JP2003109976A - Sb2Te3 SINGLE-CRYSTAL THIN FILM AND METHOD OF MANUFACTURING THE SAME - Google Patents

Sb2Te3 SINGLE-CRYSTAL THIN FILM AND METHOD OF MANUFACTURING THE SAME

Info

Publication number
JP2003109976A
JP2003109976A JP2001300487A JP2001300487A JP2003109976A JP 2003109976 A JP2003109976 A JP 2003109976A JP 2001300487 A JP2001300487 A JP 2001300487A JP 2001300487 A JP2001300487 A JP 2001300487A JP 2003109976 A JP2003109976 A JP 2003109976A
Authority
JP
Japan
Prior art keywords
single crystal
substrate
thin film
temperature
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001300487A
Other languages
Japanese (ja)
Other versions
JP3841272B2 (en
Inventor
Kazuyuki Izawa
和幸 井沢
Kengo Iketani
謙吾 池谷
Zeio Kamimura
税男 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP2001300487A priority Critical patent/JP3841272B2/en
Publication of JP2003109976A publication Critical patent/JP2003109976A/en
Application granted granted Critical
Publication of JP3841272B2 publication Critical patent/JP3841272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Sb2 Te3 single-crystal thin film which can be manufactured simply and at low costs by using a molecular beam epitaxy method, and to provide a method of manufacturing the single-crystal thin film. SOLUTION: In the method of manufacturing the Sb2 Te3 single-crystal thin film, an Sb2 Te3 epitaxial single crystal is grown on a substrate arranged inside an airtightly sealed vacuum container 1. The method of manufacturing the Sb2 Te3 single-crystal thin film comprises a buffer growth step wherein the Sb2 Te3 epitaxial single crystal is deposited on the substrate at a substrate temperature at which a Bi2 Te3 vapor pressure becomes smaller than a pressure inside the container 1; an annealing step wherein the substrate temperature is raised up to a temperature at which the Bi2 Te3 vapor pressure becomes larger than the pressure inside the container 1, and the substrate temperature is decreased down to a temperature at which the Bi2 Te3 vapor pressure becomes smaller than the pressure inside the container 1; and a crystal growth step in which the Sb2 Te3 single crystal is grown on the surface of the Sb2 Te3 epitaxial single crystal grown In the steps.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ソリッドステート
エアコンを実現するペルチェ素子、排熱エネルギーの回
収に使用される熱電発電素子、及び温度センサーなどの
熱電変換素子に用いられるSb2Te3単結晶薄膜及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Sb 2 Te 3 single crystal used for a Peltier device for realizing a solid state air conditioner, a thermoelectric power generation device used for recovering exhaust heat energy, and a thermoelectric conversion device such as a temperature sensor. A thin film and a manufacturing method thereof.

【0002】[0002]

【従来の技術】近年、環境問題が非常に重要視され、空
調器や冷却器についてのフロンレス化、及び熱交換効率
の向上による省エネルギー化が望まれている。熱電変換
素子は、熱エネルギーと電気エネルギーの可逆的な直接
変換素子として有望であるが、従来は変換効率が低いた
め、広く普及するには至らなかった。熱電変換素子の変
換効率を改善する方法として、熱電変換材料によって厚
さ数十Åという極めて薄い膜を形成し、この膜よりもバ
ンドギャップ幅が広い材料で膜を挟み込む量子井戸構造
が有効であることをL.D.Hicksらは明らかにしている。
2. Description of the Related Art In recent years, environmental problems have become very important, and it is desired to reduce the use of CFCs in air conditioners and coolers and to save energy by improving heat exchange efficiency. The thermoelectric conversion element is promising as a reversible direct conversion element of heat energy and electric energy, but it has not been widely spread because of its low conversion efficiency. As a method to improve the conversion efficiency of a thermoelectric conversion element, a quantum well structure in which an extremely thin film with a thickness of several tens of liters is formed with a thermoelectric conversion material and the film is sandwiched with a material with a bandgap width wider than this film is effective. LD Hicks and others have made this clear.

【0003】この技術は、L.D.Hicks and M.S.Dresselh
aus,“Effect of quantum-well structures on the the
rmoelectric figure of merit”,Phys.Rev.B 47,19,pp.
12727-12731(1993)という文献に発表されている。室温
近傍領域で用いられる代表的な熱電変換材料であるBi2T
e3で量子井戸構造を実現するには、量子井戸層Bi2Te3
挟み込む好適な障壁層の材料を選択することが必要であ
る。極めて薄い膜を多層積層するには、各々の層が原子
レベルで平坦な単結晶層でなければならず、下地層の結
晶構造を反映して上層の結晶を成長させるエピタキシャ
ル単結晶成長を行なう。Sb2Te3は、Bi2Te3と同じ結晶系
に属し、Bi2Te3に極めて近い格子定数を有するため、障
壁層として有望な材料である。
This technology is based on LDHicks and MS Dresselh.
aus, “Effect of quantum-well structures on the the
rmoelectric figure of merit ”, Phys. Rev. B 47,19, pp.
It is published in the document 12727-12731 (1993). Bi 2 T, which is a typical thermoelectric conversion material used near room temperature
In order to realize a quantum well structure with e 3 , it is necessary to select a suitable material for the barrier layer sandwiching the quantum well layer Bi 2 Te 3 . In order to laminate an extremely thin film in multiple layers, each layer must be a single crystal layer that is flat at the atomic level, and epitaxial single crystal growth is performed to grow the upper layer crystal reflecting the crystal structure of the underlayer. Sb 2 Te 3 belong to the same crystal system as Bi 2 Te 3, because it has a very close lattice constant Bi 2 Te 3, is a promising material as a barrier layer.

【0004】通常、単結晶膜を基板上に成長させるに
は、成長させようとする目的生成物と結晶構造及び格子
定数がほぼ近い基板を選択しなければならない。Sb2Te3
単結晶膜を成長させる場合、Sb2Te3に結晶構造及び格子
定数がほぼ近い基板として、サファイア(Al2O3)基板が
挙げられる。しかし、このサファイア(Al2O3)基板の格
子面(0001)面においても、分子線エピタキシー(M
olecular Beam Epitaxy:MBE)装置で、サファイア基板上
に直接Sb2Te3を成長させようとするとSb2Te3は多結晶成
長してしまうため、Sb2Te3単結晶膜をサファイア基板上
に成長させることが困難であった。
Usually, in order to grow a single crystal film on a substrate, it is necessary to select a substrate whose crystal structure and lattice constant are close to those of the target product to be grown. Sb 2 Te 3
In the case of growing a single crystal film, a sapphire (Al 2 O 3 ) substrate can be mentioned as a substrate having a crystal structure and a lattice constant that are close to Sb 2 Te 3 . However, even on the lattice plane (0001) plane of this sapphire (Al 2 O 3 ) substrate, molecular beam epitaxy (M
olecular Beam Epitaxy: MBE) in the apparatus, Sb 2 Te 3 Attempting to grow directly Sb 2 Te 3 on the sapphire substrate because results in polycrystalline growth, growing a Sb 2 Te 3 single crystal film on a sapphire substrate It was difficult to do.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記課題を
解決し、分子線エピタキシー法を用いて、Sb2Te3単結晶
膜を簡単でかつ安価なコストで基板上に成長させること
ができるSb2Te3単結晶薄膜及びその製造方法を提供する
ことを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and makes it possible to grow a Sb 2 Te 3 single crystal film on a substrate at a simple and inexpensive cost by using a molecular beam epitaxy method. An object is to provide an Sb 2 Te 3 single crystal thin film and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明に係るSb2Te3単結
晶薄膜の製造方法は、密閉された容器内に配置した基板
上にSb2Te3エピタキシャル単結晶を成長させるSb2Te3
結晶薄膜の製造方法であって、Bi2Te3蒸気圧が前記容器
内の圧力よりも小さくなる基板温度で、Bi2Te3を基板上
に堆積させるバッファ成長段階と、Bi2Te3蒸気圧が前記
容器内の圧力よりも大きくなる温度まで前記基板温度を
上げたのち、更に、Bi2Te3蒸気圧が前記容器内の圧力よ
りも小さくなる温度まで前記基板温度を下げるアニール
段階と、これらのバッファ成長段階及びアニール段階に
よって前記基板上に成長させたBi 2Te3エピタキシャル単
結晶の表面に、Sb2Te3単結晶を成長させる結晶成長段階
とを含む方法である。
Means for Solving the Problems Sb according to the present invention2Te3Single bond
Crystal thin film manufacturing method, the substrate placed in a closed container
Sb on2Te3Sb to grow epitaxial single crystal2Te3single
A method of manufacturing a crystalline thin film, comprising:2Te3Vapor pressure is in the container
At substrate temperature less than the internal pressure, Bi2Te3On the board
Buffer growth stage to deposit on Bi,2Te3Vapor pressure is above
Raise the substrate temperature to a temperature above the pressure inside the container.
After raising it, Bi2Te3The vapor pressure is higher than the pressure in the container.
Annealing that lowers the substrate temperature to a temperature that is less than
Stage and these buffer growth and annealing stages
Therefore Bi grown on the substrate 2Te3Epitaxial single
On the surface of the crystal, Sb2Te3Crystal growth stage to grow single crystal
It is a method including and.

【0007】前記基板としては、特に限定されないが、
Sb2Te3単結晶の結晶構造及び格子定数が比較的に近いサ
ファイア(Al23)が好ましい。しかし、前述したよ
うに、このサファイア基板の格子定数はSb2Te3単結晶と
若干相違するため、サファイア基板に直接Sb2Te3単結晶
を成長させることが困難であった。本発明によれば、Bi
2Te3単結晶薄膜を、基板とSb2Te3単結晶薄膜とのバッフ
ァ層とすることにより、良質なSb2Te3単結晶薄膜を作製
することができる。
Although the substrate is not particularly limited,
Sb 2 Te 3 single crystal sapphire (Al 2 O 3 ) having a relatively close crystal structure and lattice constant is preferable. However, as described above, the lattice constants of the sapphire substrate to slightly different and Sb 2 Te 3 single crystal, it is difficult to grow directly Sb 2 Te 3 single crystal sapphire substrate. According to the invention, Bi
By using the 2 Te 3 single crystal thin film as a buffer layer of the substrate and the Sb 2 Te 3 single crystal thin film, a good quality Sb 2 Te 3 single crystal thin film can be produced.

【0008】前記容器内の圧力は、特に限定されない
が、例えば、10-6〜10-8Paの範囲が好ましい。そ
して、前記バッファ成長段階及びアニール段階は、各
々、一回ずつ行っても良いが、安定した薄膜を作製する
には、例えば二回などの複数回繰り返して行うことが望
ましい。バッファ成長段階の処理時間は、好ましくは、
5〜120秒間であり、更に好ましくは、10〜60秒
間である。なお、アニール段階の処理時間は、1〜10
分間であり、更に好ましくは、3〜5分間である。
The pressure in the container is not particularly limited, but is preferably in the range of 10 -6 to 10 -8 Pa, for example. The buffer growth step and the annealing step may each be performed once, but it is preferable to repeat the buffer growth step a plurality of times, for example, twice in order to form a stable thin film. The processing time of the buffer growth stage is preferably
It is 5 to 120 seconds, and more preferably 10 to 60 seconds. The processing time of the annealing step is 1 to 10
Minutes, more preferably 3 to 5 minutes.

【0009】また、本発明に係るSb2Te3単結晶薄膜の製
造方法の一態様では、前記バッファ成長段階において、
Bi 分子線及びTe 分子線を発生させて前記基板上に照射
することにより、Bi2Te3を基板上に堆積させる方法であ
る。さらに、本発明に係るSb2Te3単結晶薄膜の製造方法
の別の態様では、前記結晶成長段階において、Sb分子線
及びTe 分子線を発生させて前記Bi2Te3エピタキシャル
単結晶の表面に照射することにより、Sb2Te3単結晶を成
長させる方法である。
Further, in one embodiment of the method for producing a Sb 2 Te 3 single crystal thin film according to the present invention, in the buffer growth stage,
It is a method of depositing Bi 2 Te 3 on a substrate by generating Bi molecular beam and Te molecular beam and irradiating on the substrate. Furthermore, in another aspect of the method for producing a Sb 2 Te 3 single crystal thin film according to the present invention, in the crystal growth step, Sb molecular beams and Te molecular beams are generated to form a surface of the Bi 2 Te 3 epitaxial single crystal. This is a method of growing an Sb 2 Te 3 single crystal by irradiation.

【0010】このように、Bi2Te3を基板上に堆積させる
方法やBi2Te3単結晶の表面にSb2Te3単結晶薄膜を成長さ
せる方法として、特別な装置を必要しない一般的な分子
線エピタキシー法を用いることにより、簡単でかつ安価
なコストでSb2Te3単結晶薄膜を作製することができる。
そして、本発明に係るSb2Te3単結晶薄膜の製造方法の更
に別の態様では、前記Bi 分子線、Te 分子線及びSb分子
線を分子線エピタキシー法によって発生させ、かつ、該
分子線エピタキシー法における温度条件を、Bi ソース
が550〜570℃、Te ソースが310〜330℃、S
bソースが450〜470℃、及び基板表面が255〜
275℃とする方法である。前述した温度条件下で分子
線エピタキシー法を行うことにより、良質なSb2Te3単結
晶薄膜を得ることができ、逆に、これらの温度範囲を外
れると多結晶となってしまう。
As described above, as a method of depositing Bi 2 Te 3 on a substrate or a method of growing an Sb 2 Te 3 single crystal thin film on the surface of a Bi 2 Te 3 single crystal, a general apparatus that does not require a special device is used. By using the molecular beam epitaxy method, a Sb 2 Te 3 single crystal thin film can be prepared easily and at low cost.
Then, in still another aspect of the method for producing a Sb 2 Te 3 single crystal thin film according to the present invention, the Bi molecular beam, the Te molecular beam and the Sb molecular beam are generated by a molecular beam epitaxy method, and the molecular beam epitaxy is performed. The temperature conditions in the method are 550 to 570 ° C for Bi source, 310 to 330 ° C for Te source and S
b source is 450 to 470 ° C, and substrate surface is 255 to
This is a method of setting the temperature to 275 ° C. By performing the molecular beam epitaxy method under the above-mentioned temperature condition, a good quality Sb 2 Te 3 single crystal thin film can be obtained, and conversely, if it goes out of these temperature ranges, it becomes polycrystalline.

【0011】また、本発明に係るSb2Te3単結晶薄膜は、
前述した方法によって製造した薄膜である。単結晶薄膜
の成長法として一般的な分子線エピタキシー法によって
Sb2Te3エピタキシャル単結晶薄膜を作製できるため、特
別な装置等を必要とせずに、簡単かつ安価なコストで行
うことができる。
The Sb 2 Te 3 single crystal thin film according to the present invention is
It is a thin film manufactured by the method described above. By the general molecular beam epitaxy method for growing single crystal thin film
Since an Sb 2 Te 3 epitaxial single crystal thin film can be produced, it can be performed easily and at low cost without requiring a special device or the like.

【0012】そして、本発明に係る熱電変換素子は、前
記Sb2Te3単結晶薄膜を用いた熱電変換素子である。この
熱電変換素子とは、熱エネルギーと電気エネルギーを可
逆的に直接変換するものであり、ソリッドステートエア
コンに用いられるペルチェ素子、排熱エネルギーの回収
に用いる熱電発電素子、及び温度センサーなどがある。
なお、本発明においては、基板と、該基板上に成長させ
たBi2Te3単結晶バッファ層と、該Bi2Te3単結晶バッファ
層上に成長させたSb2Te3単結晶薄膜とを備えた熱電変換
材料を得ることができる。
The thermoelectric conversion element according to the present invention is a thermoelectric conversion element using the Sb 2 Te 3 single crystal thin film. The thermoelectric conversion element reversibly directly converts thermal energy and electric energy, and includes a Peltier element used in a solid state air conditioner, a thermoelectric power generation element used to recover exhaust heat energy, and a temperature sensor.
In the present invention, a substrate, a Bi 2 Te 3 single crystal buffer layer grown on the substrate, and an Sb 2 Te 3 single crystal thin film grown on the Bi 2 Te 3 single crystal buffer layer. The provided thermoelectric conversion material can be obtained.

