変化の値を加算平均し
て求めることを特徴とする車載バッテリ純抵抗測定方法
に存する。
According to a second aspect of the present invention, in the vehicle battery pure resistance measuring method according to the first aspect, the intermediate value is
A value of two terminal voltage changes per unit current change at a point corresponding to the peak value of the first and second approximate expressions excluding the voltage drop due to the concentration polarization component is obtained by averaging. This is in the on-board battery pure resistance measuring method.

【0015】上述した請求項2記載の手順によれば、中
間の値を、濃度分極成分による電圧降下を除いた第1及
び第2の近似式のピーク値に対応する点における単位電
流変化当たりの2つの端子電圧変化の値を加算平均して
求めているので、ピーク値に対応する点での活性化分極
の変化が等しくなる場合には、第1及び第2の近似式の
ピーク値に対応する点における微分値を加算して2で割
ることで、バッテリの純抵抗を測定することができる。
According to the above-mentioned procedure of claim 2, the intermediate value per unit current change at the point corresponding to the peak value of the first and second approximate expressions excluding the voltage drop due to the concentration polarization component. Since the values of the changes in the two terminal voltages are calculated by averaging, when the changes in the activation polarization at the points corresponding to the peak values are equal, the peak values in the first and second approximate expressions are used. The pure resistance of the battery can be measured by adding the differential value at the point of adding and dividing by 2.

【0016】請求項3記載の発明は、請求項1記載の車
載バッテリ純抵抗測定方法において、前記中間の値を、
前記濃度分極成分による電圧降下を除いた前記第1及び
第2の近似式の前記ピーク値に対応する点における単位
電流変化当たりの2つの端子電圧変化の値に、前記突入
電流が流れている総時間に占める前記単調増加期間及び
前記単調減少期間の時間の割合をそれぞれ乗じた上で加
算して求めることを特徴とする車載バッテリ純抵抗測定
方法に存する。
According to a third aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to the first aspect, the intermediate value is
The total of the inrush currents flowing at two terminal voltage change values per unit current change at points corresponding to the peak values of the first and second approximate expressions excluding the voltage drop due to the concentration polarization component. A vehicle-mounted battery pure resistance measuring method is characterized in that the ratios of time in the monotonous increase period and the monotonous decrease period in the time are multiplied and then obtained.

【0017】上述した請求項3記載の手順によれば、中
間の値を、濃度分極成分による電圧降下を除いた第1及
び第2の近似式のピーク値に対応する点における単位電
流変化当たりの2つの端子電圧変化の値に、突入電流が
流れている総時間に占める単調増加期間及び単調減少期
間の時間の割合をそれぞれ乗じた上で加算して求めてい
るので、活性化分極と濃度分極とが相互に影響し合うこ
とを考慮した中間の値を求め、バッテリの純抵抗の値と
して測定することができる。
According to the procedure described in claim 3, the intermediate value per unit current change at the point corresponding to the peak value of the first and second approximate expressions excluding the voltage drop due to the concentration polarization component. Since the values of the two terminal voltage changes are multiplied by the ratios of the monotonous increasing period and the monotonic decreasing period of the total time during which the inrush current flows, the values are added together. It is possible to obtain an intermediate value in consideration of the mutual influence of and, and measure it as the value of the pure resistance of the battery.

【0018】請求項4記載の発明は、請求項1〜3の何
れかに記載の車載バッテリ純抵抗測定方法において、前
記第1及び第2の近似式が二次式である場合、前記中間
の値を求めるに当たって、前記第1及び第2の近似式か
ら濃度分極成分による電圧降下を除いた第1及び第2の
修正近似式を求め、該第1及び第2の修正近似式の前記
ピーク値に対応する点における単位電流変化当たりの2
つの端子電圧変化の値を求めることを特徴とする車載バ
ッテリ純抵抗測定方法に存する。
According to a fourth aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to any one of the first to third aspects, when the first and second approximate expressions are quadratic expressions, the intermediate value In obtaining the value, first and second modified approximate expressions are obtained by removing the voltage drop due to the concentration polarization component from the first and second approximate expressions, and the peak values of the first and second modified approximate expressions are obtained. 2 per unit current change at the point corresponding to
A method for measuring the on-board battery pure resistance is characterized in that the value of the change in one terminal voltage is obtained.

【0019】上述した請求項4記載の手順によれば、第
1及び第2の近似式が二次式である場合、中間の値を求
めるに当たって、第1及び第2の近似式から濃度分極成
分による電圧降下を除いた第1及び第2の修正近似式を
求め、該第1及び第2の修正近似式のピーク値に対応す
る点における単位電流変化当たりの2つの端子電圧変化
の値を求めているので、例えば、修正近似式が一次式と
なるときにはその傾き、二次式となるときにはピーク値
における微分値を利用して中間の値を求めれば、純抵抗
を測定することができる。
According to the above-mentioned procedure of claim 4, when the first and second approximate expressions are quadratic equations, the concentration polarization component is calculated from the first and second approximate expressions when obtaining the intermediate value. The first and second modified approximate expressions excluding the voltage drop due to are calculated, and the values of two terminal voltage changes per unit current change at points corresponding to the peak values of the first and second modified approximate expressions are calculated. Therefore, for example, when the modified approximate expression is a linear expression, its slope is used, and when it is a quadratic expression, the intermediate resistance is obtained by using the differential value at the peak value, whereby the pure resistance can be measured.

【0020】請求項5記載の発明は、請求項4記載の車
載バッテリ純抵抗測定方法において、前記第1及び第2
の近似式の放電電流0である点における前記バッテリの
端子電圧の差を求め、該差を前記突入電流が0からピー
ク値に増加しピーク値から0に減少した期間に生じた総
濃度分極成分による電圧降下と見なし、該総濃度分極成
分に占める前記突入電流が0からピーク値に達するまで
に生じる濃度分極成分による電圧降下を求め、該求めた
電圧降下を除いた電圧値を、前記第1の二次近似式と定
数及び一次係数を等しくした式に代入して二次係数を決
定した二次式を前記第1の修正近似式として求めること
を特徴とする車載バッテリ純抵抗測定方法に存する。
According to a fifth aspect of the present invention, there is provided the vehicle-mounted battery pure resistance measuring method according to the fourth aspect, wherein the first and second aspects are the same.
The difference in the terminal voltage of the battery at the point where the discharge current is 0 according to the above equation is calculated, and the total concentration polarization component generated during the period when the inrush current increases from 0 to the peak value and decreases from the peak value to 0 The voltage drop due to the concentration polarization component occurring until the inrush current occupying the total concentration polarization component reaches a peak value from 0 is obtained, and the voltage value excluding the obtained voltage drop is calculated as The in-vehicle battery pure resistance measuring method is characterized in that a quadratic equation in which a quadratic coefficient is determined by substituting the quadratic approximation equation of ## EQU1 ## into an equation in which a constant and a primary coefficient are equal is obtained as the first modified approximation .

【0021】上述した請求項5記載の手順によれば、第
1及び第2の近似式の放電電流0である点におけるバッ
テリの端子電圧の差を突入電流が0からピーク値に増加
しピーク値から0に減少した期間に生じた総濃度分極成
分による電圧降下と見なし、この総濃度分極成分に占め
る突入電流が0からピーク値に達するまでに生じる濃度
分極成分による電圧降下を求め、この求めた電圧降下を
除いた電圧値を、第1の二次近似式と定数及び一次係数
を等しくした式に代入して二次係数を決定した二次式を
第1の修正近似式として求めているので、精度良く濃度
分極成分を除いた修正近似式を得ることができる。
According to the above-mentioned procedure of claim 5, the inrush current increases from 0 to the peak value to increase the peak value of the difference in the terminal voltage of the battery at the point where the discharge currents of the first and second approximate expressions are 0. It is regarded as the voltage drop due to the total concentration polarization component generated in the period from 0 to 0, and the voltage drop due to the concentration polarization component generated until the inrush current occupying in this total concentration polarization component reaches the peak value from 0 is obtained and obtained. Since the voltage value excluding the voltage drop is substituted into the first quadratic approximation formula and the formula in which the constant and the primary coefficient are equal, the quadratic coefficient is determined as the first modified approximation formula. Therefore, it is possible to accurately obtain a modified approximate expression excluding the concentration polarization component.

【0022】請求項6記載の発明は、請求項5記載の車
載バッテリ純抵抗測定方法において、前記ピーク値にお
ける前記濃度分極成分による電圧降下を除いた電圧値以
外に、ピーク値と0の間の濃度分極成分による電圧降下
を除いた2つの電圧値を求め、該3つの電圧値を利用し
て係数を決定した二次式を前記第2の修正近似式として
求めることを特徴とする車載バッテリ純抵抗測定方法に
存する。
According to a sixth aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to the fifth aspect, in addition to the voltage value excluding the voltage drop due to the concentration polarization component in the peak value, a value between the peak value and 0 is obtained. A two-dimensional voltage value excluding the voltage drop due to the concentration polarization component is obtained, and a quadratic equation in which a coefficient is determined using the three voltage values is obtained as the second modified approximate equation. It exists in the resistance measurement method.

【0023】上述した請求項6記載の手順によれば、ピ
ーク値における前記濃度分極成分による電圧降下を除い
た電圧値以外に、ピーク値と0の間の濃度分極成分によ
る電圧降下を除いた2つの電圧値を求め、3つの電圧値
を利用して係数を決定した二次式を第2の修正近似式と
して求めているので、濃度分極成分による電圧降下を除
いた第2の二次修正近似式を簡単に求めることができ
る。
According to the above-mentioned procedure of claim 6, in addition to the voltage value excluding the voltage drop due to the concentration polarization component at the peak value, the voltage drop due to the concentration polarization component between the peak value and 0 is excluded. Since the quadratic equation in which three voltage values are obtained and the coefficient is determined using the three voltage values is obtained as the second modified approximation equation, the second quadratic modified approximation excluding the voltage drop due to the concentration polarization component is obtained. The formula can be easily obtained.

【0024】請求項7記載の発明は、請求項6記載の車
載バッテリ純抵抗測定方法において、前記中間の値を求
めるために、前記第1及び第2の修正近似式のピーク値
での微分値を使用することを特徴とする車載バッテリ純
抵抗測定方法に存する。
According to a seventh aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to the sixth aspect, in order to obtain the intermediate value, a differential value at a peak value of the first and second modified approximate expressions. The present invention resides in a method for measuring a vehicle battery pure resistance, which is characterized in that

【0025】上述した請求項7記載の手順によれば、第
1及び第2の修正近似式が共に二次式であるとき、ピー
ク値での微分値の中間の値を求めるだけでよいので、純
抵抗を単純な計算によって測定することができる。
According to the above-mentioned procedure of claim 7, when both the first and second modified approximate expressions are quadratic expressions, it is only necessary to find the intermediate value of the differential value at the peak value. Pure resistance can be measured by a simple calculation.

【0026】請求項8記載の発明は、請求項5記載の車
載バッテリ純抵抗測定方法において、前記ピーク値にお
ける前記濃度分極成分による電圧降下を除いた電圧値以
外に、0点及びピーク値と0の間の中間点の濃度分極成
分による電圧降下を除いた2つの電圧値を求め、該3つ
の電圧値を利用して係数を決定した二次式を前記第2の
修正近似式として求めることを特徴とする車載バッテリ
純抵抗測定方法に存する。
According to an eighth aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to the fifth aspect, in addition to the voltage value excluding the voltage drop due to the concentration polarization component in the peak value, 0 point and the peak value and 0 The two voltage values excluding the voltage drop due to the concentration polarization component at the intermediate point between are calculated, and the quadratic equation in which the coefficient is determined by using the three voltage values is obtained as the second modified approximate expression. It lies in the characteristic on-board battery pure resistance measuring method.

【0027】上述した請求項8記載の手順によれば、ピ
ーク値における前記濃度分極成分による電圧降下を除い
た電圧値以外に、0点及びピーク値と0の間の中間点の
濃度分極成分による電圧降下を除いた2つの電圧値を求
め、3つの電圧値を利用して係数を決定した二次式を第
2の修正近似式として求めていて、元々濃度分極成分を
含まない0点を利用しているので、濃度分極成分を除く
近似式を求めるための処理が少なくできる。
According to the above-mentioned procedure of claim 8, in addition to the voltage value excluding the voltage drop due to the concentration polarization component at the peak value, the concentration polarization component at the zero point and at the midpoint between the peak value and 0 is used. A two-dimensional equation in which the two voltage values excluding the voltage drop are obtained and the coefficient is determined using the three voltage values is obtained as a second modified approximate equation, and the zero point that originally does not include the concentration polarization component is used. Therefore, the processing for obtaining an approximate expression excluding the concentration polarization component can be reduced.

【0028】請求項9記載の発明は、請求項5記載の車
載バッテリ純抵抗測定方法において、前記ピーク値にお
ける前記濃度分極成分による電圧降下を除いた電圧値以
外に、ピーク値と0の間の中間点の濃度分極成分による
電圧降下を除いた電圧値を求め、該2点を結んで決定し
た一次式を前記第2の修正近似式として求め、前記中間
の値を求めるために前記第2の修正近似式の傾きを使用
することを特徴とする車載バッテリ純抵抗測定方法に存
する。
According to a ninth aspect of the present invention, in the on-vehicle battery pure resistance measuring method according to the fifth aspect, in addition to the voltage value excluding the voltage drop due to the concentration polarization component in the peak value, a value between the peak value and 0 is obtained. The voltage value excluding the voltage drop due to the concentration polarization component at the intermediate point is obtained, the linear equation determined by connecting the two points is obtained as the second modified approximate equation, and the second value is obtained in order to obtain the intermediate value. A method of measuring the on-board battery pure resistance is characterized in that the slope of the modified approximate expression is used.

【0029】上述した請求項9記載の手順によれば、ピ
ーク値における前記濃度分極成分による電圧降下を除い
た電圧値以外に、ピーク値と0の間の中間点の濃度分極
成分による電圧降下を除いた電圧値を求め、該2点を結
んで決定した一次式を第2の修正近似式として求め、中
間の値を求めるために第2の修正近似式の傾きを使用し
ているので、中間の値を求めるための処理が簡単にな
る。
According to the above-mentioned procedure of claim 9, in addition to the voltage value excluding the voltage drop due to the concentration polarization component at the peak value, the voltage drop due to the concentration polarization component at the midpoint between the peak value and 0 is determined. The voltage value removed is obtained, the linear expression determined by connecting the two points is obtained as the second modified approximate expression, and the slope of the second modified approximate expression is used to obtain an intermediate value. The process for obtaining the value of becomes simple.

【0030】請求項10記載の発明は、請求項5〜9の
何れかに記載の車載バッテリ純抵抗測定方法において、
前記総濃度分極成分に占める前記突入電流が0からピー
ク値に達するまでに生じる濃度分極成分による電圧降下
を、前記第1及び第2の近似式の放電電流0である点に
おける前記バッテリの端子電圧の差に、前記突入電流が
0からピーク値に増加しピーク値から0に減少したとき
の電流時間積に対する0からピーク値までの電流時間積
の比を乗じて求めることを特徴とする車載バッテリ純抵
抗測定方法に存する。
According to a tenth aspect of the present invention, there is provided a vehicle battery pure resistance measuring method according to any one of the fifth to ninth aspects,
The terminal voltage of the battery at the point where the voltage drop due to the concentration polarization component occurring until the inrush current in the total concentration polarization component reaches a peak value from 0 is the discharge current 0 of the first and second approximate expressions. Is calculated by multiplying the difference between the current-time product from 0 to the peak value with respect to the current-time product when the inrush current increases from 0 to the peak value and decreases from the peak value to 0. Exists in pure resistance measurement method.

【0031】上述した請求項10記載の手順によれば、
総濃度分極成分に占める突入電流が0からピーク値に達
するまでに生じる濃度分極成分による電圧降下を、第1
及び第2の近似式の放電電流0である点におけるバッテ
リの端子電圧の差に、突入電流が0からピーク値に増加
しピーク値から0に減少したときの電流時間積に対する
0からピーク値までの電流時間積の比を乗じて求めてい
るので、突入電流が0からピーク値に達するまでに生じ
る濃度分極成分による電圧降下を知り、濃度分極成分に
よる電圧降下を除いたピーク値に対応する電圧値を求め
ることができる。
According to the above-mentioned procedure of claim 10,
The voltage drop due to the concentration polarization component that occurs when the inrush current in the total concentration polarization component reaches a peak value from 0 is
And the difference in the terminal voltage of the battery at the point where the discharge current in the second approximation formula is 0, from 0 to the peak value for the current-time product when the inrush current increases from 0 to the peak value and decreases from the peak value to 0. Since it is calculated by multiplying by the ratio of the current-time product of, the voltage drop due to the concentration polarization component that occurs until the inrush current reaches the peak value from 0 is known, and the voltage corresponding to the peak value excluding the voltage drop due to the concentration polarization component The value can be calculated.

【0032】請求項11記載の発明は、請求項5〜9の
何れかに記載の車載バッテリ純抵抗測定方法において、
前記第1及び第2の近似式より両式の差の式を求め、前
記総濃度分極成分に占める前記突入電流が0からピーク
値に達するまでに生じる濃度分極成分による電圧降下
を、前記第1及び第2の近似式の放電電流0である点に
おける前記バッテリの端子電圧の差に、前記差の式に基
づいて求めた電流値0である点の電圧値とピーク電流値
の2倍の電流値である点の電圧値との差に対するピーク
電流値である点の電圧値とピーク電流値の2倍の電流値
である点の電圧値との差の比を乗じて求めることを特徴
とする車載バッテリ純抵抗測定方法に存する。
The invention described in claim 11 is the method for measuring the on-vehicle battery pure resistance according to any one of claims 5 to 9,
From the first and second approximation formulas, the difference equation between the two formulas is obtained, and the voltage drop due to the concentration polarization component generated until the inrush current occupying the total concentration polarization component reaches a peak value from 0 And the difference between the terminal voltage of the battery at the point where the discharge current is 0 in the second approximation formula, and the current value which is 0 based on the formula for the difference and the current value which is twice the peak current value. It is characterized in that it is obtained by multiplying the ratio of the difference between the voltage value at the point that is the peak current value and the voltage value at the point that is the current value twice the peak current value with respect to the difference between the voltage value at the point that is the value. It exists in the on-board battery pure resistance measurement method.

【0033】上述した請求項11記載の手順によれば、
第1及び第2の近似式より両式の差の式を求め、総濃度
分極成分に占める突入電流が0からピーク値に達するま
でに生じる濃度分極成分による電圧降下を、第1及び第
2の近似式の放電電流0である点におけるバッテリの端
子電圧の差に、差の式に基づいて求めた電流値0である
点の電圧値とピーク電流値の2倍の電流値である点の電
圧値との差に対するピーク電流値である点の電圧値とピ
ーク電流値の2倍の電流値である点の電圧値との差の比
を乗じて求めているので、第1及び第2の近似式が分か
るだけで電流時間積を求めなくても、突入電流が0から
ピーク値に達するまでに生じる濃度分極成分による電圧
降下を知り、濃度分極成分による電圧降下を除いたピー
ク値に対応する電圧値を求めることができる。
According to the above-mentioned procedure of claim 11,
From the first and second approximation formulas, the difference between the two formulas is obtained, and the voltage drop due to the concentration polarization component generated until the inrush current occupying the total concentration polarization component reaches a peak value from 0 is calculated as follows. The difference between the terminal voltage of the battery at the point where the discharge current is 0 in the approximate expression, and the voltage at the point where the current value is 0 obtained based on the expression for the difference and the voltage at the point where the current value is twice the peak current value The first and second approximations are made by multiplying by the ratio of the difference between the voltage value at the point of the peak current value and the voltage value at the point of the current value twice the peak current value with respect to the difference with the value. Even if the current-time product is not found only by knowing the equation, the voltage drop due to the concentration polarization component that occurs until the inrush current reaches the peak value from 0 is known, and the voltage corresponding to the peak value excluding the voltage drop due to the concentration polarization component. The value can be calculated.

【0034】請求項12記載の発明は、請求項1〜3の
何れかに記載の車載バッテリ純抵抗測定方法において、
前記定負荷が、濃度分極の発生を伴わない短時間にピー
ク値まで単調増加する突入電流が流れるものである場
合、前記第1の近似式が一次式であり、前記中間の値を
求めるために前記第1の近似式の傾きを使用することを
特徴とする車載バッテリ純抵抗測定方法に存する。
The invention described in claim 12 is the method for measuring the on-vehicle battery pure resistance according to any one of claims 1 to 3,
In the case where the constant load is such that an inrush current that monotonically increases to a peak value flows in a short time without occurrence of concentration polarization, the first approximate expression is a linear expression, and in order to obtain the intermediate value, The vehicle-mounted battery pure resistance measuring method is characterized by using the slope of the first approximate expression.

【0035】上述した請求項12記載の手順によれば、
定負荷が、濃度分極の発生を伴わない短時間にピーク値
まで単調増加する突入電流が流れるものである場合、第
1の近似式が一次式であり、中間の値を求めるために第
1の近似式の傾きを使用しているので、中間の値を求め
るための処理が簡単になるだけでなく、近似式も簡単に
求めることができる。
According to the above-mentioned procedure of claim 12,
When the constant load is such that an inrush current that monotonically increases to the peak value flows in a short time without the occurrence of concentration polarization, the first approximate expression is a linear expression, and the first approximate expression is used to obtain an intermediate value. Since the slope of the approximate expression is used, not only the process for obtaining the intermediate value can be simplified, but also the approximate expression can be easily obtained.

【0036】上記課題を解決するためなされた請求項1
3記載の発明は、図1の基本構成図に示す如く、車両の
負荷に電力を供給するため車両に搭載されたバッテリの
純抵抗を測定する車載バッテリ純抵抗測定装置におい
て、前記負荷のうち予め定めた定負荷に、0からピーク
値まで単調増加した後、ピーク値から定常値まで単調減
少する突入電流が流れている期間、前記バッテリの放電
電流と該放電電流に対応する端子電圧とを周期的に測定
する電流・電圧測定手段23a−1と、該電流・電圧測
定手段によって測定した放電電流と端子電圧との相関を
示す前記増加する放電電流に対する電流−電圧特性の第
1の近似式と前記減少する放電電流に対する電流−電圧
特性の第2の近似式とを求める近似式算出手段23a−
2と、前記第1及び第2の近似式に濃度分極成分による
電圧降下を含む場合、該電圧降下を除いた前記第1及び
第2の近似式の前記ピーク値に対応する点における単位
電流変化当たりの2つの端子電圧変化の値の中間の値を
求める演算手段23a−3とを備え、該演算手段によっ
て求めた中間の値をバッテリの純抵抗の値として測定す
ることを特徴とする車載バッテリ純抵抗測定装置に存す
る。
Claim 1 which was made in order to solve the above-mentioned topic
In the invention described in No. 3, as shown in the basic configuration diagram of FIG. 1, in an in-vehicle battery pure resistance measuring device for measuring a pure resistance of a battery mounted in a vehicle for supplying electric power to a load of the vehicle, one of the loads is previously set. During a period in which an inrush current that monotonically increases from 0 to a peak value and then monotonically decreases from a peak value to a steady value is flowing in a predetermined constant load, the discharge current of the battery and a terminal voltage corresponding to the discharge current are cycled. And a first approximate expression of current-voltage characteristics with respect to the increasing discharge current showing the correlation between the discharge current measured by the current / voltage measuring means and the terminal voltage. Approximation formula calculating means 23a- for obtaining the second approximation formula of the current-voltage characteristic with respect to the decreasing discharge current
2 and a unit current change at a point corresponding to the peak value of the first and second approximate expressions excluding the voltage drop when the voltage drop due to the concentration polarization component is included in the first and second approximate expressions. An in-vehicle battery, comprising: an arithmetic means 23a-3 for obtaining an intermediate value of the two terminal voltage change values per hit, and measuring the intermediate value obtained by the arithmetic means as the value of the pure resistance of the battery. Exists in pure resistance measuring device.

【0037】上述した請求項13記載の構成によれば、
車両の負荷のうち予め定めた定負荷に、0からピーク値
まで単調増加した後、ピーク値から定常値まで単調減少
する突入電流が流れている期間、バッテリの放電電流と
この放電電流に対応する端子電圧とを電流・電圧測定手
段23a−1が周期的に測定し、この測定した放電電流
と端子電圧との相関を示す増加する放電電流に対する電
流−電圧特性の第1の近似式と減少する放電電流に対す
る電流−電圧特性の第2の近似式とを近似式算出手段2
3a−2が求め、第1及び第2の近似式に濃度分極成分
による電圧降下を含む場合、この電圧降下を除いた第1
及び第2の近似式のピーク値に対応する点における単位
電流変化当たりの2つの端子電圧変化の値の中間の値を
演算手段23a−3が求め、この求めた中間の値をバッ
テリの純抵抗の値として測定するようになっている。し
たがって、車両の通常の使用状態で負荷に電力を供給し
たときのバッテリの放電電流と端子電圧とを測定し、こ
の測定の結果得られるデータを処理するだけで、バッテ
リの純抵抗を測定することができる。
According to the above-mentioned structure of claim 13,
Corresponding to the discharge current of the battery and this discharge current during a period in which an inrush current that monotonically increases from 0 to a peak value and then monotonically decreases from the peak value to a steady value is flowing to a predetermined constant load of the vehicle load. The terminal voltage is periodically measured by the current / voltage measuring means 23a-1 and decreases with the first approximate expression of the current-voltage characteristic with respect to the increasing discharge current showing the correlation between the measured discharge current and the terminal voltage. The second approximate expression of the current-voltage characteristic with respect to the discharge current and the approximate expression calculating means 2
3a-2 is obtained, and when the first and second approximate expressions include a voltage drop due to the concentration polarization component, the first
And an intermediate value of the two terminal voltage change values per unit current change at the point corresponding to the peak value of the second approximation formula, and the calculating means 23a-3 calculates the calculated intermediate value. It is designed to be measured as the value of. Therefore, by measuring the discharge current and terminal voltage of the battery when power is supplied to the load under the normal use condition of the vehicle and processing the data obtained as a result of this measurement, it is possible to measure the pure resistance of the battery. You can

【0038】[0038]

【発明の実施の形態】以下、本発明による車載バッテリ
純抵抗測定装置を図2を参照して説明する前に、図3〜
図9を参照して本発明による車載バッテリ純抵抗測定方
法を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a vehicle-mounted battery pure resistance measuring device according to the present invention with reference to FIG.
The method for measuring the on-vehicle battery pure resistance according to the present invention will be described with reference to FIG.

【0039】ところで、バッテリが搭載され、バッテリ
から電力供給されて動作する車両負荷として、12V
車、42V車、EV車、HEV車には、スタータモー
タ、モータジェネレータ、走行用モータなどの大電流を
必要とする定負荷が搭載されている。例えば、スタータ
モータ又はこれに類する大電流定負荷をオンしたとき、
定負荷には、その駆動開始の初期の段階で突入電流が流
れた後、負荷の大きさに応じた定常値の電流が流れるよ
うになる。因みに、負荷がランプである場合には、突入
電流に相当するものをラッシュ電流と呼ぶこともある。
By the way, as a vehicle load in which a battery is mounted and which is operated by being supplied with electric power from the battery, 12 V is used.
Vehicles, 42V vehicles, EV vehicles, and HEV vehicles are equipped with a constant load such as a starter motor, a motor generator, and a traveling motor that requires a large current. For example, when a starter motor or similar high-current constant load is turned on,
In the constant load, a rush current flows in the initial stage of its driving, and then a steady-state current according to the size of the load flows. Incidentally, when the load is a lamp, what corresponds to the inrush current may be called rush current.

【0040】スタータモータとして直流モータを使用し
ている場合、界磁コイルに流れる突入電流は、図3に示
すように、定負荷駆動開始直後の例えば3ミリ秒という
短時間内に、ほぼ0から定常電流に比べて何倍も大きな
ピーク値、例えば500(A)まで単調増加した後、こ
のピーク値から例えば150ミリ秒という短時間内に定
負荷の大きさに応じた定常値まで単調減少するような流
れ方をし、バッテリから放電電流として供給される。し
たがって、定負荷に突入電流が流れる状況で、バッテリ
の放電電流とこれに対応する端子電圧を測定することに
よって、0からピーク値に至る広い範囲の電流変化に対
する端子電圧の変化を示すバッテリの放電電流(I)−
端子電圧(V)特性を測定することができる。
When a DC motor is used as the starter motor, as shown in FIG. 3, the inrush current flowing from the field coil is almost zero within a short time of, for example, 3 milliseconds immediately after the start of constant load driving. After monotonically increasing to a peak value that is many times larger than the steady current, for example, 500 (A), it monotonically decreases from this peak value to a steady value according to the magnitude of the constant load within a short time of, for example, 150 milliseconds. It flows in such a manner and is supplied as discharge current from the battery. Therefore, by measuring the discharge current of the battery and the corresponding terminal voltage in the situation where the inrush current flows in the constant load, the discharge of the battery showing the change of the terminal voltage with respect to the current change in a wide range from 0 to the peak value. Current (I)-
The terminal voltage (V) characteristic can be measured.

【0041】そこで、スタータモータをオンしたときに
流れる突入電流に相当する模擬的な放電として、0から
ほぼ200Aまで0.25秒かけて増加し、同じ時間を
かけてピーク値から0まで減少する放電を電子負荷を使
用してバッテリに行わせ、そのときのバッテリの放電電
流と端子電圧とを対にして短い一定周期で測定し、これ
によって得た測定データ対を横軸に放電電流、縦軸に端
子電圧をそれぞれ対応させてプロットして図4に示すグ
ラフを得た。図4のグラフに示す放電電流の増加時と減
少時の電流−電圧特性は、最小二乗法を用いて以下のよ
うな二次式に近似できる。 V=a1I2 +b1I+c1 ……(1) V=a2I2 +b2I+c2 ……(2) なお、図中には、二次の近似式の曲線も重ねて描かれて
いる。
Therefore, as a simulated discharge corresponding to the inrush current flowing when the starter motor is turned on, it increases from 0 to almost 200 A in 0.25 seconds, and decreases from the peak value to 0 in the same time. The battery is discharged using an electronic load, and the discharge current of the battery at that time and the terminal voltage are paired and measured at a short fixed period. The terminal voltage was made to correspond to each axis | shaft, and it plotted, and the graph shown in FIG. 4 was obtained. The current-voltage characteristics when the discharge current increases and decreases when shown in the graph of FIG. 4 can be approximated to the following quadratic equation using the least square method. V = a1I 2 + b1I + c1 (1) V = a2I 2 + b2I + c2 (2) The curves of the quadratic approximation formula are also drawn in the figure.

【0042】図4中において、電流増加方向の近似曲線
の切片と電流減少方向の近似曲線の切片の電圧差は、電
流が流れていない0(A)の時の電圧差であるため、純
抵抗と活性化分極による電圧降下を含まない、放電によ
って新たに発生した濃度分極成分のみによる電圧降下と
考えられる。従って、この電圧差は、濃度分極のみによ
るものであり、この電流0(A)点の濃度分極をVpolc
0 とする。この濃度分極Vpolc0 は、突入電流の大きさ
に電流の流れた時間を乗じて積算したもの、すなわちA
h(短時間なので、以下Asec で表す)として求められ
る。
In FIG. 4, the voltage difference between the intercept of the approximate curve in the current increasing direction and the intercept of the approximate curve in the current decreasing direction is the voltage difference at the time of 0 (A) when the current does not flow, and therefore the pure resistance It is considered that the voltage drop is caused only by the concentration polarization component newly generated by the discharge and does not include the voltage drop caused by the activation polarization. Therefore, this voltage difference is due only to the concentration polarization, and the concentration polarization at the point of current 0 (A) is Vpolc.
Set to 0. This concentration polarization Vpolc0 is obtained by multiplying the magnitude of the inrush current by the time when the current flows, that is, A
h (since it is a short time, it will be expressed as Asec below).

【0043】次に、この電流0(A)点の濃度分極Vpo
lc0 を利用して電流ピーク値の濃度分極を算出する方法
を説明する。今、電流ピーク値の濃度分極をVpolcp と
すると、Vpolcp は次式のように表される。 Vpolcp =[(電流増加時のAsec )/(放電全体のAsec )]×Vpolc0 ……(3) なお、放電全体のAsec は次式で表される。 放電全体のAsec =(電流増加時のAsec +電流減少時
のAsec )
Next, the concentration polarization Vpo at this current 0 (A) point
A method of calculating the concentration polarization of the current peak value using lc0 will be described. Assuming that the concentration polarization of the current peak value is Vpolcp, Vpolcp is expressed by the following equation. Vpolcp = [(Asec when current increases) / (Asec of entire discharge)] × Vpolc0 (3) The Asec of the entire discharge is expressed by the following equation. Total discharge Asec = (Asec when current increases + Asec when current decreases)

【0044】上述のようにして求めたピーク値における
濃度分極Vpolcp を式(1)のピーク値における電圧に
加算して、図5に示すように、ピーク値における濃度分
極成分を削除する。なお、ピーク値における濃度分極成
分を削除した後の電圧をV1とすると、V1は次式で表
される。 V1=a1Ip2+b1Ip +c1+Vpolcp Ip はピーク値における電流値である。
The concentration polarization Vpolcp at the peak value obtained as described above is added to the voltage at the peak value of the equation (1) to eliminate the concentration polarization component at the peak value as shown in FIG. When the voltage after removing the concentration polarization component in the peak value is V1, V1 is expressed by the following equation. V1 = a1Ip 2 + b1Ip + c1 + Vpolcp Ip is a current value at the peak value.

【0045】次に、上述のようにして求めたV1を利用
して次式で表される、図5に示すような純抵抗と活性化
分極だけの電圧降下曲線を求める。 V=a3I2 +b3I+c3 ……(4)
Next, using V1 obtained as described above, a voltage drop curve of pure resistance and activation polarization as shown in FIG. V = a3I 2 + b3I + c3 (4)

【0046】式(1)および(4)で表される特性の初
期状態、すなわち、電流が0(A)の点に注目すると、
初期状態での分極は等しいので、c3=c1である。また、
電流増加の初期状態から電流は急激に増加するが、濃度
分極の反応は遅く、反応がほとんど進行していないとす
ると、式(1)および(4)の電流が0(A)の点の微
分値は等しくなるので、b3=b1である。従って,c3=c1
、b3=b1 を代入することで、式(4)は V=a3I2 +b1I+c1 ……(5) と書き直され、未知数はa3のみとなる。
Focusing on the initial state of the characteristics represented by the equations (1) and (4), that is, the current is 0 (A),
Since the polarization in the initial state is the same, c3 = c1. Also,
Although the current rapidly increases from the initial state of the current increase, assuming that the reaction of concentration polarization is slow and the reaction hardly progresses, the differential of the point where the current in equations (1) and (4) is 0 (A). Since the values are equal, b3 = b1. Therefore, c3 = c1
, B3 = b1 is substituted, the equation (4) is rewritten as V = a3I 2 + b1I + c1 (5), and the unknown number is only a3.

【0047】そこで、式(5)に電流増加のピーク値の
座標(Ip 、V1)を代入してa3について整理すると、
次式が求められる。 a3=(V1−b1Ip −c1)/Ip2 従って、純抵抗と活性化分極成分だけの電圧降下曲線の
式(4)が式(5)によって決定される。
Then, substituting the coordinates (Ip, V1) of the peak value of the current increase into the equation (5) and rearranging for a3,
The following formula is required. a3 = (V1-b1Ip -c1) / Ip 2 Therefore, Equation voltage drop curve of only the pure resistance and the activation polarization component (4) is determined by equation (5).

【0048】一般に、純抵抗は化学反応にて生じるもの
でないので、バッテリの充電状態(SOC)、温度など
が変わらなければ一定であるので、1回のスタータモー
タ作動の間は一定であるといえる。これに対し、活性化
分極抵抗は、イオン、電子の受渡しの際の化学反応に伴
って生じる抵抗であるので、濃度分極と相互に影響し合
うこともあって、活性化分極の電流増加曲線と電流減少
曲線は完全に一致しないことから、式(5)は濃度分極
成分を除いた純抵抗と活性化分極の電流増加方向の曲線
であるということができる。
Generally, since the pure resistance is not generated by a chemical reaction, it is constant unless the state of charge (SOC), temperature, etc. of the battery is changed, so that it can be said that it is constant during one starter motor operation. . On the other hand, the activation polarization resistance is a resistance caused by a chemical reaction at the time of transfer of ions and electrons, and therefore, it may influence the concentration polarization and interact with each other. Since the current decrease curves do not completely match, it can be said that the equation (5) is a curve in the current increasing direction of the pure resistance and the activation polarization excluding the concentration polarization component.

【0049】続いて、電流減少曲線からの濃度分極成分
の削除の仕方を、以下説明する。純抵抗と活性化分極の
電流減少方向の関係式は、電流ピーク値における濃度分
極の削除と同様の方法で可能である。ピーク値以外の2
点をA点およびB点とし、各点における濃度分極Vpolc
A 、VpolcB を次式のようにして求める。 VpolcA =[(電流増加時開始からA点までのAsec )/(放電全体のAsec )]×Vpolc0 ……(6) VpolcB =[(電流増加時開始からB点までのAsec )/(放電全体のAsec )]×Vpolc0 ……(7)
Next, how to delete the concentration polarization component from the current decrease curve will be described below. The relational expression between the pure resistance and the current decreasing direction of the activation polarization can be obtained by the same method as the deletion of the concentration polarization at the current peak value. 2 other than peak value
The points are points A and B, and the concentration polarization Vpolc at each point
A and VpolcB are obtained by the following equation. VpolcA = [(Asec from start of current increase to point A) / (Asec of total discharge)] × Vpolc0 (6) VpolcB = [(Asec from start of current increase to point B) / (total discharge) Asec)] × Vpolc0 …… (7)

【0050】上式(6)および(7)によって、ピーク
値以外に濃度分極成分を削除した2点が求まったら、こ
の2点とピーク値との3点の座標を利用して次式で表さ
れる、図6に示すような、純抵抗と活性化分極の電流減
少方向曲線が求められる。 V=a4I2 +b4I+c4 ……(8) なお、式(8)の係数a4、b4、c4は、2点A及びBとピ
ーク点の電流値と電圧値とを、式(8)にそれぞれ代入
して立てた3点の連立方程式を解くことによって決定で
きる。
When the two points in which the concentration polarization component is deleted in addition to the peak value are obtained by the above equations (6) and (7), the following equation is used by utilizing the coordinates of these two points and the peak value. As shown in FIG. 6, the pure resistance and the current polarization direction curve of the activation polarization are obtained. V = a4I 2 + b4I + c4 (8) The coefficients a4, b4, and c4 of the equation (8) are respectively substituted into the equation (8) by the two points A and B and the current value and the voltage value at the peak point. It can be determined by solving the simultaneous equations of three points set up.

【0051】次に、純抵抗の算出の仕方を説明する。上
式(5)で表される濃度分極成分を削除した純抵抗と活
性化分極の電流増加方向の曲線と、式(8)で表される
同じく濃度分極成分を削除した純抵抗と活性化分極の電
流減少方向の曲線との相違は、活性化分極成分の相違に
よるものであるので、活性化分極成分を除けば純抵抗が
求められる。
Next, the method of calculating the pure resistance will be described. The pure resistance and activation polarization curves of the pure resistance and activation polarization in which the concentration polarization component is deleted, which is expressed by the above formula (5), and the pure resistance and activation polarization, which are also expressed by the formula (8) and in which the concentration polarization component is deleted The difference from the curve in the current decreasing direction is due to the difference in the activation polarization component, and therefore the pure resistance is required except for the activation polarization component.

【0052】ところで、活性化分極が互いに等しい値と
なる両曲線のピーク値に着目し、ピーク値での電流増加
の微分値R1と電流減少の微分値R2とを次式によって
求める。 R1=2×a3×Ip ×b3 ……(10) R2=2×a4×Ip ×b4 ……(11) 上式によって求められる微分値R1およびR2の差は、
一方が活性化分極の増加方向でのピーク値であるのに対
し、他方が減少方向でのピーク値であることに基因す
る。そして、突入電流に相当する模擬的な放電として、
0から200Aまで0.25秒かけて増加し、同じ時間
をかけてピーク値から0まで減少する放電を電子負荷を
使用してバッテリに行わせた場合には、ピーク値近傍で
の両者の変化率が等しく、両者の中間に純抵抗による電
流−電圧特性が存在すると理解できるので、両微分値を
加算して2で割ることによって、純抵抗Rを次式によっ
て求めることができる。 R=(R1+R2)/2 ……(12)
Now, paying attention to the peak values of both curves where the activation polarizations are equal to each other, the differential value R1 of the current increase and the differential value R2 of the current decrease at the peak value are obtained by the following equations. R1 = 2 × a3 × Ip × b3 (10) R2 = 2 × a4 × Ip × b4 (11) The difference between the differential values R1 and R2 obtained by the above equation is
This is because one is the peak value in the increasing direction of the activation polarization, while the other is the peak value in the decreasing direction. Then, as a simulated discharge corresponding to the inrush current,
When an electric load is used to cause the battery to perform a discharge that increases from 0 to 200 A over 0.25 seconds and decreases over the same time from the peak value to 0, a change in both values near the peak value Since it can be understood that the rates are equal and the current-voltage characteristic due to the pure resistance exists between the two, the pure resistance R can be obtained by the following equation by adding both differential values and dividing by two. R = (R1 + R2) / 2 (12)

【0053】以上は、突入電流に相当する模擬的な放電
を電子負荷を使用してバッテリに行わせた場合について
説明したが、実車両の場合には、上述したようにスター
タモータとして直流モータを使用しているとき、界磁コ
イルに突入電流が流れている間に電流はピークに達し、
クランキングはピークに達した後ピーク電流の半分以下
に低下した電流で作動している。従って、電流増加方向
は3ミリ秒(msec)という短時間で終了してしま
い、電流増加ピーク値ではほとんど濃度分極が発生しな
い早い電流の変化であるが、電流減少方向は電流増加方
向に比べて150msecという長い時間電流が流れる
ので、減少方向とはいえ、大きな濃度分極が発生する。
ただし、クランキング期間については、突入電流の流れ
ている期間とは異質の現象が生じているので、この期間
のバッテリの放電電流と端子電圧については、電流減少
方向の電流−電圧特性を決定するためのデータとしては
使用しないようにする。
In the above, the case where a simulated discharge corresponding to an inrush current is made to occur in a battery using an electronic load has been described. However, in the case of an actual vehicle, a DC motor is used as the starter motor as described above. When used, the current reaches its peak while the inrush current flows through the field coil,
Cranking operates at a current that has reached a peak and has dropped below half the peak current. Therefore, the current increasing direction ends in a short time of 3 milliseconds (msec), and there is a fast current change in which the concentration polarization hardly occurs at the current increasing peak value, but the current decreasing direction is smaller than the current increasing direction. Since the current flows for a long time of 150 msec, a large concentration polarization occurs although it is in the decreasing direction.
However, in the cranking period, a phenomenon that is different from the period in which the inrush current flows occurs, so the current-voltage characteristics in the direction of current decrease are determined for the battery discharge current and terminal voltage during this period. Do not use it as data for.

【0054】このような状況で、実車両では、図7に示
すように、電流増加方向は電流増加開始点とピーク値の
2点間を結ぶ直線にて近似することができ、しかもこの
ピーク値500(A)での濃度分極の発生は0(A)と
近似することも可能である。この場合には、電流増加方
向については、ピーク値の微分値としては、電流増加方
向の近似直線の傾きを使用することになる。ただし、こ
のような場合には、電流増加方向の近似直線の傾きと、
電流減少方向の二次の近似式のピーク点における接線の
傾きとを単純に加算平均することはできない。何故なら
ば、このような状況では、ピーク点までとそれ以降で、
活性化分極の発生度合いが全く異なり、ピーク値近傍で
の両者の変化率が等しくなるという前提が成立しなくな
るからである。このような場合には、純抵抗を求めるに
当たって、濃度分極による電圧降下を除いた第1及び第
2の近似式のピーク値に対応する点における単位電流変
化当たりの2つの端子電圧変化の値、すなわち、傾き
に、突入電流が流れている総時間に占める単調増加期間
及び単調減少期間の時間の割合をそれぞれ乗じた上で加
算すればよい。すなわち、総時間を単調増加及び単調減
少にそれぞれ要した時間で比例按分した按分率を各傾き
に乗じた上で加算することになる。このようにすること
によって、活性化分極と濃度分極とが相互に影響し合う
ことを考慮して純抵抗を求めることができる。すなわ
ち、活性化分極は原則電流値に応じた大きさのものが生
じるが、その時々の濃度分極量に左右され、原則通りに
は生じることにならず、濃度分極が小さければ活性化分
極も小さくなり、大きければ大きくなる。何れにして
も、濃度分極成分による電圧降下を除いた2つの近似式
のピーク値に対応する点における単位電流変化当たりの
2つの端子電圧変化の値の中間の値をバッテリの純抵抗
の値として測定することができる。
In such a situation, in the actual vehicle, the current increasing direction can be approximated by a straight line connecting the current increasing start point and the peak value, as shown in FIG. The occurrence of concentration polarization at 500 (A) can be approximated to 0 (A). In this case, for the current increasing direction, the slope of the approximate straight line in the current increasing direction is used as the differential value of the peak value. However, in such a case, the slope of the approximate straight line in the current increasing direction,
It is not possible to simply add and average the slope of the tangent line at the peak point of the quadratic approximation formula in the current decreasing direction. Because in this situation, up to and after the peak,
This is because the degree of occurrence of activation polarization is completely different, and the assumption that the rates of change of the two become equal in the vicinity of the peak value cannot be established. In such a case, in obtaining the pure resistance, two terminal voltage change values per unit current change at points corresponding to the peak values of the first and second approximate expressions excluding the voltage drop due to concentration polarization, That is, the slope may be multiplied by the ratio of the time of the monotonous increase period and the time of the monotonous decrease period to the total time during which the inrush current flows, and then added. That is, the total time is proportionally proportionally divided by the time required for monotonous increase and monotonous decrease respectively, and the respective proportions are multiplied and then added. By doing so, the pure resistance can be obtained in consideration of the mutual influence of the activation polarization and the concentration polarization. That is, in principle, the activation polarization has a magnitude corresponding to the current value, but it does not occur as in principle depending on the concentration polarization amount at each time, and the smaller the concentration polarization, the smaller the activation polarization. And the bigger it is, the bigger it becomes. In any case, the intermediate value of the two terminal voltage change values per unit current change at the point corresponding to the peak value of the two approximate expressions excluding the voltage drop due to the concentration polarization component is taken as the pure resistance value of the battery. Can be measured.

【0055】また、最近の車両では、モータとしては、
マグネットモータなどのDCブラッシレスなどの三相入
力を必要とする交流モータが使用されることが増えてき
ている。このようなモータの場合、突入電流はそれ程早
く短時間にピーク値に達することがなく、100mse
cほどの時間を要し、電流増加方向においても濃度分極
の発生が起こるので、上述した模擬的な放電の場合と同
様に、電流増加方向の電流変化曲線は二次近似すること
が必要になる。
In recent vehicles, the motor is
AC motors that require three-phase inputs, such as DC brushless magnet magnets, are increasingly used. In the case of such a motor, the inrush current does not reach the peak value so quickly and in a short time,
Since it takes about c time and concentration polarization occurs in the direction of increasing the current, the current change curve in the direction of increasing current needs to be quadratic-approximated as in the case of the simulated discharge described above. .

【0056】また、活性化分極の電流減少方向の近似を
する場合、ピーク値とこれ以外の2点を定める際、図8
に示すように、B点として電流0(A)の点を使用する
と、近似式を求める際の計算を簡略化することができ
る。
In the case of approximating the current decreasing direction of activation polarization, the peak value and the other two points are determined as shown in FIG.
As shown in, if the point of the current 0 (A) is used as the point B, the calculation for obtaining the approximate expression can be simplified.

【0057】さらに、例えば、ピーク電流の1/2程度
の電流値に対応する点に濃度分極の削除した点を定めた
場合、図9に示すように、この点とピーク値の2点を結
ぶ直線に一次近似してもよい。この場合、電流減少方向
については、ピーク値の微分値としては、電流減少方向
の近似直線の傾きを使用することになるが、二次曲線を
使用したものと変わらない、精度のよい純抵抗が求めら
れる。以上要するに、濃度分極成分による電圧降下を除
いた2つの近似式のピーク値に対応する点における単位
電流変化当たりの2つの端子電圧変化の値の中間の値を
バッテリの純抵抗の値として測定することができる。
Further, for example, when a point where concentration polarization is deleted is set at a point corresponding to a current value of about 1/2 of the peak current, as shown in FIG. 9, this point and the peak value are connected. It may be linearly approximated to a straight line. In this case, for the current decrease direction, the slope of the approximate straight line in the current decrease direction will be used as the differential value of the peak value, but an accurate pure resistance that is the same as that using the quadratic curve is obtained. Desired. In short, the intermediate value of the two terminal voltage change values per unit current change at the point corresponding to the peak value of the two approximate expressions excluding the voltage drop due to the concentration polarization component is measured as the pure resistance value of the battery. be able to.

【0058】そこで、車載バッテリ純抵抗測定方法を、
定負荷として、増加する放電電流及び減少する放電電流
のいずれにおいても濃度分極の発生を伴う突入電流が流
れる例えばスタータモータが使用されている場合につい
て具体的に説明する。
Therefore, an in-vehicle battery pure resistance measuring method is
A specific description will be given of a case where, for example, a starter motor is used as the constant load, in which an inrush current that causes concentration polarization occurs in both the increasing discharge current and the decreasing discharge current.

【0059】定負荷が動作されると、バッテリからは定
常値を越えて単調増加しピーク値から定常値に単調減少
する放電電流が流れる。このときのバッテリの放電電流
と端子電圧とを、例えば100マイクロ秒(μsec)
の周期にてサンプリングすることで周期的に測定し、バ
ッテリの放電電流と端子電圧との組が多数得られる。
When the constant load is operated, a discharge current flows from the battery, which exceeds the steady value and monotonically increases and monotonically decreases from the peak value to the steady value. The discharge current and the terminal voltage of the battery at this time are, for example, 100 microseconds (μsec).
By periodically sampling, the measurement is performed periodically, and a large number of sets of battery discharge current and terminal voltage are obtained.

【0060】このようにして得られたバッテリの放電電
流と端子電圧との組の最新のものを、所定時間分、例え
ばRAMなどの書換可能な記憶手段としてのメモリに格
納、記憶して収集する。メモリに格納、記憶して収集し
た放電電流と端子電圧との組を用いて、最小二乗法によ
り、端子電圧と放電電流との相関を示す増加する放電電
流及び減少する放電電流に対する電流−電圧特性につい
て式(1)及び(2)に示すような2つの二次近似式を
求める。次に、この2つの近似式から濃度分極成分によ
る電圧降下を削除し、濃度分極成分を含まない修正した
二次近似式を求める。
The latest set of the battery discharge current and the terminal voltage thus obtained is stored for a predetermined time, for example, in a memory such as a RAM as a rewritable storage means, stored and collected. . A current-voltage characteristic with respect to an increasing discharge current and a decreasing discharge current showing a correlation between the terminal voltage and the discharge current by a least square method using a set of the discharge current and the terminal voltage stored in the memory and collected. For two, two quadratic approximation formulas as shown in formulas (1) and (2) are obtained. Next, the voltage drop due to the concentration polarization component is deleted from these two approximation formulas, and a modified quadratic approximation formula that does not include the concentration polarization component is obtained.

【0061】このために、まず、式(1)及び(2)の
近似式の電流が流れていない0(A)の時の電圧差を、
純抵抗と活性化分極による電圧降下はなく、濃度分極に
よるものであるとして求める。また、この電圧差を利用
して、増加する放電電流についての電流−電圧特性の近
似式(1)上の電流ピーク値での濃度分極成分による電
圧降下を求める。このために、濃度分極は、電流の大き
さに電流の流れた時間を乗じた電流時間積によって変化
していることを利用する。
For this purpose, first, the voltage difference at the time of 0 (A) in which no current flows in the approximation formulas (1) and (2) is
There is no voltage drop due to pure resistance and activation polarization, and it is determined as due to concentration polarization. Further, by utilizing this voltage difference, the voltage drop due to the concentration polarization component at the current peak value in the approximate expression (1) of the current-voltage characteristic for the increasing discharge current is obtained. For this purpose, the concentration polarization utilizes the fact that it changes according to the current-time product obtained by multiplying the magnitude of the current by the time during which the current flows.

【0062】増加する放電電流についての電流−電圧特
性の近似式上の電流ピーク値での濃度分極成分による電
圧降下が求まったら次に、濃度分極成分の含まない近似
式と含む近似式のいずれも定数及び一次係数が等しいと
して、含まない近似式の二次係数を定め、増加する放電
電流についての電流−電圧特性の近似式について修正し
た二次近似式(5)を求める。
When the voltage drop due to the concentration polarization component at the current peak value on the approximate formula of the current-voltage characteristic for the increasing discharge current is obtained, then both the approximation formula not including the concentration polarization component and the approximation formula including it. Assuming that the constant and the linear coefficient are equal, a quadratic coefficient of the approximate expression not included is determined, and a quadratic approximate expression (5) obtained by modifying the approximate expression of the current-voltage characteristic for the increasing discharge current is obtained.

【0063】次に、減少する放電電流に対する電流−電
圧特性について近似式(2)から濃度分極成分の含まな
い近似式を求める。このために、ピーク値以外に濃度分
極成分を削除した2点を求める。この際に、濃度分極
は、電流の大きさに電流の流れた時間を乗じた電流時間
積によって変化していることを利用する。そして、ピー
ク値以外に濃度分極成分を削除した2点が求まったら、
この2点とピーク値との3点の座標を利用して、減少す
る放電電流についての電流−電圧特性の近似式(2)に
ついて修正した二次近似式(8)を求める。
Next, with respect to the current-voltage characteristic with respect to the decreasing discharge current, an approximate expression not including the concentration polarization component is obtained from the approximate expression (2). For this purpose, two points in which the concentration polarization component is deleted in addition to the peak value are obtained. At this time, the concentration polarization utilizes the fact that it changes according to the current-time product obtained by multiplying the magnitude of the current by the time during which the current flows. Then, if two points are obtained in which the concentration polarization component is deleted in addition to the peak value,
Utilizing the coordinates of these three points of the two points and the peak value, a quadratic approximation formula (8) obtained by modifying the approximation formula (2) of the current-voltage characteristic for the decreasing discharge current is obtained.

【0064】上式(5)で表される濃度分極成分を削除
した純抵抗と活性化分極の電流増加方向の修正二次近似
式と、式(8)で表される濃度分極成分を削除した純抵
抗と活性化分極の電流減少方向の修正二次近似式は、活
性化分極成分の相違によるものであるので、活性化分極
成分を除けば純抵抗が求められる。このために、両近似
式のピーク値に着目し、ピーク値での電流増加の微分値
と電流減少の微分値との差は、一方が活性化分極の増加
方向であるのに対し、他方が減少方向であることに基因
するものであるが、ピーク値近傍での両者の変化率の中
間に純抵抗による電流−電圧特性が存在するとし、両微
分値に突入電流が流れている総時間に占める単調増加期
間及び前記単調減少期間の時間の割合をそれぞれ乗じた
上で加算することによって、純抵抗を求める。例えば、
電流増加時間が3msec、電流減少時間が100ms
ecとし、ピーク値での電流増加の微分値をRpolk1 、
電流減少の微分値をRpolk2 とすると、以下のようにし
て純抵抗Rを算出することができる。 R=Rpolk1 ×100/103+Rpolk2 ×3/103
The modified quadratic approximation formula for the current increasing direction of the pure resistance and the activation polarization in which the concentration polarization component represented by the above formula (5) is deleted, and the concentration polarization component represented by the formula (8) are deleted. Since the modified quadratic approximation formula of the pure resistance and the current decreasing direction of the activation polarization is due to the difference in the activation polarization component, the pure resistance can be obtained excluding the activation polarization component. For this reason, paying attention to the peak value of both approximate expressions, the difference between the differential value of the current increase and the differential value of the current decrease at the peak value is that one is in the increasing direction of the activation polarization, while the other is Although it is due to the decreasing direction, it is assumed that the current-voltage characteristic due to pure resistance exists in the middle of the rate of change of both in the vicinity of the peak value, and the total time during which the inrush current flows in both differential values The net resistance is obtained by multiplying the respective ratios of the monotonous increase period and the monotonic decrease period, and then adding them. For example,
Current increase time is 3 msec, current decrease time is 100 ms
ec, the differential value of the current increase at the peak value is Rpolk1,
When the differential value of the current decrease is Rpolk2, the pure resistance R can be calculated as follows. R = Rpolk1 × 100/103 + Rpolk2 × 3/103

【0065】上述したようなことを可能にして本発明の
車載バッテリ純抵抗測定方法を実施する装置の具体的な
実施の形態を、図2に戻って以下説明する。
A concrete embodiment of an apparatus for carrying out the above-described method for measuring the on-board battery pure resistance of the present invention by enabling the above will be described with reference to FIG. 2 again.

【0066】図2は本発明の車載バッテリ純抵抗測定方
法を適用した本発明の一実施形態に係る車載バッテリの
純抵抗測定装置の概略構成を一部ブロックにて示す説明
図であり、図中符号1で示す本実施形態の車載バッテリ
の純抵抗測定装置は、エンジン3に加えてモータジェネ
レータ5を有するハイブリッド車両に搭載されている。
FIG. 2 is an explanatory diagram showing, in a partial block diagram, a schematic configuration of an in-vehicle battery pure resistance measuring apparatus according to an embodiment of the present invention to which the in-vehicle battery pure resistance measuring method of the present invention is applied. The in-vehicle battery pure resistance measuring device of the present embodiment shown by reference numeral 1 is mounted on a hybrid vehicle having a motor generator 5 in addition to the engine 3.

【0067】そして、このハイブリッド車両は、通常時
はエンジン3の出力のみをドライブシャフト7からディ
ファレンシャルケース9を介して車輪11に伝達して走
行させ、高負荷時には、バッテリ13からの電力により
モータジェネレータ5をモータとして機能させて、エン
ジン3の出力に加えてモータジェネレータ5の出力をド
ライブシャフト7から車輪11に伝達し、アシスト走行
を行わせるように構成されている。
In this hybrid vehicle, only the output of the engine 3 is normally transmitted from the drive shaft 7 to the wheels 11 via the differential case 9 to drive the hybrid vehicle, and when the load is high, the electric power from the battery 13 is used to drive the motor generator. 5 is made to function as a motor, the output of the motor generator 5 in addition to the output of the engine 3 is transmitted from the drive shaft 7 to the wheels 11, and assisted travel is performed.

【0068】また、このハイブリッド車両は、減速時や
制動時にモータジェネレータ5をジェネレータ(発電
機)として機能させ、運動エネルギを電気エネルギに変
換してバッテリ13を充電させるように構成されてい
る。
Further, this hybrid vehicle is configured to cause the motor generator 5 to function as a generator (generator) at the time of deceleration or braking and convert kinetic energy into electric energy to charge the battery 13.

【0069】なお、モータジェネレータ5はさらに、図
示しないスタータスイッチのオンに伴うエンジン3の始
動時に、エンジン3のフライホイールを強制的に回転さ
せるスタータモータとして用いられるが、その場合にモ
ータジェネレータ5には、短時間に大きな突入電流が流
される。スタータスイッチのオンによりモータジェネレ
ータ5によってエンジン3が始動されると、イグニッシ
ョンキー(図示せず。)の操作解除に伴って、スタータ
スイッチがオフになってイグニッションスイッチやアク
セサリスイッチのオン状態に移行し、これに伴ってバッ
テリ13から流れる放電電流は、定常電流に移行する。
The motor generator 5 is further used as a starter motor for forcibly rotating the flywheel of the engine 3 when the engine 3 is started when the starter switch (not shown) is turned on. A large inrush current is made to flow in a short time. When the engine 3 is started by the motor generator 5 when the starter switch is turned on, the starter switch is turned off and the ignition switch and the accessory switch are turned on as the ignition key (not shown) is released. Along with this, the discharge current flowing from the battery 13 shifts to a steady current.

【0070】話を構成の説明に戻すと、本実施形態の車
載バッテリの純抵抗測定装置1は、アシスト走行用のモ
ータやスタータモータとして機能するモータジェネレー
タ5等、電装品に対するバッテリ13の放電電流Iや、
ジェネレータとして機能するモータジェネレータ5から
のバッテリ13に対する充電電流を検出する電流センサ
15と、バッテリ13に並列接続した1Mオーム程度の
抵抗値を有し、バッテリ13の端子電圧Vを検出する電
圧センサ17とを備えている。
Returning to the explanation of the configuration, the in-vehicle battery pure resistance measuring apparatus 1 of the present embodiment is configured so that the discharge current of the battery 13 with respect to electric components such as the motor for assisted traveling and the motor generator 5 functioning as a starter motor. I or
A current sensor 15 that detects a charging current from the motor generator 5 that functions as a generator to the battery 13, and a voltage sensor 17 that has a resistance value of about 1 Mohm connected in parallel to the battery 13 and that detects a terminal voltage V of the battery 13. It has and.

【0071】また、本実施形態の車載バッテリの純抵抗
測定装置1は、上述した電流センサ15及び電圧センサ
17の出力がインタフェース回路(以下、「I/F」と
略記する。)21におけるA/D変換後に取り込まれる
マイクロコンピュータ(以下、「マイコン」と略記す
る。)23をさらに備えている。
In the in-vehicle battery pure resistance measuring apparatus 1 of this embodiment, the outputs of the current sensor 15 and the voltage sensor 17 described above are A / in the interface circuit (hereinafter abbreviated as "I / F") 21. A microcomputer (hereinafter abbreviated as “microcomputer”) 23 that is loaded after D conversion is further provided.

【0072】そして、前記マイコン23は、CPU23
a、RAM23b、及び、ROM23cを有しており、
このうち、CPU23aには、RAM23b及びROM
23cの他、前記I/F21が接続されており、また、
上述した図示しないスタータスイッチ、イグニッション
スイッチやアクセサリスイッチ、モータジェネレータ5
以外の電装品(負荷)のスイッチ等が、さらに接続され
ている。
Then, the microcomputer 23 has the CPU 23
a, a RAM 23b, and a ROM 23c,
Of these, the CPU 23a includes a RAM 23b and a ROM.
23c, the I / F 21 is connected, and
The starter switch, ignition switch, accessory switch, and motor generator 5 not shown above
Other electrical equipment (load) switches, etc. are further connected.

【0073】前記RAM23bは、各種データ記憶用の
データエリア及び各種処理作業に用いるワークエリアを
有しており、前記ROM23cには、CPU23aに各
種処理動作を行わせるための制御プログラムが格納され
ている。
The RAM 23b has a data area for storing various data and a work area used for various processing operations, and the ROM 23c stores a control program for causing the CPU 23a to perform various processing operations. .

【0074】なお、上述した電流センサ15及び電圧セ
ンサ17の出力である電流値及び電圧値は、短い周期で
高速にサンプリングされてI/F21を介して、マイコ
ン23のCPU23aに取り込まれ、取り込まれた電流
値及び電圧値は前記RAM23bのデータエリア(記憶
手段に相当する)に収集され、各種の処理のために使用
される。
The current value and the voltage value which are the outputs of the current sensor 15 and the voltage sensor 17 are sampled at a high speed in a short cycle and taken into the CPU 23a of the microcomputer 23 via the I / F 21 and taken in. The current value and the voltage value are collected in the data area (corresponding to a storage means) of the RAM 23b and used for various processes.

【0075】次に、前記ROM23cに格納された制御
プログラムに従いCPU23aが行う処理を、図10の
フローチャートを参照して説明する。
Next, the processing performed by the CPU 23a in accordance with the control program stored in the ROM 23c will be described with reference to the flowchart of FIG.

【0076】バッテリ13からの給電を受けてマイコン
23が起動しプログラムがスタートすると、CPU23
aは、まず初期設定を実行する(ステップS1)。
When the microcomputer 23 is activated by the power supply from the battery 13 and the program is started, the CPU 23
First, a executes initial setting (step S1).

【0077】ステップS1の初期設定が済んだならば、
次に、CPU23aは、イグニッション(IG)スイッ
チがオンされたか否かを判定し(ステップS2)、判定
がYESにならないときには他の処理(ステップS3)
を行う。なお、このステップS3の処理では、500μ
secのサンプリング周期で放電電流及び端子電圧を測
定して収集することも行っており、この処理をステップ
S2の判定がYESになるまで繰り返す。そして、IG
スイッチのオンが検出されたときには(ステップS2の
YES)、急激に変化するスタータモータの駆動時の急
激に変化する突入電流を測定することができるように、
サンプリング周期を500μsecから100μsec
に短くする(ステップS4)。
When the initial setting in step S1 is completed,
Next, the CPU 23a determines whether or not the ignition (IG) switch is turned on (step S2), and when the determination is not YES, another process (step S3).
I do. In addition, in the processing of this step S3, 500 μ
The discharge current and the terminal voltage are also measured and collected in a sampling cycle of sec, and this processing is repeated until the determination in step S2 becomes YES. And IG
When it is detected that the switch is turned on (YES in step S2), the abruptly changing inrush current at the time of driving the abruptly changing starter motor can be measured.
Sampling cycle from 500μsec to 100μsec
(Step S4).

【0078】その後、電流センサ15の検出したバッテ
リ13の放電電流Iと電圧センサ17の検出したバッテ
リ13の端子電圧VとのA/D変換値を対にしてI/F
21を介して読み込み、読み込んだ実データをRAM2
3bのデータエリアに格納、記憶して収集する実データ
収集処理を実行する(ステップS5)。
After that, the A / D conversion value of the discharge current I of the battery 13 detected by the current sensor 15 and the terminal voltage V of the battery 13 detected by the voltage sensor 17 is paired to form an I / F.
21 is read through, and the read actual data is stored in the RAM 2
An actual data collection process of storing, storing and collecting in the data area 3b is executed (step S5).

【0079】このステップS5において実データ収集処
理を行っている過程で、収集した前後の実データの大小
関係を比較することによって突入電流のピーク値を検出
する(ステップS6)。ピーク値が検出されたとき(ス
テップS6のYES)には、ピーク値検出からの時間を
計時し、所定時間が経過するまで実データの収集を継続
し、所定時間経過した時点(ステップS7のYES)
で、ピーク値の前後の所定時間分の実データを保持する
(ステップS8)とともに、ピーク値を検出してから所
定時間後にサンプリング周期を元の500μsecに戻
す(ステップS9)。
During the process of collecting the actual data in step S5, the peak value of the inrush current is detected by comparing the magnitude relationship between the collected and collected actual data (step S6). When the peak value is detected (YES in step S6), the time from the peak value detection is counted, actual data collection is continued until a predetermined time has elapsed, and when the predetermined time has elapsed (YES in step S7). )
Then, the actual data for a predetermined time before and after the peak value is held (step S8), and the sampling cycle is returned to the original 500 μsec after a predetermined time from the detection of the peak value (step S9).

【0080】そして、収集保持した所定時間分の実デー
タが分析され、最小二乗法を適用して、電流−電圧特性
の二次近似式を求めるのに適当なものであるかどうかが
判定される。すなわち、バッテリから、0からピーク値
まで単調増加する放電電流とピーク値から定常値まで単
調減少する放電電流が流れているかどうかを分析する分
析処理を行う(ステップS10)。
Then, the collected and held actual data for a predetermined time is analyzed, and it is determined by applying the least squares method whether or not it is suitable for obtaining the quadratic approximation formula of the current-voltage characteristic. . That is, an analysis process is performed to analyze whether or not a discharge current that monotonically increases from 0 to a peak value and a discharge current that monotonically decreases from a peak value to a steady value are flowing from the battery (step S10).

【0081】ステップS10における分析の結果、電流
−電圧特性の二次近似式を求めるのに適当なものが収集
されているとき(ステップS11のYES)、増加する
放電電流及び減少する放電電流に対する式(1)及び
(2)で表される電流−電圧特性の二次近似式を求める
近似曲線式算出処理を実行する(ステップS12)。
As a result of the analysis in step S10, when the appropriate ones for obtaining the quadratic approximate expression of the current-voltage characteristic are collected (YES in step S11), the expressions for the increasing discharge current and the decreasing discharge current are obtained. Approximate curve formula calculation processing for obtaining a quadratic approximate formula of the current-voltage characteristic represented by (1) and (2) is executed (step S12).

【0082】ステップS12の二次近似曲線式算出処理
によって求まった二次近似式からバッテリの純抵抗を求
めるための演算処理を実行する(ステップS13)。な
お、この演算処理においては、二次式に濃度分極成分に
よる電圧降下が含まれている場合、この電圧降下を除い
た修正二次近似式を求める修正二次近似式算出処理を行
い、この修正二次近似式を用いてバッテリの純抵抗を求
めるための演算処理を実行することになり、この場合に
は、増加する放電電流及び減少する放電電流に対する電
流−電圧特性の2つの修正二次近似式のピーク値での微
分値を算出した上で、2つの微分値の中間の値をバッテ
リの純抵抗として求める演算を行う。そして、この求め
たバッテリの純抵抗は種々の目的で使用するため、RA
M23bのデータエリアに格納されて記憶される(ステ
ップS14)。ステップS14の処理が終了したら、次
にステップS2の判定がYESとなるのを待つ。
A calculation process for obtaining the pure resistance of the battery is executed from the quadratic approximation formula obtained by the quadratic approximation curve formula calculation process in step S12 (step S13). In this calculation process, when the quadratic equation includes a voltage drop due to the concentration polarization component, a modified quadratic approximation formula calculation process for obtaining a modified quadratic approximation formula excluding this voltage drop is performed to correct this The calculation process for obtaining the pure resistance of the battery is executed by using the quadratic approximation formula. In this case, two modified quadratic approximations of the current-voltage characteristics with respect to the increasing discharge current and the decreasing discharge current are performed. After the differential value at the peak value of the formula is calculated, the intermediate value of the two differential values is calculated as the pure resistance of the battery. Since the obtained pure resistance of the battery is used for various purposes, RA
It is stored and stored in the data area of M23b (step S14). When the process of step S14 is completed, the process waits until the determination of step S2 becomes YES.

【0083】この微分値の中間の値を求める方法として
は、突入電流の流れ形によって2つの方法がある。突入
電流の増加方向の時間と減少方向の時間とがほぼ等しい
ときには、2つの微分値の加算平均値を純抵抗として求
める演算を行う。これに対して、突入電流の増加方向の
時間と減少方向の時間とが大きく異なるときには、増加
する放電電流に対する電流−電圧特性の修正二次近似式
のピーク値での微分値に、放電電流の総時間に占める増
加する放電電流の流れた時間の比率を乗じたものと、減
少する放電電流に対する電流−電圧特性の2つの修正二
次近似式のピーク値での微分値に、放電電流の総時間に
占める減少する放電電流の流れた時間の比率を乗じたも
のとを加算した加算値を純抵抗として求める演算を行
う。いずれの方法で純抵抗を求めた場合にも、バッテリ
の純抵抗は2つの微分値の中間の値として求められる。
There are two methods for obtaining the intermediate value of the differential values depending on the flow type of the inrush current. When the time in the increasing direction of the rush current and the time in the decreasing direction are substantially equal to each other, the arithmetic mean of the two differential values is calculated as the pure resistance. On the other hand, when the time in the increasing direction of the inrush current and the time in the decreasing direction are significantly different, the differential value at the peak value of the modified quadratic approximation formula of the current-voltage characteristic with respect to the increasing discharge current is The differential value at the peak value of the two modified quadratic approximation formulas of the current-voltage characteristics for the decreasing discharge current is multiplied by the ratio of the increasing time of the increasing discharge current to the total time, and A calculation is performed to obtain the added value obtained by adding the value obtained by multiplying the value obtained by multiplying the time ratio of the decreasing discharge current flowing in the time, as the pure resistance. Whichever method is used to determine the pure resistance, the pure resistance of the battery is determined as an intermediate value between the two differential values.

【0084】また、図10のフローチャートに示した例
では、第1及び第2の近似式が共に二次近似式としてい
るが、第1の近似式が一次近似式であるときには、修正
近似式を求める処理は当然に不要になる。そして、この
場合には、一次式の傾きを微分値に代えて利用すること
になる。
In the example shown in the flowchart of FIG. 10, the first and second approximation formulas are both quadratic approximation formulas. However, when the first approximation formula is a first-order approximation formula, the modified approximation formula is Needless to say, the required processing is unnecessary. In this case, the slope of the linear equation is used instead of the differential value.

【0085】また、本実施形態の車載バッテリの純抵抗
測定装置1ではフローチャートにおけるステップS5が
請求項中の電流・電圧測定手段に対する処理となってお
り、ステップS12が請求項中の近似式算出手段に対応
する処理となっており、ステップS13が請求項中の演
算手段に対応する処理となっている。
Further, in the on-vehicle battery pure resistance measuring apparatus 1 of the present embodiment, step S5 in the flow chart is the processing for the current / voltage measuring means in the claims, and step S12 is the approximate expression calculating means in the claims. The process corresponding to step S13 corresponds to the calculating means in the claims.

【0086】次に、上述のように構成された本実施形態
の車載バッテリの純抵抗測定装置1の動作(作用)につ
いて説明する。
Next, the operation (action) of the in-vehicle battery pure resistance measuring apparatus 1 of the present embodiment configured as described above will be described.

【0087】まず、スタータモータの駆動開始に伴いバ
ッテリ13が放電を行っている状態で、スタータモータ
に定常値を越えて単調増加しピーク値から定常値に単調
減少する突入電流が流れたときのバッテリの端子電圧と
放電電流とが周期的に測定される。
First, in the state where the battery 13 is being discharged when the starter motor starts to drive, when a rush current flows to the starter motor which exceeds the steady value and monotonically increases and monotonically decreases from the peak value to the steady value. The battery terminal voltage and discharge current are measured periodically.

【0088】また、本実施形態の車載バッテリの純抵抗
測定装置1では、周期的に測定されたピーク値の前後の
所定時間分の実データを、RAM23bのデータエリア
に格納、記憶して収集され、収集された放電電流Iと端
子電圧Vとの所定時間分の実データは分析され、最小二
乗法を適用して、電流−電圧特性の2次の近似曲線式を
求めるのに適当なものであるかどうかが判定される。す
なわち、バッテリから定常値を越えて単調増加しピーク
値から定常値以下に単調減少する放電電流が流れている
かどうかが分析される。
In the on-vehicle battery pure resistance measuring apparatus 1 of the present embodiment, the actual data for a predetermined time before and after the periodically measured peak value is stored in the data area of the RAM 23b and is collected. , The collected actual data of the discharge current I and the terminal voltage V for a predetermined time are analyzed and are suitable for obtaining a quadratic approximate curve formula of the current-voltage characteristic by applying the least squares method. It is determined whether there is. That is, it is analyzed whether or not the discharge current flowing from the battery monotonously increases beyond the steady value and monotonically decreases from the peak value to the steady value or less.

【0089】このため、電流−電圧特性の2次の近似曲
線式を求めるのに適当なものが収集されるまで、近似曲
線式算出処理が行われることがなく、近似曲線式算出処
理も、既に収集した所定時間分の実データを用いて行わ
れればよいので、端子電圧と放電電流との周期的な測定
に同期して処理を行わなくてもよく、早い処理速度を必
要としない。
Therefore, the approximate curve formula calculation process is not performed until the appropriate one for obtaining the quadratic approximate curve formula of the current-voltage characteristic is collected, and the approximate curve formula calculation process is already performed. Since it may be performed using the collected actual data for a predetermined time, it is not necessary to perform the processing in synchronization with the periodic measurement of the terminal voltage and the discharge current, and a high processing speed is not required.

【0090】なお、上述した実施の形態では、スタータ
モータが駆動開始されるときの放電電流に含まれる突入
電流についてのみ注目して本発明を実施しているが、大
きさこそ異なるもののスタータモータと同様に駆動開始
時に突入電流の流れるスタータモータ以外の負荷にも等
しく適用することができる。ただし、この場合には、I
Gスイッチの代わりに、負荷駆動開始時点を負荷スイッ
チのオン操作を捕らえて、ステップS4の処理を行うこ
とになり、それ以外の処理は図10のフローチャートと
実質的に同じ処理を行うことでよい。
In the above-described embodiment, the present invention is implemented by focusing only on the inrush current included in the discharge current when the starter motor is driven, but the starter motor is different from the starter motor in size. Similarly, the invention can be equally applied to loads other than the starter motor in which an inrush current flows at the start of driving. However, in this case, I
Instead of the G switch, the ON operation of the load switch is detected at the load driving start time and the process of step S4 is performed, and other processes may be performed by substantially the same process as the flowchart of FIG. .

【0091】なお、上述した実施の形態では、第1及び
第2の近似式の放電電流0である点におけるバッテリの
端子電圧の差を突入電流が0からピーク値に増加しピー
ク値から0に減少した期間に生じた総濃度分極成分によ
る電圧降下と見なし、この総濃度分極成分に占める突入
電流が0からピーク値に達するまでに生じる濃度分極成
分による電圧降下を、第1及び第2の近似式の放電電流
0である点におけるバッテリの端子電圧の差に、突入電
流が0からピーク値に増加しピーク値から0に減少した
ときの電流時間積に対する0からピーク値までの電流時
間積の比を乗じて求めているが、これを他の方法で求め
ることも可能であり、以下その方法を説明する。
In the above-described embodiment, the difference in the terminal voltage of the battery at the point where the discharge current is 0 in the first and second approximate expressions is such that the inrush current increases from 0 to the peak value, and then the peak value changes to 0. The voltage drop due to the total concentration polarization component generated during the reduced period is regarded as the voltage drop due to the concentration polarization component occurring until the inrush current occupying in this total concentration polarization component reaches the peak value from 0. The difference between the terminal voltage of the battery at the point where the discharge current is 0 in the formula is the current-time product from 0 to the peak value with respect to the current-time product when the inrush current increases from 0 to the peak value and decreases from the peak value to 0. Although it is calculated by multiplying by the ratio, it can be calculated by other methods, and the method will be described below.

【0092】そもそも第1の近似式と第2の近似式の相
違点が、濃度分極成分の違いであるとすると、両式の差
の式を取ることによって、濃度分極成分が等しくなるピ
ーク電流から電流値0になるまでの濃度分極について両
者の差を顕著化することができるとともに、この差の式
に基づいて電流値0からピーク電流値に至るまでの濃度
分極成分の変化を予測しうる。
In the first place, if the difference between the first approximation formula and the second approximation formula is the difference in the concentration polarization component, by taking the difference equation between the two formulas, the peak current from which the concentration polarization component becomes equal is obtained. With respect to the concentration polarization until the current value becomes 0, the difference between the two can be made conspicuous, and the change of the concentration polarization component from the current value 0 to the peak current value can be predicted based on the expression of this difference.

【0093】上記式(1)及び(2)の差を取り、 ΔV= V=(a1−a2)I2 +(b1−b2)I+(c1−c2 ) ……(21) を求める。これをプロットすると、図11に示すよう
に、ピーク電流値の点で濃度分極成分が0となり、電流
値0までの濃度分極成分のみの変化を示す曲線が描かれ
る。そして、この式(21)によって描かれる曲線を点
線で示すようにピーク電流値の2倍の値の点まで延長す
ることによって、電流値0からピーク電流値までの濃度
分極成分の変化の様子を予測する。すなわち、電流増加
と電流減少の濃度分極の相対的な変化を差の式に基づい
て予測する。
The difference between the above equations (1) and (2) is taken to obtain ΔV = V = (a1-a2) I 2 + (b1-b2) I + (c1-c2) (21). When this is plotted, as shown in FIG. 11, the concentration polarization component becomes 0 at the point of the peak current value, and a curve showing only the change of the concentration polarization component up to the current value 0 is drawn. Then, by extending the curve drawn by the equation (21) to a point having a value twice the peak current value as shown by the dotted line, the change in the concentration polarization component from the current value 0 to the peak current value is shown. Predict. That is, the relative change in concentration polarization between current increase and current decrease is predicted based on the difference equation.

【0094】差の式は、電流値0からピーク電流までの
濃度分極と、ピーク電流から電流値0までの濃度分極と
の発生変化の様子を、電流値0からピーク電流の間に凝
縮して表していることになるので、この式によって表さ
れる曲線を2倍の放電電流の値まで延長することによっ
て、電流が電流値0−ピーク値−電流値と流れたときの
濃度分極の変化の様子を想定することができるようにな
る。したがって、電流時間積と濃度分極との比例関係が
乱れて電流時間積を用いて任意の点の濃度分極を推定し
たとき精度が悪化するような場合にも有効に適用可能で
ある。
The expression of the difference is obtained by condensing the state of occurrence and change of the concentration polarization from the current value 0 to the peak current and the concentration polarization from the peak current to the current value 0 between the current value 0 and the peak current. Therefore, by extending the curve represented by this equation to the value of the discharge current that is doubled, the change in concentration polarization when the current flows from current value 0-peak value-current value You will be able to assume the situation. Therefore, the present invention can be effectively applied even when the proportional relationship between the current-time product and the concentration polarization is disturbed and the accuracy deteriorates when the concentration-polarization at an arbitrary point is estimated using the current-time product.

【0095】そこで、電流値0である点の電圧値V0 と
2倍のピーク電流値である点の電圧値V2Pとの差(V2P
−V0 )に対するピーク電流値である点の電圧値VP と
ピーク電流値の2倍の電流値である点の電圧値との差
(V2P−VP )の比を求め、これを電流増加方向の近似
曲線の切片と電流減少方向の近似曲線の切片の電圧差で
ある電流0(A)点の濃度分極Vpolc0 に乗じることに
よって、ピーク電流値である点の濃度分極成分を予測す
る。この予測したピーク電流値である点の濃度分極成分
は、上述したVpolcp と同等に扱って、純抵抗と活性化
分極だけの電圧降下曲線を求めることができる。
Therefore, the difference between the voltage value V0 at the point where the current value is 0 and the voltage value V2P at the point where the peak current value is double (V2P
-V0) The ratio of the difference (V2P-VP) between the voltage value VP at the peak current value and the voltage value at the point twice the peak current value (V2P-VP) is calculated, and this is approximated in the current increasing direction. The concentration polarization component at the point of the peak current value is predicted by multiplying the concentration polarization Vpolc0 at the current 0 (A) point, which is the voltage difference between the intercept of the curve and the intercept of the approximate curve in the direction of decreasing current. The concentration polarization component at this predicted peak current value can be treated in the same manner as Vpolcp described above, and a voltage drop curve of pure resistance and activation polarization can be obtained.

【0096】電流減少曲線からの濃度分極成分を削除す
る場合にも、電流ピーク値における濃度分極の削除と同
様の方法で可能である。すなわち、ピーク値以外の2点
の電圧値を式(21)により求め、電流値0である点の
電圧値V0 と2倍のピーク電流値である点の電圧値V2P
との差に対するピーク値以外の2点の電圧値とピーク電
流値の2倍の電流値である点の電圧値との差の比を求
め、これを電流増加方向の近似曲線の切片と電流減少方
向の近似曲線の切片の電圧差である電流0(A)点の濃
度分極Vpolc0 に乗じることによって、各点の濃度分極
成分を予測する。この予測した2点の濃度分極成分をピ
ーク電流値である点の濃度分極成分とともに利用するこ
とで、純抵抗と活性化分極だけの電圧上昇曲線を求める
ことができる。
When deleting the concentration polarization component from the current decrease curve, it is possible to remove the concentration polarization component at the current peak value by the same method. That is, the voltage values at two points other than the peak value are obtained by equation (21), and the voltage value V0 at the point where the current value is 0 and the voltage value V2P at the point where the peak current value is doubled.
The ratio of the difference between the voltage value at two points other than the peak value and the voltage value at a point that is twice the current value of the peak current value with respect to the difference between The concentration polarization component at each point is predicted by multiplying the concentration polarization Vpolc0 at the current 0 (A) point, which is the voltage difference of the intercept of the approximate curve in the direction. By using the predicted concentration polarization components at the two points together with the concentration polarization components at the peak current value, it is possible to obtain a voltage rise curve only for pure resistance and activation polarization.

【0097】以上説明したようにして求めた電圧降下曲
線と電圧上昇曲線の修正近似式を利用して純抵抗を求め
る方法は、電流時間積を利用して求めた修正近似式の場
合と同様にして行うことができるので、詳細な説明は省
略する。
The method of obtaining the pure resistance by using the modified approximate expression of the voltage drop curve and the voltage rise curve obtained as described above is the same as the case of the modified approximate expression obtained by using the current-time product. The detailed description is omitted here.

【0098】[0098]

【発明の効果】以上説明したように、請求項1及び13
記載の発明によれば、車両の通常の使用状態で予め定め
た定負荷に突入電流が流れている期間、バッテリの放電
電流とこの放電電流に対応する端子電圧とを周期的に測
定し、この測定の結果得られる放電電流と端子電圧との
相関を示す増加する放電電流に対する電流−電圧特性の
第1の近似式と、減少する放電電流に対する電流−電圧
特性の第2の近似式とを求め、第1及び第2の近似式に
濃度分極成分による電圧降下を除いた第1及び第2の近
似式のピーク値に対応する点における単位電流変化当た
りの2つの端子電圧変化の値の中間の値を求め、この求
めた中間の値をバッテリの純抵抗の値として測定してい
るので、バッテリを通常状態で使用している際、すなわ
ち、車両使用中でも車載バッテリの純抵抗を測定できる
車載バッテリ純抵抗測定方法及び装置を提供することが
できる。
As described above, according to claims 1 and 13
According to the invention described, the period during which the inrush current is flowing in the constant load predetermined in the normal use state of the vehicle, the discharge current of the battery and the terminal voltage corresponding to this discharge current are periodically measured, The first approximate expression of the current-voltage characteristic for the increasing discharge current and the second approximate expression of the current-voltage characteristic for the decreasing discharge current showing the correlation between the discharge current and the terminal voltage obtained as a result of the measurement are obtained. , Between the two terminal voltage change values per unit current change at the points corresponding to the peak values of the first and second approximate expressions excluding the voltage drop due to the concentration polarization component in the first and second approximate expressions. Since the intermediate value thus obtained is calculated as the value of the pure resistance of the battery, the in-vehicle battery that can measure the pure resistance of the in-vehicle battery when the battery is used in a normal state, that is, even when the vehicle is in use Pure The measuring method and apparatus can be provided.

【0099】上述した請求項2記載の発明によれば、バ
ッテリの純抵抗の値として測定するため求める中間の値
が、濃度分極成分による電圧降下を除いた第1及び第2
の近似式のピーク値に対応する点における単位電流変化
当たりの2つの端子電圧変化の値を加算平均して求めら
れるので、ピーク値に対応する点での活性化分極の変化
が等しくなる場合の車載バッテリの純抵抗を正確に測定
できる車載バッテリ純抵抗測定方法を提供することがで
きる。
According to the above-mentioned invention of claim 2, the intermediate value to be obtained for measuring as the value of the pure resistance of the battery is the first and second values excluding the voltage drop due to the concentration polarization component.
Since the values of the two terminal voltage changes per unit current change at the point corresponding to the peak value of the approximate expression are calculated by averaging, An on-vehicle battery pure resistance measuring method capable of accurately measuring the pure resistance of an on-vehicle battery can be provided.

【0100】上述した請求項3記載の発明によれば、バ
ッテリの純抵抗の値として測定するため求める中間の値
が、濃度分極成分による電圧降下を除いた第1及び第2
の近似式のピーク値に対応する点における単位電流変化
当たりの2つの端子電圧変化の値に、突入電流が流れて
いる総時間に占める単調増加期間及び単調減少期間の時
間の割合をそれぞれ乗じた上で加算して求められるの
で、ピーク値に対応する点での活性化分極の変化が等し
くならない場合の車載バッテリの純抵抗を正確に測定で
きる車載バッテリ純抵抗測定方法を提供することができ
る。
According to the above-mentioned invention of claim 3, the intermediate value to be obtained for measuring as the value of the pure resistance of the battery is the first and second values excluding the voltage drop due to the concentration polarization component.
The value of the two terminal voltage changes per unit current change at the point corresponding to the peak value of the approximate expression of was multiplied by the ratio of the monotonous increase period and the monotonous decrease period to the total time during which the inrush current flows. Since it is obtained by the above addition, it is possible to provide a vehicle-mounted battery pure resistance measuring method capable of accurately measuring the pure resistance of the vehicle-mounted battery when the changes in the activation polarization at the points corresponding to the peak values are not equal.

【0101】上述した請求項4記載の発明によれば、修
正近似式が一次式となるときにはその傾き、二次式とな
るときにはピーク値における微分値を利用して中間の値
を求めれば、純抵抗を測定することができるので、簡単
な演算によって測定することができる車載バッテリ純抵
抗測定方法を提供することができる。
According to the invention described in claim 4, when the modified approximate expression is a linear expression, its slope is used, and when it is a quadratic expression, the intermediate value is obtained by using the differential value at the peak value. Since the resistance can be measured, it is possible to provide a vehicle battery pure resistance measuring method that can measure the resistance by a simple calculation.

【0102】上述した請求項5記載の発明によれば、電
圧降下を除いた電圧値を、第1の二次近似式と定数及び
一次係数を等しくした式に代入して二次係数を決定した
二次式を第1の修正近似式として求めているので、精度
良く濃度分極成分を除いた修正近似式を得ることがで
き、純抵抗を精度良く測定することのできる車載バッテ
リ純抵抗測定方法を提供することができる。
According to the invention described in claim 5, the voltage value excluding the voltage drop is substituted into the first quadratic approximation equation and the equation in which the constant and the linear coefficient are equal to determine the quadratic coefficient. Since the quadratic equation is obtained as the first modified approximate expression, a modified approximate expression excluding the concentration polarization component can be obtained with high accuracy, and a vehicle battery pure resistance measuring method capable of accurately measuring pure resistance can be provided. Can be provided.

【0103】上述した請求項6記載の発明によれば、濃
度分極成分による電圧降下を除いた第2の二次修正近似
式を簡単に求めることができるので、面倒な処理なしに
純抵抗を測定することのできる車載バッテリ純抵抗測定
方法を提供することができる。
According to the invention described in claim 6, since the second quadratic modified approximate expression excluding the voltage drop due to the concentration polarization component can be easily obtained, the pure resistance can be measured without troublesome processing. It is possible to provide a vehicle-mounted battery pure resistance measuring method that can be performed.

【0104】上述した請求項7記載の発明によれば、第
1及び第2の修正近似式が共に二次式であるとき、ピー
ク値での微分値の中間の値を求める単純な計算によって
純抵抗を測定することができる車載バッテリ純抵抗測定
方法を提供することができる。
According to the seventh aspect of the present invention, when both the first and second modified approximate expressions are quadratic expressions, a pure calculation is performed by a simple calculation to find an intermediate value of the differential value at the peak value. An on-vehicle battery pure resistance measuring method capable of measuring resistance can be provided.

【0105】上述した請求項8記載の発明によれば、元
々濃度分極成分を含まない0点を利用して二次式の第2
の修正近似式を求めているので、濃度分極成分を除く近
似式を求めるための処理が少なくて良い車載バッテリ純
抵抗測定方法を提供することができる。
According to the above-mentioned invention of claim 8, the second point of the quadratic equation is used by utilizing the zero point which originally does not include the concentration polarization component.
Since the modified approximate expression of is calculated, it is possible to provide the on-vehicle battery pure resistance measuring method that requires less processing for calculating the approximate expression excluding the concentration polarization component.

【0106】上述した請求項9記載の発明によれば、中
間の値を求めるために第2の修正近似式の傾きを使用し
ているので、中間の値を求めるための処理が簡単になる
車載バッテリ純抵抗測定方法を提供することができる。
According to the above-mentioned invention of claim 9, since the slope of the second modified approximate expression is used for obtaining the intermediate value, the process for obtaining the intermediate value is simplified in the vehicle. A battery pure resistance measuring method can be provided.

【0107】上述した請求項10記載の発明によれば、
総濃度分極成分に占めるピーク値に対応する点の濃度分
極成分による電圧降下を知り、濃度分極成分による電圧
降下を除いたピーク値に対応する電圧値を求めているの
で、精度良く濃度分極成分を除いた第1の修正近似式を
得ることができ、純抵抗を精度良く測定することのでき
る車載バッテリ純抵抗測定方法を提供することができ
る。
According to the invention described in claim 10 described above,
Since the voltage drop due to the concentration polarization component at the point corresponding to the peak value in the total concentration polarization component is known and the voltage value corresponding to the peak value excluding the voltage drop due to the concentration polarization component is obtained, the concentration polarization component can be accurately determined. It is possible to obtain the first modified approximate expression that has been removed, and it is possible to provide a vehicle-mounted battery pure resistance measuring method that can accurately measure pure resistance.

【0108】上述した請求項11記載の発明によれば、
請求項10記載の発明同様に、総濃度分極成分に占める
ピーク値に対応する点の濃度分極成分による電圧降下を
知り、濃度分極成分による電圧降下を除いたピーク値に
対応する電圧値を求めているので、精度良く濃度分極成
分を除いた第1の修正近似式を得ることができ、しか
も、第1及び第2の近似式が分かるだけで電流時間積を
求めなくてもよいので、その分電流時間積と濃度分極の
発生の対応関係に影響されることなく、かつ、面倒な処
理を必要とすることがなくなり、簡単にかつ精度良く純
抵抗を測定することのできる車載バッテリ純抵抗測定方
法を提供することができる。
According to the invention of claim 11 described above,
Similarly to the invention according to claim 10, the voltage drop due to the concentration polarization component at the point corresponding to the peak value in the total concentration polarization component is known, and the voltage value corresponding to the peak value excluding the voltage drop due to the concentration polarization component is obtained. Therefore, the first modified approximate expression excluding the concentration polarization component can be obtained with high accuracy, and the current-time product does not have to be obtained only by understanding the first and second approximate expressions. In-vehicle battery pure resistance measuring method that can measure pure resistance easily and accurately without being affected by the correspondence between current-time product and occurrence of concentration polarization, and without requiring complicated processing. Can be provided.

【0109】上述した請求項12記載の発明によれば、
濃度分極の発生を伴わない短時間にピーク値まで単調増
加する突入電流が流れるものである場合、純抵抗を測定
するための処理が簡単になるだけでなく、近似式も簡単
に求めることができる車載バッテリ純抵抗測定方法を提
供することができる。
According to the invention of claim 12 described above,
When an inrush current that monotonically increases to a peak value flows in a short time without concentration polarization occurring, not only the process for measuring pure resistance becomes simple, but also an approximate expression can be easily obtained. An on-vehicle battery pure resistance measuring method can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の車載バッテリ純抵抗測定装置の基本構
成を示すブロック図である。
FIG. 1 is a block diagram showing a basic configuration of an in-vehicle battery pure resistance measuring device of the present invention.

【図2】本発明の車載バッテリ純抵抗測定方法を適用し
た本発明の一実施形態に係る車載バッテリ純抵抗測定装
置の概略構成を一部ブロックにて示す説明図である。
FIG. 2 is an explanatory diagram showing, in a partial block diagram, a schematic configuration of an in-vehicle battery pure resistance measuring device according to an embodiment of the present invention to which the in-vehicle battery pure resistance measuring method of the present invention is applied.

【図3】スタータモータ駆動開始時の突入電流を伴う放
電電流の一例を示すグラフである。
FIG. 3 is a graph showing an example of a discharge current accompanied by a rush current when starting the starter motor.

【図4】二次近似式で表したI−V特性の一例を示すグ
ラフである。
FIG. 4 is a graph showing an example of an IV characteristic represented by a quadratic approximation formula.

【図5】増加方向の近似式から濃度分極成分の除き方の
一例を説明するためのグラフである。
FIG. 5 is a graph for explaining an example of how to remove the concentration polarization component from the approximate expression in the increasing direction.

【図6】減少方向の近似式から濃度分極成分の除き方の
一例を説明するためのグラフである。
FIG. 6 is a graph for explaining an example of how to remove a concentration polarization component from an approximate expression in a decreasing direction.

【図7】増加方向を一次近似式で表したI−V特性の一
例を示すグラフである。
FIG. 7 is a graph showing an example of an IV characteristic in which the increasing direction is represented by a linear approximation formula.

【図8】減少方向の近似式から濃度分極成分の除き方の
他の例を説明するためのグラフである。
FIG. 8 is a graph for explaining another example of how to remove the concentration polarization component from the approximate expression in the decreasing direction.

【図9】減少方向の近似式から濃度分極成分の除き方の
別の例を説明するためのグラフである。
FIG. 9 is a graph for explaining another example of how to remove a concentration polarization component from an approximate expression in the decreasing direction.

【図10】図2中のマイコンが純抵抗測定のため予め定
めたプログラムに従って行う処理を示すフローチャート
である。
FIG. 10 is a flowchart showing a process performed by the microcomputer in FIG. 2 according to a predetermined program for pure resistance measurement.

【図11】式(1)及び(2)の差を取ることによって
得た差の式に基づいて、ピーク電流値である点、並び
に、任意の点の濃度分極成分の求め方を説明するための
グラフである。
FIG. 11 is a view for explaining a method of obtaining a concentration polarization component at a point that is a peak current value and an arbitrary point based on a difference equation obtained by taking a difference between equations (1) and (2). Is a graph of.

【図12】放電に伴う端子電圧の電圧降下の内訳を一般
的に示すI−V特性を示すグラフである。
FIG. 12 is a graph showing an IV characteristic that generally shows the breakdown of the terminal voltage drop due to discharge.

【図13】従来のバッテリの純抵抗の測定の仕方を説明
するためのグラフである。
FIG. 13 is a graph for explaining how to measure the pure resistance of a conventional battery.

【符号の説明】[Explanation of symbols]

23a−1 電流・電圧測定手段(CPU) 23a−2 近似式算出手段(CPU) 23a−3 演算手段(CPU) 23a-1 Current / voltage measuring means (CPU) 23a-2 Approximate expression calculation means (CPU) 23a-3 Computing means (CPU)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01R 31/36 ZHV G01R 31/36 ZHVA Fターム(参考) 2G016 CA03 CB01 CB06 CB12 CB21 CB23 CB31 CC02 CC03 CC04 CC16 CC24 CC27 CC28 CD02 2G028 AA01 BE04 CG02 DH01 FK01 FK02 GL07 GL09 GL11 MS03 5H030 AA08 AS08 FF42 FF44 5H115 PA14 PC06 PG04 PI16 PI22 PI29 PO06 PU01 PU25 PU29 SE06 TI02 TI05 TI06 TI10─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01R 31/36 ZHV G01R 31/36 ZHVA F term (reference) 2G016 CA03 CB01 CB06 CB12 CB21 CB23 CB31 CC02 CC03 CC04 CC16 CC24 CC27 CC28 CD02 2G028 AA01 BE04 CG02 DH01 FK01 FK02 GL07 GL09 GL11 MS03 5H030 AA08 AS08 FF42 FF44 5H115 PA14 PC06 PG04 PI16 PI22 PI29 PO06 PU01 PU25 PU29 SE06 TI02 TI05 TI06 TI10

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 車両の負荷に電力を供給するため車両に
搭載されたバッテリの純抵抗を測定する車載バッテリ純
抵抗測定方法において、 前記負荷のうち予め定めた定負荷に、0からピーク値ま
で単調増加した後、ピーク値から定常値まで単調減少す
る突入電流が流れている期間、前記バッテリの放電電流
と該放電電流に対応する端子電圧とを周期的に測定し、 該測定した放電電流と端子電圧との相関を示す前記増加
する放電電流に対する電流−電圧特性の第1の近似式と
前記減少する放電電流に対する電流−電圧特性の第2の
近似式とを求め、 前記第1及び第2の近似式に濃度分極成分による電圧降
下を含む場合、該電圧降下を除いた前記第1及び第2の
近似式の前記ピーク値に対応する点における単位電流変
化当たりの2つの端子電圧変化の値の中間の値を求め、 該求めた中間の値をバッテリの純抵抗の値として測定す
ることを特徴とする車載バッテリ純抵抗測定方法。
1. An on-vehicle battery pure resistance measuring method for measuring a pure resistance of a battery mounted on a vehicle for supplying electric power to a load of the vehicle, wherein a predetermined constant load among the loads is from 0 to a peak value. After the inrush current that monotonically increases and then monotonically decreases from the peak value to the steady value, the discharge current of the battery and the terminal voltage corresponding to the discharge current are periodically measured, and the measured discharge current and A first approximate expression of a current-voltage characteristic with respect to the increasing discharge current and a second approximate expression of a current-voltage characteristic with respect to the decreasing discharge current showing a correlation with a terminal voltage are obtained, and the first and second When the voltage drop due to the concentration polarization component is included in the approximate expression of, the two terminal voltage changes per unit current change at the points corresponding to the peak values of the first and second approximate expressions excluding the voltage drop. Is obtained, and the obtained intermediate value is measured as the value of the pure resistance of the battery.
【請求項2】 請求項1記載の車載バッテリ純抵抗測定
方法において、 前記中間の値を、前記濃度分極成分による電圧降下を除
いた前記第1及び第2の近似式の前記ピーク値に対応す
る点における単位電流変化当たりの2つの端子電圧変化
の値を加算平均して求めることを特徴とする車載バッテ
リ純抵抗測定方法。
2. The in-vehicle battery pure resistance measuring method according to claim 1, wherein the intermediate value corresponds to the peak value of the first and second approximate expressions excluding a voltage drop due to the concentration polarization component. A method for measuring an on-vehicle battery pure resistance, which is characterized by averaging two terminal voltage change values per unit current change at a point.
【請求項3】 請求項1記載の車載バッテリ純抵抗測定
方法において、 前記中間の値を、前記電圧降下を除いた前記第1及び第
2の近似式の前記ピーク値に対応する点における単位電
流変化当たりの2つの端子電圧変化の値に、前記突入電
流が流れている総時間に占める前記単調増加期間及び前
記単調減少期間の時間の割合をそれぞれ乗じた上で加算
して求めることを特徴とする車載バッテリ純抵抗測定方
法。
3. The in-vehicle battery pure resistance measuring method according to claim 1, wherein the intermediate value is a unit current at a point corresponding to the peak value of the first and second approximate expressions excluding the voltage drop. It is obtained by multiplying the values of the two terminal voltage changes per change by the respective ratios of the time of the monotonous increasing period and the time of the monotonic decreasing period to the total time during which the inrush current flows, and then adding them. In-vehicle battery pure resistance measurement method.
【請求項4】 請求項1〜3の何れかに記載の車載バッ
テリ純抵抗測定方法において、 前記第1及び第2の近似式が二次式である場合、前記中
間の値を求めるに当たって、前記第1及び第2の近似式
から濃度分極成分による電圧降下を除いた第1及び第2
の修正近似式を求め、該第1及び第2の修正近似式の前
記ピーク値に対応する点における単位電流変化当たりの
2つの端子電圧変化の値を求めることを特徴とする車載
バッテリ純抵抗測定方法。
4. The in-vehicle battery pure resistance measuring method according to claim 1, wherein when the first and second approximate expressions are quadratic expressions, the intermediate value is determined when the intermediate value is obtained. First and second values obtained by removing the voltage drop due to the concentration polarization component from the first and second approximate expressions
Of the first and second modified approximate expressions, and a value of two terminal voltage changes per unit current change at a point corresponding to the peak value of the first and second modified approximate expressions is measured. Method.
【請求項5】 請求項4記載の車載バッテリ純抵抗測定
方法において、 前記第1及び第2の近似式の放電電流0である点におけ
る前記バッテリの端子電圧の差を求め、該差を前記突入
電流が0からピーク値に増加しピーク値から0に減少し
た期間に生じた総濃度分極成分による電圧降下と見な
し、該総濃度分極成分に占める前記突入電流が0からピ
ーク値に達するまでに生じる濃度分極成分による電圧降
下を求め、該求めた電圧降下を前記ピーク値に対応する
電圧値から除いた値を、定数及び一次係数を前記第1の
二次近似式と等しくした式に代入して二次係数を決定し
た二次式を前記第1の修正近似式として求めることを特
徴とする車載バッテリ純抵抗測定方法。
5. The in-vehicle battery pure resistance measuring method according to claim 4, wherein a difference between the terminal voltages of the battery at a point where the discharge currents of the first and second approximate expressions are 0 is obtained, and the difference is the inrush value. Considered as a voltage drop due to the total concentration polarization component generated during the period in which the current increased from 0 to the peak value and decreased from the peak value to 0, the inrush current occupying in the total concentration polarization component occurred before reaching the peak value from 0. The voltage drop due to the concentration polarization component is obtained, and a value obtained by removing the obtained voltage drop from the voltage value corresponding to the peak value is substituted into a formula in which a constant and a linear coefficient are equal to the first quadratic approximation formula. A vehicle-mounted battery pure resistance measuring method, characterized in that a quadratic equation in which a quadratic coefficient is determined is obtained as the first modified approximate equation.
【請求項6】 請求項5記載の車載バッテリ純抵抗測定
方法において、 前記ピーク値における前記濃度分極成分による電圧降下
を除いた電圧値以外に、ピーク値と0の間の濃度分極成
分による電圧降下を除いた2つの電圧値を求め、該3つ
の電圧値を利用して係数を決定した二次式を前記第2の
修正近似式として求めることを特徴とする車載バッテリ
純抵抗測定方法。
6. The in-vehicle battery pure resistance measuring method according to claim 5, wherein in addition to the voltage value excluding the voltage drop due to the concentration polarization component at the peak value, the voltage drop due to the concentration polarization component between the peak value and 0 is obtained. Is obtained, and a quadratic equation in which a coefficient is determined using the three voltage values is obtained as the second modified approximation equation.
【請求項7】 請求項6記載の車載バッテリ純抵抗測定
方法において、 前記中間の値を求めるために、前記第1及び第2の修正
近似式のピーク値での微分値を使用することを特徴とす
る車載バッテリ純抵抗測定方法。
7. The in-vehicle battery pure resistance measuring method according to claim 6, wherein differential values at peak values of the first and second modified approximate expressions are used to obtain the intermediate value. In-vehicle battery pure resistance measurement method.
【請求項8】 請求項5記載の車載バッテリ純抵抗測定
方法において、 前記ピーク値における前記濃度分極成分による電圧降下
を除いた電圧値以外に、0点及びピーク値と0の間の中
間点の濃度分極成分による電圧降下を除いた2つの電圧
値を求め、該3つの電圧値を利用して係数を決定した二
次式を前記第2の修正近似式として求めることを特徴と
する車載バッテリ純抵抗測定方法。
8. The in-vehicle battery pure resistance measuring method according to claim 5, wherein in addition to the voltage value excluding the voltage drop due to the concentration polarization component in the peak value, a zero point and an intermediate point between the peak value and 0 are measured. A two-dimensional voltage value excluding a voltage drop due to a concentration polarization component is obtained, and a quadratic equation in which a coefficient is determined using the three voltage values is obtained as the second modified approximate equation. Resistance measurement method.
【請求項9】 請求項5記載の車載バッテリ純抵抗測定
方法において、 前記ピーク値における前記濃度分極成分による電圧降下
を除いた電圧値以外に、ピーク値と0の間の中間点の濃
度分極成分による電圧降下を除いた電圧値を求め、該2
点を結んで決定した一次式を前記第2の修正近似式とし
て求め、 前記中間の値を求めるために前記第2の修正近似式の傾
きを使用することを特徴とする車載バッテリ純抵抗測定
方法。
9. The in-vehicle battery pure resistance measuring method according to claim 5, wherein, in addition to the voltage value excluding the voltage drop due to the concentration polarization component at the peak value, the concentration polarization component at an intermediate point between the peak value and 0. The voltage value excluding the voltage drop due to
A vehicle-mounted battery pure resistance measuring method characterized in that a linear expression determined by connecting points is obtained as the second modified approximate expression, and the slope of the second modified approximate expression is used to obtain the intermediate value. .
【請求項10】 請求項5〜9の何れかに記載の車載バ
ッテリ純抵抗測定方法において、 前記総濃度分極成分に占める前記突入電流が0からピー
ク値に達するまでに生じる濃度分極成分による電圧降下
を、前記第1及び第2の近似式の放電電流0である点に
おける前記バッテリの端子電圧の差に、前記突入電流が
0からピーク値に増加しピーク値から0に減少したとき
の電流時間積に対する0からピーク値までの電流時間積
の比を乗じて求めることを特徴とする車載バッテリ純抵
抗測定方法。
10. The in-vehicle battery pure resistance measuring method according to claim 5, wherein the voltage drop due to the concentration polarization component that occurs until the inrush current in the total concentration polarization component reaches a peak value from 0. Is the current time when the inrush current increases from 0 to a peak value and then decreases from the peak value to 0 to the difference in the terminal voltage of the battery at the point where the discharge current is 0 in the first and second approximate expressions. An in-vehicle battery pure resistance measuring method, which is obtained by multiplying by a ratio of a current-time product from 0 to a peak value with respect to a product.
【請求項11】 請求項5〜9の何れかに記載の車載バ
ッテリ純抵抗測定方法において、 前記第1及び第2の近似式より両式の差の式を求め、前
記総濃度分極成分に占める前記突入電流が0からピーク
値に達するまでに生じる濃度分極成分による電圧降下
を、前記第1及び第2の近似式の放電電流0である点に
おける前記バッテリの端子電圧の差に、前記差の式に基
づいて求めた電流値0である点の電圧値とピーク電流値
の2倍の電流値である点の電圧値との差に対するピーク
電流値である点の電圧値とピーク電流値の2倍の電流値
である点の電圧値との差の比を乗じて求めることを特徴
とする車載バッテリ純抵抗測定方法。
11. The in-vehicle battery pure resistance measuring method according to claim 5, wherein a difference equation between the two equations is obtained from the first and second approximation equations and occupies the total concentration polarization component. The voltage drop due to the concentration polarization component that occurs until the inrush current reaches a peak value from 0 is defined as the difference between the terminal voltage of the battery at the point where the discharge current of the first and second approximate expressions is 0. The difference between the voltage value at the point where the current value is 0 and the voltage value at the point where the current value is twice the peak current value obtained based on the formula An in-vehicle battery pure resistance measuring method, which is obtained by multiplying a ratio of a difference between a voltage value at a point having a double current value and a voltage value.
【請求項12】 請求項1〜3の何れかに記載の車載バ
ッテリ純抵抗測定方法において、 前記定負荷が、濃度分極の発生を伴わない短時間にピー
ク値まで単調増加する突入電流が流れるものである場
合、前記第1の近似式が一次式であり、 前記中間の値を求めるために前記第1の近似式の傾きを
使用することを特徴とする車載バッテリ純抵抗測定方
法。
12. The in-vehicle battery pure resistance measuring method according to claim 1, wherein the constant load is an inrush current that monotonically increases to a peak value in a short time without occurrence of concentration polarization. And the first approximate expression is a linear expression, and the slope of the first approximate expression is used to obtain the intermediate value.
【請求項13】 車両の負荷に電力を供給するため車両
に搭載されたバッテリの純抵抗を測定する車載バッテリ
純抵抗測定装置において、 前記負荷のうち予め定めた定負荷に、0からピーク値ま
で単調増加した後、ピーク値から定常値まで単調減少す
る突入電流が流れている期間、前記バッテリの放電電流
と該放電電流に対応する端子電圧とを周期的に測定する
電流・電圧測定手段と、 該電流・電圧測定手段によって測定した放電電流と端子
電圧との相関を示す前記増加する放電電流に対する電流
−電圧特性の第1の近似式と前記減少する放電電流に対
する電流−電圧特性の第2の近似式とを求める近似式算
出手段と、 前記第1及び第2の近似式に濃度分極成分による電圧降
下を含む場合、該電圧降下を除いた前記第1及び第2の
近似式の前記ピーク値に対応する点における単位電流変
化当たりの2つの端子電圧変化の値の中間の値を求める
演算手段とを備え、 該演算手段によって求めた中間の値をバッテリの純抵抗
の値として測定することを特徴とする車載バッテリ純抵
抗測定装置。
13. An in-vehicle battery pure resistance measuring device for measuring a pure resistance of a battery mounted on a vehicle for supplying electric power to a load of the vehicle, wherein a predetermined constant load among the loads is from 0 to a peak value. A current / voltage measuring means for periodically measuring the discharge current of the battery and the terminal voltage corresponding to the discharge current, during which the inrush current that monotonically increases and then monotonically decreases from the peak value to the steady value is flowing, A first approximation formula of the current-voltage characteristic for the increasing discharge current showing the correlation between the discharge current measured by the current / voltage measuring means and the terminal voltage, and a second approximation formula of the current-voltage characteristic for the decreasing discharge current. An approximation formula calculating means for obtaining an approximation formula, and, when the first and second approximation formulas include a voltage drop due to a concentration polarization component, before the first and second approximation formulas excluding the voltage drop. And a calculation means for calculating an intermediate value of two terminal voltage change values per unit current change at a point corresponding to the peak value, and the intermediate value calculated by the calculation means is measured as a pure resistance value of the battery. An in-vehicle battery pure resistance measuring device characterized by:
JP2002153670A 2001-05-28 2002-05-28 In-vehicle battery pure resistance measuring method and apparatus Expired - Fee Related JP4383020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002153670A JP4383020B2 (en) 2001-05-28 2002-05-28 In-vehicle battery pure resistance measuring method and apparatus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001200057 2001-05-28
JP2001-200057 2001-05-28
JP2001236962 2001-08-03
JP2001-236962 2001-08-03
JP2002153670A JP4383020B2 (en) 2001-05-28 2002-05-28 In-vehicle battery pure resistance measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2003115331A true JP2003115331A (en) 2003-04-18
JP4383020B2 JP4383020B2 (en) 2009-12-16

Family

ID=27347063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002153670A Expired - Fee Related JP4383020B2 (en) 2001-05-28 2002-05-28 In-vehicle battery pure resistance measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4383020B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349713B (en) * 2007-07-20 2011-07-13 奇瑞汽车股份有限公司 Method for detecting battery internal resistance of hybrid power automobile
US8140280B2 (en) 2005-11-09 2012-03-20 Toyota Jidosha Kabushiki Kaisha Battery condition diagnosis apparatus
JP2017090152A (en) * 2015-11-06 2017-05-25 住友電気工業株式会社 Internal resistance computing device, computer program, and internal resistance computing method
WO2017122698A1 (en) * 2016-01-13 2017-07-20 株式会社Gsユアサ Vehicle-mounted power supply system and method for detecting state of battery contained therein
JP2018077170A (en) * 2016-11-10 2018-05-17 株式会社デンソー Battery evaluation method and battery evaluation device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8140280B2 (en) 2005-11-09 2012-03-20 Toyota Jidosha Kabushiki Kaisha Battery condition diagnosis apparatus
CN101349713B (en) * 2007-07-20 2011-07-13 奇瑞汽车股份有限公司 Method for detecting battery internal resistance of hybrid power automobile
JP2017090152A (en) * 2015-11-06 2017-05-25 住友電気工業株式会社 Internal resistance computing device, computer program, and internal resistance computing method
WO2017122698A1 (en) * 2016-01-13 2017-07-20 株式会社Gsユアサ Vehicle-mounted power supply system and method for detecting state of battery contained therein
JP2017125729A (en) * 2016-01-13 2017-07-20 株式会社Gsユアサ Onboard power supply system and method for detecting state of battery included therein
US10889187B2 (en) 2016-01-13 2021-01-12 Gs Yuasa International Ltd. On-vehicle power supply system and a state detecting method for battery contained in on-vehicle power supply system
JP2018077170A (en) * 2016-11-10 2018-05-17 株式会社デンソー Battery evaluation method and battery evaluation device

Also Published As

Publication number Publication date
JP4383020B2 (en) 2009-12-16

Similar Documents

Publication Publication Date Title
US7034504B2 (en) Battery status monitoring apparatus which monitors internal battery resistance, saturation polarization detecting method and dischargeable capacity detecting method
JP2005019019A (en) Method and apparatus for determining degradation of battery
US20070279005A1 (en) Dischargeable Capacity Detecting Method
JP3986992B2 (en) Battery dischargeable capacity estimation method and apparatus
JP2004301780A (en) Battery state monitoring device, its method, and dischargeable capacity detecting method
JP2002243814A (en) Method and instrument for measuring pure resistance of battery for vehicle
US6788068B2 (en) Method and device for measuring pure resistance of on-vehicle battery by periodically measuring a discharge current and terminal voltage while a rush current flows into a constant load
JP3930777B2 (en) Battery degradation degree calculation method and apparatus
WO2004088342A1 (en) Battery status monitoring apparatus and method
JP2003115331A (en) Measurement method and device of pure resistance of on board battery
JP2004168263A (en) Method and device for detecting soc of battery and method and device for supplying and controlling power of battery
JP2002168929A (en) Method and device for measuring genuine resistance of battery for vehicle
JP3986991B2 (en) Dischargeable capacity detection method
JP2005147987A (en) Method and device for inferring saturated polarization, and method for inferring dischargeable capacity
JP2002303646A (en) Method and apparatus for measuring pure resistance of on-vehicle battery
JP3817141B2 (en) Deterioration degree determination method and apparatus for vehicle battery
JP3488135B2 (en) Battery remaining capacity measurement device
JP3869666B2 (en) Vehicle battery charge state measuring method and apparatus
JP4017936B2 (en) Battery pure resistance measuring method and apparatus
US11454673B2 (en) Battery current limits estimation based on RC model
JP3825660B2 (en) Method and apparatus for calculating open circuit voltage of in-vehicle battery, method and apparatus for detecting charge capacity state of in-vehicle battery
JP3908913B2 (en) Vehicle battery pure resistance measuring method and apparatus
JP3976633B2 (en) Discharge voltage drop component calculation method in battery, and discharge voltage drop component separation calculation method and apparatus
JP2004301784A (en) Dischargeable capacity estimating method and device for battery
JP2005077128A (en) Detector and method for detecting battery condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees