JP2003111775A - Microscope for surgery - Google Patents

Microscope for surgery

Info

Publication number
JP2003111775A
JP2003111775A JP2001310230A JP2001310230A JP2003111775A JP 2003111775 A JP2003111775 A JP 2003111775A JP 2001310230 A JP2001310230 A JP 2001310230A JP 2001310230 A JP2001310230 A JP 2001310230A JP 2003111775 A JP2003111775 A JP 2003111775A
Authority
JP
Japan
Prior art keywords
optical system
light
objective optical
microscope
parallax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001310230A
Other languages
Japanese (ja)
Inventor
俊一郎 ▲高▼橋
Shunichiro Takahashi
Tomonori Ishikawa
朝規 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001310230A priority Critical patent/JP2003111775A/en
Publication of JP2003111775A publication Critical patent/JP2003111775A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a microscope for surgery which easily changes-over a substance objective optical systems and a single objective optical system in accordance with purpose without moving the microscope and with which binocular vision is performed in the both systems with one binocular lens barrel. SOLUTION: This microscope for surgery 10 is provided with an optical path changeover device 13 for selectively guiding to the binocular lens barrel 12 a light flux from a pair of substance objective optical systems having parallax and a light flux from the single objective optical system without having parallax. The optical axis of the pair of substance objective optical systems is arranged to be spatially symmetrical with the optical axis of the single objective optical system without parallax as a center. The optical axis of an optical systems in a fixation light source 21 exists on the same axis of the optical axis of the single objective optical system without having parallax.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、特に眼科分野に好
適する手術用顕微鏡に関する。 【0002】 【従来の技術】眼科手術における屈折矯正手術など角膜
の手術は、患者の眼の瞳孔中心を位置出し(以下、これ
を角膜のセンタリング作業と呼ぶ)、位置出した瞳孔の
中心を中心とした円形に角膜を剥離する作業が必要であ
る。仮に瞳孔中心から偏心した角膜剥離を行なうと手術
後に不正乱視など術後経過が好ましくない。このように
角膜手術は微細な作業を伴うため、手術用顕微鏡下で行
なわれるが、角膜のセンタリング作業も手術用顕微鏡下
で行なうことが望ましい。角膜のセンタリング作業は固
視灯を患者に固視させ、角膜上に反射した固視灯像を狙
って手術用顕微鏡の片眼で行なわれている。 【0003】次に角膜移植手術において術者の行なう一
般的な角膜のセンタリング作業を図7及び図8を用いて
説明する。初めに、図7に示すように、術者8は患者に
対して手術用顕微鏡の顕微鏡部1をセッティングし、手
術前に術者の左右両目で被検眼7を立体視観察する。こ
の際、特に瞳孔2の形状や手術部位の異常の有無や手術
部位の状態などを観察する。 【0004】次に、顕微鏡部1に内蔵された固視灯3を
点灯し、患者の被検眼7に固視灯3を固視させる。つい
で、図8に示すように、術者8は片眼を閉じるなどして
顕微鏡部1の片側観察光路を遮光する。そして、観察可
能な片眼のみの観察像が被検眼7の瞳孔2を形成する虹
彩4を中心且つ明瞭に見える様に、観察可能な片側の光
軸Pが被検眼7に対して垂直に入射するように顕微鏡部
1を移動・傾斜させる。この顕微鏡部1の移動・傾斜に
伴い、焦点位置がずれるため、ピントを合わせ直す必要
がある。このとき、本来であれば、角膜5に焦点位置を
合わせるべきであるが、角膜5は透明体であり、角膜5
を観察できないため、代わりに虹彩4に焦点を合わせ
る。 【0005】この後、被検眼7の角膜5に反射している
固視灯3の虚像を狙って角膜にマーキングする。そし
て、マーキング位置6を中心として円形に角膜5をカッ
トし、角膜5を剥離する。 【0006】尚、この作業が単眼で行なわれている理由
は、手術用顕微鏡の顕微鏡部1が実体顕微鏡であるた
め、焦点が合っていない状態では術者8の左右眼の観察
像に視差を持っており、角膜5に反射した固視灯3の虚
像が2重像に見えてしまい、正確な作業ができなくなる
からである。 【0007】次に、術者8は両眼立体観察に切り換え、
被検眼7を観察視野中心にくるように顕微鏡部1の観察
角度を補正し、焦点位置を合わせ直し、予め準備された
移植する角膜を患者の眼に被せ縫合し手術が完了する。 【0008】 【発明が解決しようとする課題】上述した如く、術者が
角膜の手術を行なう際、手術用顕微鏡を用いるが、初め
に両眼立体視にて被検眼にピントを合わせて観察を行
い、次に、被検眼の固視を得た状態で単眼視によるセン
タリング作業を行なう。この後、手術用顕微鏡を両眼立
体視状態に戻し、手術用顕微鏡により観察しながら角膜
に処置を施す。この際、術者と被検眼の前後方向の情報
を得ながら作業を進める。上記両眼立体視と単眼視の切
換え時に手術用顕微鏡の観察角度変更及び焦点位置の再
調整はその都度行なう。 【0009】従来の手術用顕微鏡を用いて角膜の手術を
行なう場合、以下のような問題点があった。まず、手術
用顕微鏡を両眼立体視状態から単眼視状態に切り換え、
また、立体視状態に戻す作業が、手術用顕微鏡の変位、
焦準を伴う作業となっており、それらの作業が非常に煩
わしい。また、角膜のセンタリング作業は単眼視にて行
なわれており、術者の観察眼と患者の手術部位との観察
光軸方向の情報が得られない。このため、術者は慎重か
つ時間を掛けて角膜のセンタリング作業を行なうことに
なり、それらの作業性が極端に悪くなっていた。さら
に、片目を閉じるということも手術者の疲労を増し、非
常に煩わしい。 【0010】本発明は上記課題に着目してなされたもの
で、その目的とするところは、実体対物光学系と単対物
光学系が用途に応じて簡単且つ手術用顕微鏡の移動なし
に切換え可能であり、また、両者とも1つの双眼鏡筒に
より両眼視可能な手術用顕微鏡を提供することにある。 【0011】 【課題を解決するための手段】上記目的を解決するため
に本発明の手術用顕微鏡は、立体観察像を得るために観
察者の左右眼に光束を導く双眼接眼鏡筒と、視差を持っ
た一対の実体対物光学系と、視差を持たない単対物光学
系と、被検眼の固視及び角膜の中心位置を確認するため
の固視灯とを備えた手術用顕微鏡において、上記視差を
持った一対の実体対物光学系からの光束と上記視差を持
たない単対物光学系からの光束を選択的に上記双眼接眼
鏡筒に導く光路切換え手段を備え、上記視差を持った一
対の実体対物光学系の光軸は、上記視差を持たない単対
物光学系の光軸を中心に空間的線対称に配置されてお
り、上記視差を持たない単対物光学系の光軸と同軸に上
記固視灯の光学系の光軸があることを特徴とする。 【0012】従って、本発明の一例によれば、上記光路
切換え手段をON/OFFすることにより、上記双眼鏡
筒には上記実体対物光学系と上記単対物光学系を選択的
に観察者の左右眼にて観察できる。このとき、単対物光
学系の光軸と同軸に上記固視灯の光学系があるため、例
えば、被検眼の角膜に写った固視灯の虚像を狙って角膜
のセンタリング作業が正確に行なえる。また、上記光路
切換え手段のON/OFF時に観察者は上記実体対物光
学系の光軸が上記単対物光学系の光軸を中心として空間
的に線対称に配置されているため、顕微鏡の観察角度を
変更する必要がない。 【0013】 【発明の実施の形態】(第1実施形態)図1乃至図3を
用いて本発明の第1実施形態に係る手術用顕微鏡につい
て説明する。図1は本実施形態に係る手術用顕微鏡の顕
微鏡部における各部を分離して概略的に示す斜視図、図
2及び図3は同じく本実施形態に係る手術用顕微鏡の顕
微鏡部における光学系の構成を概略的に示した説明図で
あって、図2は視差を持った実体対物光学系観察状態を
示し、図3は単対物光学系観察状態を示すものである。 【0014】本実施形態における手術用顕微鏡の顕微鏡
部10は実体対物光学系と単対物光学系を備えたズーム
本体11と双眼接眼鏡筒12と光路切換え手段である光
路切替え装置13と固視灯照射装置14を備える。光路
切替え装置13はズーム本体11と双眼接眼鏡筒12の
間に配置され、固視灯照射装置14はズーム本体11の
前方に位置して配置されている。 【0015】上記ズーム本体11には対物レンズ15と
それぞれ同様な構成の変倍光学系としての第1〜3変倍
レンズ系16a,16b,16cが設けられ、対物レン
ズ15はこれに入射した光束をアフォーカルな光束とし
て各変倍レンズ系16a,16b,16cへ向けて出射
する。上記対物レンズ15の光軸Oと中央に位置した第
3の変倍レンズ系16cの光軸Lcは一致し、同一直線
上にある。左右に配置される第1変倍レンズ系16aの
光軸Laと第2変倍レンズ系16bの光軸Lbは中央に
位置した第3の変倍レンズ系16cの光軸Laに平行で
あり、この左右に対称に配置された一対の変倍レンズ系
16a,16bは実体観察用の実体対物光学系を構成す
る。また、対物レンズ15の光軸Oと同軸に配置された
中央に位置する第3の変倍レンズ系16cはこれにより
単対物光学系を構成する。 【0016】上記双眼接眼鏡筒12は左右一対の結像光
学系17a,17b及び左右一対の接眼レンズ18a,
18bを備え、これを通じて視差を持った実体観察を行
なう双眼接眼光学系が構成されている。 【0017】上記固視灯照射装置14には固視灯21及
びこの固視灯21からの照明光を対物レンズ15の光軸
Oと同軸に被検眼7に向けて照射させる固視灯照射光学
系22が設けられている。固視灯照射光学系22は固視
灯照射光のリレー部22aとハーフミラー部22bとを
備えてなり、ハーフミラー部22bは上記対物レンズ1
5の光軸O上に設置されている。そして固視灯21を点
灯したとき、その照明光をリレー部22aを通じてハー
フミラー部22bに導き、そのハーフミラー部22bに
より対物レンズ15の光軸Oと一致する向きで反射さ
せ、照明光を被検眼7に向けて射出するようになってい
る。 【0018】上記光路切替え装置13は固定的に配置さ
れた本体25を備える。この本体25内には上記対物レ
ンズ15の光軸O回りに回動自在に回転体26を組み込
む。本体25には上記ズーム本体11の第1〜3変倍レ
ンズ系16a,16b,16cの各光軸La,Lb,L
cにそれぞれ対応一致すべく形成された開孔27a,2
7b,27cが設けられている。 【0019】本体25に組み込まれた回転体26には図
2に示す位置状態で上記開孔27a,27bに対応し得
る一対の開口30a,30bと、上記開孔27cに対応
した孔30cと、上記開孔20cに対応して回転体26
の回転軸上に設置されたビームスプリッタ31が設けら
れている。ビームスプリッタ31は入射した第3変倍レ
ンズ系16cの光束を反射光と透過光に分割、例えば略
2等分に分割する機能を有し、その反射光は光軸Lcに
直角な向きに出射され、透過光は光軸Lcに沿って透過
する。 【0020】また、図2に示す位置状態で、第1、2変
倍レンズ系16a,16bからのアフォーカルな光束は
それぞれ開孔27a,27bからこれに対応する各孔3
0a,30bを通じて双眼接眼鏡筒12に向けてそのま
ま透過する。開孔27cからこれに対応する孔30cを
通じてビームスプリッタ31に入射した第3変倍レンズ
系16cからの光束はそのビームスプリッタ31により
反射光と透過光に分割されるが、この図2の状態では後
述する如く、ミラーに向けて出射するものの光路切り換
え装置13内で遮断・遮蔽されてしまうため、双眼接眼
鏡筒12には到達しない。 【0021】図3に示すように、上記回転体26にはビ
ームスプリッタ31で透過した光束を側方へ向けて反射
する第1ミラー32と、この第1ミラー32で反射した
光束を右側の結像光学系17aに向けてさらに反射する
第2ミラー33と、上記ビームスプリッタ31で反射し
た光束を左側の結像光学系17bに向けて反射する第3
ミラー34が設けられている。すなわち、図3に示す単
観察状態においては第2ミラー33と第3ミラー34が
それぞれ左右の結像光学系17a,17bに対応一致
し、ビームスプリッタ31で透過した光束を右側の結像
光学系17aに入射させ、上記ビームスプリッタ31で
反射した光束を左側の結像光学系17bに入射させる。
このため、それらの像は上記双眼接眼鏡筒12において
同時に双眼で視差のない観察ができ、単観察が可能であ
る。 【0022】また、図2と図3において示すように、回
転体26の側面には2つの円錐形状の穴からなる係止孔
36aと36bが回転体26の回転軸(光軸Oに一致)
回りに略90度ずれた位置に設けられている。また、本
体25側には上記係止孔36aと36bが対向位置した
とき、その係止孔36aと36bに落ち込んで係止する
ボール37が配設されている。このボール37はバネ3
8により係止孔36a,36bに向けて弾性的に付勢さ
れていて、係止孔36aと36bに向き合うと、その係
止孔36aと36b内に嵌り込んで係止し、回転体26
の回転位置を決めるようになっている。 【0023】さらに、回転体26には光路切換え用操作
レバー41が固定的に取り付けられている。この光路切
換え用操作レバー41は上記本体25に形成した溝孔4
2を通じて本体25の外方へ突き出ている。そして、こ
の操作レバー41により回転体26を回転操作し、図2
と図3に示す各位置において係止孔36aまたは36b
にボール37が落ち込んで係止し、その位置に回転体2
6を保持する。 【0024】次に、本実施形態における手術用顕微鏡の
作用について述べる。まず、術者8は手術用顕微鏡の顕
微鏡部10を患者の被検眼7上に持ってきて、顕微鏡部
10の傾斜(観察角度)調整および焦準調整を行なう。
図2に示す実体観察状態では対物レンズ15から第1、
第2の変倍光学系10a、10bを通る光束は本体25
の開口27a,27b及び回転体26に空いた孔30
a,30bを通じて、左右一対の結像光学系17a,1
7bによりそれぞれ結像され、左右一対の接眼レンズ1
8a,18bにより立体視観察できる。そして、瞳孔2
の形状や手術部位の異常の有無や手術部位の状態などを
観察する。 【0025】次に、被検眼7の角膜5の瞳孔2の中心位
置を決定する作業に入る。術者8は光路切換え操作レバ
ー41を操作させることにより回転体26を対物レンズ
15の光軸Oを中心に略90度回転させる。このとき、
係止孔36aに嵌っていたボール27がバネ38を押し
上げ、回転体26は回転することができる。そして、略
90度回転した位置で、ボール27が係止孔36bに嵌
り込み、回転体26の回転方向の位置が決められる。 【0026】次に、固視灯照射装置14の固視灯21を
点灯し、患者に固視灯21の像を固視させ、被検眼7の
固視を得た状態で顕微鏡部10の傾斜を図示しないアー
ムにより調整し、虹彩4に焦点を合わせ、角膜5に映し
出された固視灯21の虚像を狙ってマーキング位置6に
印を付けるセンタリング作業を行なう。このとき、固視
灯21の像は固視灯照射光学系22を通り、光軸Oと同
軸に被検眼7に射出する。被検眼7からの光束は対物レ
ンズ15及び第3変倍レンズ系16c及び開口27cを
通り、ビームスプリッタ31により光束が分割され、透
過光は第1ミラー32及び第2ミラー33にて反射して
双眼接眼鏡筒12の右側の結像光学系17aに入射す
る。また、ビームスプリッタ31により反射した光束は
第3ミラー34により左側の結像光学系17bに入射す
る。これにより双眼接眼鏡筒12の左右一対の接眼レン
ズ18a,18bにて視差のない単視観察がなされる。
左右の観察像に視差がないので、焦点が合っていない場
合でも、固視灯21の像が二重に見えてしまうことがな
い。従って、正確なセンタリング作業を行うことができ
る。 【0027】このようにして、正確なセンタリング作業
を行ない、マーキング位置に印を付け終えた後、再度、
被検眼7の処置を行なうため、光路切換えレバー41を
元の位置に移動し、回転体26を対物レンズ15の光軸
Oを中心に略90度回転させ、元の位置に戻す。する
と、左右一対の第1の変倍レンズ系16a及び第2の変
倍レンズ系16bを用いた実体対物光学系が構築され、
実体観察状態になる。この実体観察状態で手術を行な
う。 【0028】本実施形態によれば、簡単な切換え操作
(回転レバー切換え)により、視差を持った実体対物光
学系を使用する観察状態と視差を持たない単対物光学系
を使用する単対物光学系観察状態に切り換えることがで
きる。また、手術用顕微鏡の顕微鏡部10を移動させる
ことなく、その観察状態の切り換えが可能であり、ま
た、各観察状態の両者とも1つの双眼接眼鏡筒12によ
り両眼視が可能である。このため、術者の疲労を軽減
し、また、手術時間の短縮が可能となる。 【0029】(第2実施形態)図4及び図5を用いて本
発明の第2実施形態に係る手術用顕微鏡について説明す
る。ここでは上述した第1実施形態と異なった部分を中
心に説明し、同等の構成及び作用は省略する。 【0030】本実施形態は顕微鏡部10を構成するズー
ム本体11の変倍光学系に大口径ズームレンズ50を用
いた。また、固視灯照射装置14の出射光軸上には固視
灯21の特定波長のみを透過する波長カットフィルター
51を設けている。なお、この固視灯21と波長カット
フィルター51の組み合せの代わりにレーザー光源など
単一波長を発する光源を用いても良い。 【0031】また、光路切換え装置13の本体25には
ズーム本体11の観察光軸を決定する第1の開口52
a、第2の開口52b及び第3の開口52cが設けられ
ている。ここで、第1の開口52a及び第2の開口52
bは双眼接眼鏡筒12の左右一対の結像光学系17a,
17bと各々が同軸になる様に配置されており、これに
より左右一対の実体対物光学系の光路を構成している。
また、中央に位置する第3の開口52cは対物レンズ1
5の光軸Oと同軸に位置して配置されており、この経路
により単対物光学系を構成している。また、第1の開口
52a及び52bにはそれぞれ特定波長をカットする波
長カットフィルター53a,53bが配置されている。
この波長カットフィルター53a,53bは固視灯照射
装置14の波長カットフィルター51を透過した単一波
長と同一波長を透過しないフィルターである。 【0032】さらに、上記光路切替え装置13には各々
反射光と透過光に略2等分する第1のビームスプリッタ
ー55、第2のビームスプリッター56及び第3のビー
ムスプリッター57が設けられ、これらのビームスプリ
ッター55,56,57は上述した第1の開口52a、
第2の開口52b及び第3の開口52cの位置にそれぞ
れ対応して個別的に配置されている。 【0033】第1のビームスプリッター55及び第2の
ビームスプリッター56の透過光は各々双眼接眼鏡筒1
2の左右一対の結像光学系17a,17bの光軸にそれ
ぞれ入射するように配置されている。また、中央に位置
した第3のビームスプリッター57で透過した光束は第
1のミラー58で反射して右側の第1のビームスプリッ
ター55に入射し、この第1のビームスプリッター55
にて反射した光束を双眼接眼鏡筒12の一方の結像光学
系17aに入射させる。また、中央に位置した第3のビ
ームスプリッター57で反射した光束は左側の第2のビ
ームスプリッター56に入射し、この第2のビームスプ
リッター56にて反射し、双眼接眼鏡筒12の他方の結
像光学系17bに入射する。そして、双眼接眼鏡筒12
の左右一対の結像光学系17a,17bにて同一の像を
双眼で視差のない観察ができるようになっている。 【0034】さらに、上記光路切換え装置13には光路
切替え用のシャッター機構60が組み込まれている。こ
のシャッター機構60は図4に示すように各ビームスプ
リッター55,56,57と各孔52a,52b,52
cの間の空間領域に配置され、それぞれの光束を遮蔽す
る移動可能な遮光板61を備えている。この遮光板61
は図5に示すようにVの字状に形成され、その中間基部
を回転中心部として遮光板駆動手段であるソレノイド6
2によって回動させられる。ソレノイド62は制御部6
3にて2秒間隔でON/OFFするように制御される。
図5に示されように、遮光板61は上記孔52a,52
bを同時に遮蔽する実線で示す位置(実体対物光学系を
構築する位置)と、孔52cのみを遮光する2点線で示
す位置(単対物光学系を構築する位置)をソレノイド6
2の回転駆動に伴い、選ぶように構成されている。 【0035】次に、本実施形態における手術用顕微鏡特
有の作用について述べる。術者8が手術用顕微鏡を用い
て被検眼7にセンタリング作業を行なう場合には固視灯
21を点灯し、被検眼7の固視が得られた状態で作業を
行なう。この際、固視灯21からの光束は波長カットフ
ィルター51を介して固視灯照射光学系22を経て被検
眼7に光束が到達する。従って、固視灯21の照射光束
は一定の波長のみの単一波長のものである。 【0036】ついで、シャッター機構60の制御部63
をON状態にし、ソレノイド62を駆動する。ソレノイ
ド62がON状態にあるとき、遮光板61は第1の孔5
2aと第2の開口52bを覆い隠す位置に動く。また、
OFF状態のときは第3の開口52cのみを覆い隠す位
置に戻る。 【0037】制御部63は例えばソレノイド62に電流
を送るON状態が2秒間とし、OFF状態が2秒間とし
て、これを定期的に繰り返す。このため、ON状態のと
きは第1の開口52aと第2の開口52bのみが遮光板
61で覆い隠され(図5中の実線で示す位置)、OFF
状態のときには第3の開口52cのみが覆い隠される
(図5中の2点鎖線で示す位置)。 【0038】被検眼7からの光束は対物レンズ15、大
口径ズームレンズ50を介してズーム本体11から一本
の大径の光束を出射し、第1から第3の開口52a,5
2b,35cを通って、3本の光束に分けられ、光路切
換え装置13に入射する。そして、第1の開口52a及
び第2の開口52bを通った2本の光束は左右一対の実
体対物光学系として観察されるものであり、第3の開口
52cを通った光束は単対物光学系として観察されるも
のである。ここで、制御部63のソレノイド62への信
号がOFFのときのみ、第1の開口52aを通った光束
は波長カットフィルター53aを通り、第1のビームス
プリッター55に入射し、その透過光が双眼接眼鏡筒1
2の右側の結像レンズ光学系17aに入射し、同様に第
2の開口52bを通った光束は波長カットフィルター5
3bを通り、第2のビームスプリッター56に入射し、
その透過光が双眼接眼鏡筒12の左側の結像レンズ光学
系17bに入射する。 【0039】しかし、上記左右の両波長カットフィルタ
ー53a,53bは固視灯照射装置14の波長カットフ
ィルター51を透過した単一波長と同一波長のみを透過
しないフィルターであるため、被検眼7からの固視灯2
1の反射像は双眼接眼鏡筒12に入射せず、固視灯21
の反射像の観察はなされない。つまり、実体観察される
状態では固視灯21の像が眼に入ることはない。 【0040】また、制御部63のソレノイド62への信
号がONのときは、第3の開口52cを通った光束が第
3のビームスプリッター57に入射する。この第3のビ
ームスプリッター57を透過した光束は第1のミラー5
8で反射して第1のビームスプリッター55に入射し、
この第1のビームスプリッター55にて反射する。この
第1のビームスプリッター55にて反射した光束は双眼
接眼鏡筒12の右側の結像光学系17aに入射する。ま
た、第3のビームスプリッター57で反射した光束は第
2のビームスプリッター56に入射し、この第2のビー
ムスプリッター56にて反射した光束は双眼接眼鏡筒1
2の左側の結像光学系17bに入射する。つまり、固視
灯21像を観察する単対物光学系による観察がなされ
る。 【0041】以上の如く、ソレノイド62への信号をO
N・OFFするときは遮光板61により、2秒間隔で、
固視灯21像を観察する単対物光学系による観察と、固
視灯21の像を観察できない実体対物光学系による観察
を繰り返すことになる。 【0042】以上の如く、本実施形態によれば、上述し
た第1実施形態の効果に加え、センタリング作業時に自
動で実体光学系観察と単眼光学系観察とを繰り返すこと
ができる。このため、前後方向の情報を得ながら作業が
できる。また、光学部品の移動がないため、小型に構成
することができ、迅速な切り換えが行なわれる。 【0043】(第3実施形態)図6を用いて本発明の第
3実施形態に係る手術用顕微鏡について説明する。第1
実施形態及び第2実施形態と異なった部分のみを説明
し、同等の構成及び作用についてはその説明を省略す
る。 【0044】本実施形態での顕微鏡部10のズーム本体
11及び双眼接眼鏡筒12は上述した第2実施形態と同
等のため、その説明は省略する。また、固視灯照射装置
14は固視灯照射光学系22中に第1の偏光板71が配
設されており、これにより固視灯21の光束は偏光成分
横波の光束となり、被検眼7に照射する。 【0045】また、光路切換え装置13には左右一対の
実体対物光学系を構成する入射孔72a,72b、及び
単対物光学系を構成する入射孔72cが設けられてい
る。入射孔72a,72bには各々偏光成分の縦波のみ
を透過する第2の偏光板73a,73bが配設されてい
る。入射孔72cには偏光成分の横波のみを透過する第
3の偏光板74が配設されている。入射孔72a及び入
射孔72cを通る光軸上には電気的制御にて透過する偏
光成分が自在に変更可能な透過型液晶偏光板75が配設
されており、この透過型液晶偏光板75は制御部76に
より制御駆動される。この制御部76は顕微鏡部10か
ら離れた位置に配設されている。 【0046】また、光路切替え装置13において、入射
孔72cの光軸上にはミラー77が配設されており、入
射孔72aの光軸上には縦の偏向成分を透過し、横の偏
光成分を反射する偏向ビームスプリッター78が配設さ
れている。 【0047】次に、本実施形態における手術用顕微鏡の
作用について述べる。センタリング作業時には固視灯2
1を点灯して行なうが、この際、固視灯21の光束は第
1の偏光板71を透過し、横の偏光成分の光束となり、
被検眼7を照射する。 【0048】被検眼7からの光束はズーム本体11の大
口径ズームレンズ50を経て一本の大径光束で出射さ
れ、これは入射孔72a,72b,72cにて3本の光
束に分かれる。そして、入射孔72aを通った光束は偏
光板73aを経て縦の偏光成分の光束となり、透過型液
晶偏光板75及び偏向ビームスプリッター78を経て双
眼接眼鏡筒12の右側の結像光学系17aに入射する。
また、入射孔72bを通った光束は偏光板73bを経て
縦の偏光成分の光束となり、双眼接眼鏡筒12の左側の
結像光学系17bに入射する。また、入射孔72cを通
った光束は偏光板74を経て横の偏光成分の光束とな
り、透過型液晶偏光板75を経てミラー77及び偏向ビ
ームスプリッター78に反射して双眼接眼鏡筒12の右
側の結像光学系17aに入射する。 【0049】透過型液晶偏光板75は制御部76により
偏光方向を自在にコントロールされるが、まず、縦の偏
光成分のみを透過するように制御した場合、入射孔72
aを通った光束は双眼接眼鏡筒12に入射するが、この
とき、入射孔72cを通った光束は透過型液晶偏光板7
5を透過することがないため、通常の観察状態である実
体対物光学系として使用可能である。 【0050】また、横の偏光成分のみを透過するように
透過型液晶偏光板75を制御した場合には、入射孔72
cを通った光束は双眼接眼鏡筒12に入射するが、入射
孔72aからの光束は透過型液晶偏光板75を透過せ
ず、双眼接眼鏡筒12に入射しない。一方、入射孔72
bを通った光束は常に双眼接眼鏡筒12の片側の光路に
入射する。 【0051】しかして、センタリング作業時に術者8
が、制御部76による制御を選択することにより、上述
した第2実施形態の如く、一定時間で光路を切り換える
場合と、立体感は弱いが切り換えを行なわないで作業を
進める場合のいずれかを選択することが可能である。 【0052】本実施形態によれば、上述した第2実施形
態の効果に加え、常に立体視しながらセンタリング作業
が可能であり、術者の好みに合わせ切換え可能である。
また、何ら部品の移動がないため、より一層の小型化を
達成できる。 【0053】尚、本発明は前述した各実施形態に限定さ
れるものではなく、他の形態にも適用が可能である。ま
た、前述した説明によれば、以下に列挙する事項および
以下に列挙した事項を任意に組み合わせた事項が得られ
る。 【0054】<付記> 付記1.立体観察像を得るために観察者の左右眼に光束
を導く双眼接眼鏡筒と、視差を持った一対の実体対物光
学系と、視差を持たない単対物光学系と、被検眼の固視
及び角膜の中心位置を確認するための固視灯とを備えた
手術用顕微鏡において、上記実体対物光学系からの光束
と単対物光学系からの光束を選択的に上記双眼接眼鏡筒
に導く光路切換え手段を備え、上記実体対物光学系の左
右光軸は上記視差を持たない単対物光学系の光軸を中心
に空間的線対称に配置されており、上記単対物光学系の
光軸と上記固視灯の被検眼への照射光軸が略同軸に配置
されていることを特徴とする手術用顕微鏡。 【0055】付記2.上記視差を持った一対の実体対物
光学系は、観察光学系の光束を自由に2ケ所選択するこ
とにより立体観察可能な大口径ズームレンズ光学系を用
いたことを特徴とする付記1の手術用顕微鏡。 付記3.上記光路切換え手段は、偏光素子を用いたこと
を特徴とする付記1,2の手術用顕微鏡。 付記4.上記光路切換え手段は、上記実体対物光学系か
らの光束と上記単対物光学系からの光束を一定時間で繰
り返し切り換える制御手段を有することを特徴とする付
記1〜3の手術用顕微鏡。 【0056】 【発明の効果】本発明によれば、実体対物光学系と単対
物光学系が用途に応じて簡単且つ手術用顕微鏡の移動な
しに切換え可能であり、また、両者とも1つの双眼鏡筒
により両眼視可能であるため、術者の疲労を軽減でき、
手術時間の短縮が可能となる。また、実体対物光学系と
単対物光学系の切換え時に移動する構成部品が少ない。
このため、小型に構成でき、手術スペースの確保がで
き、術者の作業性が良い。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is particularly suitable for the field of ophthalmology.
It relates to a suitable surgical microscope. 2. Description of the Related Art Cornea such as refractive surgery in ophthalmic surgery
Surgery involves positioning the center of the pupil of the patient's eye (hereinafter
Is called the corneal centering operation).
It is necessary to remove the cornea in a circle centered on the center.
You. Surgery if corneal detachment eccentric from the pupil center is performed
Postoperative progress such as irregular astigmatism later is not desirable. in this way
Because corneal surgery involves fine work, it is performed under a surgical microscope.
Corneal centering work under an operating microscope
It is desirable to carry out at. Corneal centering work
The patient fixes his or her gaze to the fixation lamp image reflected on the cornea.
This is done with one eye of a surgical microscope. [0003] Next, an operation performed by an operator in a corneal transplant operation is described.
A typical cornea centering operation will be described with reference to FIGS. 7 and 8.
explain. First, as shown in FIG.
Then, set the microscope section 1 of the surgical microscope,
Before the operation, the examinee's eye 7 is stereoscopically observed with both left and right eyes of the operator. This
At the time of surgery, especially the shape of the pupil 2 and the presence or absence of abnormalities in the surgical site
Observe the condition of the part. Next, the fixation lamp 3 built in the microscope unit 1 is
The light is turned on, and the subject's eye 7 is caused to fixate the fixation lamp 3. About
Then, as shown in FIG. 8, the surgeon 8 closes one eye and so on.
The one-side observation optical path of the microscope unit 1 is shielded. And observable
A rainbow in which the observed image of only one capable eye forms the pupil 2 of the subject's eye 7
One-sided light that can be observed so that the center of Aya 4 is clearly visible
The microscope section so that the axis P is perpendicularly incident on the eye 7 to be examined.
Move and tilt 1 For the movement and tilt of the microscope unit 1
As a result, the focus position shifts, so it is necessary to refocus.
There is. At this time, originally, the focal position is set on the cornea 5.
It should be aligned, but the cornea 5 is transparent and the cornea 5
Focus on iris 4 instead
You. Thereafter, the light is reflected on the cornea 5 of the eye 7 to be examined.
The cornea is marked for the virtual image of the fixation lamp 3. Soshi
And cut the cornea 5 in a circle around the marking position 6.
Then, the cornea 5 is peeled off. The reason why this work is performed by a single eye
Means that the microscope unit 1 of the operating microscope is a stereomicroscope.
Observe the right and left eyes of the surgeon 8 when the subject is out of focus
The image has parallax, and the illusion of the fixation lamp 3 reflected on the cornea 5
The image looks like a double image, making it impossible to work accurately
Because. Next, the surgeon 8 switches to binocular stereoscopic observation,
Observation of the microscope unit 1 so that the subject's eye 7 is located at the center of the observation field of view.
Correct the angle, re-focus and adjust the focus position
The cornea to be transplanted is put on the patient's eye and sutured, and the operation is completed. [0008] As described above, the operator must
When performing corneal surgery, a surgical microscope is used.
Focus on the subject's eye with binocular stereovision and observe
Next, with the fixation of the subject's eye obtained,
Perform a tarring operation. After this, the surgical microscope is binocularly
Return to the visual state and observe with a surgical microscope
Take action. At this time, information on the anteroposterior direction of the surgeon and the subject's eye
Work while gaining. Disconnect binocular stereo and monocular
When changing the observation angle of the surgical microscope and changing the focus position
Adjustments are made each time. [0009] Corneal surgery using a conventional surgical microscope
When doing so, there were the following problems. First, surgery
Switch the microscope for use from binocular stereo vision to monocular vision,
Also, the operation to return to the stereoscopic state is the displacement of the surgical microscope,
This is a task that requires focusing, and it is extremely troublesome.
I'm sorry. In addition, the cornea centering work is performed by monocular vision.
Observation of the operator's observation eye and the patient's surgical site
Information in the optical axis direction cannot be obtained. Is the operator careful
To take the time to perform the centering of the cornea
And their workability was extremely poor. Further
In addition, closing one eye increases the operator's fatigue,
Always annoying. The present invention has been made in view of the above problems.
The objective is to use a stereo objective optical system and a single objective
Optical system is easy to use and no need to move the surgical microscope
Can be switched to both, and both can be switched to one binocular tube.
It is an object of the present invention to provide a surgical microscope that allows more binocular vision. [0011] To achieve the above object,
In addition, the surgical microscope of the present invention is used for observation to obtain a stereoscopic observation image.
Binocular eyepiece tube that guides the luminous flux to the left and right eyes of the observer and has parallax
Pair of real objective optics and single objective optics without parallax
To confirm the system and fixation of the eye to be examined and the central position of the cornea
In a surgical microscope equipped with a fixation lamp,
With the parallax and the luminous flux from a pair of
Binocular eyepiece for selectively selecting the light beam from a single objective optical system
An optical path switching means for guiding to the lens barrel is provided.
The optical axis of the pair of real objective optical systems is a single pair with no parallax
Are arranged spatially symmetrically about the optical axis of the object optical system.
And coaxially with the optical axis of the single objective optical system without parallax
The optical system of the fixation lamp has an optical axis. Therefore, according to one embodiment of the present invention, the optical path
By turning on / off the switching means, the binoculars
The tube is selectively equipped with the above-mentioned real objective optical system and the above-mentioned single objective optical system.
Can be observed with the left and right eyes of the observer. At this time, single objective light
Because the optical system of the fixation lamp is coaxial with the optical axis of the science system,
For example, aiming at the virtual image of the fixation lamp on the cornea of the subject's eye
Centering work can be performed accurately. Also, the above optical path
When the switching means is turned on / off, the observer receives the above-mentioned actual objective light.
The optical axis of the optical system is spatially centered on the optical axis of the single objective optical system.
Are arranged symmetrically in a line, so that the observation angle of the microscope
No need to change. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (First Embodiment) FIGS.
The operation microscope according to the first embodiment of the present invention
Will be explained. FIG. 1 is a microscope of the surgical microscope according to the present embodiment.
Perspective view, diagram schematically showing each part of the microscopic part separately
2 and 3 are microscopes of the surgical microscope according to the present embodiment.
FIG. 3 is an explanatory view schematically showing a configuration of an optical system in a microscopic unit.
FIG. 2 shows an observation state of a real objective optical system having parallax.
FIG. 3 shows the observation state of the single objective optical system. The microscope of the surgical microscope according to the present embodiment
The unit 10 includes a zoom having a stereo objective optical system and a single objective optical system.
The body 11, the binocular eyepiece tube 12, and light serving as an optical path switching unit
A road switching device 13 and a fixation lamp irradiation device 14 are provided. Light path
The switching device 13 includes a zoom body 11 and a binocular eyepiece tube 12.
The fixation lamp irradiating device 14 is disposed between the
It is located forward. The zoom body 11 has an objective lens 15
First to third variable powers as variable power optical systems of the same configuration
Lens systems 16a, 16b, and 16c are provided, and an objective lens is provided.
The lens 15 converts the light beam incident thereon into an afocal light beam.
Out toward each variable-power lens system 16a, 16b, 16c
I do. The optical axis O of the objective lens 15 and the
The optical axes Lc of the zoom lens systems 16c of the third lens system coincide with each other, and
It's above. Of the first variable power lens system 16a
The optical axis La and the optical axis Lb of the second variable power lens system 16b are centered.
Parallel to the optical axis La of the located third zoom lens system 16c.
Yes, a pair of variable power lens systems symmetrically arranged on the left and right
16a and 16b constitute a substance objective optical system for substance observation.
You. Further, it is arranged coaxially with the optical axis O of the objective lens 15.
The third variable power lens system 16c located at the center
Construct a single objective optical system. The binocular eyepiece tube 12 is a pair of left and right imaging lights.
Science systems 17a, 17b and a pair of left and right eyepieces 18a,
18b, through which parallaxed entity observation is performed.
A binocular eyepiece optical system is configured. The fixation lamp irradiating device 14 includes a fixation lamp 21 and
The illumination light from the fixation lamp 21 is applied to the optical axis of the objective lens 15.
Fixation lamp irradiation optics that irradiates the eye 7 to be examined coaxially with O
A system 22 is provided. Fixation light irradiation optical system 22 is fixation
The lamp irradiation light relay unit 22a and the half mirror unit 22b
The half mirror section 22b is provided with the objective lens 1
5 are set on the optical axis O. And fix the fixation light 21
When illuminated, the illumination light is transmitted through the relay section 22a.
To the mirror part 22b and to the half mirror part 22b.
More reflected in the direction coinciding with the optical axis O of the objective lens 15
And emits illumination light toward the eye 7 to be examined.
You. The optical path switching device 13 is fixedly arranged.
Provided main body 25. In the main body 25, the objective lens
A rotating body 26 is rotatably assembled around the optical axis O of the lens 15
No. The main body 25 has the first to third zoom ratios of the zoom main body 11.
Optical axes La, Lb, L of lens systems 16a, 16b, 16c
c and openings 27a, 2
7b and 27c are provided. The rotating body 26 incorporated in the main body 25
2 can correspond to the apertures 27a and 27b.
Corresponding to the pair of openings 30a and 30b and the opening 27c.
Hole 30c and the rotating body 26 corresponding to the opening 20c.
Beam splitter 31 installed on the rotation axis of
Have been. The beam splitter 31 receives the third variable power
Of the lens system 16c into reflected light and transmitted light, for example,
It has the function of dividing into two equal parts, and the reflected light is reflected on the optical axis Lc.
Emitted at right angles, transmitted light is transmitted along optical axis Lc
I do. In the position shown in FIG.
The afocal luminous flux from the double lens systems 16a and 16b is
Openings 27a and 27b respectively correspond to corresponding holes 3
0a, 30b toward the binocular eyepiece tube 12
Also penetrates. The corresponding hole 30c from the opening 27c
Third variable power lens incident on beam splitter 31
The light beam from the system 16c is separated by the beam splitter 31.
It is split into reflected light and transmitted light, but in the state of FIG.
As described above, the light path switching of the light emitted toward the mirror
Binocular eyepiece
It does not reach the lens barrel 12. As shown in FIG. 3, the rotating body 26
Light beam transmitted by the beam splitter 31 is reflected to the side
And the first mirror 32 reflected by the first mirror 32
The light beam is further reflected toward the right imaging optical system 17a.
The light is reflected by the second mirror 33 and the beam splitter 31.
A third light beam reflected toward the left imaging optical system 17b.
A mirror 34 is provided. That is, the unit shown in FIG.
In the observation state, the second mirror 33 and the third mirror 34
Corresponds to the left and right imaging optics 17a, 17b respectively
The beam transmitted through the beam splitter 31 is focused on the right side.
The light enters the optical system 17a, and is
The reflected light flux is made incident on the left imaging optical system 17b.
For this reason, those images are stored in the binocular eyepiece tube 12.
At the same time, binocular observation without parallax is possible and single observation is possible.
You. As shown in FIG. 2 and FIG.
A locking hole consisting of two conical holes on the side surface of the rolling element 26
36a and 36b are the rotation axes of the rotating body 26 (coincide with the optical axis O)
It is provided at a position deviated by about 90 degrees around it. Also book
The locking holes 36a and 36b are located on the body 25 side.
At this time, it falls into the locking holes 36a and 36b and is locked.
A ball 37 is provided. This ball 37 is a spring 3
8, elastically urged toward the locking holes 36a and 36b.
When the lock holes 36a and 36b face each other,
The rotary body 26 is fitted and locked in the stop holes 36a and 36b.
The rotation position is determined. Further, the rotating body 26 has an operation for switching the optical path.
A lever 41 is fixedly attached. This light path cut
The replacement operation lever 41 is provided in the slot 4 formed in the main body 25.
2 protrudes out of the main body 25. And this
2 is rotated by the operation lever 41 of FIG.
And locking holes 36a or 36b at respective positions shown in FIG.
The ball 37 falls into and is locked by the rotating body 2 at that position.
Hold 6. Next, the operation microscope according to the present embodiment will be described.
The operation will be described. First, the surgeon 8 examines the microscope with an operating microscope.
Bring the microscopic part 10 onto the patient's eye 7 to be examined
The tilt (observation angle) adjustment and the focus adjustment of 10 are performed.
In the stereoscopic observation state shown in FIG.
The light beam passing through the second variable power optical systems 10a and 10b is
Openings 27a, 27b and holes 30 in the rotating body 26
a, 30b, a pair of left and right imaging optical systems 17a, 1
7b, a pair of left and right eyepieces 1
8a and 18b enable stereoscopic observation. And pupil 2
The shape of the surgery, the presence or absence of abnormalities in the surgical site, and the condition of the surgical site.
Observe. Next, the central position of the pupil 2 of the cornea 5 of the eye 7 to be examined
Enter the work to determine the position. The surgeon 8 operates the optical path switching operation lever.
The rotating body 26 is moved to the objective lens by operating
The optical axis O is rotated about 90 degrees around the fifteen optical axes O. At this time,
The ball 27 fitted in the locking hole 36a pushes the spring 38
Raised, the rotating body 26 can rotate. And abbreviations
The ball 27 fits into the locking hole 36b at the position rotated by 90 degrees.
The position of the rotating body 26 in the rotating direction is determined. Next, the fixation lamp 21 of the fixation lamp irradiation device 14 is
The patient turns on the fixation lamp 21 to fixate the image of the fixation lamp 21.
In a state where the fixation is obtained, the inclination of the microscope unit 10 is not shown.
The iris 4 and focus on the cornea 5
At the marking position 6 aiming at the virtual image of the fixation lamp 21
Perform centering work to mark. At this time, fixation
The image of the lamp 21 passes through the fixation lamp irradiation optical system 22 and is the same as the optical axis O.
The light is emitted to the eye 7 to be examined. The luminous flux from the eye 7 is
Lens 15, the third variator lens system 16 c and the aperture 27 c.
As described above, the light beam is split by the beam splitter 31 and
The excess light is reflected by the first mirror 32 and the second mirror 33.
The light enters the imaging optical system 17a on the right side of the binocular eyepiece tube 12.
You. The light beam reflected by the beam splitter 31 is
The light enters the left imaging optical system 17b by the third mirror 34.
You. Thereby, a pair of left and right eyepieces of the binocular eyepiece tube 12
The stereoscopic observation without parallax is performed by the zoom lenses 18a and 18b.
When there is no parallax between the left and right observation images,
Even in this case, the image of the fixation lamp 21 does not appear double.
No. Therefore, accurate centering work can be performed.
You. In this way, accurate centering work is performed.
After finishing the marking at the marking position,
In order to perform the treatment of the subject's eye 7, the optical path switching lever 41 is
Move to the original position and rotate the rotator 26 to the optical axis of the objective lens 15
Rotate about 90 degrees around O and return to the original position. Do
And a pair of left and right first zoom lens systems 16a and a second zoom lens.
A real objective optical system using the double lens system 16b is constructed,
Becomes the entity observation state. Surgery is performed in this entity observation state.
U. According to the present embodiment, a simple switching operation
(Objective light with parallax due to (rotary lever switching)
Single objective optical system that does not have parallax with the observation state using a scientific system
Can be switched to the single objective optical system observation state using
Wear. Also, the microscope unit 10 of the surgical microscope is moved.
It is possible to switch the observation state without
In addition, both observation states are controlled by one binocular eyepiece tube 12.
Binocular vision is possible. This reduces operator fatigue
In addition, the operation time can be reduced. (Second Embodiment) Referring to FIG. 4 and FIG.
A surgical microscope according to a second embodiment of the present invention will be described.
You. Here, parts different from the above-described first embodiment will be described.
The description will be given in mind, and the equivalent configuration and operation will be omitted. In this embodiment, the zoom constituting the microscope section 10 is shown.
Large-aperture zoom lens 50 used for zoom optical system of camera body 11
Was. In addition, a fixation is performed on the output optical axis of the fixation lamp irradiation device 14.
A wavelength cut filter that transmits only a specific wavelength of the lamp 21
51 are provided. In addition, this fixation lamp 21 and wavelength cut
Laser light source etc. instead of combination of filter 51
A light source emitting a single wavelength may be used. The main body 25 of the optical path switching device 13 includes
First opening 52 for determining the observation optical axis of zoom body 11
a, a second opening 52b and a third opening 52c are provided.
ing. Here, the first opening 52a and the second opening 52
b denotes a pair of left and right imaging optical systems 17a of the binocular eyepiece tube 12,
17b and each are arranged coaxially.
The optical path of a pair of right and left solid objective optical systems is formed.
The third opening 52c located at the center is the objective lens 1
5 is arranged coaxially with the optical axis O of
Constitutes a single objective optical system. Also, the first opening
Waves 52a and 52b cut specific wavelengths, respectively.
Long cut filters 53a and 53b are arranged.
The wavelength cut filters 53a and 53b irradiate a fixation lamp.
Single wave transmitted through the wavelength cut filter 51 of the device 14
This filter does not transmit the same wavelength as the length. Further, the optical path switching device 13 includes
A first beam splitter that substantially divides reflected light and transmitted light into two equal parts
-55, the second beam splitter 56 and the third beam
A beam splitter 57 is provided, and these beam splitters are provided.
The heaters 55, 56, 57 are provided with the first opening 52a described above,
At the positions of the second opening 52b and the third opening 52c, respectively.
They are individually arranged correspondingly. The first beam splitter 55 and the second beam splitter 55
The transmitted light of the beam splitter 56 is the binocular eyepiece tube 1
It is located on the optical axis of a pair of left and right imaging optical systems 17a and 17b.
They are arranged so as to be incident respectively. Also located in the center
The light beam transmitted by the third beam splitter 57
The first beam splitter on the right side is reflected by the first mirror 58.
To the first beam splitter 55.
The light flux reflected by the lens is formed into one of the imaging optics of the binocular eyepiece tube 12.
The light enters the system 17a. In addition, the third via located in the center
The light beam reflected by the beam splitter 57 is the second beam on the left side.
Beam splitter 56, and the second beam splitter
The light reflected by the liter 56 is reflected by the other end of the binocular eyepiece tube 12.
The light enters the image optical system 17b. And the binocular eyepiece tube 12
The same image is formed by a pair of left and right imaging optical systems 17a and 17b.
Observation without parallax is possible with binoculars. Further, the optical path switching device 13 has an optical path
A switching shutter mechanism 60 is incorporated. This
The shutter mechanism 60 of FIG.
Liters 55, 56, 57 and holes 52a, 52b, 52
c, which are arranged in a space region between the light beams and block respective light beams.
The movable light shielding plate 61 is provided. This light shielding plate 61
Is formed in a V-shape as shown in FIG.
The solenoid 6 is a light shielding plate driving means with
2 is rotated. The solenoid 62 controls the controller 6
The control is performed so as to be turned ON / OFF at 2 seconds at 3.
As shown in FIG. 5, the light shielding plate 61 is provided with the holes 52a, 52a.
The position shown by the solid line that simultaneously shields b
Construction position) and two dotted lines that shield only the hole 52c.
Position (the position where the single objective optical system is constructed)
2 in accordance with the rotation drive. Next, the surgical microscope according to the present embodiment will be described.
A description will be given of the effect. The surgeon 8 uses an operating microscope
When performing centering work on the eye 7
21 is turned on, and work is performed with fixation of the subject's eye 7 obtained.
Do. At this time, the luminous flux from the fixation lamp 21 has a wavelength cutoff.
Inspection via the fixation lamp irradiation optical system 22 via the filter 51
The luminous flux reaches the eye 7. Therefore, the irradiation light flux of the fixation lamp 21
Is a single wavelength of only a certain wavelength. Next, the control unit 63 of the shutter mechanism 60
Is turned on, and the solenoid 62 is driven. Solenoi
When the switch 62 is in the ON state, the light shielding plate 61
It moves to a position that covers 2a and the second opening 52b. Also,
When in the OFF state, only the third opening 52c is covered.
Return to place. The control unit 63 supplies a current to the solenoid 62, for example.
The ON state is 2 seconds, and the OFF state is 2 seconds.
And repeat this regularly. For this reason, the ON state
Only the first opening 52a and the second opening 52b are light shielding plates.
Covered and hidden by 61 (position shown by solid line in FIG. 5), OFF
In the state, only the third opening 52c is covered.
(Positions indicated by two-dot chain lines in FIG. 5). The luminous flux from the eye 7 to be inspected is
One from the zoom body 11 via the aperture zoom lens 50
Out of the first to third openings 52a, 52a
After passing through 2b and 35c, it is split into three light beams,
The light enters the changing device 13. Then, the first opening 52a and the
The two luminous fluxes that have passed through the second opening 52b are
The third aperture is observed as a body objective optical system.
The light beam passing through 52c is observed as a single objective optical system.
It is. Here, the communication of the control unit 63 to the solenoid 62 is performed.
Only when the signal is OFF, the luminous flux passing through the first opening 52a
Passes through the wavelength cut filter 53a and passes through the first beam path.
The light incident on the pretter 55 is transmitted through the binocular eyepiece tube 1
2 enters the imaging lens optical system 17a on the right side, and
The light beam that has passed through the second opening 52b is
3b, is incident on the second beam splitter 56,
The transmitted light is the imaging lens optics on the left side of the binocular eyepiece tube 12.
The light enters the system 17b. However, both the left and right wavelength cut filters described above
Reference numerals 53a and 53b denote wavelength cutoff wavelengths of the fixation lamp irradiation device 14.
Transmits only the same wavelength as the single wavelength transmitted through the filter 51
The fixation lamp 2 from the eye 7 to be examined
1 does not enter the binocular eyepiece tube 12 and the fixation lamp 21
Is not observed. In other words, it is actually observed
In this state, the image of the fixation lamp 21 does not enter the eyes. The control unit 63 sends a signal to the solenoid 62.
When the signal is ON, the light beam passing through the third opening 52c is
The beam enters the third beam splitter 57. This third video
The light beam transmitted through the beam splitter 57 is
8 and is incident on the first beam splitter 55.
The light is reflected by the first beam splitter 55. this
The light beam reflected by the first beam splitter 55 is binocular
The light enters the imaging optical system 17a on the right side of the eyepiece tube 12. Ma
The light beam reflected by the third beam splitter 57 is
Of the second beam splitter 56 and the second beam splitter 56.
The luminous flux reflected by the muscle splitter 56 is the binocular eyepiece tube 1
2 is incident on the left imaging optical system 17b. In other words, fixation
Observation with a single objective optical system for observing the image of the lamp 21
You. As described above, the signal to the solenoid 62 is
At the time of N-OFF, the light shielding plate 61 is used at intervals of 2 seconds.
Observation with a single objective optical system for observing the image of the fixation lamp 21;
Observation with a real objective optical system that cannot observe the image of the eye lamp 21
Will be repeated. As described above, according to the present embodiment,
In addition to the effects of the first embodiment,
Repeating stereoscopic and monocular optical observations with motion
Can be. Therefore, work can be performed while obtaining information in the front-rear direction.
it can. Also, because there is no movement of optical parts, it is compact.
And quick switching is performed. (Third Embodiment) A third embodiment of the present invention will be described with reference to FIG.
The surgical microscope according to the third embodiment will be described. First
Only the parts different from the second embodiment and the embodiment will be described.
However, the description of the equivalent configuration and operation is omitted.
You. The zoom body of the microscope section 10 according to the present embodiment.
11 and the binocular eyepiece tube 12 are the same as in the second embodiment described above.
Therefore, the description thereof is omitted. In addition, fixation lamp irradiation device
Reference numeral 14 denotes a first polarizing plate 71 disposed in the fixation lamp irradiation optical system 22.
The luminous flux of the fixation lamp 21 is thus polarized.
The light beam becomes a transverse wave and irradiates the subject's eye 7. The optical path switching device 13 has a pair of left and right
Entrance holes 72a and 72b constituting a real objective optical system, and
An entrance hole 72c constituting a single objective optical system is provided.
You. Only the longitudinal wave of the polarized light component is provided in each of the incident holes 72a and 72b.
The second polarizing plates 73a and 73b that transmit light are provided.
You. The incident hole 72c is the second hole that transmits only the transverse wave of the polarization component.
Three polarizing plates 74 are provided. Incident hole 72a
On the optical axis passing through the emission hole 72c, there is a polarized light that is transmitted by electrical control.
A transmissive liquid crystal polarizer 75 whose light component can be changed freely is provided.
The transmission type liquid crystal polarizing plate 75 is provided to the control unit 76.
It is controlled and driven. This control unit 76 is the microscope unit 10
It is located at a distance from the building. In the optical path switching device 13,
A mirror 77 is provided on the optical axis of the hole 72c.
The vertical deflection component is transmitted on the optical axis of the emission hole 72a, and the horizontal deflection component is transmitted.
A deflection beam splitter 78 for reflecting light components is provided.
Have been. Next, the operation microscope according to the present embodiment will be described.
The operation will be described. Fixation light 2 for centering work
1 is turned on. At this time, the luminous flux of the fixation
1 through the polarizing plate 71, and becomes a light beam of a horizontal polarization component.
The subject's eye 7 is irradiated. The light beam from the subject's eye 7
A single large-diameter light beam exits through the aperture zoom lens 50.
This is because three light beams are incident on the entrance holes 72a, 72b and 72c.
Divide into bundles. The light beam passing through the entrance hole 72a is polarized.
After passing through the optical plate 73a, it becomes a light flux of a vertically polarized component,
Through a polarizing plate 75 and a polarizing beam splitter 78.
The light enters the imaging optical system 17a on the right side of the eyepiece tube 12.
The light beam passing through the entrance hole 72b passes through the polarizing plate 73b.
It becomes a luminous flux of a vertical polarization component, and is on the left side of the binocular eyepiece tube 12.
The light enters the imaging optical system 17b. Further, the light passes through the entrance hole 72c.
The luminous flux passes through the polarizing plate 74 and becomes a luminous flux of a horizontal polarization component.
And a mirror 77 and a deflecting beam through a transmissive liquid crystal polarizing plate 75.
To the right of the binocular eyepiece tube 12
Incident on the imaging optical system 17a on the side. The transmission type liquid crystal polarizing plate 75 is controlled by the control unit 76.
The polarization direction can be controlled freely, but first,
When control is performed so that only the light component is transmitted, the incident hole 72
The light beam passing through a enters the binocular eyepiece tube 12,
At this time, the light beam passing through the incident hole 72c is
5 does not pass through, so that the normal observation state
It can be used as a body objective optical system. In order to transmit only the horizontal polarized light component,
When the transmission type liquid crystal polarizing plate 75 is controlled,
c passes through the binocular eyepiece tube 12
The light beam from the hole 72a passes through the transmission type liquid crystal polarizing plate 75.
And does not enter the binocular eyepiece tube 12. On the other hand, the incident hole 72
The luminous flux passing through b is always in the optical path on one side of the binocular eyepiece tube 12.
Incident. However, during the centering work, the operator 8
However, by selecting the control by the control unit 76,
As in the second embodiment, the optical path is switched in a fixed time.
When the work is done without switching,
It is possible to select one of the cases to proceed. According to the present embodiment, the second embodiment described above
In addition to the effect of the condition, centering work while always stereoscopically viewing
Can be switched according to the operator's preference.
Also, since there is no movement of any parts, further miniaturization
Can be achieved. The present invention is limited to the above-described embodiments.
However, the present invention can be applied to other forms. Ma
According to the above description, the items listed below and
Any combination of the items listed below can be obtained.
You. <Supplementary notes> Supplementary notes 1. Luminous flux to the left and right eyes of the observer to obtain a stereoscopic image
Binocular eyepiece tube and a pair of stereo objectives with parallax
Science system, single objective optical system without parallax, and fixation of the subject's eye
And a fixation lamp for confirming the central position of the cornea
In an operating microscope, the luminous flux from the stereoscopic objective optical system
The binocular eyepiece tube selectively selects the light flux from the single objective optical system
Optical path switching means for guiding the light to the left
The right optical axis is centered on the optical axis of the single objective optical system without parallax
Are arranged spatially symmetrically in the
The optical axis and the optical axis of the fixation lamp illuminating the subject's eye are arranged substantially coaxially
An operating microscope characterized by being performed. Appendix 2. A pair of real objects with the above parallax
The optical system can freely select two positions of the light beam of the observation optical system.
Uses a large-aperture zoom lens optical system that enables stereoscopic observation
2. The surgical microscope according to claim 1, wherein Appendix 3 The optical path switching means uses a polarizing element.
The surgical microscope according to any one of appendices 1 and 2, characterized in that: Appendix 4 The optical path switching means may be the actual objective optical system.
These light beams and the light beam from the single objective optical system are repeated in a fixed time.
Control means for switching back and forth
The surgical microscope according to any one of the above 1 to 3. According to the present invention, a single objective optical system and a single objective optical system can be used.
Object optics are simple and move the operating microscope depending on the application.
And both can be switched to one binocular tube
Because it allows binocular vision, the fatigue of the operator can be reduced,
The operation time can be reduced. In addition, with the objective optical system
Fewer components move when switching the single objective optical system.
For this reason, it can be configured to be small and secure operation space.
And the operator's workability is good.

【図面の簡単な説明】 【図1】本発明の第1実施形態に係る手術用顕微鏡の顕
微鏡部を各部分離して概略的に示す斜視図。 【図2】同じく第1実施形態に係る手術用顕微鏡の顕微
鏡部における光学系の構成を概略的に示した視差を持っ
た実体対物光学系観察状態の説明図。 【図3】同じく第1実施形態に係る手術用顕微鏡の顕微
鏡部における光学系の構成を概略的に示した単対物光学
系観察状態の説明図。 【図4】第2実施形態に係る手術用顕微鏡の顕微鏡部に
おける光学系の構成を概略的に示した説明図。 【図5】同じく第2実施形態に係る手術用顕微鏡の顕微
鏡部におけるシャッター機構部分の平面図。 【図6】第3実施形態に係る手術用顕微鏡の顕微鏡部に
おける光学系の構成を概略的に示した視差を持った実体
対物光学系観察状態の説明図。 【図7】従来の手術用顕微鏡を角膜に対してセンタリン
グする作業の説明図。 【図8】同じく従来の手術用顕微鏡を用いて角膜にマー
キングする作業の説明図。 【符号の説明】 O…光軸 Lc…光軸 La…光軸 Lb…光軸 10…顕微鏡部 11…ズーム本体 12…双眼接眼鏡筒 14…固視灯照射装置 15…対物レンズ 16a…変倍レンズ系 16b…変倍レンズ系 16c…変倍光学系 17a…結像光学系 17b…結像光学系 21…固視灯 22…固視灯照射光学系 22b…ハーフミラー部 25…本体 26…回転体 31…ビームスプリッタ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view schematically showing a microscope section of a surgical microscope according to a first embodiment of the present invention, in which each section is separated. FIG. 2 is an explanatory diagram of an observation state of a stereoscopic objective optical system having parallax schematically showing a configuration of an optical system in a microscope unit of the surgical microscope according to the first embodiment. FIG. 3 is an explanatory diagram of a single objective optical system observation state schematically showing a configuration of an optical system in a microscope unit of the surgical microscope according to the first embodiment. FIG. 4 is an explanatory diagram schematically showing a configuration of an optical system in a microscope section of the operating microscope according to the second embodiment. FIG. 5 is a plan view of a shutter mechanism in a microscope section of the surgical microscope according to the second embodiment. FIG. 6 is an explanatory diagram schematically illustrating a configuration of an optical system in a microscope unit of a surgical microscope according to a third embodiment, in a state of observation of a stereoscopic objective optical system having parallax. FIG. 7 is an explanatory view of a conventional operation for centering a surgical microscope on a cornea. FIG. 8 is an explanatory diagram of an operation of marking a cornea using a conventional surgical microscope. [Description of Signs] O: Optical axis Lc: Optical axis La: Optical axis Lb: Optical axis 10: Microscope unit 11: Zoom body 12: Binocular eyepiece tube 14: Fixation lamp irradiation device 15: Objective lens 16a: Magnification Lens system 16b: variable magnification lens system 16c: variable magnification optical system 17a ... imaging optical system 17b ... imaging optical system 21 ... fixation lamp 22 ... fixation lamp irradiation optical system 22b ... half mirror unit 25 ... body 26 ... rotation Body 31: Beam splitter

Claims (1)

【特許請求の範囲】 【請求項1】 立体観察像を得るために観察者の左右眼
に光束を導く双眼接眼鏡筒と、 視差を持った一対の実体対物光学系と、 視差を持たない単対物光学系と、 被検眼の固視及び角膜の中心位置を確認するための固視
灯と を備えた手術用顕微鏡において、 上記実体対物光学系からの光束と単対物光学系からの光
束を選択的に上記双眼接眼鏡筒に導く光路切換え手段を
備え、 上記実体対物光学系の左右光軸は上記視差を持たない単
対物光学系の光軸を中心に空間的線対称に配置されてお
り、 上記単対物光学系の光軸と上記固視灯の被検眼への照射
光軸が略同軸に配置されていることを特徴とする手術用
顕微鏡。
Claims: 1. A binocular eyepiece tube for guiding a light beam to the left and right eyes of an observer to obtain a stereoscopic observation image, a pair of real objective optical systems having parallax, and a single object having no parallax. In an operating microscope equipped with an objective optical system and a fixation lamp for confirming the fixation of the eye to be examined and the center position of the cornea, a light beam from the stereo objective optical system and a light beam from the single objective optical system are selected. Optical path switching means for guiding to the binocular eyepiece tube, the left and right optical axes of the real objective optical system are arranged spatially symmetric about the optical axis of the single objective optical system having no parallax, An operating microscope, wherein the optical axis of the single objective optical system and the optical axis of the fixation lamp irradiating the eye to be examined are substantially coaxial.
JP2001310230A 2001-10-05 2001-10-05 Microscope for surgery Withdrawn JP2003111775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001310230A JP2003111775A (en) 2001-10-05 2001-10-05 Microscope for surgery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001310230A JP2003111775A (en) 2001-10-05 2001-10-05 Microscope for surgery

Publications (1)

Publication Number Publication Date
JP2003111775A true JP2003111775A (en) 2003-04-15

Family

ID=19129242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001310230A Withdrawn JP2003111775A (en) 2001-10-05 2001-10-05 Microscope for surgery

Country Status (1)

Country Link
JP (1) JP2003111775A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061133A (en) * 2008-09-04 2010-03-18 Leica Microsystems Cms Gmbh Optical system for synthesizing first and second image beams each advancing from sample to one synthetic image beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061133A (en) * 2008-09-04 2010-03-18 Leica Microsystems Cms Gmbh Optical system for synthesizing first and second image beams each advancing from sample to one synthetic image beam

Similar Documents

Publication Publication Date Title
US11369517B2 (en) Device for machining an object by application of laser radiation
US4638801A (en) Laser ophthalmic surgical system
JP5094026B2 (en) Defocused eye surgery microscope
JP5259570B2 (en) Illumination device and observation device
JP2001208979A (en) Stereoscopic microscope
JP3756561B2 (en) Stereo microscope structure
JP6502720B2 (en) Ophthalmic microscope
JP5043604B2 (en) Stereo microscope
JP3377238B2 (en) Slit lamp microscope
JP3856691B2 (en) Observation device
US5434703A (en) Binocular stereomicroscope
JP3534733B2 (en) Fixed high magnification switching microscope
JP4674094B2 (en) Stereoscopic observation device
US5701197A (en) Slit lamp microscope provided with a confocal scanning mechanism
US4478499A (en) Operation microscope with fixation device
JP6593043B2 (en) Laser therapy device
GB2143052A (en) Laser ophthalmic surgical system
JP7002817B2 (en) Front lens device and ophthalmic microscope
US20210113081A1 (en) Microscope and Function Expansion Unit
JP2003111775A (en) Microscope for surgery
JP2938483B2 (en) Stereo microscope for ophthalmic surgery
JP4786215B2 (en) Surgical microscope equipment
JP3537433B1 (en) Fixed high magnification switching microscope
WO2019066027A1 (en) Front-end lens device and ophthalmic microscope
US20130229626A1 (en) Microscope Having A Switchable Documentation Beam Path

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20041207