【0013】[0013]

【発明の実施の形態】以下に、本発明の実施の形態に係
るSb2Te3単結晶薄膜及びその製造方法について、図
面を用いて詳細に説明する。この実施の形態において
は、分子線エピタキシー法(以下、MBE法という)を用
い、サファイア基板上に、Bi2Te3のエピタキシャル
単結晶薄膜を介してSb2Te3エピタキシャル単結晶薄膜を
作製する一例について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The Sb 2 Te 3 single crystal thin film and the method for producing the same according to the embodiments of the present invention will be described in detail below with reference to the drawings. In this embodiment, an example of producing a Sb 2 Te 3 epitaxial single crystal thin film on a sapphire substrate through a Bi 2 Te 3 epitaxial single crystal thin film using a molecular beam epitaxy method (hereinafter referred to as MBE method) Will be described.

【0014】[分子線エピタキシー装置]本発明に用い
る分子線エピタキシー装置(以下、MBE装置という)の
構造を図1に概略的に示す。
[Molecular Beam Epitaxy Device] The structure of a molecular beam epitaxy device (hereinafter referred to as MBE device) used in the present invention is schematically shown in FIG.

【0015】このMBE装置20は、真空容器1によって
外部から遮断され、内部は10-7Pa以下の所定の圧力
(例えば、10-8Pa)に保持されている。前記真空容
器1は、排気ダクト2を介して、ターボ分子ポンプ又は
クライオポンプなどの高真空排気手段(図示せず)に接
続されており、目的とする薄膜を成長させるための基板
3は、基板ホルダー4に保持されている。基板ホルダー
4には、図示しない加熱手段及び温度調節機能が設けら
れており、基板3の温度を任意の設定温度に保持するこ
とができる。
The MBE device 20 is shut off from the outside by the vacuum container 1, and the inside is kept at a predetermined pressure of 10 -7 Pa or less (for example, 10 -8 Pa). The vacuum container 1 is connected to a high vacuum evacuation unit (not shown) such as a turbo molecular pump or a cryopump through an exhaust duct 2, and the substrate 3 for growing a target thin film is a substrate. It is held by the holder 4. The substrate holder 4 is provided with a heating unit and a temperature adjusting function, which are not shown, so that the temperature of the substrate 3 can be maintained at an arbitrary set temperature.

【0016】また、Kセル(Knudsen Cell)8a,8b,
8cが基板3に向けて配設されており、このKセル内に
るつぼ9a,9b,9c、加熱ヒーター10a,10
b,10c、及び開閉可能なシャッター11a,11
b,11cが設けられている。Bi(ビスマス)ソース
5、Sb(アンチモン)ソース6、及びTe(テルル)ソー
ス7は、前記Kセル8a〜8c内のるつぼ9a〜9cに
充填されており、前記ソース加熱ヒーター10a〜10
cで加熱されるように構成されている。
In addition, K cells (Knudsen Cell) 8a, 8b,
8c is arranged toward the substrate 3, and crucibles 9a, 9b, 9c, heaters 10a, 10 are provided in the K cell.
b, 10c and shutters 11a, 11 that can be opened and closed
b and 11c are provided. Bi (bismuth) source 5, Sb (antimony) source 6, and Te (tellurium) source 7 are filled in the crucibles 9a to 9c in the K cells 8a to 8c, and the source heaters 10a to 10c.
It is configured to be heated by c.

【0017】このソース加熱ヒーター10a〜10cで
ソース5〜7を加熱すると蒸発し、それぞれ、分子線2
2a,22b,22cとなり、真空容器1中の残留ガス
分子に衝突することなく基板3の表面上に到達し、薄膜
成長の材料供給源となる。そして、前記シャッター11
a〜11cを開閉制御することにより、基板3の表面に
元素を選択的に供給することができ、所望の組成材料を
成長させることができる。
When the sources 5 to 7 are heated by the source heaters 10a to 10c, they evaporate, and the molecular beams 2
2a, 22b and 22c, which reach the surface of the substrate 3 without colliding with the residual gas molecules in the vacuum container 1 and serve as a material supply source for thin film growth. Then, the shutter 11
By controlling the opening and closing of a to 11c, the element can be selectively supplied to the surface of the substrate 3 and a desired composition material can be grown.

【0018】さらに、真空容器1の上部側壁には、反射
高速電子線回折(Reflection High Energy Electron Dif
fraction:以下、RHEEDという)電子銃12aと、該電子
銃12aに対向してRHEEDスクリーン12bが配設され
ている。前記薄膜の成長は、RHEED像によって、基板3
上の成長表面を実時間で観測することができる。RHEED
電子銃12aから2〜3°の角度で基板3表面に電子線
21を照射すると、RHEEDスクリーン12bの裏面に塗
布された蛍光面に、成長表面の結晶構造情報を含有した
反射電子線21が照射される。この蛍光パターンを観察
することで、基板3上で成長する結晶表面状態を知るこ
とができる。なお、真空容器1の上端部には、真空容器
1内部の真空度を測定する真空度測定手段13が配設さ
れている。この真空度測定手段13としては、例えば電
離真空計などを好適に用いられる。
Further, on the upper side wall of the vacuum container 1, a reflection high energy electron diffraction (Reflection High Energy Electron Dif
An electron gun 12a and a RHEED screen 12b are arranged facing the electron gun 12a. The growth of the thin film is performed by the RHEED image on the substrate 3
The upper growth surface can be observed in real time. RHEED
When the surface of the substrate 3 is irradiated with the electron beam 21 from the electron gun 12a at an angle of 2 to 3 °, the fluorescent surface coated on the back surface of the RHEED screen 12b is irradiated with the reflected electron beam 21 containing the crystal structure information of the growth surface. To be done. By observing this fluorescence pattern, it is possible to know the state of the crystal surface growing on the substrate 3. A vacuum degree measuring means 13 for measuring the degree of vacuum inside the vacuum vessel 1 is provided at the upper end of the vacuum vessel 1. As the vacuum degree measuring means 13, for example, an ionization vacuum gauge or the like is preferably used.

【0019】[基板]基板3は、前述したように、エピ
タキシャル成長させる目的生成物の結晶構造に近い単結
晶が用いられる。本発明における目的生成物Sb2Te3単結
晶は、図2に示すように三方晶に属し、a0=4.262Å、
0=30.450Åの格子定数を有する。c軸方向への結晶
成長を考えると、基板3は、同じ晶系である三方晶ある
いは六方晶で、c(0001)面内の格子定数a0が近い材料
が基板材料として望ましい。これに加えて、材料の入手
性や表面研磨性などの物理的要因の考慮すると、三方晶
で格子定数a0=4.763Å、c0=13.003Åと比較的近い
0を有するサファイア単結晶が好ましい。しかし、Sb2
Te3単結晶とサファイアとのa0の差異は11.8%におよぶ
ため、両者のヘテロ接合界面で歪を生じることになり、
良質な単結晶を育成する阻害要因となる。
[Substrate] As described above, as the substrate 3, a single crystal having a crystal structure close to that of the target product to be epitaxially grown is used. The target product Sb 2 Te 3 single crystal in the present invention belongs to a trigonal system as shown in FIG. 2, and a 0 = 4.262Å,
It has a lattice constant of c 0 = 30.450Å. Considering crystal growth in the c-axis direction, it is desirable that the substrate 3 is a trigonal crystal or a hexagonal crystal having the same crystal system, and a material having a lattice constant a 0 in the c (0001) plane is close. In addition to this, considering physical factors such as material availability and surface polishability, a sapphire single crystal having a trigonal crystal structure with a 0 relatively close to lattice constants a 0 = 4.763Å and c 0 = 13.003Å preferable. But Sb 2
Since the difference in a 0 between the Te 3 single crystal and sapphire is 11.8%, strain will occur at the heterojunction interface between the two.
It becomes an obstacle to the growth of a good quality single crystal.

【0020】ここで、様々なソース温度や基板温度条件
において、分子線エピタキシー法によってサファイア基
板上へ直接Sb2Te3成長させようと試みても、Sb2Te3がラ
ンダムな方位に配向した多結晶となってしまい、エピタ
キシャル単結晶は得られない。その一方、Bi2Te3単結晶
は、三方晶系でa0=4.3852Å、c0=30.483ÅとSb2Te3
に極めて近い格子定数を有し、かつ、a0(Sb2Te3)<
0(Bi2Te3)<a0(サファイア)という条件を満たし
ている。そこで、Bi2Te3単結晶をサファイア単結晶とSb
2Te3単結晶との間のバッファ層として用いることで、サ
ファイアとSb2Te3との格子定数における不整合を緩和さ
せることに本発明者らは着目した。
Here, even if an attempt was made to grow Sb 2 Te 3 directly on a sapphire substrate by the molecular beam epitaxy method under various source temperatures and substrate temperature conditions, it was found that Sb 2 Te 3 was randomly oriented. It becomes a crystal and an epitaxial single crystal cannot be obtained. On the other hand, Bi 2 Te 3 single crystal is a trigonal system with a 0 = 4.3852Å, c 0 = 30.483Å and Sb 2 Te 3
Has a lattice constant very close to, and a 0 (Sb 2 Te 3 ) <
The condition of a 0 (Bi 2 Te 3 ) <a 0 (sapphire) is satisfied. Therefore, Bi 2 Te 3 single crystal and Sb
The present inventors have paid attention to alleviating the mismatch in the lattice constant between sapphire and Sb 2 Te 3 by using it as a buffer layer between the 2 Te 3 single crystal.

【0021】[蒸気圧]図3に示すのは、ソース源であ
るBi,Te,Sbおよび目的生成物であるBi2Te3とSb 2Te3の蒸
気圧曲線である。MBE装置は、10-7Pa以下の所定の
圧力に設定された真空容器内の背圧に対して、ソース5
〜7を加熱することにより、蒸発させて分子線を発生さ
せ、該分子線を基板3に照射して基板表面に材料を供給
する装置である。
[Vapor Pressure] FIG. 3 shows a source source.
Bi, Te, Sb, and the target product Bi2Te3And Sb 2Te3Steam of
It is a barometric pressure curve. MBE equipment is 10-7Predetermined below Pa
Source 5 against the back pressure in the vacuum vessel set to pressure
By heating ~ 7, a molecular beam is generated by evaporation.
And irradiate the substrate 3 with the molecular beam to supply the material to the substrate surface.
It is a device that does.

【0022】また、Bi蒸気圧とTe蒸気圧の比率、及びSb
蒸気圧とTe蒸気圧の比率が、それぞれBi2Te3およびSb2T
e3の化学量論組成比2:3よりややTeの比率が高い程度と
する。Teの比率を高くするのは、同一温度に対する蒸気
圧はTeの方が遙かに高く、生成されたBi2Te3からの再蒸
発によるTe欠損を防ぐためである。
The ratio of Bi vapor pressure to Te vapor pressure and Sb
The vapor pressure and Te vapor pressure ratios are Bi 2 Te 3 and Sb 2 T, respectively.
The ratio of Te is slightly higher than the stoichiometric composition ratio of 2: 3 of e 3 . The reason for increasing the ratio of Te is that the vapor pressure at the same temperature is much higher in Te, and Te deficiency due to re-evaporation from the generated Bi 2 Te 3 is prevented.

【0023】さらに、Bi2Te3成長用TeソースとSb2Te3
長用Teソースを共用するため、同一のTe蒸気圧に対する
Biソース5及びSbソース6各々の蒸気圧を考慮する。基
板表面温度は高いほうが不安定分子が再蒸発して良質な
結晶が得られやすいが、目的生成物の蒸気圧が真空容器
背圧より低くなるようにしなければならない。したがっ
て、Bi2Te3,Sb2Te3蒸気圧曲線から、真空容器1内の圧
力を10-7Paとした場合、後述するバッファ成長I,I
I,IIIにおいて、基板表面温度は約270℃以下に設定しな
くてはならないことがわかる。
Furthermore, since the Te source for growing Bi 2 Te 3 and the Te source for growing Sb 2 Te 3 are used in common, the same Te vapor pressure is required.
Consider the vapor pressure of each of the Bi source 5 and the Sb source 6. The higher the surface temperature of the substrate, the easier the unstable molecules are re-evaporated to obtain good quality crystals, but the vapor pressure of the target product must be lower than the back pressure of the vacuum container. Therefore, from the Bi 2 Te 3, Sb 2 Te 3 vapor pressure curve, when the pressure in the vacuum container 1 is set to 10 −7 Pa, the buffer growth I, I described later is obtained.
It can be seen that in I and III, the substrate surface temperature must be set to about 270 ° C or lower.

【0024】[本発明に係るSb2Te3単結晶薄膜の作製方
法]次いで、図4を用いて、本発明に係るMBE成長プロ
セスを用いてSb2Te3単結晶をサファイア基板上に、Bi2T
e3単結晶をバッファとして成長させる方法を説明する。
なお、以下の説明においては、後述する図4からも明ら
かなように、温度Ta1,Ta3,Ta5は、Bi2
3蒸気圧が真空容器内の圧力よりも大きくなる温度で
あり、温度Ta2,Ta4,Tgrowthは、Bi2Te3
気圧が真空容器内の圧力よりも小さくなる温度である。
まず、10-7Pa以下の高真空雰囲気下(例えば、10-8
Pa)で基板3を温度Ta1まで加熱することによって、
基板3の表面における汚染物質を蒸発及び除去する(Pa
1工程:サーマルクリーニング)。次いで、基板表面の
温度をTa2となるように温度調整を行なう(Pa2工程:
温度調整)。
[Method for Producing Sb 2 Te 3 Single Crystal Thin Film According to the Present Invention] Next, referring to FIG. 4, an Sb 2 Te 3 single crystal was formed on a sapphire substrate by using the MBE growth process according to the present invention, and Bi 2 T
A method of growing an e 3 single crystal as a buffer will be described.
In addition, in the following description, as is clear from FIG. 4 described later, the temperatures Ta1, Ta3, and Ta5 are Bi 2 T.
The e 3 vapor pressure is a temperature at which it becomes higher than the pressure inside the vacuum container, and the temperatures Ta2, Ta4, and T growth are temperatures at which the Bi 2 Te 3 vapor pressure becomes smaller than the pressure inside the vacuum container.
First, in a high vacuum atmosphere of 10 -7 Pa or less (for example, 10 -8 Pa)
By heating the substrate 3 to the temperature Ta1 in Pa),
Evaporate and remove contaminants on the surface of the substrate 3 (Pa
1 step: thermal cleaning). Next, the temperature of the substrate surface is adjusted to Ta2 (Pa2 step:
Temperature adjustment).

【0025】さらに、充分に時間が経過して各部の設定
温度が熱平衡状態に達したら、Biシャッター11aとTe
シャッター11cを開き、基板表面にBi分子線22a及
びTe分子線22cを照射して基板3上にBi2Te3を成長さ
せ、成長時間ta3が経過した段階でBiシャッター11
aを閉じる(Pa3工程:バッファ成長I)。次いで、基
板温度をTa3まで昇温し、所定温度に達したら速やか
に加熱を停止して基板温度をTa4となるよう調整する
ことにより、Bi2Te3バッファ層のアニーリングを行う
(Pa4工程:アニールI)。そして、基板温度がTa
4になり熱平衡状態に達したら、再びBiシャッター11
aを開いて、Bi分子線22aを基板3に照射してta5
だけ成長を行ったのち、Biシャッター11aを閉じる
(Pa5工程:バッファ成長II)。
Further, when the set temperature of each part reaches a thermal equilibrium state after a sufficient time has passed, the Bi shutter 11a and the Te
The shutter 11c is opened, the surface of the substrate is irradiated with the Bi molecular beam 22a and the Te molecular beam 22c to grow Bi 2 Te 3 on the substrate 3, and when the growth time ta3 elapses, the Bi shutter 11 is released.
Close a (Pa3 step: buffer growth I). Then, the substrate temperature is raised to Ta3, and when the temperature reaches a predetermined temperature, the heating is immediately stopped and the substrate temperature is adjusted to Ta4, whereby the Bi 2 Te 3 buffer layer is annealed (Pa4 step: annealing). I). And the substrate temperature is Ta
When the temperature reaches 4 and the thermal equilibrium state is reached, the Bi shutter 11 again
a is opened, and the Bi molecular beam 22a is irradiated on the substrate 3 to generate ta5.
After the growth, the Bi shutter 11a is closed (Pa5 step: buffer growth II).

【0026】さらに、基板温度をTa5まで昇温するこ
とによりBi2Te3バッファ層のアニーリングを行う(Pa
6工程:アニールII)。基板温度がTa5に達したの
ち、速やかに加熱を停止して基板3を結晶成長温度T
growth(Ta4)となるよう調整すると同時に、Biシャ
ッター11aを開けてBi分子線22aを基板3に照射
し、基板温度がTgrowth(Ta4)に低下するまでの時
間tbuff(ta7)だけBi2Te3単結晶バッファの成長を
行なう(Pa7工程:バッファ成長III)。
Further, the substrate temperature is raised to Ta5 to anneal the Bi 2 Te 3 buffer layer (Pa
6th process: Annealing II). After the substrate temperature reaches Ta5, the heating is stopped immediately and the substrate 3 is grown at the crystal growth temperature T
At the same time adjusting growth (Ta4) and so as the Bi molecular beam 22a is irradiated to the substrate 3 by opening the Bi shutter 11a, the time t buff (ta7) until the substrate temperature decreases to T growth (Ta4) by Bi 2 Te 3 single crystal buffer is grown (Pa7 process: buffer growth III).

【0027】次に、Biシャッター11aを閉じ、Sbシャ
ッター11bを開けることにより、Sb2Te3単結晶成長に
切り替え、基板温度をTgrowth(Ta4)にしたまま、
所望の膜厚が得られる時間tgrowth(ta8)だけSb2T
e3単結晶成長を行なう(Pa8工程:結晶成長)。結晶
成長を終えた後に、Sbシャッター11b,Teシャッター
11cを閉じて基板3上に成長した試料を徐冷して成長
プロセスを終了する(Pa9工程)。
Next, the Bi shutter 11a is closed and the Sb shutter 11b is opened to switch to Sb 2 Te 3 single crystal growth, and the substrate temperature is kept at T growth (Ta4),
Sb 2 T for the time t growth (ta8) to obtain the desired film thickness
e 3 perform a single crystal growth (Pa8 steps: crystal growth). After the crystal growth is completed, the Sb shutter 11b and the Te shutter 11c are closed to gradually cool the sample grown on the substrate 3 to end the growth process (Pa9 step).

【0028】[本発明に係るSb2Te3単結晶成長試料の構
造]本発明に係る方法によって作製したSb2Te3単結晶成
長試料の断面構造は、図5はに示すとおりである。サフ
ァイア基板31の上に、格子定数の不整合を緩和するBi
2Te3単結晶バッファ層32を設け、このバッファ層32
の表面にSb2Te3単結晶33が成長している。このときの
基板温度および各ソース温度条件は、基板温度:255〜2
75℃、Biソース:550〜570℃、Teソース:310〜330℃、
Sbソース:450〜470℃である。なお、これらの温度範囲
における好ましい範囲は、基板温度:255〜265℃、Biソ
ース:558〜562℃、Teソース:318〜322℃、Sbソース:
458〜462℃である。
[Structure of Sb 2 Te 3 Single Crystal Growth Sample According to the Present Invention] FIG. 5 shows the sectional structure of the Sb 2 Te 3 single crystal growth sample prepared by the method according to the present invention. Bi on the sapphire substrate 31 for relaxing the mismatch of lattice constants
2 Te 3 single crystal buffer layer 32 is provided, and this buffer layer 32
The Sb 2 Te 3 single crystal 33 has grown on the surface of the. At this time, the substrate temperature and each source temperature condition are the substrate temperature: 255 to 2
75 ℃, Bi source: 550 ~ 570 ℃, Te source: 310 ~ 330 ℃,
Sb source: 450-470 ° C. The preferred ranges of these temperature ranges are: substrate temperature: 255 to 265 ° C, Bi source: 558 to 562 ° C, Te source: 318 to 322 ° C, Sb source:
458-462 ° C.

【0029】[0029]

【実施例】次いで、実施例によって本発明を具体的に説
明する。なお、本実施例では、BiソースをTbi=560℃、
SbソースをTSb=460℃、TeソースをTTe=320℃としてい
る。
EXAMPLES Next, the present invention will be specifically described by way of examples. In this embodiment, Bi source is T bi = 560 ° C.,
The Sb source is T Sb = 460 ° C and the Te source is T Te = 320 ° C.

【0030】まず、図1に示す真空容器1内を10-7
aの高真空雰囲気とし、図4に示すように、基板温度を
700℃(Ta1)まで加熱して、基板表面の汚染物質を
蒸発及び除去した(Pa1工程:サーマルクリーニン
グ)。次いで、基板温度を170℃(Ta2)となるよう
に温度調整を行ない、充分に時間が経過して各部の設定
温度が熱平衡状態に達したら(Pa2工程)、基板表面に
Bi,Te各ソース分子線22a,22cを照射するため、B
iシャッター11aとTeシャッター11cを開いてBi2Te
3を成長させ、成長時間30秒間が経過した時点でBiシ
ャッター11aを閉じた(Pa3工程:バッファ成長I)。
[0030] First, the vacuum chamber 1 shown in FIG. 1 10 -7 P
As shown in FIG. 4, the substrate temperature is set to a high vacuum atmosphere of a.
The contaminants on the substrate surface were evaporated and removed by heating to 700 ° C. (Ta1) (Pa1 step: thermal cleaning). Next, the temperature of the substrate is adjusted to 170 ° C (Ta2), and when the set temperature of each part reaches a thermal equilibrium state after a sufficient time (Pa2 step), the substrate surface is
In order to irradiate Bi and Te source molecular beams 22a and 22c, respectively, B
Open i shutter 11a and Te shutter 11c to open Bi 2 Te
3 was grown, and the Bi shutter 11a was closed when the growth time of 30 seconds passed (Pa3 step: buffer growth I).

【0031】次いで、基板温度を345℃(Ta3)まで
昇温し、所定温度に達したら速やかに加熱を停止して基
板温度を255℃(Ta4)となるよう調整した(Pa4工
程:アニールI)。基板温度が255℃(Ta4)になり熱
平衡状態に達したら、再びBiシャッター11aを開き、
5分間(ta5)だけ結晶成長を行いBiシャッター11
aを閉じた(Pb5工程:バッファ成長II)。基板温度を40
5℃(Ta5)まで昇温した(Pb6工程:アニールII)。
所定温度に達したら、速やかに加熱を停止して基板を結
晶成長温度Tgrowthである255℃に調整すると同時に、B
iシャッターを開けて基板温度がTgrowthに低下するま
での時間tbuffである20分間だけBi2Te3単結晶バッフ
ァ層32の成長を行なった(Pa7工程:バッファ成長II
I)。
Then, the substrate temperature was raised to 345 ° C. (Ta3), and when the temperature reached a predetermined temperature, heating was stopped immediately and the substrate temperature was adjusted to 255 ° C. (Ta4) (Pa4 step: annealing I). . When the substrate temperature reaches 255 ° C (Ta4) and the thermal equilibrium state is reached, the Bi shutter 11a is opened again,
Bi shutter 11 after crystal growth for 5 minutes (ta5)
a was closed (Pb5 step: buffer growth II). Substrate temperature 40
The temperature was raised to 5 ° C. (Ta5) (Pb6 step: annealing II).
When the temperature reaches a predetermined temperature, heating is immediately stopped to adjust the substrate to a crystal growth temperature T growth of 255 ° C., and at the same time B
The Bi 2 Te 3 single crystal buffer layer 32 was grown only for 20 minutes, which is the time t buff until the substrate temperature is lowered to T growth by opening the i shutter (Pa 7 process: buffer growth II
I).

【0032】最後に、Biシャッター11aを閉じ、Sbシ
ャッター11bを開けることにより、Sb2Te3単結晶成長
に切り替え、所望の膜厚が得られる時間tgrowthだけSb
2Te3単結晶成長を行なった(Pa8工程:結晶成長)。結晶
成長を終えた後に、Sb,Teシャッター11b11cを閉
じて基板3上に成長した試料を徐冷して成長プロセスを
終了した(プロセスPa9)。本実施例におけるPa4工程お
よびPa6工程は、Bi2Te3単結晶バッファ層32のアニー
リングで、サファイア基板31上への格子定数が異なる
Bi2Te3単結晶成長を促す処理として有用である。
Finally, the Bi shutter 11a is closed and the Sb shutter 11b is opened to switch to Sb 2 Te 3 single crystal growth, and Sb is grown for a time t growth at which a desired film thickness is obtained.
2 Te 3 single crystal growth was performed (Pa8 process: crystal growth). After the crystal growth was completed, the Sb, Te shutter 11b11c was closed and the sample grown on the substrate 3 was gradually cooled to complete the growth process (process Pa9). The Pa4 process and the Pa6 process in the present embodiment are different in the lattice constant on the sapphire substrate 31 due to the annealing of the Bi 2 Te 3 single crystal buffer layer 32.
It is useful as a treatment for promoting Bi 2 Te 3 single crystal growth.

【0033】図6及び図7は、本実施例によるMBE成長
プロセスでSb2Te3単結晶膜を成長させた場合のRHEED写
真で、図6はBi2Te3単結晶バッファ層32の成長中の状
態を示し、図7はSb2Te3単結晶成長中の状態を示してい
る。図6及び図7共に縦縞のストリークパターンが現れ
ており、成長試料表面が原子レベルで平坦な単結晶とな
ったことを示している。また、両者のストリークの間隔
に差異はなく、格子定数が近いことを示している。
6 and 7 are RHEED photographs of the Sb 2 Te 3 single crystal film grown by the MBE growth process according to this embodiment. FIG. 6 shows the growth of the Bi 2 Te 3 single crystal buffer layer 32. FIG. 7 shows the state during the growth of the Sb 2 Te 3 single crystal. A streak pattern with vertical stripes appears in both FIGS. 6 and 7, indicating that the surface of the grown sample has become a flat single crystal at the atomic level. In addition, there is no difference in the streak interval between the two, indicating that the lattice constants are close.

【0034】本実施例により成長させたSb2Te3単結晶薄
膜試料のX線回折結果を図8に示す。X線回折のピーク
は、41.72°にサファイア基板31の(0006)面、44.66°
にSb 2Te3およびバッファBi2Te3の(00015)面、54.39°に
Sb2Te3およびBi2Te3バッファ層32の(00018)面の他、
(0009),(00012)ピークが現れている。サファイア、Sb2T
e3又はBi2Te3のc面に相当する回折ピークのみ観測され
ていることから、サファイア基板表面のc(0001)面上
に、Bi2Te3バッファ層32とSb2Te3層33のc軸が、基
板面と垂直な方向に単結晶成長していることが確認でき
た。
Sb grown according to this example2Te3Single crystal thin
The X-ray diffraction result of the film sample is shown in FIG. X-ray diffraction peak
Is 41.72 °, the (0006) plane of the sapphire substrate 31, 44.66 °
To Sb 2Te3And buffer Bi2Te3Of (00015) Surface, at 54.39 °
Sb2Te3And Bi2Te3(000 of the buffer layer 3218) Other than the surface
(0009), (00012) A peak appears. Sapphire, Sb2T
e3Or Bi2Te3Only the diffraction peak corresponding to the c-plane of
On the c (0001) plane of the sapphire substrate surface
, Bi2Te3Buffer layer 32 and Sb2Te3The c-axis of layer 33 is
It can be confirmed that the single crystal has grown in the direction perpendicular to the plate surface.
It was

【0035】なお、本発明は、前述した実施の形態に限
定されることなく、本発明の技術思想に基づいて、種々
の変更又は変形が可能である。例えば、図9に示すよう
に、Bi2Te3単結晶バッファ層32をサファイア基板31
上に成長させた後、Sbシャッター11bとBiシャッター
11aを交互に開閉することにより、Bi2Te3とSb2Te3
交互に積層させた交互積層膜の成長を行うことができ
る。
The present invention is not limited to the above-described embodiments, and various modifications and variations can be made based on the technical idea of the present invention. For example, as shown in FIG. 9, the Bi 2 Te 3 single crystal buffer layer 32 is formed on the sapphire substrate 31.
After the growth, the Sb shutter 11b and the Bi shutter 11a are alternately opened and closed to grow an alternating laminated film in which Bi 2 Te 3 and Sb 2 Te 3 are alternately laminated.

【0036】図4と同様なプロセスで、サファイア基板
31上にBi2Te3単結晶バッファ層32を形成した(Pb1
工程〜Pb7工程)後、Teシャッター11cは開けたま
ま、Sbシャッター11bとBiシャッター11aを交互に
開閉することで、Bi2Te3/Sb2Te3交互積層膜を成長させ
ることができる(Pb8工程)。所望の回数だけBi2Te3/S
b2Te3交互積層膜を積層させたら、Sb,Bi,Teシャッター
11b,11a,11cを閉じて、基板3上に成長した
試料を徐冷して成長プロセスを終了する(Pb9工程)。
このプロセスによって積層したBi2Te3/Sb2Te3交互積層
膜の断面構造を図10に示す。この図10に示すよう
に、サファイア基板41上に形成されたBi2Te3バッファ
層42上に、Bi2Te3単結晶薄膜43とSb2Te3単結晶薄膜
44が交互に積層されている。
A Bi 2 Te 3 single crystal buffer layer 32 was formed on the sapphire substrate 31 by the same process as in FIG. 4 (Pb1
After the steps to Pb7 steps), the Te shutter 11c is opened and the Sb shutter 11b and the Bi shutter 11a are alternately opened and closed to grow a Bi 2 Te 3 / Sb 2 Te 3 alternating laminated film (Pb8 Process). Bi 2 Te 3 / S as many times as desired
After stacking the b 2 Te 3 alternating laminated films, the Sb, Bi, and Te shutters 11b, 11a, 11c are closed, and the sample grown on the substrate 3 is gradually cooled to end the growth process (Pb9 step).
FIG. 10 shows the cross-sectional structure of the Bi 2 Te 3 / Sb 2 Te 3 alternating laminated film laminated by this process. As shown in FIG. 10, a Bi 2 Te 3 single crystal thin film 43 and an Sb 2 Te 3 single crystal thin film 44 are alternately laminated on a Bi 2 Te 3 buffer layer 42 formed on a sapphire substrate 41. .

【0037】図11はBi2Te3とSb2Te3各層の成長時間と
膜厚を示したグラフであり、直線(破線又は実線)の勾
配がそれぞれの成長速度となる。このグラフは、成長温
度条件として、Biソース温度TBiを560℃、Sbソース温
度TSbを460℃、Teソース温度TTeを320℃とした場合に
おける成長速度を示している。Bi2Te3層とSb2Te3層の成
長速度は各々106Å/min,105Å/minであり、この成長速
度を基にBiシャッター11a及びSbシャッター11bの
開成時間を調整することよって、所望の膜厚制御を行う
ことができる。
FIG. 11 is a graph showing the growth time and film thickness of each of the Bi 2 Te 3 and Sb 2 Te 3 layers, and the gradient of the straight line (broken line or solid line) is the growth rate of each. This graph shows the growth rate when the Bi source temperature T Bi is 560 ° C., the Sb source temperature T Sb is 460 ° C., and the Te source temperature T Te is 320 ° C. as the growth temperature conditions. The growth rates of the Bi 2 Te 3 layer and the Sb 2 Te 3 layer are 106 Å / min and 105 Å / min, respectively, and by adjusting the opening times of the Bi shutter 11a and the Sb shutter 11b based on these growth rates, desired growth rates can be obtained. The film thickness can be controlled.

【0038】Biシャッター11aおよびSbシャッター1
1bの開時間を各々30秒間とし、50サイクルだけ交互積
層を行い、これによって得られたBi2Te3/Sb2Te3交互積
層膜試料のX線回折分析結果を図12に示す。このシャ
ッター開時間の設定では、それぞれの層の厚さは、約50
Å程度になると思われる。図12では、特に(00018)面
ピーク付近を示しているが、主ピーク(0)を対称軸とし
て超格子構造に特有なサテライトピーク(-3,-2,-1,1,2,
3)が現れており、Bi2Te3/Sb2Te3の周期構造が形成でき
ていることが確認できる。
Bi shutter 11a and Sb shutter 1
Fig. 12 shows the X-ray diffraction analysis result of the Bi 2 Te 3 / Sb 2 Te 3 alternating laminated film sample obtained by alternately laminating the 1b for 30 seconds and 50 cycles. With this shutter open time setting, the thickness of each layer is approximately 50
It will be about Å. In FIG. 12, especially near the (000 18 ) plane peak is shown, but satellite peaks (-3, -2, -1,1,2, peculiar to the superlattice structure with the main peak (0) as the symmetry axis are shown.
3) appears and it can be confirmed that the Bi 2 Te 3 / Sb 2 Te 3 periodic structure has been formed.

【0039】[0039]

【発明の効果】本発明によれば、Bi2Te3単結晶を基板と
Sb2Te3とのバッファとすることにより、分子線エピタキ
シー法を用いて、簡単でかつ安価なコストで良質なSb2T
e3単結晶薄膜を得ることができる。
According to the present invention, a Bi 2 Te 3 single crystal is used as a substrate.
By using a buffer with Sb 2 Te 3 , a high-quality Sb 2 T can be obtained easily and at low cost using the molecular beam epitaxy method.
An e 3 single crystal thin film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るSb2Te3単結晶薄膜の製造に用
いる分子線エピタキシー装置を示す断面図である。
FIG. 1 is a cross-sectional view showing a molecular beam epitaxy apparatus used for manufacturing an Sb 2 Te 3 single crystal thin film according to the present invention.

【図2】三方系晶の結晶構造を示す概念図である。FIG. 2 is a conceptual diagram showing a crystal structure of a trigonal system crystal.

【図3】本発明に係る単結晶薄膜に用いるBi2Te3
Sb2Te3、Bi及びTeの蒸気圧曲線である。
FIG. 3 shows Bi 2 Te 3 used for a single crystal thin film according to the present invention,
3 is a vapor pressure curve of Sb 2 Te 3 , Bi and Te.

【図4】本発明に係るSb2Te3単結晶薄膜の成長法の
工程を示す概念図である。
FIG. 4 is a conceptual diagram showing a step of a growth method of an Sb 2 Te 3 single crystal thin film according to the present invention.

【図5】本発明に係るSb2Te3単結晶薄膜の構造を示
す断面図である。
FIG. 5 is a sectional view showing the structure of an Sb 2 Te 3 single crystal thin film according to the present invention.

【図6】本実施例のSb2Te3単結晶薄膜を成長させた
場合における、Bi2Te3単結晶バッファ成長中のRH
EED写真である。
FIG. 6 shows the RH during growth of the Bi 2 Te 3 single crystal buffer in the case of growing the Sb 2 Te 3 single crystal thin film of this example.
It is an EED photograph.

【図7】本実施例のSb2Te3単結晶薄膜を成長させた
場合における、Sb2Te3単結晶成長中のRHEED写
真である。
FIG. 7 is a RHEED photograph during the growth of the Sb 2 Te 3 single crystal in the case where the Sb 2 Te 3 single crystal thin film of this example was grown.

【図8】本発明に係るSb2Te3単結晶薄膜試料のX線
回折結果を示すグラフである。
FIG. 8 is a graph showing an X-ray diffraction result of a Sb 2 Te 3 single crystal thin film sample according to the present invention.

【図9】本発明の変形例に係るSb2Te3単結晶薄膜の
工程を示す概念図である。
FIG. 9 is a conceptual diagram showing steps of a Sb 2 Te 3 single crystal thin film according to a modification of the present invention.

【図10】本発明の変形例に係るBi2Te3/Sb2
3交互積層膜の構造を示す断面図である。
FIG. 10 is a Bi 2 Te 3 / Sb 2 T according to a modification of the present invention.
It is a sectional view showing the structure of a e 3 alternate stacked film.

【図11】本発明の変形例に係るBi2Te3層及びSb
2Te3層の各々の成長時間と膜厚を示すグラフである。
FIG. 11 is a Bi 2 Te 3 layer and Sb according to a modification of the present invention.
Is a graph showing the respective growth time and the film thickness of 2 Te 3 layer.

【図12】本発明の変形例に係るBi2Te3/Sb2
3交互積層膜試料のX線回折結果を示すグラフであ
る。
FIG. 12 is a Bi 2 Te 3 / Sb 2 T according to a modification of the present invention.
is a graph showing the X-ray diffraction pattern of e 3 alternately laminated film sample.

【符号の説明】[Explanation of symbols]

1 真空容器 2 排気ダクト 3 基板 4 基板ホルダー 5 Biソース 6 Sbソース 7 Teソース 8a,8b,8c Kセル 9a,9b,9c るつぼ 10a,10b,10c ソース加熱ヒーター 10a,10b,10c シャッター 12a RHEED電子銃 12b RHEEDスクリーン 13 真空度測定手段 20 分子線エピタキシー装置 22a,22b,22c 分子線 31,41 サファイア基板 32,42 Bi2Te3単結晶バッファ層 33 Sb2Te3単結晶 42 Bi2Te3バッファ層 43 Bi2Te3単結晶薄膜 44 Sb2Te3単結晶薄膜1 Vacuum Container 2 Exhaust Duct 3 Substrate 4 Substrate Holder 5 Bi Source 6 Sb Source 7 Te Source 8a, 8b, 8c K Cell 9a, 9b, 9c Crucible 10a, 10b, 10c Source Heater 10a, 10b, 10c Shutter 12a RHEED Electron Gun 12b RHEED screen 13 Vacuum measuring means 20 Molecular beam epitaxy apparatus 22a, 22b, 22c Molecular beam 31, 41 Sapphire substrate 32, 42 Bi 2 Te 3 single crystal buffer layer 33 Sb 2 Te 3 single crystal 42 Bi 2 Te 3 buffer Layer 43 Bi 2 Te 3 single crystal thin film 44 Sb 2 Te 3 single crystal thin film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/34 H01L 35/34 (72)発明者 上村 税男 静岡県沼津市西野317 学校法人 東海大 学 開発工学部素材工学科内 Fターム(参考) 4G077 AA03 BE26 DA05 EA02 EA04 ED06 EF03 HA20 SC02 5F103 AA04 BB04 BB16 BB55 BB57 DD30 GG01 HH04 LL20 NN01 NN04 PP02 PP03 RR08 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/34 H01L 35/34 (72) Inventor Takuo Uemura 317 Nishino, Numazu-shi, Shizuoka Tokai University F-term in Department of Materials Engineering, Faculty of Development Engineering (reference) 4G077 AA03 BE26 DA05 EA02 EA04 ED06 EF03 HA20 SC02 5F103 AA04 BB04 BB16 BB55 BB57 DD30 GG01 HH04 LL20 NN01 NN04 PP02 PP03 RR08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 密閉された容器内に配置した基板上にSb
2Te3エピタキシャル単結晶を成長させるSb2Te3単結晶薄
膜の製造方法であって、 Bi2Te3蒸気圧が前記容器内の圧力よりも小さくなる基板
温度で、Bi2Te3を基板上に堆積させるバッファ成長段階
と、Bi2Te3蒸気圧が前記容器内の圧力よりも大きくなる
温度まで前記基板温度を上げたのち、更に、Bi2Te3蒸気
圧が前記容器内の圧力よりも小さくなる温度まで前記基
板温度を下げるアニール段階と、これらのバッファ成長
段階及びアニール段階によって前記基板上に成長させた
Bi2Te3エピタキシャル単結晶の表面に、Sb2Te3単結晶を
成長させる結晶成長段階とを含んでなるSb2Te3単結晶薄
膜の製造方法。
1. Sb on a substrate placed in a closed container
A method for producing a Sb 2 Te 3 single crystal thin film in which a 2 Te 3 epitaxial single crystal is grown, wherein Bi 2 Te 3 is vapor-deposited on the substrate at a substrate temperature at which the vapor pressure of Bi 2 Te 3 becomes smaller than the pressure in the container. a buffer growth depositing on, after raising the substrate temperature to a temperature at which Bi 2 Te 3 vapor pressure is greater than the pressure in the container, further, than the pressure of the Bi 2 Te 3 vapor pressure in the vessel The substrate was grown on the substrate by an annealing step of lowering the substrate temperature to a lower temperature and these buffer growth and annealing steps.
A method for producing an Sb 2 Te 3 single crystal thin film, comprising a crystal growth step of growing an Sb 2 Te 3 single crystal on the surface of a Bi 2 Te 3 epitaxial single crystal.
【請求項2】 前記バッファ成長段階において、Bi 分
子線及びTe 分子線を発生させて前記基板上に照射する
ことにより、Bi2Te3を基板上に堆積させることを特徴と
する請求項1に記載のSb2Te3単結晶薄膜の製造方法。
2. The Bi 2 Te 3 is deposited on the substrate by generating a Bi molecular beam and a Te molecular beam and irradiating the substrate on the substrate in the buffer growth step. A method for producing the Sb 2 Te 3 single crystal thin film described.
【請求項3】 前記結晶成長段階において、Sb分子線及
びTe 分子線を発生させて前記Bi2Te3エピタキシャル単
結晶の表面に照射することにより、Sb2Te3単結晶を成長
させることを特徴とする請求項1又は2に記載のSb2Te3
単結晶薄膜の製造方法。
3. The Sb 2 Te 3 single crystal is grown by generating Sb molecular beam and Te molecular beam and irradiating the surface of the Bi 2 Te 3 epitaxial single crystal in the crystal growth step. The Sb 2 Te 3 according to claim 1 or 2.
Method for manufacturing single crystal thin film.
【請求項4】 前記Bi 分子線、Te 分子線及びSb分子線
を分子線エピタキシー法によって発生させ、かつ、該分
子線エピタキシー法における温度条件を、Biソースが5
50〜570℃、Te ソースが310〜330℃、Sbソ
ースが450〜470℃、及び基板表面が255〜27
5℃とすることを特徴とする請求項1〜3のいずれかに
記載のSb2Te3単結晶薄膜の製造方法。
4. The Bi molecular beam, the Te molecular beam and the Sb molecular beam are generated by a molecular beam epitaxy method, and the temperature condition in the molecular beam epitaxy method is that the Bi source is 5
50-570 ° C, Te source 310-330 ° C, Sb source 450-470 ° C, and substrate surface 255-27.
The method for producing an Sb 2 Te 3 single crystal thin film according to any one of claims 1 to 3, wherein the temperature is 5 ° C.
【請求項5】 前記請求項1〜4のいずれかに記載され
た方法によって製造したことを特徴とするSb2Te3単結晶
薄膜。
5. An Sb 2 Te 3 single crystal thin film manufactured by the method according to any one of claims 1 to 4.
【請求項6】 前記請求項5に記載されたSb2Te3単結晶
薄膜を用いたことを特徴とする熱電変換素子。
6. A thermoelectric conversion element comprising the Sb 2 Te 3 single crystal thin film according to claim 5.
JP2001300487A 2001-09-28 2001-09-28 Sb2Te3 single crystal thin film and manufacturing method thereof Expired - Fee Related JP3841272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001300487A JP3841272B2 (en) 2001-09-28 2001-09-28 Sb2Te3 single crystal thin film and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300487A JP3841272B2 (en) 2001-09-28 2001-09-28 Sb2Te3 single crystal thin film and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003109976A true JP2003109976A (en) 2003-04-11
JP3841272B2 JP3841272B2 (en) 2006-11-01

Family

ID=19121054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300487A Expired - Fee Related JP3841272B2 (en) 2001-09-28 2001-09-28 Sb2Te3 single crystal thin film and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3841272B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343782A (en) * 2004-05-06 2005-12-15 Tokyo Univ Of Science Method for producing bismuth telluride nanoparticle and method for producing tellurium nanoparticle
JP2013070020A (en) * 2011-09-21 2013-04-18 Samsung Electro-Mechanics Co Ltd Thermoelectric material, method for preparing the same, and thermoelectric module including the same
KR101300141B1 (en) * 2011-08-11 2013-08-26 재단법인대구경북과학기술원 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof
JP2016012385A (en) * 2014-06-30 2016-01-21 日本タングステン株式会社 Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
WO2017046912A1 (en) * 2015-09-17 2017-03-23 株式会社日立製作所 Thermoelectric conversion material and thermoelectric conversion module using same
CN111430532A (en) * 2020-05-14 2020-07-17 上海应用技术大学 Preparation method of antimony telluride block thermoelectric material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110707179B (en) * 2019-10-18 2022-03-22 福州大学 Method for regulating and controlling circularly polarized light induced current of antimony telluride film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343782A (en) * 2004-05-06 2005-12-15 Tokyo Univ Of Science Method for producing bismuth telluride nanoparticle and method for producing tellurium nanoparticle
KR101300141B1 (en) * 2011-08-11 2013-08-26 재단법인대구경북과학기술원 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof
JP2013070020A (en) * 2011-09-21 2013-04-18 Samsung Electro-Mechanics Co Ltd Thermoelectric material, method for preparing the same, and thermoelectric module including the same
JP2016012385A (en) * 2014-06-30 2016-01-21 日本タングステン株式会社 Thin film magnetic head substrate, magnetic head slider, and hard disk drive device
WO2017046912A1 (en) * 2015-09-17 2017-03-23 株式会社日立製作所 Thermoelectric conversion material and thermoelectric conversion module using same
CN111430532A (en) * 2020-05-14 2020-07-17 上海应用技术大学 Preparation method of antimony telluride block thermoelectric material

Also Published As

Publication number Publication date
JP3841272B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
Suh et al. Semiconductor to metal phase transition in the nucleation and growth of VO 2 nanoparticles and thin films
Sun et al. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
CN101236905B (en) A method for making IV-VI sector semiconductor single crystal film on CdZnTe underlay
JP2019524982A (en) IIIA nitride growth system and method
JP3439994B2 (en) Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films
JP4298194B2 (en) A method for producing a natural superlattice homologous single crystal thin film.
US20110027928A1 (en) PULSED LASER DEPOSITION OF HIGH QUALITY PHOTOLUMINESCENT GaN FILMS
JP2017218334A (en) METHOD FOR GROWING Ga2O3 BASED CRYSTAL FILM, AND CRYSTAL LAMINATED STRUCTURE
JP3841272B2 (en) Sb2Te3 single crystal thin film and manufacturing method thereof
JP2014169466A (en) Orientation substrate, manufacturing method of oriented film substrate, sputtering device and multi-chamber device
WO2006088261A1 (en) METHOD FOR FORMING InGaN LAYER AND SEMICONDUCTOR DEVICE
JP2000178713A (en) FORMATION OF beta-MONOIRON DISILICIDE THIN FILM
JP2003109975A (en) Bi2Te3 SINGLE-CRYSTAL THIN FILM AND METHOD OF MANUFACTURING THE SAME
El-Shaer et al. Growth of wide band gap wurtzite ZnMgO layers on (0001) Al2O3 by radical-source molecular beam epitaxy
Okude et al. Epitaxial Synthesis of Srn+ 1TinO3n+ 1 (n= 2–5) Ruddlesden–Popper Homologous Series by Pulsed-Laser Deposition
JP2017128816A (en) Oriented substrate, production method of oriented film substrate, sputtering device and multi-chamber device
JP2001270799A (en) Zinc oxide thin film and method for producing the same
WO2003052159A1 (en) Amorphous ferrosilicide film exhibiting semiconductor characteristics and method for producing the same
Ahmed et al. Structure Characteristics of TiO2 Thin Films Prepared by DC Reactive Magnetron Sputtering at Low Pressure
KR20080111886A (en) The antimony telluride thin film and synthetic solution with modulation of nano multilayer and non-isothermal heat treatment
Wang et al. Synthesis and spectroscopic properties of Cr-doped ZnS crystalline thin films
CN113564698B (en) Preparation method of magnetic topological heterojunction film
WO2002020879A1 (en) Production method for composite oxide thin film and device therefor and composite oxide film produced thereby
JP5637712B2 (en) Semiconductor nanocomposite structure thin film material and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees