JP2003106609A - Refrigeration unit - Google Patents

Refrigeration unit

Info

Publication number
JP2003106609A
JP2003106609A JP2001299375A JP2001299375A JP2003106609A JP 2003106609 A JP2003106609 A JP 2003106609A JP 2001299375 A JP2001299375 A JP 2001299375A JP 2001299375 A JP2001299375 A JP 2001299375A JP 2003106609 A JP2003106609 A JP 2003106609A
Authority
JP
Japan
Prior art keywords
opening
expansion valve
valve
refrigerant
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001299375A
Other languages
Japanese (ja)
Other versions
JP3719181B2 (en
Inventor
Junichi Shimoda
順一 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001299375A priority Critical patent/JP3719181B2/en
Publication of JP2003106609A publication Critical patent/JP2003106609A/en
Application granted granted Critical
Publication of JP3719181B2 publication Critical patent/JP3719181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Abstract

PROBLEM TO BE SOLVED: To improve the reliability in control by matching a controlled opening and an actual opening of an electric expansion valve, and to dispense with selecting the electronic expansion valve. SOLUTION: When an electric expansion valve 36 is controlled to a small opening near a minimum opening, the controlled opening is corrected to shift the controlled opening to the actual opening of the electric expansion valve 36 on the basis of a refrigerant condition at that time. This refrigeration unit comprises an opening correction part 85 for correcting the controlled opening to an opening side when the refrigerant condition that a degree of suction overheat of a compressor 30 is more than a predetermined value, and a pressure of a low-pressure refrigerant of the compressor 30 is less than a predetermined value, is continued in small opening of the electric expansion valve 36, and a closing correction part 86 for correcting the controlled opening to a closing side when the refrigerant condition that the degree of suction overheat of the compressor 30 is less than the predetermined value is continued in small opening of the electric expansion valve 36. Further when the opening correction part 85 corrects the controlled opening to the opening side, the electric expansion valve 36 is temporarily opened to a predetermined opening prior to the normal control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍装置に関し、
特に、膨張弁を制御する開度制御対策に係るものであ
る。
TECHNICAL FIELD The present invention relates to a refrigerating apparatus,
In particular, the present invention relates to measures for controlling the opening of the expansion valve.

【0002】[0002]

【従来の技術】従来より、空気調和装置には、特開平1
0−132410号公報に開示されているように、圧縮
機と室内熱交換器と膨張弁と室外熱交換器とが順に接続
されて構成されているものがある。上記空気調和装置
は、圧縮機を駆動制御するためにインバータ回路を搭載
し、該インバータ回路の出力周波数を変更して圧縮機の
運転容量を制御している。また、上記空気調和装置は、
圧縮機の冷媒の吸入過熱度が所定値になるように膨張弁
の開度を制御している。
2. Description of the Related Art Conventionally, an air conditioner is disclosed in Japanese Patent Laid-Open No.
As disclosed in Japanese Unexamined Patent Publication No. 0-132410, there is a configuration in which a compressor, an indoor heat exchanger, an expansion valve, and an outdoor heat exchanger are sequentially connected. The air conditioner includes an inverter circuit for driving and controlling the compressor, and changes the output frequency of the inverter circuit to control the operating capacity of the compressor. In addition, the air conditioner,
The opening degree of the expansion valve is controlled so that the suction superheat degree of the refrigerant of the compressor becomes a predetermined value.

【0003】[0003]

【発明が解決しようとする課題】上述した空気調和装置
において、膨張弁の開度は、各膨張弁ごとにバラツキが
ある。つまり、膨張弁は、弁本体に対してニードルを移
動させて開度を設定している。このニードルの移動量を
指令値として制御開度が設定され、膨張弁が完全に閉鎖
された状態から制御開度にしたがってニードルが移動
し、膨張弁が開閉する。
In the air conditioner described above, the opening degree of the expansion valve varies from one expansion valve to another. That is, the expansion valve sets the opening by moving the needle with respect to the valve body. The control opening is set with the movement amount of the needle as a command value, and the needle moves according to the control opening from the state where the expansion valve is completely closed, and the expansion valve opens and closes.

【0004】上記制御開度と膨張弁の実際の開度である
実開度とには、各膨張弁ごとにバラツキがあり、偏差が
生じている場合がある。図2の特性線Aに示すように、
膨張弁は、開度を大きくするに従って流れる流量、つま
り、冷媒量が増大する。従来、各膨張弁の開度のバラツ
キを考慮し、各膨張弁の平均的な開度を制御開度に設定
している。
The control opening and the actual opening, which is the actual opening of the expansion valve, vary from one expansion valve to another, and a deviation may occur. As shown by the characteristic line A in FIG.
The flow rate of the expansion valve increases, that is, the amount of refrigerant increases as the opening degree increases. Conventionally, the average opening of each expansion valve is set as the control opening in consideration of variations in the opening of each expansion valve.

【0005】例えば、膨張弁が完全に閉じた状態から全
開状態までを480パルスとし、制御開度を60パルス
にすると、冷媒が膨張弁を流れ始めるとし、膨張弁を制
御している。
For example, when the expansion valve is completely closed to the fully open state and the control opening is set to 60 pulses, the refrigerant starts flowing through the expansion valve, and the expansion valve is controlled.

【0006】しかしながら、図2の特性線B及びCの範
囲内で膨張弁の開度にバラツキがある。この図2に示す
ように、膨張弁には、制御開度を20パルスにすると冷
媒が流れ始めるもの、又は制御開度を100パルスにす
ると冷媒が流れ始めるものもある。
However, the opening of the expansion valve varies within the range of the characteristic lines B and C in FIG. As shown in FIG. 2, some expansion valves include a refrigerant that starts to flow when the control opening is 20 pulses, or a refrigerant that starts to flow when the control opening is 100 pulses.

【0007】したがって、膨張弁を最小開度の近傍で制
御すると、制御上は膨張弁が小開度で開いて冷媒が流れ
ている状態であるにも拘わらず、実際は膨張弁が全閉と
なって冷媒が流れていない場合がある。逆に、制御上は
膨張弁が最小開度となって少しの冷媒が流れている状態
であるにも拘わらず、実際は膨張弁が大きく開いて多く
の冷媒が流れている場合がある。この結果、膨張弁制御
の信頼性が低いという問題があった。
Therefore, when the expansion valve is controlled in the vicinity of the minimum opening, the expansion valve is actually fully closed even though the expansion valve is opened at a small opening and the refrigerant is flowing in the control. The refrigerant may not flow. On the contrary, although the expansion valve has a minimum opening degree and a small amount of refrigerant flows in terms of control, the expansion valve may actually open greatly and a large amount of refrigerant may flow. As a result, there is a problem that the reliability of the expansion valve control is low.

【0008】そこで、何れの膨張弁であっても開く状態
の特性線Bを制御開度に設定すると、制御上は最小開度
であるにもかかわらず、実開度が大きく、多量の冷媒が
流れ、圧縮機が湿り運転となって該圧縮機の損傷を招く
という問題がある。
Therefore, if the characteristic line B in the open state of any expansion valve is set to the control opening, the actual opening is large and a large amount of refrigerant is generated despite the minimum opening in control. There is a problem in that the flow of the compressor causes a damp operation and the compressor is damaged.

【0009】逆に、何れの膨張弁であっても閉じる状態
の特性線Cを制御開度に設定すると、制御上は最小開度
であるにもかかわらず、全閉となって冷媒が流れず、各
種のセンサが冷媒状態を検知することができず、制御の
破綻を招くという問題がある。
On the contrary, when the characteristic line C in the closed state of any expansion valve is set to the control opening, it is fully closed and the refrigerant does not flow although it is the minimum opening in control. However, there is a problem that various sensors cannot detect the state of the refrigerant, which causes failure of control.

【0010】また、開度のバラツキが小さくなるように
膨張弁を選別するようにすると、膨張弁の選別工程を要
すると共に、歩留まりが悪くなり、膨張弁が高価になる
という問題がある。
Further, if the expansion valves are selected so as to reduce the variation in the opening, there is a problem that the expansion valve selection process is required, the yield is deteriorated, and the expansion valves are expensive.

