JP2003112175A - Groundwater purification wall - Google Patents

Groundwater purification wall

Info

Publication number
JP2003112175A
JP2003112175A JP2002213860A JP2002213860A JP2003112175A JP 2003112175 A JP2003112175 A JP 2003112175A JP 2002213860 A JP2002213860 A JP 2002213860A JP 2002213860 A JP2002213860 A JP 2002213860A JP 2003112175 A JP2003112175 A JP 2003112175A
Authority
JP
Japan
Prior art keywords
groundwater
wall
permeable
purifying
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002213860A
Other languages
Japanese (ja)
Inventor
Masanori Negishi
昌範 根岸
Masanori Shimomura
雅則 下村
Satoshi Imamura
聡 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2002213860A priority Critical patent/JP2003112175A/en
Publication of JP2003112175A publication Critical patent/JP2003112175A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a groundwater purification wall which can treat polluted groundwater covering a wide range while reducing the cost. SOLUTION: This groundwater purification wall 1 comprises a permeable groundwater purification wall 1a which is formed by arranging a wall-like region 11 containing a permeable purifying material under the ground and a water stop wall (a pair of water stop walls 1b) which collects groundwater (polluted groundwater 3) not concerned with the permeable groundwater purification wall 1a to convert it into groundwater (polluted groundwater 3) concerned with the permeable groundwater purification wall 1a.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、土木工学及び衛生
工学を用いた地下水浄化技術に関するもので、特に、有
機塩素化合物や重金属等にて汚染された地下水(以下
「汚染地下水」という)を浄化する地下水浄化壁に関す
る。 【0002】 【従来の技術】従来のこの種の地下水浄化壁としては、
例えば、図8に示すように、汚染源101から発生した
汚染地下水102の流れが図示黒矢印方向で透水層が形
成されている場合において、該汚染地下水102の流れ
を遮断する方向でトレンチ掘削によって形成した溝孔1
03に透過性浄化材として金属還元剤たる鉄粉104を
充填してなるものが知られている。 【0003】このタイプの地下水浄化壁によれば、汚染
地下水102が鉄粉104からなる該地下水浄化壁中を
通過する際に還元反応による無害化処理がなされ、その
結果、図示黒矢印方向の流れを有する汚染地下水102
を図示白矢印方向の流れを有する浄化地下水105とす
ることができる。 【0004】 【発明が解決しようとする課題】しかしながら、このよ
うな地下水浄化壁では、地下水の浄化性能やコスト面に
関連して、以下の不都合を内在している。 【0005】第一には、図8及び図9(図9(a)は縦
断面図、図9(b)は拡大図)に示すように、この地下
水浄化壁を構成する透過性浄化材が鉄粉104のみから
なることから、供用開始後時間の経過に伴い、鉄粉10
4自体が腐食し、カルシウム塩が間隙中に沈殿すること
となる結果、日詰まりを起こして透水性が段々に小さく
なり、透水層より小さい透水性になると汚染地下水10
2が矢印106方向に回り込むこととなって浄化力がな
くなってしまう。 【0006】第二には、図10に示すように、汚染地下
水102が特定の重金属Mで汚染されている場合におい
て、地下水浄化壁を透過するときに鉄粉104の表面に
保持されていた該特定の重金属M(図10(a))は、
鉄粉104の還元能力が失われることにより、イオン化
して再溶出してしまう(図10(b))。 【0007】第三には、汚染地下水102が広範囲に亘
っている場合において、広範囲に掘削した溝孔103の
すべてに鉄粉104を充填し、該汚染地下水102を漏
れなく処理することとすると、コストが膨大になってし
まい、また、実用化も困難となる。 【0008】そこで、本発明は、コストの低廉化を図り
ながら広範囲に亘る汚染地下水を処理することができる
地下水浄化壁を得ることを目的としている。 【0009】 【課題を解決するための手段】このような目的を達成す
るために、本発明に係る地下水浄化壁は、透過性浄化材
を含む壁状領域を地中に配置してなる透過性地下水浄化
壁と、前記透過性地下水浄化壁に係らない地下水を集め
て該透過性地下水浄化壁に係る地下水とする止水壁とか
らなることを特徴としている。 【0010】本発明は、透過性浄化材を含む壁状領域を
地中に配置してなる透過性地下水浄化壁、及び該透過性
地下水浄化壁へと地下水を集める止水壁からなる地下水
浄化壁とすることにより、汚染地下水が広範囲に亘って
いる場合においても、コストの低廉化を図りながらその
ような汚染地下水を処理することを可能にするものであ
る。 【0011】このような技術的手段において、透過性浄
化材とは、地中において汚染地下水を透過させる壁状高
域の全部又は一部を構成した場合において、化学的(甲
えば還元反応)又は物理的(例えば吸着)な作用を発揮
して該壁状領域を透過する汚染地下水を浄化する粒子状
材料、粉末状材料その他の材料をいう。よって、透過性
浄化材とするには、地中において壁状領域の全部又は一
部を構成した場合において汚染地下水を透過させるだけ
の透水性を有することが必要とされる。 【0012】そこで、このような透過性浄化材として
は、例えば、鉄粉などの金属還元剤、活性炭粒子などの
吸着物質若しくはキレート樹脂粒子など浄化作用を有す
る材料のみから構成したものや、これらの材料と細骨材
などの浄化作用を有しない材料を浄化作用を失わない配
合で混合してなるものなどを用いることができる。即
ち、第3発明における透過性浄化材は、第1発明及び第
2発明における透過性浄化材に限られない。 【0013】また、透過性浄化材を含む壁状領域とは、
壁状に形成された領域であって汚染地下水を透過させる
ことにより浄化する領域をいう。この透過性浄化材を含
む壁状領域は、透過性浄化材からなる部分及び場合によ
り周辺の地山部分によって形成されることとなる。例え
ば、トレンチ掘削にて形成した溝孔(トレンチ)に前記
透過性浄化材を充填してなるものとすることができ、ま
た、透過性浄化材からなる円柱を列状配琴してなるもの
とすることもできる。 【0014】但し、地中に配置する際に不可避的に生ず
る材料分離を極力抑え、汚染地下水の透過性態を担保す
るという観点からすれば、前記壁状領域としては、地中
に列状配置された円柱群であって透過性浄化材からなる
ものを含むことが好ましい。かかる円柱群は、各円柱が
密着して配置されているものであっても、間欠的に配置
されているものであってもよい。 【0015】 【発明の実施の形態】以下、添付図面に示す実施の形態
に基づいてこの発明を詳細に説明する。 【0016】◎実施の形態1 図1は本発明の実施の形態1に係る地下水浄化壁の概略
を示す斜視図、図2は該地下水浄化壁の概略を示す平断
面図、図3は該地下水浄化壁の透過性浄化材の概略を示
す図(図3(a)は縦断面図、図3(b)は拡大図)で
ある。 【0017】この実施の形態1において、地下水浄化壁
1は、図1に示すように、工場の敷地内に存する汚染源
2で有機塩素化合物にて汚染されたところから地下水の
流れの下流側に設けられ、中央に位置する透過性地下水
浄化壁1aと、透過性地下水浄化壁1aの両側に設置さ
れる一対の止水壁1bとから構成されている。かかる地
下水浄化壁1は、汚染源2から順次発生する汚染地下水
3を透過させることにより、これを浄化して浄化地下水
4とするものである。 【0018】透過性地下水浄化壁1aは、図2に示すよ
うに、透過性浄化材を含む壁状領域11を地中に配置し
てなり、この透過性浄化材を含む壁状領域11は、地中
に円柱を列状配置してなる円柱群11aであって透過性
浄化材21(図3参照)からなるものを含むものとなっ
ている。 【0019】尚、この実施の形態1では、透過性浄化材
21からなる円柱群11aは、間欠的に列状配置したも
のとして構成する。円柱群11aの列状配置を間欠的と
した理由は、還元反応による浄化力が円柱群11aを構
成する各円柱の断面領域のみならず外側領域にまで実質
的に及ぶことを考慮し、経済効果をねらったためであ
る。 【0020】また、円柱群11aの構築材料である透過
性浄化材21は、図3に示すように、金属還元剤たる鉄
粉21a及び珪砂21bを混合してなるものである。こ
こでは鉄粉21aの混合量を重量比で20%とした。透
過性浄化材21として、鉄粉のみからなるものでなく鉄
粉21a及び珪砂21bを混合してなるものを用いた理
由は、透過性浄化材21の透過性を十分に確保すること
により、鉄粉21aの腐食が発生しても、カルシウム塩
が間隙中に沈殿しないようにし、本地下水浄化壁1のロ
ングライフ化をねらったものである。また、高価な鉄粉
21aの総使用量を大幅に減少させるという経済効果を
ねらったものでもある。よって、同様の目的を達成でき
るならば、珪砂21bに代えて、珪砂21bに相当する
透水性を有する細骨材等を用いても一向に差し支えな
い。 【0021】尚、この実施の形態1では、透過性浄化材
を含む壁状領域11として、透過性浄化材21からなる
円柱群11aを地中に配置するという構成としたことか
ら、供用開始後長期間に及ぶ透過性の維持をより完全か
つ容易に達成できることとなる。即ち、ケーシングパイ
プを用いて地山の崩壊を防止しながら削孔した孔に透過
性浄化打を配置して円柱を形成する施工方法をとること
ができるため、通常避けられないとされる透過性浄化材
21の材料分離をかなり抑制することができ、これによ
り、汚染地下水の透過性能が十分に担保されることとな
る。 【0022】ここで、この透過性浄化材21の性能につ
いて、図4(a)に示す室内実験装置により実験を行っ
て調べたところ、図4(b)に示す結果(グラフ)が得
られた。 【0023】図4(a)において、符号41は、有機塩
素化合物にて汚染された汚染水が収容された原水タンク
(φ150×290mm)、符号42は、本実験にて浄
化される浄化水が収容される浄化水タンク、符号43
は、原水タンク41から処理水タンク42まで汚染水又
は浄化水を送液するテフロン(登録商標)チューブ(φ
3mm)、符号44は、テフロンチューブ43に対して
汚染水又は浄化水の送液力を付与する低流量送液ポンプ
(0.2〜20ml/min)である。 【0024】また、符号45は、内部に鉄粉21a及び
珪砂21bを混合(鉄粉21aの混合量を重量比で20
%とする)してなり、透過性浄化材21と同一構成であ
る透過性浄化材45aが収容されたガラスカラム(φ4
0×290mm)、符号46は、ガラスカラム45の上
流側において汚染水を採取する地点である入口サンプリ
ング部、符号47は、ガラスカラム45の下流側におい
て浄化水を採取する地点である出口サンプリング部であ
る。尚、本実験では、汚染水の有機塩素化合物濃度を1
ppmと設定し、また、ガラスカラム45中を透過する
汚染水の流速を30cm/dayと設定した。 【0025】図4(b)によれば、出口サンプリング部
47で採取された浄化水に含まれる有機塩素化合物のカ
ラム出口濃度は、経過日数に関係なく、略ゼロであるこ
とが把握される。 【0026】よって、本実験で用いた透過性浄化材45
aと同一構成に係る透過性浄化材21は、有機塩素化合
物濃度1ppmにて汚染された汚染地下水3を透過させ
ることにより有機塩素化合物を含まない浄化地下水4と
することができることを確認した。 【0027】一方、一対の止水壁1bは、図2に示すよ
うに、各々の基端部が透過性地下水浄化壁1aの壁状領
域11の両端部に係り、各々の先端部が左右の斜め前方
向に延設される平面配置となっている。即ち、かかる一
対の止水壁1bによれば、透過性地下水浄化壁に係らな
い地下水を集めて該透過性地下水浄化壁1aに係る地下
水とすることができる。この一対の止水壁1bは、地下
水の流れが存する透水層31において配置されるもので
あるが、不透水層32においても所定の根入れ長さが確
保されており、これにより止水性が担保されている(図
示外)。 【0028】尚、この実施の形態1では、この一対の止
水壁1bとしては、コンクリート及び芯材からなる地中
連続壁を用いたが、これに限られるものでなく、適用土
質、供用期間等に応じて適宜選定して差し支えない。よ
って、止水壁としての止水性が確保される限り、例えば
シートパイル、柱列式の鋼管杭やSMW等を用いること
もできる。 【0029】従って、この実施の形態1に係る地下水浄
化壁1では、鉄粉21a及び珪砂21bからなる透過性
浄化材21からなる円柱群11aを地中に間欠的に列状
配置してなる透過性地下水浄化壁としたため、銑粉21
aの腐食やカルシウム塩の沈殿による日詰まりを回避で
きることとなった。よって、供用開始後長期間に亘り所
望の透水性を維持することが可能となり、これが透過性
地下水浄化壁1aのロングライフ化に資することとな
る。 【0030】また、かかる透過性地下水浄化壁1aの両
端部の夫々から一対の止水壁1bが左右の斜め前方向に
延設される構成としたため、汚染地下水3が広範囲に亘
っている場合においても、コストの低廉化を図りながら
そのような汚染地下水3を処理することができることと
なった。 【0031】◎実施の形態2 図1は本発明の実施の形態2に係る地下水浄化壁の概略
を示す斜視図、図5は該地下水浄化壁の概略を示す平断
面図、図6は該地下水浄化壁の透過性浄化材の槻略を示
す図(図6(a)は縦断図、図6(b)は拡大図)であ
る。尚、実施の形態1と同様な構成要素については実施
の形態1と同様な符号を付してここではその詳細な説明
を省略する。 ・図1及び図5に示す
ように、この実施の形態2に係る地下水浄化壁51の基
本的構成は実施の形態1と略同様であるが、実施の形態
1の透過性地下水浄化壁1aに代えて、これとは異なる
構成を有する透過性地下水浄化壁51aを適用してお
り、また、汚染源2が特定の重金属Mにて汚染されてい
る点で実施の形態1と異なっている。 【0032】この透過性地下水浄化壁51aは、図5に
示すように、透過性浄化材を含む壁状領域61を地中に
配置してなり、この透過性浄化材を含む壁状領域61
は、トレンチ掘削によって形成した溝孔61aにキレー
ト樹脂71からなる透過性浄化材を充填してなる。 【0033】この実施の形態2では、透過性浄化材たる
キレート樹脂71は、図6に示すように、実施の形態1
に係る珪砂21bに相当する透水性を有するようなキレ
ート樹脂の粒子に成形した。これにより、この実施の形
態2に係る透過性浄化材においても、実施の形態1と同
様の効果を得ることができる。 【0034】かかる透過性地下水浄化壁51aにおい
て、キレート樹脂71は、選択吸着性絶を有するキレー
ト官能基を有することから、地下水の中で以下のような
働きをする。即ち、図7に示すように、特定の重金属M
を含む汚染地下水3が透過性地下水浄化壁51aを透過
すると、該特定の重金属Mは、キレート樹脂71の表面
において吸着される。 【0035】このとき、特定の重金属Mは、図7に示す
ように、キレート樹脂71の有するキレート官能基にて
選択的に吸着され、化学的にイオン交換されることとな
る結果、後に再溶出することがない。 【0036】即ち、この実施の形態2に係る地下水浄化
壁51によれば、実施の形態1に係る地下水浄化壁1と
略同様の効果が得られることに加え、透過性地下水浄化
壁51aを構成するキレート樹脂71の選択吸着性能の
利用により、汚染地下水3が特定の重金属Mで汚染され
ている場合においても、該特定の重金属Mが再溶出する
事態を回避できるという効果が得られることとなった。 【0037】尚、この実施の形態2では、透過性地下水
浄化壁51aとして、粒状に成形したキレート樹脂71
のみからなるものを用いたが、これに限られるものでな
く、キレート樹脂の吸着力が適切に発揮される限度で、
実施の形態1のように、粒状に成形したキレート樹脂及
び珪砂等の透水性材料を混合してなるものを用いること
ができる。 【0038】 【発明の効果】本発明に係る透過性地下水浄化壁によれ
ば、以上のように構成したため、コストの低廉化を図り
ながら広範囲に亘る汚染地下水を処理することができる
地下水浄化壁を得ることが可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to groundwater purification technology using civil engineering and sanitary engineering, and more particularly to groundwater contaminated with organic chlorine compounds, heavy metals and the like. (Hereinafter referred to as “contaminated groundwater”). [0002] Conventional groundwater purification walls of this type include:
For example, as shown in FIG. 8, when the flow of the contaminated groundwater 102 generated from the contaminated source 101 has a permeable layer formed in the direction indicated by the black arrow in the drawing, the flow is formed by trench excavation in a direction in which the flow of the contaminated groundwater 102 is blocked. Slot 1
03 is filled with iron powder 104 as a metal reducing agent as a permeable purifying material. According to this type of groundwater purifying wall, when the contaminated groundwater 102 passes through the groundwater purifying wall made of iron powder 104, a detoxification treatment is performed by a reduction reaction. Contaminated groundwater 102 having
Can be a purified groundwater 105 having a flow in the direction of the white arrow in the figure. [0004] However, such a groundwater purifying wall has the following inconvenience in relation to groundwater purifying performance and cost. First, as shown in FIGS. 8 and 9 (FIG. 9 (a) is a longitudinal sectional view and FIG. 9 (b) is an enlarged view), a permeable purifying material constituting this groundwater purifying wall is used. Since it is composed only of the iron powder 104, the iron powder 10
As a result, the calcium salt precipitates in the pores, and as a result, the clogging occurs and the water permeability gradually decreases.
2 turns in the direction of the arrow 106, and the purification power is lost. Second, as shown in FIG. 10, when the contaminated groundwater 102 is contaminated with a specific heavy metal M, it is retained on the surface of the iron powder 104 when passing through the groundwater purification wall. The specific heavy metal M (FIG. 10 (a))
When the reducing ability of the iron powder 104 is lost, it is ionized and eluted again (FIG. 10B). [0007] Third, when the contaminated groundwater 102 is spread over a wide area, all the slots 103 excavated over a wide area are filled with iron powder 104 and the contaminated groundwater 102 is treated without leakage. The cost becomes enormous, and practical use becomes difficult. Accordingly, an object of the present invention is to provide a groundwater purification wall capable of treating a wide range of contaminated groundwater while reducing costs. [0009] In order to achieve the above object, a groundwater purifying wall according to the present invention has a permeable structure in which a wall-like region including a permeable purifying material is arranged in the ground. It is characterized by comprising a groundwater purifying wall and a water stop wall which collects groundwater not related to the permeable groundwater purifying wall and serves as groundwater for the permeable groundwater purifying wall. The present invention relates to a permeable groundwater purifying wall having a wall-like region including a permeable purifying material disposed in the ground, and a groundwater purifying wall comprising a water blocking wall for collecting groundwater to the permeable groundwater purifying wall. By doing so, even when the contaminated groundwater is spread over a wide area, it is possible to treat such contaminated groundwater while reducing the cost. [0011] In such technical means, the permeable purifying material is a chemical (for example, a reduction reaction) or a chemical reaction (for example, a reduction reaction) when the whole or a part of a wall-shaped high region through which contaminated groundwater permeates is formed in the ground. It refers to a particulate material, a powder material, or any other material that exerts a physical (eg, adsorption) action and purifies contaminated groundwater that permeates the wall-shaped region. Therefore, in order to make it a permeable purifying material, it is necessary to have water permeability enough to allow contaminated groundwater to permeate when all or part of the wall-shaped region is formed in the ground. Therefore, as such a permeable purifying material, for example, a material composed of only a purifying material such as a metal reducing agent such as iron powder, an adsorbing substance such as activated carbon particles, or a chelating resin particle, A material obtained by mixing a material having no purification action such as a fine aggregate with a material having no purification action can be used. That is, the permeable purifying material of the third invention is not limited to the permeable purifying materials of the first and second inventions. The wall-like region containing the permeable purifying material is
It refers to a wall-shaped region that is purified by permeating contaminated groundwater. The wall-shaped region including the permeable purifying material is formed by a portion made of the permeable purifying material and, in some cases, a surrounding ground portion. For example, a hole (trench) formed by excavating a trench may be filled with the permeable purifying material, and a column made of a permeable purifying material may be arranged in a row. You can also. However, from the viewpoint of minimizing material separation inevitably occurring when arranging underground and securing the permeability of contaminated groundwater, the wall-shaped regions are arranged in line in the ground. It is preferable to include a group of columns made of a permeable purifying material. In the column group, the columns may be disposed in close contact with each other or may be disposed intermittently. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the accompanying drawings. Embodiment 1 FIG. 1 is a perspective view schematically showing a groundwater purifying wall according to Embodiment 1 of the present invention, FIG. 2 is a plan sectional view schematically showing the groundwater purifying wall, and FIG. It is a figure which shows the outline of the permeable purification | cleaning material of a purification wall (FIG. 3 (a) is a longitudinal cross-sectional view, FIG.3 (b) is an enlarged view). In the first embodiment, as shown in FIG. 1, the groundwater purifying wall 1 is provided on the downstream side of the flow of the groundwater from the place where the groundwater is contaminated with the organic chlorine compound at the pollution source 2 existing on the site of the factory. The permeable groundwater purification wall 1a is located at the center, and a pair of water stop walls 1b are installed on both sides of the permeable groundwater purification wall 1a. The groundwater purifying wall 1 is for purifying the contaminated groundwater 3 which is sequentially generated from the contaminant source 2 and thereby purifying the contaminated groundwater 3 into purified groundwater 4. As shown in FIG. 2, the permeable groundwater purifying wall 1a has a wall-like region 11 containing a permeable purifying material disposed underground, and the wall-like region 11 containing the permeable purifying material is A column group 11a in which the columns are arranged in a row in the ground, including a column made of the permeable purifying material 21 (see FIG. 3). In the first embodiment, the column group 11a made of the permeable purifying material 21 is configured to be intermittently arranged in rows. The reason why the row arrangement of the column group 11a is intermittent is that the purifying power by the reduction reaction substantially extends not only to the cross-sectional area but also to the outer area of each of the cylinders constituting the column group 11a. This is because As shown in FIG. 3, the permeable purifying material 21, which is a construction material of the column group 11a, is a mixture of iron powder 21a as a metal reducing agent and silica sand 21b. Here, the mixing amount of the iron powder 21a was set to 20% by weight. The reason for using a mixture of iron powder 21a and silica sand 21b instead of only the iron powder as the permeable purifying material 21 is that the permeability of the permeable purifying material 21 is sufficiently secured to reduce the iron content. Even if the corrosion of the powder 21a occurs, the calcium salt is prevented from settling in the gap, and the life of the groundwater purification wall 1 is extended. Further, the present invention aims at an economic effect of greatly reducing the total usage of the expensive iron powder 21a. Therefore, if the same object can be achieved, fine aggregate having water permeability equivalent to the silica sand 21b may be used instead of the silica sand 21b. In the first embodiment, since the column group 11a made of the permeable purifying material 21 is arranged in the ground as the wall-shaped region 11 containing the permeable purifying material, Maintenance of permeability over a long period of time can be more completely and easily achieved. In other words, since it is possible to adopt a construction method of forming a cylinder by arranging a permeable purifying punch in a drilled hole while preventing collapse of the ground using a casing pipe, permeability which is generally inevitable Material separation of the purifying material 21 can be considerably suppressed, whereby the permeation performance of the contaminated groundwater is sufficiently ensured. Here, the performance of the permeable purifying material 21 was examined by conducting an experiment using the laboratory apparatus shown in FIG. 4A, and the result (graph) shown in FIG. 4B was obtained. . In FIG. 4A, reference numeral 41 denotes a raw water tank (φ150 × 290 mm) containing contaminated water contaminated with an organochlorine compound, and reference numeral 42 denotes purified water purified in this experiment. Purified water tank to be stored, reference numeral 43
Is a Teflon (registered trademark) tube (φ) for feeding contaminated water or purified water from the raw water tank 41 to the treated water tank 42.
Reference numeral 44 denotes a low flow rate liquid transfer pump (0.2 to 20 ml / min) for providing the Teflon tube 43 with a power to feed contaminated water or purified water. Reference numeral 45 denotes an iron powder 21a and silica sand 21b mixed therein (the mixing amount of the iron powder 21a is 20 by weight ratio).
%) And a glass column (φ4) containing a permeable purifying material 45 a having the same configuration as the permeable purifying material 21.
0 × 290 mm), reference numeral 46 is an inlet sampling unit which is a point for collecting contaminated water on the upstream side of the glass column 45, and reference numeral 47 is an outlet sampling unit which is a point for collecting purified water on the downstream side of the glass column 45. It is. In this experiment, the concentration of organochlorine compounds in the contaminated water was 1
ppm and the flow rate of the contaminated water passing through the glass column 45 was set to 30 cm / day. According to FIG. 4B, it is understood that the concentration of the organic chlorine compound at the outlet of the column contained in the purified water collected by the outlet sampling unit 47 is substantially zero regardless of the number of days elapsed. Therefore, the permeable purifying material 45 used in this experiment was used.
It has been confirmed that the permeable purifying material 21 having the same configuration as a can be made into purified groundwater 4 containing no organic chlorine compound by permeating the contaminated groundwater 3 contaminated at an organic chlorine compound concentration of 1 ppm. On the other hand, as shown in FIG. 2, a pair of water stop walls 1b have their base ends connected to both ends of the wall-shaped region 11 of the permeable groundwater purifying wall 1a, and their tip ends have left and right sides. It is a planar arrangement extending diagonally forward. That is, according to the pair of water blocking walls 1b, groundwater that is not related to the permeable groundwater purification wall can be collected and used as groundwater for the permeable groundwater purification wall 1a. The pair of water blocking walls 1b are arranged in the water permeable layer 31 where the flow of the groundwater exists. However, a predetermined burial length is secured also in the water impermeable layer 32, thereby securing the water stopping property. (Not shown). In the first embodiment, an underground continuous wall made of concrete and a core material is used as the pair of waterproof walls 1b. However, the present invention is not limited to this. It may be appropriately selected according to the situation. Therefore, as long as the water blocking property of the water blocking wall is ensured, for example, a sheet pile, a column-type steel pipe pile, an SMW, or the like can be used. Therefore, in the groundwater purifying wall 1 according to the first embodiment, the permeation is achieved by intermittently arranging the columns 11a of the permeable purifying material 21 composed of the iron powder 21a and the quartz sand 21b in the ground. As a groundwater purification wall,
Thus, it is possible to avoid clogging due to corrosion of a and precipitation of calcium salts. Therefore, desired water permeability can be maintained for a long time after the start of operation, and this contributes to extending the life of the permeable groundwater purification wall 1a. In addition, since a pair of water blocking walls 1b extend diagonally forward in the left and right directions from both ends of the permeable groundwater purifying wall 1a, respectively, when the contaminated groundwater 3 extends over a wide area. In addition, it is possible to treat such contaminated groundwater 3 while reducing the cost. Embodiment 2 FIG. 1 is a perspective view schematically showing a groundwater purifying wall according to Embodiment 2 of the present invention, FIG. 5 is a plan sectional view schematically showing the groundwater purifying wall, and FIG. FIG. 6 (a) is a longitudinal sectional view, and FIG. 6 (b) is an enlarged view showing the outline of the permeable purifying material of the purifying wall. Note that components similar to those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and detailed description thereof will be omitted. As shown in FIGS. 1 and 5, the basic configuration of the groundwater purifying wall 51 according to the second embodiment is substantially the same as that of the first embodiment. Instead, a permeable groundwater purifying wall 51a having a configuration different from this is applied, and is different from the first embodiment in that the pollution source 2 is contaminated with a specific heavy metal M. As shown in FIG. 5, the permeable groundwater purifying wall 51a has a wall-like region 61 including a permeable purifying material disposed underground, and the wall-like region 61 including the permeable purifying material.
Is formed by filling a slot 61a formed by excavating a trench with a permeable purifying material made of a chelating resin 71. In the second embodiment, as shown in FIG. 6, the chelating resin 71 as a permeable purifying material is used in the first embodiment.
Into a chelate resin particle having water permeability corresponding to the silica sand 21b according to the above. Thus, the same effect as in the first embodiment can be obtained also in the permeable purifying material according to the second embodiment. In the permeable groundwater purifying wall 51a, the chelating resin 71 has the following function in groundwater since it has a chelating functional group having selective adsorption. That is, as shown in FIG.
When the contaminated groundwater 3 containing permeates through the permeable groundwater purification wall 51a, the specific heavy metal M is adsorbed on the surface of the chelate resin 71. At this time, the specific heavy metal M is selectively adsorbed by the chelate functional group of the chelate resin 71 and chemically ion-exchanged as shown in FIG. I can't. That is, according to the groundwater purifying wall 51 according to the second embodiment, substantially the same effects as those of the groundwater purifying wall 1 according to the first embodiment can be obtained, and the permeable groundwater purifying wall 51a is constituted. By utilizing the selective adsorption performance of the chelating resin 71, even when the contaminated groundwater 3 is contaminated with a specific heavy metal M, an effect that the specific heavy metal M can be prevented from re-eluting can be obtained. Was. In the second embodiment, as the permeable groundwater purifying wall 51a, the chelating resin 71 formed into a granular shape is used.
Only those consisting of, but not limited to this, as long as the adsorption power of the chelating resin is properly exhibited,
As in Embodiment 1, a mixture of a chelate resin formed into granules and a water-permeable material such as silica sand can be used. According to the permeable groundwater purifying wall according to the present invention, the groundwater purifying wall capable of treating a wide range of contaminated groundwater while reducing the cost is constructed as described above. It is possible to obtain.

【図面の簡単な説明】 【図1】本発明の実施の形態1及び実施の形態2に係る
地下水浄化壁の概略を示す斜視図である。 【図2】本発明の実施の形態1に係る地下水浄化壁の概
略を示す平断面図である。 【図3】本発明の実施の形態1に係る地下水浄化壁の透
過性浄化材の概略を示す図(図3(a)は縦断面図、図
3(b)は拡大図)である。 【図4】本発明の実施の形態1に係る透過性浄化材の性
能を確認する室内実験装置(図4(a))及び室内実験
結果(図4(b))の概略を示す図である。 【図5】本発明の実施の形態2に係る地下水浄化壁の概
略を示す平断面図である。 【図6】本発明の実施の形態2に係る地下水浄化壁の透
過性浄化材の概略を示す図(図6(a)は縦断面図、図
6(b)は拡大図)である。 【図7】本発明の実施の形態2に係る透過性浄化材の性
能を説明する概念図である。 【図8】従来例である透過性地下水浄化壁の概略を示す
平断面図である。 【図9】従来例である透過性浄化材の概略を示す図(図
9(a)は縦断面図、図9(b)は拡大図)である。 【図10】従来例である透過性浄化材の性能を説明する
概念図である。 【符号の説明】 1 地下水浄化壁 1a 透過性地下水浄化壁 1b 止水壁 2 汚染源 3 汚染地下水 4 浄化地下水 11 壁状領域 11a 円柱群 21 透過性浄化材 21a 鉄粉 21a 銑粉 21b 珪砂 31 透水層 32 不透水層 41 原水タンク 42 処理水タンク 43 テフロンチューブ 44 低流量送液ポンプ 45 ガラスカラム 45a 透過性浄化材 46 入口サンプリング部 47 出口サンプリング部 51 地下水浄化壁 51a 透過性地下水浄化壁 61 壁状領域 61a 溝孔 71 キレート樹脂 101 汚染源 102 汚染地下水 103 溝孔 104 鉄粉 105 浄化地下水 106 矢印 M 重金属
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view schematically showing a groundwater purifying wall according to Embodiments 1 and 2 of the present invention. FIG. 2 is a plan sectional view schematically showing a groundwater purification wall according to Embodiment 1 of the present invention. FIG. 3 is a view schematically showing a permeable purifying material of a groundwater purifying wall according to Embodiment 1 of the present invention (FIG. 3 (a) is a longitudinal sectional view, and FIG. 3 (b) is an enlarged view). FIG. 4 is a diagram schematically showing an indoor experimental device (FIG. 4 (a)) for confirming the performance of the permeable purifying material according to the first embodiment of the present invention and the results of the indoor experimental device (FIG. 4 (b)). . FIG. 5 is a plan sectional view schematically showing a groundwater purification wall according to Embodiment 2 of the present invention. FIG. 6 is a view schematically showing a permeable purifying material of a groundwater purifying wall according to Embodiment 2 of the present invention (FIG. 6 (a) is a longitudinal sectional view, and FIG. 6 (b) is an enlarged view). FIG. 7 is a conceptual diagram illustrating the performance of a permeable purifying material according to Embodiment 2 of the present invention. FIG. 8 is a plan sectional view schematically showing a conventional permeable groundwater purifying wall. FIG. 9 is a view schematically showing a conventional permeable purifying material (FIG. 9 (a) is a longitudinal sectional view, and FIG. 9 (b) is an enlarged view). FIG. 10 is a conceptual diagram illustrating the performance of a conventional permeable purifying material. [Description of Signs] 1 Groundwater purification wall 1a Permeable groundwater purification wall 1b Water blocking wall 2 Pollution source 3 Contaminated groundwater 4 Purified groundwater 11 Wall-shaped area 11a Column group 21 Permeable purification material 21a Iron powder 21a Pig powder 21b Silica sand 31 Water-permeable layer 32 impermeable layer 41 raw water tank 42 treated water tank 43 teflon tube 44 low flow rate liquid pump 45 glass column 45a permeable purifying material 46 inlet sampling unit 47 outlet sampling unit 51 groundwater purifying wall 51a permeable groundwater purifying wall 61 wall-shaped area 61a slot 71 chelating resin 101 pollution source 102 polluted groundwater 103 slot 104 iron powder 105 purified groundwater 106 arrow M heavy metal

フロントページの続き (72)発明者 今村 聡 東京都新宿区西新宿一丁目25番1号 大成 建設株式会社内 Fターム(参考) 4D024 AA10 AB11 AB16 BA02 BA18 BB01 BC01 CA07 DB22 4D050 AA02 AB19 AB52 BA02 BD01 CA06 Continuation of front page    (72) Inventor Satoshi Imamura             1-25-1, Nishi Shinjuku, Shinjuku-ku, Tokyo Taisei             Construction Co., Ltd. F term (reference) 4D024 AA10 AB11 AB16 BA02 BA18                       BB01 BC01 CA07 DB22                 4D050 AA02 AB19 AB52 BA02 BD01                       CA06

Claims (1)

【特許請求の範囲】 【請求項1】透過性浄化材を含む壁状領域を地中に配置
してなる透過性地下水浄化壁と、 前記透過性地下水浄化壁に係らない地下水を集めて該透
過性地下水浄化壁に係る地下水とする止水壁であって基
端部が該透過性地下水浄化壁の前記壁状領域の端部に係
り先端部が斜め前方向に延設されるものとからなること
を特徴とする、地下水浄化壁。
Claims: 1. A permeable groundwater purifying wall having a wall-like region including a permeable purifying material disposed in the ground, and groundwater irrelevant to the permeable groundwater purifying wall is collected and collected. A water-blocking wall that serves as groundwater for the permeable groundwater purification wall, the base end of which is related to the end of the wall-shaped region of the permeable groundwater purification wall, and the tip end of which is extended obliquely forward. A groundwater purification wall, characterized in that:
JP2002213860A 2002-07-23 2002-07-23 Groundwater purification wall Pending JP2003112175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002213860A JP2003112175A (en) 2002-07-23 2002-07-23 Groundwater purification wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002213860A JP2003112175A (en) 2002-07-23 2002-07-23 Groundwater purification wall

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11075379A Division JP2000263068A (en) 1999-03-19 1999-03-19 Permeable ground water purifying wall and ground water purifying wall

Publications (1)

Publication Number Publication Date
JP2003112175A true JP2003112175A (en) 2003-04-15

Family

ID=19195950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002213860A Pending JP2003112175A (en) 2002-07-23 2002-07-23 Groundwater purification wall

Country Status (1)

Country Link
JP (1) JP2003112175A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173557A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008173557A (en) * 2007-01-17 2008-07-31 Petroleum Energy Center Water-permeable purifying wall and purification treatment method of polluted underground water

Similar Documents

Publication Publication Date Title
JP3329456B2 (en) How to clean contaminated soil
US6132623A (en) Immobilization of inorganic arsenic species using iron
JP5244296B2 (en) Permeability purification wall and purification method of contaminated groundwater
CN212954583U (en) System for repairing hexavalent chromium polluted groundwater
JP2000263068A (en) Permeable ground water purifying wall and ground water purifying wall
JP2004351293A (en) Ground water cleaning structure
KR20110008515A (en) Stabilization method of heavy metal contaminated dredged sediments
US7223050B2 (en) Contamination diffusion preventing structure in contaminated area
JP2003112175A (en) Groundwater purification wall
JP2007283230A (en) Clarification method of ground water
JP3567429B2 (en) Groundwater purification structure and groundwater purification method
JP2007260525A (en) Method and structure of clarifying cotaminated groundwater
JP2010264399A (en) Resoiling preventing method after contaminated soil cleaning
JP2001009475A (en) Cleaning of contaminated underground water
JP4067440B2 (en) Underground purification body with poorly permeable partition layer and construction method of underground purification body
JP3831769B2 (en) Purification equipment and purification method for contaminated soil
JP2004261738A (en) Purification method for underground water polluted by cyanogen
KR20060009978A (en) The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology and the method thereof
JP2003311256A (en) Construction method for removing toxic substance in sandy stratum by electro-osmotic pumping method
JP2004283760A (en) Method for purifying ground water
JP2002079206A (en) Water shielding wall for preventing contaminated water from flowing out
JP4377558B2 (en) Groundwater purification structure and groundwater purification method
CN216377762U (en) Device for restoring organic polluted groundwater by PRB technology
JP7098990B2 (en) Contaminated water purification method
JP7183571B2 (en) Contaminated water purification method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040525

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040618