【0011】本発明は、斯かる点に鑑みて成されたもの
で、膨張弁の制御開度と実開度とを一致させるようにし
て制御の信頼性を向上させると共に、膨張弁の選別を要
しないようにすることを目的とするものである。
The present invention has been made in view of the above point, and improves the reliability of control by matching the control opening of the expansion valve with the actual opening, and at the same time, selects the expansion valve. The purpose is not to need it.

【0012】[0012]

【課題を解決するための手段】〈発明の概要〉本発明
は、膨張弁の制御開度を補正して実開度に一致させるよ
うにしたものである。
<Summary of the Invention> The present invention corrects the control opening of the expansion valve to match the actual opening.

【0013】〈解決手段〉具体的に、図1に示すよう
に、第1の発明は、開度調整自在な膨張弁(36)を有
し、蒸気圧縮式冷凍サイクルを行う冷媒回路(20)を備
えた冷凍装置を前提としている。そして、上記膨張弁
(36)の制御開度が該膨張弁(36)の実際の実開度にな
るように制御開度を補正する構成としている。
<Solution> Specifically, as shown in FIG. 1, a first aspect of the present invention has a refrigerant circuit (20) having an expansion valve (36) whose opening degree is adjustable and performing a vapor compression refrigeration cycle. It is premised on a refrigeration system equipped with. Then, the control opening of the expansion valve (36) is corrected so that the control opening becomes the actual actual opening of the expansion valve (36).

【0014】また、第2の発明は、開度調整自在な膨張
弁(36)を有し、蒸気圧縮式冷凍サイクルを行う冷媒回
路(20)を備えた冷凍装置を前提している。そして、上
記膨張弁(36)の開度を制御する弁制御手段(82)を備
えている。加えて、該弁制御手段(82)が膨張弁(36)
を最小開度近傍の小開度に制御しているときに、該制御
時の冷媒状態に基づいて上記弁制御手段(82)の制御開
度が膨張弁(36)の実際の実開度に移行するように該弁
制御手段(82)の制御開度を補正する補正手段(83)を
備えている。
The second aspect of the invention is premised on a refrigeration system having an expansion valve (36) whose opening degree is adjustable and having a refrigerant circuit (20) for performing a vapor compression refrigeration cycle. A valve control means (82) for controlling the opening of the expansion valve (36) is provided. In addition, the valve control means (82) has an expansion valve (36).
Is controlled to a small opening near the minimum opening, the control opening of the valve control means (82) becomes the actual opening of the expansion valve (36) based on the refrigerant state at the time of the control. A correction means (83) for correcting the control opening of the valve control means (82) is provided so as to shift.

【0015】また、第3の発明は、開度調整自在な膨張
弁(36)を有し、蒸気圧縮式冷凍サイクルを行う冷媒回
路(20)を備えた冷凍装置を前提している。そして、上
記膨張弁(36)の開度を制御する弁制御手段(82)を備
えている。更に、該弁制御手段(82)が膨張弁(36)を
最小開度近傍の小開度に制御しているときに、冷媒回路
(20)における圧縮機(30)の冷媒の吸入過熱度が所定
値以上で且つ圧縮機(30)の吸入側の低圧冷媒圧力が所
定値以下の冷媒状態が継続すると、弁制御手段(82)の
制御開度を開き側に補正する開補正部(85)を備えてい
る。加えて、上記弁制御手段(82)が膨張弁(36)を最
小開度近傍の小開度に制御しているときに、冷媒回路
(20)における圧縮機(30)の冷媒の吸入過熱度が所定
値以下の冷媒状態が継続すると、弁制御手段(82)の制
御開度を閉じ側に補正する閉補正部(86)を備えてい
る。
The third aspect of the invention is premised on a refrigerating apparatus having an expansion valve (36) whose opening degree is adjustable and having a refrigerant circuit (20) for performing a vapor compression refrigeration cycle. A valve control means (82) for controlling the opening of the expansion valve (36) is provided. Further, when the valve control means (82) controls the expansion valve (36) to a small opening degree near the minimum opening degree, the suction superheat degree of the refrigerant of the compressor (30) in the refrigerant circuit (20) is increased. When the low-pressure refrigerant pressure on the suction side of the compressor (30) is equal to or higher than a predetermined value and the refrigerant state continues to be equal to or lower than the predetermined value, an open correction unit (85) that corrects the control opening of the valve control means (82) to the open side. Is equipped with. In addition, when the valve control means (82) controls the expansion valve (36) to a small opening degree near the minimum opening degree, the refrigerant intake superheat degree of the refrigerant of the compressor (30) in the refrigerant circuit (20). When the refrigerant state is equal to or less than a predetermined value, a closing correction unit (86) is provided to correct the control opening of the valve control means (82) to the closing side.

【0016】また、第4の発明は、上記第3の発明にお
いて、上記開補正部(85)が制御開度を開き側に補正す
ると、弁制御手段(82)の制御に優先して膨張弁(36)
を所定開度まで一旦開ける強制開動手段(84)を備えた
構成としている。
In a fourth aspect of the invention, in the third aspect of the invention, when the opening correction section (85) corrects the control opening to the open side, the expansion valve has priority over the control of the valve control means (82). (36)
Is provided with a forced opening means (84) for temporarily opening the valve to a predetermined opening.

【0017】すなわち、本発明では、膨張弁(36)の制
御開度を実際の実開度になるように補正する。具体的
に、第2の発明では、弁制御手段(82)が膨張弁(36)
を最小開度近傍の小開度に制御している際、冷媒状態に
基づいて弁制御手段(82)の制御開度が膨張弁(36)の
実際の実開度に移行するように補正手段(83)が弁制御
手段(82)の制御開度を補正する。
That is, according to the present invention, the control opening of the expansion valve (36) is corrected to the actual opening. Specifically, in the second invention, the valve control means (82) includes the expansion valve (36).
Is controlled to a small opening degree near the minimum opening degree, the control opening degree of the valve control means (82) shifts to the actual actual opening degree of the expansion valve (36) based on the refrigerant state. (83) corrects the control opening of the valve control means (82).

【0018】第3の発明では、膨張弁(36)の小開度時
に、冷媒回路(20)における圧縮機(30)の冷媒の吸入
過熱度が所定値以上で且つ圧縮機(30)の吸入側の低圧
冷媒圧力が所定値以下の冷媒状態が継続すると、開補正
部(85)が弁制御手段(82)の制御開度を開き側に補正
する。一方、膨張弁(36)の小開度時に、冷媒回路(2
0)における圧縮機(30)の冷媒の吸入過熱度が所定値
以下の冷媒状態が継続すると、閉補正部(86)が弁制御
手段(82)の制御開度を閉じ側に補正する。
According to the third aspect of the invention, when the expansion valve (36) is in a small opening degree, the suction superheat of the refrigerant in the compressor (30) in the refrigerant circuit (20) is equal to or higher than a predetermined value and the suction in the compressor (30). When the low-pressure refrigerant pressure on the side continues to be in the refrigerant state equal to or lower than the predetermined value, the open correction unit (85) corrects the control opening of the valve control means (82) to the open side. On the other hand, when the expansion valve (36) is slightly open, the refrigerant circuit (2
When the state of the refrigerant in which the suction superheat of the refrigerant in the compressor (30) in 0) continues to be equal to or less than a predetermined value, the closing correction unit (86) corrects the control opening of the valve control means (82) to the closing side.

【0019】また、第4の発明では、上記開補正部(8
5)が制御開度を開き側に補正すると、強制開動手段(8
4)が弁制御手段(82)の制御に優先して膨張弁(36)
を所定開度まで一旦開け、異常領域を抜け出る。
In the fourth invention, the open correction unit (8
5) corrects the control opening to the open side, the forced opening means (8
4) has priority over the control of the valve control means (82), and the expansion valve (36)
To a predetermined opening and exit the abnormal area.

【0020】[0020]

【発明の効果】したがって、本発明によれば、制御開度
を膨張弁(36)の実際の実開度に成るように補正するよ
うにしたために、膨張弁(36)の開度のバラツキを考慮
した制御を行うことができる。この結果、膨張弁(36)
の制御の信頼性を向上させることができる。
Therefore, according to the present invention, since the control opening is corrected so as to become the actual actual opening of the expansion valve (36), variations in the opening of the expansion valve (36) are caused. It is possible to perform control in consideration. As a result, expansion valve (36)
The control reliability of can be improved.

【0021】特に、膨張弁(36)の最強開度近傍の制御
を行う際、制御上は小開度に制御しているにも拘わら
ず、大きな開度となって圧縮機(30)が湿り運転になる
ことを確実に防止することができる。逆に、制御上は開
度を大きく制御しているのみ拘わらず、小さな開度とな
って制御が破損することを確実に防止することができ
る。
In particular, when the expansion valve (36) is controlled in the vicinity of the strongest opening, the opening (30) becomes large even though the opening (30) is controlled, and the compressor (30) gets wet. It is possible to reliably prevent driving. On the contrary, it is possible to surely prevent the control from being damaged even if the opening is made small even though the opening is controlled to be large in the control.

【0022】また、上記膨張弁(36)の選別を要しない
ので、製作工程の増加を招くことがなく、且つ歩留まり
の低下を防止することができるので、価格上昇を抑制す
ることができる。
Further, since it is not necessary to select the expansion valve (36), it is possible to prevent an increase in the number of manufacturing steps and prevent a decrease in yield, so that an increase in price can be suppressed.

【0023】また、第4の発明によれば、強制開動手段
(84)を設けているので、制御開度に比して実開度が小
さい場合の異常状態を迅速に脱することができる。この
結果、正常運転の移行を迅速に行うことができる。
Further, according to the fourth aspect of the invention, since the forced opening means (84) is provided, it is possible to quickly get out of the abnormal state when the actual opening is smaller than the control opening. As a result, it is possible to quickly shift to normal operation.

【0024】[0024]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below in detail with reference to the drawings.

【0025】図1に示すように、本実施形態の空調機
(10)は、本発明の冷凍装置を適用したものであり、冷
房運転と暖房運転とに切り換わるように構成されてい
る。
As shown in FIG. 1, the air conditioner (10) of the present embodiment applies the refrigeration system of the present invention and is configured to switch between cooling operation and heating operation.

【0026】上記空調機(10)は、冷媒回路(20)及び
コントローラ(80)を備えている。該冷媒回路(20)
は、室外回路(21)、室内回路(22)、液側連絡管(2
3)及びガス側連絡管(24)を備えている。そして、上
記室外回路(21)は、室外機(11)に設けられ、該室外
機(11)には、室外ファン(12)が設けられている。一
方、上記室内回路(22)は、室内機(13)に設けられ、
該室内機(13)には、室内ファン(14)が設けられてい
る。
The air conditioner (10) includes a refrigerant circuit (20) and a controller (80). The refrigerant circuit (20)
Is the outdoor circuit (21), indoor circuit (22), liquid side connecting pipe (2
3) and a gas side connecting pipe (24). The outdoor circuit (21) is provided in the outdoor unit (11), and the outdoor unit (11) is provided with an outdoor fan (12). On the other hand, the indoor circuit (22) is provided in the indoor unit (13),
An indoor fan (14) is provided in the indoor unit (13).

【0027】上記室外回路(21)は、圧縮機(30)、四
路切換弁(33)、室外熱交換器(34)、レシーバ(35)
及び膨張弁である電動電動膨張弁(36)が設けられると
共に、ブリッジ回路(40)、過冷却回路(50)、液側閉
鎖弁(25)及びガス側閉鎖弁(26)が設けられている。
更に、上記室外回路(21)には、ガス連通管(61)及び
均圧管(63)が接続されている。
The outdoor circuit (21) includes a compressor (30), a four-way switching valve (33), an outdoor heat exchanger (34) and a receiver (35).
And an electric motor-driven expansion valve (36) which is an expansion valve, and a bridge circuit (40), a supercooling circuit (50), a liquid side closing valve (25) and a gas side closing valve (26). .
Further, a gas communication pipe (61) and a pressure equalizing pipe (63) are connected to the outdoor circuit (21).

【0028】上記圧縮機(30)の吐出ポート(32)は、
四路切換弁(33)の第1のポートに接続され、上記四路
切換弁(33)の第2のポートは、室外熱交換器(34)の
一端に接続されている。上記室外熱交換器(34)の他端
は、ブリッジ回路(40)に接続されている。また、上記
ブリッジ回路(40)には、レシーバ(35)と電動電動膨
張弁(36)と液側閉鎖弁(25)とが接続されている。上
記圧縮機(30)の吸入ポート(31)は、四路切換弁(3
3)の第3のポートに接続され、上記四路切換弁(33)
の第4のポートは、ガス側閉鎖弁(26)に接続されてい
る。
The discharge port (32) of the compressor (30) is
It is connected to the first port of the four-way switching valve (33), and the second port of the four-way switching valve (33) is connected to one end of the outdoor heat exchanger (34). The other end of the outdoor heat exchanger (34) is connected to the bridge circuit (40). Further, the bridge circuit (40) is connected to the receiver (35), the electric motor-driven expansion valve (36), and the liquid side closing valve (25). The suction port (31) of the compressor (30) has a four-way switching valve (3
Connected to the 3rd port of 3), the above-mentioned four-way switching valve (33)
Is connected to the gas side shutoff valve (26).

【0029】上記ブリッジ回路(40)は、第1管路(4
1)、第2管路(42)、第3管路(43)及び第4管路(4
4)をブリッジ状に接続して構成されている。該第1〜
第4の各管路(41〜44)には、それぞれ逆止弁(CV-1,
CV-2,CV-3,CV-4)が設けられている。そして、上記第
1管路(41)の出口端が第2管路(42)の出口端に接続
され、第2管路(42)の入口端が第3管路(43)の出口
端に接続され、第3路管(43)の入口端が第4管路(4
4)の入口端に接続され、第4管路(44)の出口端が第
1管路(41)の入口端に接続されている。
The bridge circuit (40) includes a first conduit (4
1), second pipeline (42), third pipeline (43) and fourth pipeline (4
4) is connected in a bridge shape. The first to
The check valves (CV-1,
CV-2, CV-3, CV-4) are provided. The outlet end of the first pipeline (41) is connected to the outlet end of the second pipeline (42), and the inlet end of the second pipeline (42) is located at the outlet end of the third pipeline (43). Connected, and the inlet end of the third conduit (43) is connected to the fourth conduit (4
It is connected to the inlet end of 4) and the outlet end of the fourth pipeline (44) is connected to the inlet end of the first pipeline (41).

【0030】上記室外熱交換器(34)の他端は、ブリッ
ジ回路(40)の第1管路(41)の入口端及び第4管路
(44)の出口端に接続されている。該ブリッジ回路(4
0)における第1管路(41)の出口端及び第2管路(4
2)の出口端は、レシーバ(35)の上端部に接続されて
いる。該レシーバ(35)の下端部は、電動膨張弁(36)
を介してブリッジ回路(40)の第3管路(43)の入口端
及び第4管路(44)の入口端に接続されている。上記ブ
リッジ回路(40)の第2管路(42)の入口端及び第3管
路(43)の出口端は、液側閉鎖弁(25)に接続されてい
る。
The other end of the outdoor heat exchanger (34) is connected to the inlet end of the first conduit (41) and the outlet end of the fourth conduit (44) of the bridge circuit (40). The bridge circuit (4
0) and the outlet end of the first pipeline (41) and the second pipeline (4)
The outlet end of 2) is connected to the upper end of the receiver (35). The lower end of the receiver (35) has an electric expansion valve (36).
Is connected to the inlet end of the third pipeline (43) and the inlet end of the fourth pipeline (44) of the bridge circuit (40). The inlet end of the second conduit (42) and the outlet end of the third conduit (43) of the bridge circuit (40) are connected to the liquid side closing valve (25).

【0031】上記室内回路(22)には、室内熱交換器
(37)が設けられている。該室内回路(22)の一端は、
液側連絡管(23)を介して液側閉鎖弁(25)に接続され
ている。室内回路(22)の他端は、ガス側連絡管(24)
を介してガス側閉鎖弁(26)に接続されている。
An indoor heat exchanger (37) is provided in the indoor circuit (22). One end of the indoor circuit (22) is
It is connected to the liquid side closing valve (25) through the liquid side communication pipe (23). The other end of the indoor circuit (22) is connected to the gas side communication pipe (24).
It is connected to the gas side closing valve (26) via.

【0032】上記過冷却回路(50)の一端は、レシーバ
(35)の下端と電動膨張弁(36)の間に接続され、他端
は、圧縮機(30)の吸入ポート(31)に接続されてい
る。該過冷却回路(50)には、その一端から他端に向か
って順に、第1電磁弁(51)と、温度自動膨張弁(52)
と、過冷却熱交換器(54)とが設けられている。上記過
冷却熱交換器(54)は、レシーバ(35)から電動膨張弁
(36)へ向けて流れる冷媒と過冷却回路(50)を流れる
冷媒とを熱交換させるように構成されている。上記温度
自動膨張弁(52)の感温筒(53)は、過冷却回路(50)
における過冷却熱交換器(54)の下流部に取り付けられ
ている。
One end of the supercooling circuit (50) is connected between the lower end of the receiver (35) and the electric expansion valve (36), and the other end is connected to the suction port (31) of the compressor (30). Has been done. The supercooling circuit (50) includes a first electromagnetic valve (51) and a temperature automatic expansion valve (52) in this order from one end to the other end.
And a subcooling heat exchanger (54). The subcooling heat exchanger (54) is configured to exchange heat between the refrigerant flowing from the receiver (35) toward the electric expansion valve (36) and the refrigerant flowing through the subcooling circuit (50). The temperature sensing cylinder (53) of the temperature automatic expansion valve (52) is a supercooling circuit (50).
Is attached to the downstream portion of the subcooling heat exchanger (54).

【0033】上記ガス連通管(61)の一端は、レシーバ
(35)の上端部に接続され、他端は、電動膨張弁(36)
とブリッジ回路(40)の間に接続されている。該ガス連
通管(61)の途中には、第2電磁弁(62)が設けられて
いる。
One end of the gas communication pipe (61) is connected to the upper end of the receiver (35), and the other end is the electric expansion valve (36).
And bridge circuit (40). A second solenoid valve (62) is provided in the middle of the gas communication pipe (61).

【0034】上記均圧管(63)の一端は、ガス連通管
(61)における第2電磁弁(62)とレシーバ(35)の間
に接続され、他端は、室外回路(21)における圧縮機
(30)の吐出ポート(32)と四路切換弁(33)の間に接
続されている。該均圧管(63)には、均圧用逆止弁(5
3)が設けられている。
One end of the pressure equalizing pipe (63) is connected between the second electromagnetic valve (62) and the receiver (35) in the gas communication pipe (61), and the other end is connected to the compressor in the outdoor circuit (21). It is connected between the discharge port (32) of (30) and the four-way switching valve (33). The pressure equalizing check valve (5
3) is provided.

【0035】上記圧縮機(30)は、密閉型の高圧ドーム
型スクロール圧縮機で構成されている。該圧縮機(30)
は、吸入ポート(31)から吸い込まれた冷媒が圧縮機構
へ直接導入され、圧縮された冷媒が一旦ハウジング内に
吐出された後に吐出ポート(32)から送り出される。
The compressor (30) is a hermetically sealed high-pressure dome scroll compressor. The compressor (30)
The refrigerant sucked from the suction port (31) is directly introduced into the compression mechanism, and the compressed refrigerant is once discharged into the housing and then discharged from the discharge port (32).

【0036】上記圧縮機(30)の電動機には、図外のイ
ンバータを通じて電力が供給される。このインバータの
出力周波数を変更すると、圧縮機容量が変化する。つま
り、上記圧縮機(30)は、容量が可変に構成されてい
る。
Electric power is supplied to the electric motor of the compressor (30) through an inverter (not shown). When the output frequency of this inverter is changed, the compressor capacity changes. That is, the compressor (30) has a variable capacity.

【0037】上記室外熱交換器(34)は、クロスフィン
式のフィン・アンド・チューブ型熱交換器により構成さ
れている。この室外熱交換器(34)は、互いに直列接続
された2つの部分から構成されている。室外熱交換器
(34)には、室外ファン(12)によって室外空気が供給
される。
The outdoor heat exchanger (34) is a cross-fin type fin-and-tube heat exchanger. The outdoor heat exchanger (34) is composed of two parts connected in series with each other. Outdoor air is supplied to the outdoor heat exchanger (34) by the outdoor fan (12).

【0038】上記室内熱交換器(37)は、クロスフィン
式のフィン・アンド・チューブ型熱交換器により構成さ
れている。この室内熱交換器(37)には、室内ファン
(14)によって室内空気が供給される。
The indoor heat exchanger (37) is composed of a cross-fin type fin-and-tube heat exchanger. Indoor air is supplied to the indoor heat exchanger (37) by an indoor fan (14).

【0039】上記四路切換弁(33)は、第1のポートと
第2のポートが連通し且つ第3のポートと第4のポート
が連通する状態(図1に実線で示す状態)と、第1のポ
ートと第4のポートが連通し且つ第2のポートと第3の
ポートが連通する状態(図1に破線で示す状態)とに切
り換わる。この四路切換弁(33)の切換動作によって、
冷媒回路(20)における冷媒の循環方向が反転する。
The four-way switching valve (33) has a state in which the first port and the second port communicate with each other and the third port and the fourth port communicate with each other (state shown by a solid line in FIG. 1), The state is switched to a state in which the first port and the fourth port communicate with each other and the second port and the third port communicate with each other (a state indicated by a broken line in FIG. 1). By the switching operation of this four-way switching valve (33),
The circulation direction of the refrigerant in the refrigerant circuit (20) is reversed.

【0040】上記空調機(10)には、圧力センサや温度
センサが設けられている。これらセンサの検出値は、上
記コントローラ(80)に入力されて空調機(10)の運転
制御に用いられる。
The air conditioner (10) is provided with a pressure sensor and a temperature sensor. The detection values of these sensors are input to the controller (80) and used for operation control of the air conditioner (10).

【0041】具体的に、上記圧縮機(30)の吸入ポート
(31)に接続する配管には、圧縮機(30)の吸入側の低
圧冷媒圧力を検出するための低圧検出手段である低圧圧
力センサ(71)と、圧縮機(30)の吸入冷媒温度を検出
するための吸入管温度センサ(77)とが設けられてい
る。上記圧縮機(30)の吐出ポート(32)に接続する配
管には、圧縮機(30)の吐出冷媒温度を検出するための
吐出管温度センサ(74)が設けられている。
Specifically, the pipe connected to the suction port (31) of the compressor (30) has a low pressure detecting means for detecting the low pressure refrigerant pressure on the suction side of the compressor (30). A sensor (71) and a suction pipe temperature sensor (77) for detecting the suction refrigerant temperature of the compressor (30) are provided. The pipe connected to the discharge port (32) of the compressor (30) is provided with a discharge pipe temperature sensor (74) for detecting the discharge refrigerant temperature of the compressor (30).

【0042】上記室外機(11)には、室外空気の温度を
検出するための外気温センサ(72)が設けられている。
上記室外熱交換器(34)には、その伝熱管温度を検出す
るための室外熱交換器温度センサ(73)が設けられてい
る。
The outdoor unit (11) is provided with an outdoor air temperature sensor (72) for detecting the temperature of outdoor air.
The outdoor heat exchanger (34) is provided with an outdoor heat exchanger temperature sensor (73) for detecting the temperature of the heat transfer tube.

【0043】上記室内機(13)には、室内熱交換器(3
7)へ送られる室内空気の温度を検出するための内気温
センサ(75)が設けられている。上記室内熱交換器(3
7)には、その伝熱管温度を検出するための室内熱交換
器温度センサ(76)が設けられている。
The indoor unit (13) includes an indoor heat exchanger (3
An inside air temperature sensor (75) is provided to detect the temperature of the indoor air sent to (7). Indoor heat exchanger (3
The indoor heat exchanger temperature sensor (76) for detecting the heat transfer tube temperature is provided in 7).

【0044】上記コントローラ(80)は、インバータの
出力周波数を変更して圧縮機(30)の容量を制御する一
方、過熱度検出手段(81)と弁制御手段(82)と補正手
段(83)と強制開動手段(84)とをを備えている。
The controller (80) controls the capacity of the compressor (30) by changing the output frequency of the inverter, while the superheat detection means (81), the valve control means (82) and the correction means (83). And a forced opening means (84).

【0045】上記過熱度検出手段(81)は、低圧圧力セ
ンサ(71)が検出する低圧冷媒圧力に基づく低圧圧力相
当飽和温度と、吸入管温度センサ(77)が検出する圧縮
機(30)の吸入冷媒温度とに基づき圧縮機(30)の冷媒
の吸入過熱度を導出するように構成されている。
The superheat degree detecting means (81) detects the low pressure equivalent saturation temperature based on the low pressure refrigerant pressure detected by the low pressure sensor (71) and the compressor (30) detected by the suction pipe temperature sensor (77). The suction superheat degree of the refrigerant of the compressor (30) is derived based on the suction refrigerant temperature.

【0046】上記弁制御手段(82)は、過熱度検出手段
(81)が導出した吸入過熱度が所定値、例えば、5℃に
なるように電動膨張弁(36)の開度を制御している。
The valve control means (82) controls the opening degree of the electric expansion valve (36) so that the intake superheat degree derived by the superheat detection means (81) becomes a predetermined value, for example, 5 ° C. There is.

【0047】上記補正手段(83)は、弁制御手段(82)
が電動膨張弁(36)を最小開度近傍の小開度に制御して
いるときに、該制御時の冷媒状態に基づいて上記弁制御
手段(82)の制御開度が電動膨張弁(36)の実際の実開
度に移行するように該弁制御手段(82)の制御開度を補
正する。例えば、上記補正手段(83)は、開補正部(8
5)と閉補正部(86)とを備えている。
The correction means (83) is a valve control means (82).
Is controlling the electric expansion valve (36) to a small opening degree near the minimum opening degree, the control opening degree of the valve control means (82) is changed to the electric expansion valve (36) based on the refrigerant state at the time of the control. ) The control opening of the valve control means (82) is corrected so as to shift to the actual opening. For example, the correction means (83) includes an open correction unit (8
5) and a closing correction unit (86).

【0048】上記開補正部(85)は、電動膨張弁(36)
の小開度時に、過熱度検出手段(81)が導出した吸入過
熱度が所定値以上で且つ低圧圧力センサ(71)が検出す
る低圧冷媒圧力が所定値以下の冷媒状態が継続すると、
弁制御手段(82)の制御開度を開き側に補正するように
構成されている。具体的に、吸入過熱度が5℃より大き
く(SH>5℃)、且つ低圧冷媒圧力が3Pa未満(Pe
<3Pa)の状態が2分継続すると、開補正部(85)は、
制御開度を1パルス大きくする。尚、制御開度は、例え
ば、電動膨張弁(36)が完全に閉鎖されている状態を0
パルスとし、全開状態を480パルスとして設定されて
いる。
The open correction section (85) includes an electric expansion valve (36).
When the opening degree is small, if the suction superheat degree derived by the superheat detection means (81) is equal to or higher than a predetermined value and the low pressure refrigerant pressure detected by the low pressure sensor (71) is equal to or lower than the predetermined value,
It is configured to correct the control opening of the valve control means (82) to the open side. Specifically, the suction superheat is higher than 5 ° C (SH> 5 ° C) and the low-pressure refrigerant pressure is lower than 3 Pa (Pe
When the state of <3 Pa) continues for 2 minutes, the open correction unit (85)
Increase the control opening by one pulse. The control opening is, for example, 0 when the electric expansion valve (36) is completely closed.
The pulse is set as a pulse, and the fully open state is set as 480 pulses.

【0049】上記閉補正部(86)は、電動膨張弁(36)
の小開度時に吸入過熱度が所定値以下の冷媒状態が継続
すると、弁制御手段(82)の制御開度を閉じ側に補正す
るように構成されている。具体的に、吸入過熱度が2℃
未満(SH<2℃)の状態が2分継続すると、閉補正部
(86)は、制御開度を1パルス小さくする。
The closing correction section (86) includes an electric expansion valve (36).
When the refrigerant state in which the intake superheat degree is equal to or less than the predetermined value continues at a small opening degree, the control opening degree of the valve control means (82) is corrected to the closing side. Specifically, inhalation superheat is 2 ℃
When the state of less than (SH <2 ° C.) continues for 2 minutes, the closing correction unit (86) reduces the control opening by one pulse.

【0050】上記強制開動手段(84)は、開補正部(8
5)が制御開度を開き側に補正すると、弁制御手段(8
2)の制御に優先して電動膨張弁(36)を所定開度まで
一旦開けるように構成されている。具体的に、上記強制
開動手段(84)は、電動膨張弁(36)を一旦20パルス
大きく開ける。その後、上記弁制御手段(82)の開度制
御に戻る。
The forced opening means (84) is provided with an opening correction section (8
5) corrects the control opening to the open side, valve control means (8
The electric expansion valve (36) is configured to be once opened to a predetermined opening in priority to the control of 2). Specifically, the forced opening means (84) once widens the electric expansion valve (36) by 20 pulses. After that, the process returns to the opening control of the valve control means (82).

【0051】〈作用〉次に、上述した空調機(10)の運
転動作について説明する。この空調機(10)は、冷却動
作による冷房運転と、ヒートポンプ動作による暖房運転
とを切り換えて行う。
<Operation> Next, the operation of the air conditioner (10) described above will be described. The air conditioner (10) switches between cooling operation by cooling operation and heating operation by heat pump operation.

【0052】−冷房運転−冷房運転時には、四路切換弁
(33)が図1に実線で示す状態に切り換えられると共
に、電動膨張弁(36)が所定開度に調節され、第1電磁
弁(51)が開放され、第2電磁弁(62)が閉鎖される。
-Cooling operation-During the cooling operation, the four-way switching valve (33) is switched to the state shown by the solid line in FIG. 1, the electric expansion valve (36) is adjusted to a predetermined opening, and the first solenoid valve ( 51) is opened and the second solenoid valve (62) is closed.

【0053】圧縮機(30)から吐出された冷媒は、四路
切換弁(33)を通り、室外熱交換器(34)で凝縮する。
凝縮した高圧液冷媒は、ブリッジ回路(40)の第1管路
(41)及びレシーバ(35)を流れ、高圧液冷媒の一部が
過冷却回路(50)に流入し、残りが過冷却熱交換器(5
4)に流入する。
The refrigerant discharged from the compressor (30) passes through the four-way switching valve (33) and is condensed in the outdoor heat exchanger (34).
The condensed high-pressure liquid refrigerant flows through the first pipe line (41) and the receiver (35) of the bridge circuit (40), a part of the high-pressure liquid refrigerant flows into the supercooling circuit (50), and the rest is the supercooling heat. Exchanger (5
Inflow into 4).

【0054】上記過冷却回路(50)の冷媒は、温度自動
膨張弁(52)で減圧されて過冷却熱交換器(54)へ流入
する。該過冷却熱交換器(54)において、温度自動膨張
弁(52)からの低圧冷媒が蒸発して高圧液冷媒が冷却さ
れる。この低圧冷媒は、過冷却回路(50)を流れて圧縮
機(30)に戻る一方、高圧液冷媒は、電動膨張弁(36)
に流れて減圧される。この減圧された低圧冷媒は、ブリ
ッジ回路(40)の第3管路(43)及び液側連絡管(23)
を通って室内熱交換器(37)に流れる。
The refrigerant in the subcooling circuit (50) is decompressed by the temperature automatic expansion valve (52) and flows into the subcooling heat exchanger (54). In the supercooling heat exchanger (54), the low pressure refrigerant from the automatic temperature expansion valve (52) is evaporated and the high pressure liquid refrigerant is cooled. This low-pressure refrigerant flows through the subcooling circuit (50) and returns to the compressor (30), while the high-pressure liquid refrigerant is fed by the electric expansion valve (36).
Then, the pressure is reduced. This depressurized low-pressure refrigerant is used for the third conduit (43) of the bridge circuit (40) and the liquid side communication pipe (23).
Through to the indoor heat exchanger (37).

【0055】上記低圧冷媒は、室内熱交換器(37)で蒸
発して室内空気が冷却され、低温の調和空気が室内へ供
給されて冷房に利用される。室内熱交換器(37)で蒸発
した冷媒は、ガス側連絡管(24)及び四路切換弁(33)
を流れて圧縮機(30)に戻る。以上のように冷媒が循環
して冷却動作が行われる。
The low-pressure refrigerant is evaporated in the indoor heat exchanger (37) to cool the indoor air, and low-temperature conditioned air is supplied into the room for cooling. The refrigerant evaporated in the indoor heat exchanger (37) is connected to the gas side communication pipe (24) and the four-way switching valve (33).
Flow back to the compressor (30). As described above, the cooling medium is circulated to perform the cooling operation.

【0056】−暖房運転− 暖房運転時には、四路切換弁(33)が図1に破線で示す
状態に切り換えられると共に、電動膨張弁(36)が所定
開度に調節され、第1電磁弁(51)及び第2電磁弁(6
2)が閉鎖されている。
-Heating operation-During heating operation, the four-way switching valve (33) is switched to the state shown by the broken line in FIG. 1, the electric expansion valve (36) is adjusted to a predetermined opening, and the first solenoid valve ( 51) and second solenoid valve (6
2) is closed.

【0057】上記圧縮機(30)から吐出された冷媒は、
四路切換弁(33)からガス側連絡管(24)を通って室内
熱交換器(37)へ送られる。室内熱交換器(37)では、
冷媒が凝縮して室内空気が加熱され、暖かい調和空気が
室内へ供給されて暖房に利用される。
The refrigerant discharged from the compressor (30) is
It is sent from the four-way switching valve (33) to the indoor heat exchanger (37) through the gas side communication pipe (24). In the indoor heat exchanger (37),
The refrigerant is condensed to heat the indoor air, and warm conditioned air is supplied to the room and used for heating.

【0058】室内熱交換器(37)で凝縮した冷媒は、液
側連絡管(23)とブリッジ回路(40)の第2管路(42)
とレシーバ(35)とを流れ、電動膨張弁(36)で減圧さ
れた後、ブリッジ回路(40)の第4管路(44)を通って
室外熱交換器(34)に流れて蒸発する。この蒸発した冷
媒は、四路切換弁(33)を流れて圧縮機(30)に戻る。
以上のように冷媒が循環してヒートポンプ動作が行われ
る。
The refrigerant condensed in the indoor heat exchanger (37) is supplied to the liquid side communication pipe (23) and the second pipe line (42) of the bridge circuit (40).
And the receiver (35), and after being decompressed by the electric expansion valve (36), they flow through the fourth pipe line (44) of the bridge circuit (40) to the outdoor heat exchanger (34) to be evaporated. The evaporated refrigerant flows through the four-way switching valve (33) and returns to the compressor (30).
As described above, the refrigerant circulates to perform the heat pump operation.

【0059】−電動膨張弁(36)の制御動作− 上述した冷房運転時及び暖房運転時において、弁制御手
段(82)は、過熱度検出手段(81)が導出した吸入過熱
度が所定値、例えば、5℃になるように電動膨張弁(3
6)の開度を制御している。
-Control operation of the electric expansion valve (36) -During the above-described cooling operation and heating operation, the valve control means (82) determines that the intake superheat degree derived by the superheat detection means (81) is a predetermined value, For example, the electric expansion valve (3
The opening of 6) is controlled.

【0060】そして、上記弁制御手段(82)が電動膨張
弁(36)を最小開度近傍の小開度に制御しているとき
に、冷媒状態に基づいて補正手段(83)が弁制御手段
(82)の制御開度を補正する。例えば、制御開度は、電
動膨張弁(36)が完全に閉鎖されている状態を0パルス
とし、全開状態を480パルスとし、最小開度を32パ
ルスに設定されているとする。
When the valve control means (82) controls the electric expansion valve (36) to a small opening degree near the minimum opening degree, the correction means (83) causes the valve control means based on the refrigerant state. Correct the control opening of (82). For example, the control opening is set to 0 pulse when the electric expansion valve (36) is completely closed, 480 pulses when it is fully opened, and 32 pulses is set to the minimum opening.

【0061】上記弁制御手段(82)が電動膨張弁(36)
を32パルスの近傍で制御している際、吸入過熱度が5
℃より大きく(SH>5℃)、且つ低圧冷媒圧力が3Pa
未満(Pe<3Pa)の状態が2分継続すると、開補正部
(85)は、制御開度を1パルス大きくする。
The valve control means (82) is an electric expansion valve (36).
Is controlled near 32 pulses, the intake superheat is 5
Greater than ℃ (SH> 5 ℃) and low pressure refrigerant pressure is 3Pa
When the state of less than (Pe <3Pa) continues for 2 minutes, the open correction unit (85) increases the control opening by one pulse.

【0062】つまり、上記電動膨張弁(36)の開度は、
図2の特性線B及びCの範囲内でバラツキがある。そこ
で、例えば、図3に示すように、現在、特性線Aを制御
開度として電動膨張弁(36)を制御しているとする。こ
の特性線Aのa点の開度に電動膨張弁(36)を制御して
いる状態において、吸入過熱度が5℃より大きく(SH
>5℃)、且つ低圧冷媒圧力が3Pa未満(Pe<3Pa)
の状態が2分継続すると、制御上は電動膨張弁(36)が
小開度で開いて冷媒が流れている状態であるにも拘わら
ず、実際は電動膨張弁(36)がより小開度で冷媒がほぼ
流れていない状態である。この場合、制御開度がb点に
移行するように開補正部(85)が制御開度を1パルス大
きくする。
That is, the opening degree of the electric expansion valve (36) is
There are variations within the range of the characteristic lines B and C in FIG. Therefore, for example, as shown in FIG. 3, it is assumed that the electric expansion valve (36) is currently controlled with the characteristic line A as the control opening. In the state where the electric expansion valve (36) is controlled to the opening of point a of the characteristic line A, the intake superheat degree is larger than 5 ° C (SH
> 5 ° C) and low pressure refrigerant pressure is less than 3Pa (Pe <3Pa)
If the state of is continued for 2 minutes, the electric expansion valve (36) is actually opened with a small opening and the refrigerant is flowing with the control, but the electric expansion valve (36) is actually opened with a smaller opening. The refrigerant is almost not flowing. In this case, the opening correction unit (85) increases the control opening by one pulse so that the control opening moves to point b.

【0063】その後、上記補正手段(83)の開補正部
(85)が制御開度を開き側に補正すると、上記強制開動
手段(84)は、弁制御手段(82)の制御に優先して電動
膨張弁(36)を所定開度まで一旦開け、例えば、電動膨
張弁(36)を一旦20パルス大きく開け、現状の異常領
域を迅速に抜け出る。その後、上記弁制御手段(82)の
開度制御に戻る。この動作を繰り返して、例えば、上記
制御開度が図3の特性線Bになるように補正する。
After that, when the opening correction section (85) of the correction means (83) corrects the control opening to the open side, the forced opening means (84) has priority over the control of the valve control means (82). The electric expansion valve (36) is once opened to a predetermined opening, for example, the electric expansion valve (36) is once opened by 20 pulses, and the current abnormal region is quickly exited. After that, the process returns to the opening control of the valve control means (82). By repeating this operation, for example, the control opening is corrected so as to become the characteristic line B in FIG.

【0064】一方、上記弁制御手段(82)が電動膨張弁
(36)を32パルスの近傍で制御している際、吸入過熱
度が2℃未満(SH<2℃)の状態が2分継続すると、
閉補正部(86)は、制御開度を1パルス小さくする。
On the other hand, when the valve control means (82) controls the electric expansion valve (36) in the vicinity of 32 pulses, the state where the intake superheat degree is less than 2 ° C. (SH <2 ° C.) continues for 2 minutes. Then,
The close correction unit (86) reduces the control opening by one pulse.

【0065】つまり、例えば、図4に示すように、現
在、特性線Aを制御開度として電動膨張弁(36)を制御
しているとする。この特性線Aのc点の開度に電動膨張
弁(36)を制御している状態において、吸入過熱度が2
℃未満(SH<2℃)の状態が2分継続すると、制御上
は電動膨張弁(36)が全閉となって冷媒が流れていない
状態であるにも拘わらず、実際は電動膨張弁(36)が小
開度で開いて冷媒が流れている場合である。この場合、
制御開度がd点に移行するように閉補正部(86)が制御
開度を1パルス小さくする。その後、上記弁制御手段
(82)の開度制御に戻る。この動作を繰り返して、例え
ば、上記制御開度が図4の特性線Cになるように補正す
る。
That is, for example, as shown in FIG. 4, the electric expansion valve (36) is currently controlled with the characteristic line A as the control opening. When the electric expansion valve (36) is controlled to the opening at point c of the characteristic line A, the intake superheat degree is 2
When the temperature below ℃ (SH <2 ℃) continues for 2 minutes, the electric expansion valve (36) is actually closed and no refrigerant flows, but the electric expansion valve (36) is actually closed. ) Is opened with a small opening and the refrigerant is flowing. in this case,
The closing correction unit (86) reduces the control opening by one pulse so that the control opening moves to point d. After that, the process returns to the opening control of the valve control means (82). By repeating this operation, for example, the control opening is corrected so as to become the characteristic line C in FIG.

【0066】〈実施形態の効果〉以上のように、本実施
形態によれば、制御開度を電動膨張弁(36)の実際の実
開度に成るように補正するようにしたために、電動膨張
弁(36)の開度のバラツキを考慮した制御を行うことが
できる。この結果、電動膨張弁(36)の制御の信頼性を
向上させることができる。
<Effects of Embodiment> As described above, according to this embodiment, the control opening is corrected to the actual opening of the electric expansion valve (36). Control can be performed in consideration of variations in the opening of the valve (36). As a result, the reliability of control of the electric expansion valve (36) can be improved.

【0067】特に、電動膨張弁(36)の最強開度近傍の
制御を行う際、制御上は小開度に制御しているにも拘わ
らず、大きな開度となって圧縮機(30)が湿り運転にな
ることを確実に防止することができる。逆に、制御上は
開度を大きく制御しているのみ拘わらず、小さな開度と
なって制御が破損することを確実に防止することができ
る。
In particular, when performing control in the vicinity of the strongest opening of the electric expansion valve (36), even though the opening is controlled to be small in control, the opening becomes large and the compressor (30) is opened. It is possible to reliably prevent wet operation. On the contrary, it is possible to surely prevent the control from being damaged even if the opening is made small even though the opening is controlled to be large in the control.

【0068】また、上記電動膨張弁(36)の選別を要し
ないので、製作工程の増加を招くことがなく、且つ歩留
まりの低下を防止することができるので、価格上昇を抑
制することができる。
Further, since the selection of the electric expansion valve (36) is not required, the manufacturing process is not increased and the yield can be prevented from decreasing, so that the price increase can be suppressed.

【0069】また、上記強制開動手段(84)を設けてい
るので、制御開度に比して実開度が小さい場合の異常状
態を迅速に脱することができる。この結果、正常運転の
移行を迅速に行うことができる。
Further, since the forced opening means (84) is provided, the abnormal state when the actual opening is smaller than the control opening can be quickly eliminated. As a result, it is possible to quickly shift to normal operation.

【0070】[0070]

【発明の他の実施の形態】上記実施形態においては、冷
暖房運転可能な空調機(10)について説明したが、本発
明は、冷房専用機や暖房専用機であってもよい。
Other Embodiments of the Invention Although the air conditioner (10) capable of cooling and heating operation has been described in the above embodiment, the present invention may be a cooling only machine or a heating only machine.

【0071】また、上記冷媒回路(20)は、実施形態に
限定されるものではない。
The refrigerant circuit (20) is not limited to the embodiment.

【0072】また、上記補正手段(83)は、開補正部
(85)と閉補正部(86)とを備えるようにしたが、本発
明では、補正手段(83)に代えて、開補正部(85)と閉
補正部(86)とを設けるようにしてもよい。
Further, the correction means (83) has the open correction portion (85) and the close correction portion (86), but in the present invention, the open correction portion is used instead of the correction means (83). (85) and the closing correction section (86) may be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram showing an embodiment of the present invention.

【図2】本発明の実施形態の電動膨張弁の開度と流量と
の関係を示す電動膨張弁の特性図である。
FIG. 2 is a characteristic diagram of the electric expansion valve showing the relationship between the opening degree and the flow rate of the electric expansion valve according to the embodiment of the present invention.

【図3】制御開度が実開度より小さい場合の電動膨張弁
の特性図である。
FIG. 3 is a characteristic diagram of the electric expansion valve when the control opening is smaller than the actual opening.

【図4】制御開度が実開度より大きい場合の電動膨張弁
の特性図である。
FIG. 4 is a characteristic diagram of the electric expansion valve when the control opening is larger than the actual opening.

【符号の説明】[Explanation of symbols]

20 冷媒回路 30 圧縮機 34 室外熱交換器 36 電動膨張弁(膨張弁) 37 室内熱交換器 81 過熱度検出手段 82 弁制御手段 83 補正手段 84 強制開度手段 85 開補正部 86 閉補正部 20 Refrigerant circuit 30 compressor 34 Outdoor heat exchanger 36 Electric expansion valve (expansion valve) 37 Indoor heat exchanger 81 Superheat detection means 82 valve control means 83 Correction means 84 Forced opening means 85 Open compensation section 86 Closure correction section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 開度調整自在な膨張弁(36)を有し、蒸
気圧縮式冷凍サイクルを行う冷媒回路(20)を備えた冷
凍装置において、 上記膨張弁(36)の制御開度が該膨張弁(36)の実際の
実開度になるように制御開度を補正することを特徴とす
る冷凍装置。
1. A refrigerating apparatus having an expansion valve (36) whose opening can be adjusted and having a refrigerant circuit (20) for performing a vapor compression refrigeration cycle, wherein the control opening of the expansion valve (36) is A refrigeration system characterized in that the control opening is corrected so that the actual opening of the expansion valve (36) is reached.
【請求項2】 開度調整自在な膨張弁(36)を有し、蒸
気圧縮式冷凍サイクルを行う冷媒回路(20)を備えた冷
凍装置において、 上記膨張弁(36)の開度を制御する弁制御手段(82)
と、 該弁制御手段(82)が膨張弁(36)を最小開度近傍の小
開度に制御しているときに、該制御時の冷媒状態に基づ
いて上記弁制御手段(82)の制御開度が膨張弁(36)の
実際の実開度に移行するように該弁制御手段(82)の制
御開度を補正する補正手段(83)とを備えていることを
特徴とする冷凍装置。
2. A refrigeration system having an expansion valve (36) whose opening degree is adjustable and having a refrigerant circuit (20) for performing a vapor compression refrigeration cycle, wherein the opening degree of the expansion valve (36) is controlled. Valve control means (82)
And, when the valve control means (82) controls the expansion valve (36) to a small opening degree near the minimum opening degree, the control of the valve control means (82) based on the refrigerant state at the time of the control. A refrigeration system comprising: a correction means (83) for correcting the control opening degree of the valve control means (82) so that the opening degree shifts to the actual actual opening degree of the expansion valve (36). .
【請求項3】 開度調整自在な膨張弁(36)を有し、蒸
気圧縮式冷凍サイクルを行う冷媒回路(20)を備えた冷
凍装置において、 上記膨張弁(36)の開度を制御する弁制御手段(82)
と、 該弁制御手段(82)が膨張弁(36)を最小開度近傍の小
開度に制御しているときに、冷媒回路(20)における圧
縮機(30)の冷媒の吸入過熱度が所定値以上で且つ圧縮
機(30)の吸入側の低圧冷媒圧力が所定値以下の冷媒状
態が継続すると、弁制御手段(82)の制御開度を開き側
に補正する開補正部(85)と、 上記弁制御手段(82)が膨張弁(36)を最小開度近傍の
小開度に制御しているときに、冷媒回路(20)における
圧縮機(30)の冷媒の吸入過熱度が所定値以下の冷媒状
態が継続すると、弁制御手段(82)の制御開度を閉じ側
に補正する閉補正部(86)とを備えていることを特徴と
する冷凍装置。
3. A refrigeration system having an expansion valve (36) whose opening degree is adjustable and having a refrigerant circuit (20) for performing a vapor compression refrigeration cycle, wherein the opening degree of the expansion valve (36) is controlled. Valve control means (82)
When the valve control means (82) controls the expansion valve (36) to a small opening degree near the minimum opening degree, the suction superheat degree of the refrigerant of the compressor (30) in the refrigerant circuit (20) is increased. When the low-pressure refrigerant pressure on the suction side of the compressor (30) is equal to or higher than a predetermined value and the refrigerant state continues to be equal to or lower than the predetermined value, an open correction unit (85) that corrects the control opening of the valve control means (82) to the open side. When the valve control means (82) controls the expansion valve (36) to a small opening degree near the minimum opening degree, the suction superheat degree of the refrigerant of the compressor (30) in the refrigerant circuit (20) is increased. A refrigeration apparatus comprising: a closing correction unit (86) that corrects the control opening of the valve control means (82) to the closing side when the refrigerant state below a predetermined value continues.
【請求項4】 請求項3において、 上記開補正部(85)が制御開度を開き側に補正すると、
弁制御手段(82)の制御に優先して膨張弁(36)を所定
開度まで一旦開ける強制開動手段(84)を備えているこ
とを特徴とする冷凍装置。
4. The opening correction section (85) according to claim 3, wherein the control opening is corrected to the opening side,
A refrigeration system comprising a forced opening means (84) for temporarily opening the expansion valve (36) to a predetermined opening degree, prior to the control of the valve control means (82).
JP2001299375A 2001-09-28 2001-09-28 Refrigeration equipment Expired - Fee Related JP3719181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001299375A JP3719181B2 (en) 2001-09-28 2001-09-28 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001299375A JP3719181B2 (en) 2001-09-28 2001-09-28 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003106609A true JP2003106609A (en) 2003-04-09
JP3719181B2 JP3719181B2 (en) 2005-11-24

Family

ID=19120138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001299375A Expired - Fee Related JP3719181B2 (en) 2001-09-28 2001-09-28 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3719181B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006126543A1 (en) * 2005-05-24 2006-11-30 Daikin Industries, Ltd. Air conditioning system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2009133623A (en) * 2009-03-23 2009-06-18 Daikin Ind Ltd Refrigerating device
JP2010175204A (en) * 2009-01-30 2010-08-12 Fujitsu General Ltd Refrigeration air conditioner
US7857235B2 (en) 2005-05-24 2010-12-28 Daikin Industries, Ltd. Air conditioning system
US7926297B2 (en) 2005-05-24 2011-04-19 Daikin Industries, Ltd. Air conditioning system
WO2012043526A1 (en) 2010-09-30 2012-04-05 ダイキン工業株式会社 Controller and air-conditioning processing system
WO2016148080A1 (en) * 2015-03-17 2016-09-22 ヤンマー株式会社 Heat pump
CN107284193A (en) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 Air-conditioning system, the control system of the air-conditioning system and control method
JP2018071935A (en) * 2016-11-02 2018-05-10 ダイキン工業株式会社 Heat source unit of refrigeration device
US20220221208A1 (en) * 2019-09-30 2022-07-14 Daikin Industries, Ltd. Heat source unit and refrigeration apparatus

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887289A4 (en) * 2005-05-24 2014-05-07 Daikin Ind Ltd Air conditioning system
JP2006329472A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
EP1887289A1 (en) * 2005-05-24 2008-02-13 Daikin Industries, Ltd. Air conditioning system
AU2006250477B2 (en) * 2005-05-24 2009-09-03 Daikin Industries, Ltd. Air conditioning system
US7757961B2 (en) 2005-05-24 2010-07-20 Daikin Industries, Ltd. Air conditioning system
US7857235B2 (en) 2005-05-24 2010-12-28 Daikin Industries, Ltd. Air conditioning system
US7926297B2 (en) 2005-05-24 2011-04-19 Daikin Industries, Ltd. Air conditioning system
WO2006126543A1 (en) * 2005-05-24 2006-11-30 Daikin Industries, Ltd. Air conditioning system
JP2009068744A (en) * 2007-09-12 2009-04-02 Mitsubishi Heavy Ind Ltd Valve opening pulse setting method for electric expansion valve and multiple air conditioner
JP2010175204A (en) * 2009-01-30 2010-08-12 Fujitsu General Ltd Refrigeration air conditioner
JP2009133623A (en) * 2009-03-23 2009-06-18 Daikin Ind Ltd Refrigerating device
US9677780B2 (en) 2010-09-30 2017-06-13 Daikin Industries, Ltd. Controller and air conditioning processing system
WO2012043526A1 (en) 2010-09-30 2012-04-05 ダイキン工業株式会社 Controller and air-conditioning processing system
CN109073287A (en) * 2015-03-17 2018-12-21 洋马株式会社 heat pump
WO2016148080A1 (en) * 2015-03-17 2016-09-22 ヤンマー株式会社 Heat pump
CN109073287B (en) * 2015-03-17 2020-08-04 洋马动力科技有限公司 Heat pump
US20180080690A1 (en) * 2015-03-17 2018-03-22 Yanmar Co., Ltd. Heat pump
US10527327B2 (en) 2015-03-17 2020-01-07 Yanmar Co., Ltd. Heat pump
EP3273185A4 (en) * 2015-03-17 2018-11-14 Yanmar Co., Ltd. Heat pump
JP2016173203A (en) * 2015-03-17 2016-09-29 ヤンマー株式会社 Heat pump
JP2019510190A (en) * 2016-03-31 2019-04-11 杭州三花研究院有限公司Hangzhou Sanhua Research Institute Co.,Ltd. Air conditioning system and control system and control method for air conditioning system
KR20180123152A (en) * 2016-03-31 2018-11-14 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 Air conditioning system, and control system and control method for air conditioning system
CN107284193A (en) * 2016-03-31 2017-10-24 杭州三花研究院有限公司 Air-conditioning system, the control system of the air-conditioning system and control method
KR102192470B1 (en) * 2016-03-31 2020-12-17 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 Air conditioning systems, and control systems and control methods for air conditioning systems
US11231213B2 (en) 2016-03-31 2022-01-25 Hangzhou Sanhua Research Institute Co., Ltd. Air conditioning system, control system, and control method for air conditioning system expansion valve
JP2018071935A (en) * 2016-11-02 2018-05-10 ダイキン工業株式会社 Heat source unit of refrigeration device
US20220221208A1 (en) * 2019-09-30 2022-07-14 Daikin Industries, Ltd. Heat source unit and refrigeration apparatus
US11573039B2 (en) * 2019-09-30 2023-02-07 Daikin Industries, Ltd. Heat source unit and refrigeration apparatus

Also Published As

Publication number Publication date
JP3719181B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4403193B2 (en) System and method for controlling an economizer circuit
EP2378215B1 (en) Air conditioner
JP3972860B2 (en) Refrigeration equipment
JP4725387B2 (en) Air conditioner
US6883346B2 (en) Freezer
KR20050099799A (en) Lev control method of cooling cycle apparatus
CN112119273B (en) Refrigeration cycle device
JP2001280669A (en) Refrigerating cycle device
US20200355419A1 (en) Refrigerant cycle apparatus
JP3719181B2 (en) Refrigeration equipment
US7921670B2 (en) Refrigeration apparatus
JP4720641B2 (en) Refrigeration equipment
JP2002174463A (en) Refrigerating apparatus
JP4363483B2 (en) Refrigeration equipment
AU2020252607A1 (en) Refrigeration cycle device
JP2003106615A (en) Air conditioner
JP2003106610A (en) Refrigeration unit
CN113614469B (en) Air conditioner
JP2001280756A (en) Refrigerating unit
JP2009264612A (en) Refrigerating device
JP3558788B2 (en) Air conditioner and control method thereof
WO2020166360A1 (en) Air conditioner
US20230131781A1 (en) Refrigeration cycle apparatus
JP7467827B2 (en) Air conditioners
KR101513305B1 (en) Injection type heat pump air-conditioner and the converting method for injection mode thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees