JP2003106469A - Direction control valve and adsorption/separation device - Google Patents

Direction control valve and adsorption/separation device

Info

Publication number
JP2003106469A
JP2003106469A JP2001285411A JP2001285411A JP2003106469A JP 2003106469 A JP2003106469 A JP 2003106469A JP 2001285411 A JP2001285411 A JP 2001285411A JP 2001285411 A JP2001285411 A JP 2001285411A JP 2003106469 A JP2003106469 A JP 2003106469A
Authority
JP
Japan
Prior art keywords
adsorption
valve
pressure
regeneration
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001285411A
Other languages
Japanese (ja)
Other versions
JP4908700B2 (en
Inventor
Yasuyuki Otake
康行 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Priority to JP2001285411A priority Critical patent/JP4908700B2/en
Publication of JP2003106469A publication Critical patent/JP2003106469A/en
Application granted granted Critical
Publication of JP4908700B2 publication Critical patent/JP4908700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To temporarily feed a large quantity of product gas from an adsorption side adsorption vessel to a regeneration side adsorption vessel when changing over between the adsorption and the regeneration without using a solenoid valve requiring a control from the outside. SOLUTION: A rapid filling valve 19 is provided on a pipe communicating between air outlets of a pair of desiccant cylinders and autonomously opens/ closes by a pressure difference between an adsorption-side dry air pressure and a regeneration-side dry air pressure. When the pressure difference exceeds some boundary value by executing the adsorption and regeneration, the valve autonomously closes, an interval between the both desiccant cylinders are communicated by an orifice 43 alone, and the dry air is fed from the adsorption side to the regeneration side by controlling the flow rate. When the regeneration is completed and the pressure difference becomes the boundary value or less, the valve autonomously opens, the interval between the both desiccant cylinders is communicated via respective feed passages 44 as well as the orifice 43, and the large quantity of dry air is temporarily fed from the adsorption side to the regeneration side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば原料空気の
水分を乾燥剤に吸着させて乾燥空気を生成する除湿装置
等の吸着分離装置と、この吸着分離装置に用いることが
できる方向制御弁とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption / separation device such as a dehumidifier for adsorbing moisture of raw material air to a desiccant to produce dry air, and a directional control valve that can be used in this adsorption / separation device. It is about.

【0002】[0002]

【従来の技術】従来、例えば空気から窒素を取り除いた
富酸素化空気を得るために、吸着容器に収容された吸着
剤に対し窒素を吸着及び分離させる圧力スイング吸着法
を用いた吸着分離装置が実用化されている。このように
装置としては、例えば、特開平4−11919号公報に
開示された装置がある。
2. Description of the Related Art Conventionally, for example, in order to obtain oxygen-enriched air in which nitrogen is removed from air, an adsorption separation apparatus using a pressure swing adsorption method for adsorbing and separating nitrogen from an adsorbent contained in an adsorption container has been proposed. It has been put to practical use. As such a device, for example, there is a device disclosed in Japanese Patent Laid-Open No. 4-11919.

【0003】図7に示すように、この吸着分離装置70
は、吸着剤が収容された一対の吸着塔71a,71bを
備え、この各吸着塔71a,71bに対し交互に吸着を
行わせる一方、吸着させてない方の吸着塔71a,71
bの吸着剤を再生することで連続的に富酸素化空気を製
造する。
As shown in FIG. 7, this adsorption separation device 70
Is equipped with a pair of adsorption towers 71a, 71b containing an adsorbent, and allows the adsorption towers 71a, 71b to alternately adsorb, while the adsorption towers 71a, 71b not adsorbed.
By regenerating the adsorbent of b, oxygen-enriched air is continuously produced.

【0004】例えば、吸着塔71aで吸着させるには、
吸着塔71aに対し空気供給源から原料空気を高圧で供
給し、その吸着剤に原料空気中の窒素を吸着させること
で富酸素化された製品空気を生成して外部に供給する。
一方、吸着を行っている吸着塔71aで生成される製品
空気の一部を、吸着を行っていない吸着塔71bに供給
して大気中に放出させることで、吸着塔71b内の吸着
剤に吸着されている窒素を除去する。
For example, in order to make the adsorption in the adsorption tower 71a,
Raw material air is supplied to the adsorption tower 71a from an air supply source at a high pressure, and nitrogen in the raw material air is adsorbed by the adsorbent to generate oxygen-rich product air and supply the product air to the outside.
On the other hand, a part of the product air generated in the adsorption tower 71a that is adsorbing is supplied to the adsorption tower 71b that is not adsorbing and is released into the atmosphere, so that it is adsorbed by the adsorbent in the adsorption tower 71b. Remove the nitrogen that is being stored.

【0005】吸着塔71bの吸着剤の再生が完了する
と、それまで吸着を行っている吸着塔71aへの原料空
気の供給を停止し、代わって再生が完了した吸着塔71
bに原料空気を供給する。一方、それまで吸着を行って
いた吸着塔71aに吸着塔71bで生成する製品空気の
一部を供給することでその吸着剤を再生する。
When the regeneration of the adsorbent in the adsorption tower 71b is completed, the supply of the raw material air to the adsorption tower 71a which has been adsorbing until then is stopped, and the regeneration of the adsorption tower 71b is completed instead.
Supply raw material air to b. On the other hand, the adsorbent is regenerated by supplying a part of the product air generated in the adsorption tower 71b to the adsorption tower 71a which has been adsorbing until then.

【0006】このような工程を行うため、上記の吸着分
離装置には、一対の電磁二方弁(以下、電磁弁とい
う。)72a,72b及び三方型チェック弁73と、オ
リフィス74と、三方型チェック弁75とが設けられて
いる。そして、各電磁二方弁72a,72bは次のよう
に制御され、各チェック弁73,75及びオリフィス7
4は次のように動作する。
In order to carry out such a process, the adsorption / separation device has a pair of electromagnetic two-way valves (hereinafter referred to as electromagnetic valves) 72a and 72b, a three-way check valve 73, an orifice 74, and a three-way type. A check valve 75 is provided. The electromagnetic two-way valves 72a and 72b are controlled as follows, and the check valves 73 and 75 and the orifice 7 are controlled.
4 operates as follows.

【0007】例えば、吸着塔71aに吸着を行わせるた
めには、電磁弁72aを閉弁状態としたままで電磁弁7
2bを開弁状態とする。すると、空気供給源から供給さ
れる原料空気によってチェック弁73が動作し、この原
料空気が吸着塔71aに導入されて製品空気とされ、外
部に供給される。この製品空気によってチェック弁75
が作動し、製品空気を外部に供給する一方で、製品空気
が吸着塔71b側に供給されないようにする。このと
き、吸着塔71aで生成される製品空気の一部が、オリ
フィス74を通じて吸着塔71bの空気出口側に供給さ
れる。そして、吸着塔71bを逆向きに通過して大気に
放出される。
For example, in order to cause adsorption to the adsorption tower 71a, the electromagnetic valve 7a is left closed and the electromagnetic valve 7a is closed.
2b is opened. Then, the check valve 73 is operated by the raw material air supplied from the air supply source, and this raw material air is introduced into the adsorption tower 71a to be product air, which is supplied to the outside. Check valve 75 by this product air
Operates to supply product air to the outside, while preventing product air from being supplied to the adsorption tower 71b side. At this time, a part of the product air generated in the adsorption tower 71a is supplied to the air outlet side of the adsorption tower 71b through the orifice 74. Then, it passes through the adsorption tower 71b in the opposite direction and is discharged to the atmosphere.

【0008】そして、吸着塔71bの再生が完了した時
点で電磁弁72bを閉じると、吸着塔71b側から導入
される製品空気によって吸着塔71b内での製品空気の
圧力が上昇する。吸着塔71b内の圧力が十分に上昇し
た時点で電磁弁72aを開弁すると、チェック弁73が
切り替わり、これまで吸着を行っていた吸着塔71aに
代わって再生された吸着塔71bに原料空気が供給され
る。このとき、吸着塔71b内の圧力が十分に高くなっ
ているので、高圧で供給された原料空気の吸着塔71b
内での圧力が一時的に低下することがない。このため、
再生された吸着塔71bの吸着剤によって原料空気から
窒素が効率良く吸着され、富酸素化された製品空気が連
続して外部に供給される。
When the electromagnetic valve 72b is closed when the regeneration of the adsorption tower 71b is completed, the product air introduced from the adsorption tower 71b increases the pressure of the product air in the adsorption tower 71b. When the electromagnetic valve 72a is opened when the pressure in the adsorption tower 71b is sufficiently increased, the check valve 73 is switched, and the raw material air is supplied to the regenerated adsorption tower 71b in place of the adsorption tower 71a which has been adsorbing until now. Supplied. At this time, since the pressure inside the adsorption tower 71b is sufficiently high, the adsorption tower 71b for the raw material air supplied at high pressure is
The internal pressure does not drop temporarily. For this reason,
Nitrogen is efficiently adsorbed from the raw material air by the regenerated adsorbent in the adsorption tower 71b, and oxygen-enriched product air is continuously supplied to the outside.

【0009】さらに、この吸着分離装置70では、電磁
二方弁からなる均圧制御弁76がオリフィス74と並列
に設けられている。この均圧制御弁76は、上記工程で
吸着側の吸着塔と再生側の吸着塔とを切り替えるとき
に、電磁弁72bを閉じた時点から電磁弁72aを開く
時点までの間だけ開弁状態とされ、吸着塔71a側から
製品空気の一部が一次的に多量に吸着塔71b側に供給
されるようにする。このことにより、再生が完了した吸
着塔71b内の圧力を迅速に上昇させ、それまで吸着が
行っていることで吸着効率が徐々に低下しつつある吸着
塔71aで吸着する期間が短縮されるようにする。そし
て、製品空気中の酸素濃度が低下し難いようにし、良質
の製品空気が安定的に供給されるようにする。尚、各電
磁弁72a,72b及び均圧制御弁76の切替は、予め
設定された吸着時間に従いタイマを用いて行われてい
る。
Further, in the adsorption / separation device 70, a pressure equalizing control valve 76 composed of an electromagnetic two-way valve is provided in parallel with the orifice 74. This pressure equalizing control valve 76 is opened only when the electromagnetic valve 72b is closed and the electromagnetic valve 72a is opened when the adsorption side adsorption tower and the regeneration side adsorption tower are switched in the above process. Then, a part of the product air is primarily supplied from the adsorption tower 71a side to the adsorption tower 71b side in a large amount. As a result, the pressure in the adsorption tower 71b where the regeneration is completed is quickly increased, and the adsorption efficiency is gradually decreasing due to the adsorption up to that point, so that the adsorption period in the adsorption tower 71a is shortened. To Then, the oxygen concentration in the product air is made difficult to decrease, and a good quality product air is stably supplied. The solenoid valves 72a, 72b and the pressure equalizing control valve 76 are switched using a timer according to a preset adsorption time.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、このよ
うに外部から制御される電磁式の均圧制御弁76を設け
ると、電磁弁の数が多くなり、各電磁弁72a,72b
及び均圧制御弁76を制御する制御装置を含めた装置全
体のコストが上昇し、また、装置全体の信頼性が低下す
る問題があった。
However, when the electromagnetic type pressure equalizing control valve 76 which is externally controlled in this way is provided, the number of solenoid valves increases, and each solenoid valve 72a, 72b is increased.
In addition, there is a problem that the cost of the entire apparatus including the control apparatus that controls the pressure equalizing control valve 76 increases, and the reliability of the entire apparatus decreases.

【0011】本発明は、上記課題を解決するためになさ
れたものであって、その第1の目的は、吸着と再生とを
交互に行わせるための一対の吸着容器を備え、吸着と再
生との切替時には、吸着側の吸着容器で生成する製品気
体の一部を、再生側の吸着容器に対し一次的に多量に供
給することで、再生側の吸着容器内の圧力を急速に上昇
された状態で、吸着と再生とを行わせる吸着容器を切り
替える吸着分離装置において、外部から制御を必要とす
る電磁弁を用いることなく、吸着と再生との切替時に吸
着側の吸着容器側から再生側吸着容器側に製品気体の一
部を一次的に多量に供給することができる吸着分離装置
を提供することにある。
The present invention has been made to solve the above problems, and a first object thereof is to provide a pair of adsorption containers for alternately performing adsorption and regeneration, and to perform adsorption and regeneration. At the time of switching, the pressure inside the adsorption container on the regeneration side was rapidly increased by temporarily supplying a large amount of a part of the product gas generated in the adsorption container on the adsorption side to the adsorption container on the regeneration side. In an adsorption / separation device that switches the adsorption container to perform adsorption and regeneration depending on the state, the adsorption side from the adsorption side on the adsorption side to the adsorption side on the regeneration side can be used when switching between adsorption and regeneration without using an electromagnetic valve that requires external control. An object of the present invention is to provide an adsorption / separation device capable of temporarily supplying a large amount of a part of the product gas to the container side.

【0012】第2の目的は、前記第1の目的を達成する
上で好適な方向制御弁を提供することにある。
A second object is to provide a directional control valve suitable for achieving the first object.

【0013】[0013]

【課題を解決するための手段】上記第2の目的を達成す
るため、請求項1に記載の発明は、それぞれ流体が供給
される第1ポート及び第2ポートを備え、第1ポートに
供給される流体の第1圧力と、第2ポートに供給される
流体の第2圧力との圧力差が所定の境界値以内のときに
は前記両ポート間を連通させ、前記圧力差が前記境界値
を超えるときには両ポート間の連通を遮断することを特
徴とする。
In order to achieve the second object, the invention according to claim 1 is provided with a first port and a second port to which a fluid is respectively supplied, and is supplied to the first port. When the pressure difference between the first pressure of the fluid to be supplied and the second pressure of the fluid supplied to the second port is within a predetermined boundary value, the two ports are made to communicate with each other, and when the pressure difference exceeds the boundary value. It is characterized by blocking communication between both ports.

【0014】請求項1に記載の発明によれば、第1ポー
トに供給される気体の第1圧力と、第2ポートに供給さ
れる気体の第2圧力との圧力差が所定の境界値以内であ
るときには両ポート間が連通され、圧力が高い方のポー
トから低い方のポートに気体が供給される。一方、圧力
差が境界値を超えるときには両ポート間の連通が遮断さ
れ、圧力が高い方のポートから低い方のポートに気体が
供給されない。
According to the first aspect of the invention, the pressure difference between the first pressure of the gas supplied to the first port and the second pressure of the gas supplied to the second port is within a predetermined boundary value. In this case, the ports are communicated with each other, and gas is supplied from the port having the higher pressure to the port having the lower pressure. On the other hand, when the pressure difference exceeds the boundary value, the communication between both ports is cut off, and gas is not supplied from the port having the higher pressure to the port having the lower pressure.

【0015】請求項2に記載の発明は、請求項1に記載
の発明において、前記両ポート間を連通する流路上に設
けられた弁室と、弁室内を第1ポート側と第2ポート側
とに区画するとともに、第1ポートと弁室との連通を遮
断する第1位置と、第2ポートと弁室との連通を遮断す
る第2位置との間で変位可能な弁体と、弁体が前記第1
位置と第2位置との中間位置にあるときには弁室を介し
て両ポート間を連通させ、弁体が第1位置にあるときに
は第1ポートと弁室との連通が弁体によって遮断され、
弁体が第2位置にあるときには第2ポートと弁室との連
通が弁体によって遮断される供給流路と、前記圧力差が
ある境界値以内のときには、前記第1位置と第2位置と
の中間位置に前記弁体を保持し、前記第1圧力が第2圧
力よりも前記境界値を超える圧力差だけ大きなときに
は、前記弁体を第2位置に保持し、また、第2圧力が第
1圧力よりも前記境界値を超える圧力差だけ大きなとき
には、前記弁体を前記第1位置に保持する弁位置制御手
段とを備えたことを特徴とする。
According to a second aspect of the invention, in the first aspect of the invention, the valve chamber provided on the flow path communicating between the two ports and the valve chambers on the first port side and the second port side are provided. And a valve element that is displaceable between a first position that blocks communication between the first port and the valve chamber and a second position that blocks communication between the second port and the valve chamber, and a valve Body is the first
When the intermediate position between the position and the second position, the two ports are communicated with each other via the valve chamber, and when the valve body is in the first position, the communication between the first port and the valve chamber is blocked by the valve body,
When the valve body is in the second position, the communication between the second port and the valve chamber is blocked by the valve body; and when the pressure difference is within a certain boundary value, the first position and the second position When the first pressure is larger than the second pressure by a pressure difference exceeding the boundary value, the valve body is held at the second position and the second pressure is higher than the second pressure. And a valve position control means for holding the valve element at the first position when the pressure difference exceeds the boundary value by more than one pressure.

【0016】請求項2に記載の発明によれば、請求項1
に記載の発明の作用に加えて、第1圧力と第2圧力との
圧力差が境界値以内であるときには、弁位置制御手段が
弁体を第1位置と第2位置との中間に保持する。このた
め、供給流路を介して両ポート間が連通される。一方、
第1圧力が第2圧力よりも境界値を超える圧力差だけ大
きなときには、弁位置制御手段が弁体を第2位置に保持
する。このため、供給流路を介しての両ポート間の連通
が弁体によって遮断される。同様に、第2圧力が第1圧
力よりも境界値を超える圧力差だけ大きなときには、弁
位置制御手段が弁体を第1位置に保持する。このため、
供給流路を介しての両ポート間の連通が弁体によって遮
断される。従って、各ポートにそれぞれ気体を供給する
2つの圧力領域間の圧力差によって自律的に開閉弁動作
し、圧力差が所定の境界値以内のときには開弁して、圧
力が高い方の圧力領域から低い方の圧力領域に気体を供
給する。一方、圧力差が境界値を超えるときには閉弁し
て、圧力が高い方の圧力領域から低い方の圧力領域に気
体が供給されないようにする。
According to the invention of claim 2, claim 1
In addition to the operation of the invention described in (1), when the pressure difference between the first pressure and the second pressure is within the boundary value, the valve position control means holds the valve element in the middle between the first position and the second position. . Therefore, the ports are communicated with each other via the supply passage. on the other hand,
When the first pressure is larger than the second pressure by the pressure difference exceeding the boundary value, the valve position control means holds the valve body in the second position. Therefore, the communication between the two ports via the supply flow path is blocked by the valve body. Similarly, when the second pressure is larger than the first pressure by the pressure difference exceeding the boundary value, the valve position control means holds the valve element in the first position. For this reason,
The valve body blocks communication between both ports via the supply flow path. Therefore, the valve opens and closes autonomously due to the pressure difference between the two pressure regions that supply gas to each port, and opens when the pressure difference is within a predetermined boundary value, starting from the pressure region with the higher pressure. Gas is supplied to the lower pressure region. On the other hand, when the pressure difference exceeds the boundary value, the valve is closed so that the gas is not supplied from the pressure region having the higher pressure to the pressure region having the lower pressure.

【0017】請求項3に記載の発明は、請求項2に記載
の発明において、前記弁位置制御手段は、前記弁体を前
記第1位置と第2位置との間で弾性的に保持するととも
に、弁体を保持する位置を前記圧力差に応じて変化させ
る弾性保持手段であることを特徴とする。
According to a third aspect of the present invention, in the second aspect of the invention, the valve position control means elastically holds the valve body between the first position and the second position. The elastic holding means changes the position for holding the valve body according to the pressure difference.

【0018】請求項3に記載の発明によれば、請求項2
に記載の発明の作用に加えて、弾性保持手段が、第1位
置と第2位置との間で弁体を弾性的に保持し、圧力差に
応じた位置に弁体を変位させる。従って、簡単な機構に
よって弁体の位置を制御することができるため、より高
い信頼性を得ることができる。
According to the invention of claim 3, claim 2
In addition to the effect of the invention described in (1), the elastic holding means elastically holds the valve element between the first position and the second position and displaces the valve element to a position according to the pressure difference. Therefore, since the position of the valve body can be controlled by a simple mechanism, higher reliability can be obtained.

【0019】請求項4に記載の発明は、請求項3に記載
の発明において、前記弾性保持手段は、前記弁体をその
変位方向に対向するように付勢する一対のコイルばねで
あることを特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention, the elastic holding means is a pair of coil springs that bias the valve body so as to oppose each other in the displacement direction. Characterize.

【0020】請求項4に記載の発明によれば、請求項3
に記載の発明の作用に加えて、一対のコイルばねが弁体
を第1位置と第2位置との間に弾性的に保持し、圧力差
に応じて互いに収縮及び伸張変形することで、圧力差に
応じた位置に弁体を変位させる。従って、一対のコイル
ばねからなるより簡単な機構で弁体の位置を制御するこ
とができるため、より一層高い信頼性を得ることができ
る。
According to the invention of claim 4, claim 3
In addition to the operation of the invention described in (1), the pair of coil springs elastically holds the valve body between the first position and the second position, and the pair of coil springs contracts and expands each other in accordance with the pressure difference, thereby reducing the pressure. The valve body is displaced to a position according to the difference. Therefore, the position of the valve body can be controlled by a simpler mechanism including a pair of coil springs, and thus higher reliability can be obtained.

【0021】請求項5に記載の発明は、請求項2〜請求
項4のいずれか一項に記載の発明において、前記弁体に
は、弁体の位置に関係なく前記両ポート間を連通するオ
リフィスが設けられていることを特徴とする。
According to a fifth aspect of the present invention, in the invention according to any one of the second to fourth aspects, the valve body communicates between the two ports regardless of the position of the valve body. It is characterized in that an orifice is provided.

【0022】請求項5に記載の発明によれば、請求項2
〜請求項4のいずれか一項に記載の発明の作用に加え
て、第1圧力及び第2圧力の圧力差と境界値との大小に
関係なく、圧力が高い方の圧力領域から低い方の圧力領
域にオリフィスによって流量制限された気体が供給され
る。従って、圧力が高い方の圧力領域から低い方の圧力
領域に流量制限された気体を常時供給したいときに、方
向制御弁が設けられた流路と並列に別の流路を両気体出
口間に設け、この流路上にオリフィスを設ける必要がな
い。
According to the invention of claim 5, claim 2
~ In addition to the action of the invention described in any one of claims 4 to 4, regardless of the magnitude of the pressure difference between the first pressure and the second pressure and the boundary value, Gas whose flow rate is restricted by the orifice is supplied to the pressure region. Therefore, when it is desired to constantly supply the gas whose flow rate is restricted from the pressure region with the higher pressure to the pressure region with the lower pressure, another flow passage is provided in parallel with the flow passage provided with the directional control valve between both gas outlets. It is not necessary to provide an orifice on this channel.

【0023】上記第1の目的を達成するため、請求項6
に記載の発明は、それぞれ吸着剤を収容するとともに気
体入口及び気体出口を有する一対の吸着容器を備え、両
吸着容器の気体出口間を連通する連通流路上には絞りが
設けられ、両吸着容器のいずれか一方の吸着側吸着容器
の気体入口に原料気体を供給してその気体出口から排出
される製品流体を外部に供給するとともに、この製品流
体の一部を前記連通流路を介して他方の再生側吸着容器
の気体出口に供給してその気体入口から排出される再生
済流体を外部に放出し、また、再生側吸着容器の気体入
口から排出される再生済流体の外部への放出を停止した
後に吸着側吸着容器と再生側吸着容器とを切り替える吸
着分離装置において、前記両吸着容器の気体出口間を連
通する流路上に前記絞りと並列に設けられ、該両気体出
口間の圧力差に応じて両気体出口間の連通状態を制御す
る連通状態制御手段を備え、該連通状態制御手段は、再
生側吸着容器の気体入口から再生済流体が外部に排出さ
れているときの両気体出口間の圧力差によって両気体出
口間の連通を遮断し、また、再生側吸着容器の気体出口
から排出される再生済流体の外部への放出が停止した状
態での両気体出口間の圧力差によって両気体出口間を連
通させることを特徴とする。なお、「一対の吸着容器」
における「吸着容器」は、吸着剤が収容された1つの容
器からなるものに限らず、それぞれ吸着剤が収容された
複数の容器が並列接続され、各気体入口及び気体出口が
共通とされたものをも含む。
In order to achieve the first object mentioned above, claim 6
The invention described in (1) is provided with a pair of adsorption containers each containing an adsorbent and having a gas inlet and a gas outlet, and a throttling is provided on a communication channel that communicates between the gas outlets of both adsorption containers. While supplying the raw material gas to the gas inlet of one of the adsorption side adsorption vessels and supplying the product fluid discharged from the gas outlet to the outside, a part of this product fluid is passed through the communication channel to the other side. Of the regenerated fluid discharged from the gas inlet of the regeneration side adsorption container to the outside, and discharged to the outside of the regenerated fluid discharged from the gas inlet of the regeneration side adsorption vessel. In the adsorption separation device that switches the adsorption side adsorption vessel and the regeneration side adsorption vessel after stopping, it is provided in parallel with the throttle on the flow path communicating between the gas outlets of the both adsorption vessels, and the pressure difference between the both gas outlets. In response And a communication state control means for controlling a communication state between both gas outlets, and the communication state control means is provided between both gas outlets when the regenerated fluid is discharged to the outside from the gas inlet of the regeneration side adsorption container. Due to the pressure difference, the communication between both gas outlets is blocked, and the pressure difference between both gas outlets when the release of the regenerated fluid discharged from the gas outlet of the regeneration side adsorption container to the outside is stopped The feature is that the outlets communicate with each other. In addition, "a pair of adsorption containers"
The "adsorption container" in is not limited to one container containing an adsorbent, but a plurality of containers each containing an adsorbent are connected in parallel, and each gas inlet and gas outlet are common. Also includes.

【0024】請求項6に記載の発明によれば、一対の吸
着容器のいずれか一方の吸着側吸着容器の気体入口に原
料気体を供給すると、その気体出口から排出される製品
流体が外部に供給される。この製品流体の一部が連通流
路を介して再生側吸着容器の気体出口に供給され、その
気体入口から排出された後に外部に放出される。このと
き、再生側吸着容器の気体出口側の圧力が相対的に低く
なるため、両吸着容器の気体出口間の圧力差が大きくな
る。すると、この大きな圧力差によって連通状態制御手
段が動作して両気体出口間の連通を遮断するため、絞り
によって流量制限された製品気体のみが再生側吸着容器
に供給される。従って、吸着側吸着容器に供給される原
料気体から製品気体が生成されるとともに、連通流路を
介して供給される製品気体によって再生側吸着容器が再
生されているときには、再生に必要な流量の製品気体が
のみが再生側吸着容器に供給される。吸着を行わせる吸
着容器と、再生する吸着容器とを切り替えるために、再
生側吸着容器の気体入口から排出される再生済気体の外
部への放出を停止すると、吸着側吸着容器から絞りを介
して再生側吸着容器の気体出口に供給される製品気体に
よって再生側吸着容器内の圧力が上昇する。すると、両
吸着容器の気体出口間の圧力差が相対的に小さくなり、
この圧力差によって連通状態制御手段が動作して両気体
出口間を連通させる。従って、吸着側及び再生側吸着容
器を切り替える前には、吸着側吸着容器で製品気体が生
成され続ける一方で再生側吸着容器の再生が停止され、
供給連通状態制御手段が供給する製品気体によって再生
側吸着容器内の圧力が急激に高められる。そして、それ
まで吸着側であった吸着容器に換わってそれまで再生側
であった吸着容器の気体入口に原料気体が供給され、吸
着側であった吸着容器が新たに再生される。このとき、
新たな吸着側吸着容器内の圧力が高められているので、
原料気体から良質の製品気体が生成される。
According to the sixth aspect of the invention, when the raw material gas is supplied to the gas inlet of one of the pair of adsorption containers, the product fluid discharged from the gas outlet is supplied to the outside. To be done. A part of the product fluid is supplied to the gas outlet of the regeneration side adsorption container via the communication channel, discharged from the gas inlet, and then discharged to the outside. At this time, since the pressure on the gas outlet side of the regeneration side adsorption container becomes relatively low, the pressure difference between the gas outlets of both adsorption containers becomes large. Then, the communication state control means operates due to this large pressure difference to cut off the communication between both gas outlets, so that only the product gas whose flow rate is limited by the throttle is supplied to the regeneration side adsorption container. Therefore, when the product gas is generated from the raw material gas supplied to the adsorption side adsorption container, and when the regeneration side adsorption container is regenerated by the product gas supplied through the communication channel, the flow rate required for regeneration is Only the product gas is supplied to the regeneration side adsorption container. When the release of the regenerated gas discharged from the gas inlet of the regeneration-side adsorption container to the outside is switched in order to switch between the adsorption container for adsorbing and the regeneration container, the adsorption-side adsorption container passes through the throttle. The product gas supplied to the gas outlet of the regeneration side adsorption container raises the pressure in the regeneration side adsorption container. Then, the pressure difference between the gas outlets of both adsorption vessels becomes relatively small,
Due to this pressure difference, the communication state control means operates to establish communication between both gas outlets. Therefore, before switching the adsorption side and the regeneration side adsorption vessel, the regeneration of the regeneration side adsorption vessel is stopped while the product gas is continuously generated in the adsorption side adsorption vessel,
The product gas supplied by the supply communication state control means rapidly increases the pressure in the regeneration side adsorption container. Then, the raw material gas is supplied to the gas inlet of the adsorption container which has been the regenerating side in place of the adsorption container which has been the adsorption side until then, and the adsorption container which has been the adsorption side is newly regenerated. At this time,
Since the pressure inside the new adsorption side adsorption container is increased,
Good quality product gas is produced from the raw material gas.

【0025】請求項7に記載の発明は、請求項6に記載
の発明において、前記連通状態制御手段は請求項1〜請
求項4のいずれか一項に記載された方向制御弁であるこ
とを特徴とする。
According to a seventh aspect of the invention, in the invention of the sixth aspect, the communication state control means is the directional control valve according to any one of the first to fourth aspects. Characterize.

【0026】請求項7に記載の発明によれば、請求項6
に記載の発明の作用に加えて、請求項1〜請求項4のい
ずれか一項に記載の方向制御弁が、両吸着容器の気体出
口間での圧力差によって自律的に開閉弁動作して両気体
出口間を連通又は連通遮断し、圧力差が境界値以内のと
きに供給側吸着容器側から再生側吸着容器側に製品気体
を供給する。
According to the invention of claim 7, claim 6
In addition to the operation of the invention described in (1), the directional control valve according to any one of (1) to (4) is autonomously opened / closed by a pressure difference between gas outlets of both adsorption vessels. The gas outlets are connected or disconnected so that the product gas is supplied from the supply side adsorption container side to the regeneration side adsorption container side when the pressure difference is within the boundary value.

【0027】請求項8に記載の発明は、請求項6に記載
の発明において、前記連通状態制御手段は請求項5に記
載された方向制御弁であって、該方向制御弁は前記連通
流路上に設けられ、前記絞りは前記オリフィスであるこ
とを特徴とする。
According to an eighth aspect of the invention, in the invention of the sixth aspect, the communication state control means is the directional control valve according to the fifth aspect, and the directional control valve is on the communication flow path. And the aperture is the orifice.

【0028】請求項8に記載の発明によれば、請求項6
に記載の発明の作用に加えて、請求項5に記載の方向制
御弁が、両吸着容器の気体出口間での圧力差によって自
律的に開閉弁動作して両気体出口間を連通又は連通遮断
し、圧力差が境界値以内のときに供給側吸着容器側から
再生側吸着容器側に製品気体を供給する。また、圧力差
に関係なく、弁体に設けられたオリフィスを介して吸着
側吸着容器から再生側吸着容器の気体出口に流量制限さ
れた製品気体が供給される。このため、両吸着容器の気
体出口間に、方向制御弁を設けるための流路を連通流路
と別に設ける必要がない。その結果、吸着分離装置の構
成が簡素化する。
According to the invention described in claim 8, claim 6
In addition to the function of the invention described in claim 5, the directional control valve according to claim 5 autonomously opens and closes by a pressure difference between the gas outlets of both adsorption vessels to communicate or cut off communication between both gas outlets. Then, when the pressure difference is within the boundary value, the product gas is supplied from the supply side adsorption container side to the regeneration side adsorption container side. Further, regardless of the pressure difference, the product gas of which the flow rate is limited is supplied from the adsorption side adsorption container to the gas outlet of the regeneration side adsorption container through the orifice provided in the valve body. Therefore, it is not necessary to provide a flow path for providing the direction control valve between the gas outlets of both adsorption vessels separately from the communication flow path. As a result, the structure of the adsorption separation device is simplified.

【0029】[0029]

【発明の実施の形態】以下、本発明の吸着分離装置を除
湿装置に具体化した一実施形態を図1〜図6に従って説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the adsorption / separation device of the present invention is embodied in a dehumidifying device will be described below with reference to FIGS.

【0030】本実施形態の除湿装置10は、空気供給源
S1から供給される原料空気から水分を吸着して乾燥空
気を生成し、この乾燥空気を乾燥空気供給領域S2に供
給する。空気供給源S1は原料空気を大気圧よりも高い
ある第1圧力P1で供給し、乾燥空気供給領域S2は第
1圧力P1よりも低いある第2圧力P2となる。即ち、
本実施形態では、原料空気が原料気体であり、乾燥空気
が製品気体である。
The dehumidifying device 10 of the present embodiment adsorbs moisture from the raw material air supplied from the air supply source S1 to generate dry air, and supplies this dry air to the dry air supply region S2. The air supply source S1 supplies the raw material air at a certain first pressure P1 higher than the atmospheric pressure, and the dry air supply region S2 becomes a certain second pressure P2 lower than the first pressure P1. That is,
In this embodiment, the raw material air is the raw material gas and the dry air is the product gas.

【0031】除湿装置10は、一対の乾燥剤筒11,1
2、一対の供給用電磁二方弁13,14、一対の放出用
電磁二方弁15,16、一対のチェック弁17,18及
び急速充填弁19等から構成されている。本実施形態で
は、各乾燥剤筒11,12がそれぞれ吸着容器である。
又、急速充填弁19が方向制御弁及び連通状態制御手段
である。尚、本実施形態の除湿装置10において、急速
充填弁19を除く構成は従来と同様のものであって、新
規な構成の急速充填弁19を設けた構成が新規である。
The dehumidifying device 10 comprises a pair of desiccant cylinders 11, 1.
2, a pair of supply electromagnetic two-way valves 13 and 14, a pair of discharge electromagnetic two-way valves 15 and 16, a pair of check valves 17 and 18, a quick filling valve 19 and the like. In the present embodiment, the desiccant cylinders 11 and 12 are adsorption containers.
Further, the quick filling valve 19 is a direction control valve and a communication state control means. In the dehumidifying device 10 of the present embodiment, the configuration excluding the rapid filling valve 19 is the same as the conventional one, and the configuration in which the rapid filling valve 19 having a new configuration is provided is new.

【0032】各乾燥剤筒11,12には、例えば活性ア
ルミナ等の乾燥剤が収容されている。各乾燥剤筒11,
12には、空気供給源S1から供給される原料空気を導
入するための空気入口11a,12a(気体入口)と、
乾燥剤によって水分が吸着された製品空気を外部に排出
するための空気出口11b,12b(気体出口)とが設
けられている。各乾燥剤筒11,12は、空気供給源S
1と乾燥空気供給領域S2との間に並列に設けられた一
対の管路20a,20b上に1つずつ設けられている。
A desiccant such as activated alumina is contained in each of the desiccant cylinders 11 and 12. Each desiccant tube 11,
12, air inlets 11a and 12a (gas inlets) for introducing the raw material air supplied from the air supply source S1,
Air outlets 11b and 12b (gas outlets) for discharging the product air, in which the moisture is adsorbed by the desiccant, to the outside are provided. Each of the drying agent cylinders 11 and 12 has an air supply source S.
1 and one on the pair of pipelines 20a, 20b provided in parallel between 1 and the dry air supply region S2.

【0033】各供給用二方弁13,14は、それぞれ管
路20a,20b上において空気供給源S1と各乾燥剤
筒11,12の空気入口11a,12aとの間に1つず
つ設けられている。各供給用二方弁13,14は、同一
の構成であって図示しない2つのポートを備え、図示し
ない制御装置から供給される駆動信号によって開弁状態
と閉弁状態とに切替動作する。そして、開弁状態では両
ポート間を連通させて空気供給源S1と乾燥剤筒11、
あるいは、空気供給源S1と乾燥剤筒12とを連通させ
る。反対に、閉弁状態では両ポート間の連通を遮断して
空気供給源S1と乾燥剤筒11、あるいは、空気供給源
S1と乾燥剤筒12との連通を遮断する。
Each of the supply two-way valves 13 and 14 is provided between the air supply source S1 and the air inlets 11a and 12a of the desiccant cylinders 11 and 12 on the conduits 20a and 20b, respectively. There is. Each of the supply two-way valves 13 and 14 has the same configuration and includes two ports (not shown), and switches between a valve open state and a valve closed state by a drive signal supplied from a controller (not shown). When the valve is open, the ports are connected to each other to connect the air supply source S1 and the desiccant cylinder 11,
Alternatively, the air supply source S1 and the desiccant cylinder 12 are communicated with each other. On the contrary, in the valve closed state, the communication between both ports is cut off to cut off the air supply source S1 and the desiccant cylinder 11, or the air supply source S1 and the desiccant cylinder 12.

【0034】放出用二方弁15は、乾燥剤筒11の空気
入口11aと、第1圧力P1よりも低い第3圧力P3の
大気領域S3とを連絡する管路21aに設けられてい
る。同様に、放出用二方弁16は、乾燥剤筒12の空気
入口12aと、大気領域S3とを連絡する管路21b上
に設けられている。各放出用二方弁15,16は同一の
構成であって図示しない2つのポートを備え、前記制御
装置から供給される駆動信号によって開弁状態と閉弁状
態とに切替動作する。そして、開弁状態では両ポート間
を連通させて、乾燥剤筒11と大気領域S3、あるい
は、乾燥剤筒12と大気領域S3とを連通させる。反対
に、閉弁状態では両ポート間の連通を遮断し、乾燥剤筒
11と大気領域S3、あるいは、乾燥剤筒12と大気領
域S3とを連通を遮断する。尚、各放出用二方弁15,
16と大気領域S3との間には、サイレンサ22が設け
られている。
The discharge two-way valve 15 is provided in the pipe line 21a which connects the air inlet 11a of the desiccant cylinder 11 and the atmospheric region S3 of the third pressure P3 lower than the first pressure P1. Similarly, the discharge two-way valve 16 is provided on the pipe line 21b that connects the air inlet 12a of the desiccant cylinder 12 and the atmosphere region S3. The discharge two-way valves 15 and 16 have the same configuration and have two ports (not shown), and are switched between a valve open state and a valve close state by a drive signal supplied from the control device. Then, in the valve open state, the ports are communicated with each other so that the desiccant cylinder 11 and the atmospheric region S3 or the desiccant cylinder 12 and the atmospheric region S3 are communicated with each other. On the contrary, in the valve closed state, the communication between both ports is blocked, and the desiccant cylinder 11 and the atmospheric region S3 or the desiccant cylinder 12 and the atmospheric region S3 are blocked. The two-way valve for each discharge 15,
A silencer 22 is provided between 16 and the atmospheric region S3.

【0035】チェック弁17は、管路20a上におい
て、乾燥剤筒11の空気出口11bと乾燥空気供給領域
S2との間に設けられている。また、チェック弁18
は、管路20b上において、乾燥剤筒12の空気出口1
2bと乾燥空気供給領域S2との間に設けられている。
各チェック弁17,18は共に2ポート型逆止弁であっ
て、一方の向きに気体を通過させ、その反対向きには気
体を通過させない。そして、乾燥剤筒11から乾燥空気
供給領域S2、あるいは、乾燥剤筒12から乾燥空気供
給領域S2への空気の供給を許容し、反対に、乾燥空気
供給領域S2から乾燥剤筒11、あるいは、乾燥空気供
給領域S2から乾燥剤筒12側への乾燥空気の流入を禁
止する。
The check valve 17 is provided on the pipe line 20a between the air outlet 11b of the desiccant cylinder 11 and the dry air supply region S2. Also, check valve 18
Is the air outlet 1 of the desiccant cylinder 12 on the conduit 20b.
It is provided between 2b and the dry air supply area S2.
Each of the check valves 17 and 18 is a two-port check valve, which allows gas to pass in one direction and does not allow gas to pass in the opposite direction. Then, the supply of air from the desiccant cylinder 11 to the dry air supply area S2 or from the desiccant cylinder 12 to the dry air supply area S2 is allowed, and conversely, from the dry air supply area S2 to the desiccant cylinder 11 or Inflow of dry air from the dry air supply region S2 to the desiccant cylinder 12 side is prohibited.

【0036】急速充填弁19は、両乾燥剤筒11,12
の空気出口11b,12b同士を連通する管路23(連
通流路)上に設けられている。急速充填弁19は、外部
からの制御によらず自律的に開閉弁動作する方向制御弁
であって、乾燥剤筒11の空気出口11bとチェック弁
17との間にある乾燥空気の圧力である圧力Pa(第1
圧力)と、乾燥剤筒12の空気出口12bとチェック弁
18との間にある乾燥空気の圧力である圧力Pb(第2
圧力)との圧力差ΔP=Pa−Pbによって開閉弁動作
する。そして、圧力差ΔPの大きさ|ΔP|が予め設定
されているある境界値PT を超えるときには、閉弁状態
となって両乾燥剤筒11,12の空気出口11b,12
b同士の連通を遮断する。そして、圧力が高い方から低
い方に乾燥空気が供給されないようする。一方、圧力差
ΔPの大きさ|ΔP|が境界値PT 以下であるときに
は、開弁状態となって両乾燥剤筒11,12の空気出口
11b,12b同士を連通させる。そして、圧力が高い
方から圧力が低い方に乾燥空気が供給されるようにす
る。
The rapid filling valve 19 is provided for both desiccant cylinders 11 and 12.
Is provided on a conduit 23 (communication flow path) that communicates the air outlets 11b and 12b with each other. The quick filling valve 19 is a directional control valve that operates to open and close autonomously without being controlled by the outside, and is the pressure of the dry air between the air outlet 11b of the desiccant cylinder 11 and the check valve 17. Pressure Pa (first
Pressure) and the pressure Pb (second pressure) which is the pressure of the dry air between the air outlet 12b of the desiccant cylinder 12 and the check valve 18.
The opening / closing valve operates according to the pressure difference ΔP = Pa−Pb. When the magnitude | ΔP | of the pressure difference ΔP exceeds a preset boundary value PT, the valve is closed, and the air outlets 11b, 12 of the two desiccant cylinders 11, 12 are closed.
The communication between b is cut off. Then, the dry air is prevented from being supplied from the higher pressure side to the lower pressure side. On the other hand, when the magnitude | ΔP | of the pressure difference ΔP is less than or equal to the boundary value PT, the valve is opened, and the air outlets 11b and 12b of both desiccant cylinders 11 and 12 are communicated with each other. Then, the dry air is supplied from the higher pressure side to the lower pressure side.

【0037】次に、急速充填弁19の構成について詳述
する。図1,2に示すように、急速充填弁19はブロッ
ク状のハウジング30を備え、このハウジング30内に
は一本の流路31が設けられ、この流路31の両端は外
部に連通されている。ハウジング30は、それぞれ流路
31の一部が形成された第1ブロック32及び第2ブロ
ック33がパッキン34を介在した状態で合体されたも
のである。流路31は円柱状に延びるように形成され、
その中心軸線方向での両端がハウジング30の外面にそ
れぞれ開口されている。ハウジング30には流路31に
対し外部から連通するための第1ポート35と第2ポー
ト36とが設けられている。
Next, the structure of the quick fill valve 19 will be described in detail. As shown in FIGS. 1 and 2, the quick fill valve 19 includes a block-shaped housing 30, and a single flow passage 31 is provided in the housing 30, and both ends of the flow passage 31 are connected to the outside. There is. The housing 30 is formed by assembling a first block 32 and a second block 33, each of which has a part of a flow path 31 formed therein, with a packing 34 interposed therebetween. The flow channel 31 is formed so as to extend in a cylindrical shape,
Both ends in the central axis direction are opened on the outer surface of the housing 30, respectively. The housing 30 is provided with a first port 35 and a second port 36 for communicating with the flow path 31 from the outside.

【0038】ハウジング30の内部には、流路31を第
1ポート35側の第1流路37と、第2ポート側の第2
流路38とに分割する弁室39が設けられている。弁室
39は円柱状に形成され、その中心軸線が流路31の中
心軸線に一致するように配置されている。弁室39に
は、その中心軸線方向での各端壁に、それぞれ円環状の
弁座40a,40bが形成されている。尚、第1流路3
7と弁室39の半分は第1ブロック32に形成され、第
2流路38と弁室39の残りの半分は第2ブロック33
に形成されている。そして、両ブロック32,33間に
設けられたパッキン34によって弁室39が密封されて
いる。
Inside the housing 30, a flow passage 31 is provided with a first flow passage 37 on the side of the first port 35 and a second flow passage 37 on the side of the second port.
A valve chamber 39 that is divided into a flow path 38 is provided. The valve chamber 39 is formed in a columnar shape, and is arranged so that its central axis coincides with the central axis of the flow path 31. The valve chamber 39 is formed with annular valve seats 40a and 40b on each end wall in the direction of the central axis thereof. The first flow path 3
7 and half of the valve chamber 39 is formed in the first block 32, and the other half of the second flow path 38 and valve chamber 39 is in the second block 33.
Is formed in. The valve chamber 39 is sealed by the packing 34 provided between the blocks 32 and 33.

【0039】弁室39には、該弁室39を第1流路37
側と第2流路38側とに区画する弁体41が設けられて
いる。弁体41は、円盤状の基部41aと、その中心軸
線方向での両面中央部から同軸線方向に延出された円柱
状の嵌合部41bとからなり、その中心軸線が両流路3
7,38の中心軸線に一致するように配置されている。
弁体41の基部41aには、その各端面にそれぞれ円環
状のパッキン42が固定されている。
The valve chamber 39 is provided in the first flow path 37.
A valve element 41 that divides the side into the second flow path 38 side is provided. The valve body 41 is composed of a disc-shaped base portion 41a and a cylindrical fitting portion 41b extending in the coaxial line direction from the center portion of both surfaces in the central axis direction, and the central axis line of the flow passages 3a and 3b.
It is arranged so as to coincide with the central axes of 7, 38.
An annular packing 42 is fixed to each end surface of the base 41a of the valve body 41.

【0040】図4に示すように、弁体41は、第1流路
37側に設けられたパッキン42が弁座40aに環状に
当接する第1位置のときに、第1流路37と弁室39と
の連通を遮断する。一方、図5に示すように、弁体41
は、第2流路38側に設けられたパッキン42が弁座4
0bに環状に当接する第2位置のときに、第2流路38
と弁室39との連通を遮断する。そして、弁体41に
は、第1位置と第2位置との間で変位可能となってい
る。
As shown in FIG. 4, when the packing 42 provided on the first flow path 37 side is in the first position where the packing 42 provided in the first flow path 37 abuts the valve seat 40a in an annular shape, the valve body 41 and the valve are closed. The communication with the chamber 39 is cut off. On the other hand, as shown in FIG.
The packing 42 provided on the second flow path 38 side is the valve seat 4
0b in the second position in which the second flow path 38
And the communication with the valve chamber 39 is cut off. The valve body 41 is displaceable between the first position and the second position.

【0041】又、図1,4,5に示すように、弁体41
には、第1流路37と第2流路38とを、弁室39での
弁体41の変位位置に関係なく連通するオリフィス43
が、弁体41をその中心軸線方向に貫通するように形成
されている。オリフィス43は、両乾燥剤筒11,12
の空気出口11b,12b同士を管路23を介して常時
連通する。そして、空気出口11b,12b間で、圧力
が高い方から低い方に管路23を介して空気を移動させ
るとともにその流量を制限する。
Further, as shown in FIGS.
Is an orifice 43 that allows the first flow path 37 and the second flow path 38 to communicate with each other regardless of the displacement position of the valve body 41 in the valve chamber 39.
Are formed so as to penetrate the valve body 41 in the direction of the central axis thereof. The orifice 43 is provided with both desiccant cylinders 11 and 12.
The air outlets 11b and 12b are constantly communicated with each other via the pipe line 23. Then, between the air outlets 11b and 12b, the air is moved from the higher pressure side to the lower pressure side via the pipe line 23 and the flow rate thereof is limited.

【0042】また、図1,2に示すように、弁室39の
周壁には、略半円形の断面形状で弁室39の中心軸線方
向に延びる4つの供給流路44が、同中心軸線回りに等
角度間隔に設けられている。各供給流路44は、弁体4
1が第1位置と第2位置との中間位置にあるときには弁
室39を介して両流路37,38を連通する。各供給流
路44は、オリフィス43だけの流路断面積よりも十分
に大きな流路断面積で両流路37,38間を連通させる
ように形成されている。一方、各供給流路44は、弁体
41が第1位置にあるときには、両流路37,38間を
連通する状態が弁体41によって遮断される。また、弁
体41が第2位置にあるときには、両流路37,38間
を連通する状態が弁体41によって遮断される。
Further, as shown in FIGS. 1 and 2, four supply passages 44 extending in the direction of the central axis of the valve chamber 39 are formed on the peripheral wall of the valve chamber 39 in a substantially semicircular cross section around the central axis. At equal angular intervals. Each supply channel 44 has a valve body 4
When 1 is at an intermediate position between the first position and the second position, the flow paths 37 and 38 are communicated with each other via the valve chamber 39. Each supply flow channel 44 is formed so as to communicate between the flow channels 37 and 38 with a flow channel cross-sectional area sufficiently larger than the flow channel cross-sectional area of only the orifice 43. On the other hand, when the valve body 41 is in the first position, the supply passages 44 are blocked by the valve body 41 so that the passages 37 and 38 communicate with each other. Further, when the valve body 41 is in the second position, the state in which the flow paths 37 and 38 are communicated with each other is blocked by the valve body 41.

【0043】第1流路37内には、弁室39内で弁体4
1を保持するための第1コイルスプリング45が設けら
れている。第1コイルスプリング45は、第1流路37
の第1ポート35側に設けられた嵌合部37aと、弁体
41の嵌合部41bとの間に、弁体41を第2流路38
側に付勢するように支持されている。
In the first channel 37, the valve body 4 is provided in the valve chamber 39.
A first coil spring 45 for holding 1 is provided. The first coil spring 45 has the first flow path 37.
Of the valve body 41 between the fitting portion 37a provided on the first port 35 side and the fitting portion 41b of the valve body 41.
It is supported so as to urge it to the side.

【0044】同様に、第2流路38内には、第1コイル
スプリング45と協動して弁体41を保持するための第
2コイルスプリング46が設けられている。第2コイル
スプリング46は、第1コイルスプリング45と同一の
構成であって、第2流路38の第2ポート36側に設け
られた嵌合部38aと、弁体41の嵌合部41bとの間
に、弁体41を第1流路37側に付勢するように支持さ
れている。即ち、両コイルスプリング45,46は弁体
41をその変位方向に対向するように付勢するように設
けられている。本実施形態では、第1コイルスプリング
45及び第2コイルスプリング46が弁位置制御手段及
び弾性保持手段を構成する。
Similarly, a second coil spring 46 for holding the valve body 41 in cooperation with the first coil spring 45 is provided in the second flow path 38. The second coil spring 46 has the same configuration as the first coil spring 45, and includes a fitting portion 38a provided on the second port 36 side of the second flow path 38, and a fitting portion 41b of the valve body 41. In between, the valve body 41 is supported so as to urge the valve body 41 toward the first flow path 37. That is, the coil springs 45 and 46 are provided so as to bias the valve body 41 so as to oppose each other in the displacement direction. In this embodiment, the first coil spring 45 and the second coil spring 46 form a valve position control means and an elastic holding means.

【0045】各コイルスプリング45,46は、第1流
路37内での空気の圧力(即ち、圧力Pa)と第2流路
38内での空気の圧力(即ち、圧力Pb)との圧力差
(即ち、圧力差ΔP)に応じて交互に弾性的に伸張及び
圧縮変形する。そして、この圧力差ΔPが、予め設定さ
れた境界値PT 以内のときには、第1位置と第2位置と
の中間に弁体41を弾性的に保持する。一方、圧力差Δ
Pが境界値PT を超え、圧力Paが圧力Pbよりも大き
なときには、この圧力差ΔPによって第2コイルスプリ
ング46が圧縮変形するとともに第1コイルスプリング
45が伸張変形し、前記弁体41を第2位置まで移動さ
せて保持する。反対に、圧力差ΔPが境界値PT を超
え、圧力Paが圧力Pbよりも小さいときには、この圧
力差ΔPによって第1コイルスプリング45が伸張変形
するとともに第2コイルスプリング46が圧縮変形し、
弁体41を第1位置まで移動させて保持する。なお、境
界値PT は、両コイルスプリング45,46のばね定
数、弁体41の受圧面積等によって予め設定される。
Each of the coil springs 45 and 46 has a pressure difference between the pressure of air in the first flow path 37 (that is, pressure Pa) and the pressure of air in the second flow path 38 (that is, pressure Pb). (In other words, elastically stretch and compress and deform alternately according to the pressure difference ΔP). When the pressure difference ΔP is within the preset boundary value PT, the valve element 41 is elastically held in the middle between the first position and the second position. On the other hand, the pressure difference Δ
When P exceeds the boundary value PT and the pressure Pa is larger than the pressure Pb, the pressure difference ΔP causes the second coil spring 46 to be compressed and deformed, and the first coil spring 45 to be expanded and deformed so that the valve element 41 is moved to the second position. Move to position and hold. On the contrary, when the pressure difference ΔP exceeds the boundary value PT and the pressure Pa is smaller than the pressure Pb, the pressure difference ΔP causes the first coil spring 45 to expand and deform, and the second coil spring 46 to compress and deform.
The valve body 41 is moved to and held at the first position. The boundary value PT is preset by the spring constants of the coil springs 45 and 46, the pressure receiving area of the valve body 41, and the like.

【0046】このように構成された急速充填弁19は、
乾燥剤筒11の空気出口11b側の乾燥空気の圧力Pa
と、乾燥剤筒12の空気出口12b側の乾燥空気の圧力
Pbとの圧力差ΔPに応じて自律的に閉弁又は開弁動作
する。そして、急速充填弁19は、圧力差ΔPと境界値
PT との大小関係に関係なく、両流路37,38間をオ
リフィス43を介して連通させる。また、圧力差ΔPが
境界値PT を超えるときには、図4又は図5に示すよう
に、圧力Paと圧力Pbの大小関係に関係なく、各供給
流路44を介しての両流路37,38間の連通を遮断す
る。一方、圧力差ΔPが境界値PT 以下のときには、図
1に示すように、オリフィス43に加え、各供給流路4
4を介して両流路37,38間を連通する。
The rapid filling valve 19 thus constructed is
Pressure Pa of the dry air on the air outlet 11b side of the desiccant cylinder 11
And the pressure difference ΔP between the pressure Pb of the dry air on the air outlet 12b side of the desiccant cylinder 12 and the valve opening / closing operation autonomously. The rapid filling valve 19 connects the flow paths 37 and 38 through the orifice 43 regardless of the magnitude relationship between the pressure difference ΔP and the boundary value PT. Further, when the pressure difference ΔP exceeds the boundary value PT, as shown in FIG. 4 or 5, regardless of the magnitude relationship between the pressure Pa and the pressure Pb, both the flow passages 37, 38 via the respective supply flow passages 44. Cut off communication between them. On the other hand, when the pressure difference ΔP is less than or equal to the boundary value PT, as shown in FIG.
The two flow paths 37 and 38 are communicated with each other via the line 4.

【0047】次に、以上のように構成された除湿装置1
0の動作について説明する。制御装置は、予め設定され
た吸着時間T毎に、両乾燥剤筒11,12のうちから吸
着させる側の一方の乾燥剤筒11(又は12)に対し原
料空気を供給して乾燥空気を生成させるとともに、再生
させる側の他方の乾燥剤筒12(又は11)を通して乾
燥空気の一部を放出させて乾燥剤を再生するように各供
給用二方弁13,14及び放出用二方弁15,16を制
御する。さらに、制御装置は、その吸着時間Tが終了し
た時点で、原料空気が供給された乾燥剤筒11(又は1
2)を新たに再生し、再生された乾燥剤筒12(又は1
1)に新たに吸着させる。
Next, the dehumidifying device 1 configured as described above
The operation of 0 will be described. The control device supplies the raw material air to the desiccant cylinder 11 (or 12), which is one of the desiccant cylinders 11 and 12 on the adsorbing side, at every preset adsorption time T to generate dry air. The two-way valves 13 and 14 for supplying and the two-way valve 15 for discharging so as to regenerate the desiccant by releasing a part of the dry air through the other desiccant cylinder 12 (or 11) on the regenerating side. , 16 are controlled. Furthermore, the control device, at the time when the adsorption time T ends, the drying agent cylinder 11 (or 1) to which the raw material air is supplied.
2) is newly regenerated, and the regenerated desiccant tube 12 (or 1)
It is newly adsorbed to 1).

【0048】この制御内容について詳述する。図6に示
すように、1回の吸着時間Tにおいて、その開始時点t
1から一定の吸着・再生時間Taが経過した時点t2ま
での間は、例えば供給用二方弁を開弁状態とし、放出用
二方弁16を開弁状態とする第1供給制御を行う。この
第1供給制御により、吸着側とする乾燥剤筒11の空気
入口11aを空気供給源S1に連通させ、再生側とする
乾燥剤筒12の空気入口12aを大気領域S3に連通さ
せる。尚、詳細には、開始時点t1よりも少しの時間T
bだけ遅れた時点t3に放出用二方弁16を開弁状態と
する。
The details of this control will be described. As shown in FIG. 6, at one adsorption time T, the start time t
From 1 to time t2 when a certain adsorption / regeneration time Ta has elapsed, for example, the first supply control is performed in which the supply two-way valve is opened and the discharge two-way valve 16 is opened. By this first supply control, the air inlet 11a of the desiccant cylinder 11 on the adsorption side is communicated with the air supply source S1, and the air inlet 12a of the desiccant cylinder 12 on the regeneration side is communicated with the atmosphere region S3. In addition, in detail, a time T slightly shorter than the start time t1
At the time t3 delayed by b, the discharge two-way valve 16 is opened.

【0049】このような第1供給制御により、除湿装置
10は、吸着・再生時間Ta中に、空気供給源S1から
吸着側の乾燥剤筒11に原料空気を供給させ、供給され
た原料空気中の水分をその乾燥剤に吸着させた乾燥空気
を生成して乾燥空気供給領域S2に供給する。
By the first supply control as described above, the dehumidifying device 10 causes the raw material air to be supplied from the air supply source S1 to the desiccant cylinder 11 on the adsorption side during the adsorption / regeneration time Ta, and the supplied raw material air The moisture is absorbed by the desiccant to generate dry air and the dry air is supplied to the dry air supply region S2.

【0050】一方、吸着側の乾燥剤筒11の空気出口1
1bから排出される乾燥空気の一部を、急速充填弁19
に設けられたオリフィス43を通じて再生側の乾燥剤筒
12にその空気出口12bから導入させ、その乾燥剤を
再生させて空気入口12aから大気領域S3に放出させ
る。
On the other hand, the air outlet 1 of the desiccant cylinder 11 on the adsorption side
A part of the dry air discharged from 1b is charged with the quick filling valve 19
The desiccant is introduced from the air outlet 12b into the desiccant cylinder 12 on the regeneration side through the orifice 43 provided in the above, and the desiccant is regenerated and discharged from the air inlet 12a to the atmosphere region S3.

【0051】このとき、吸着側の乾燥剤筒11の空気出
口11bから排出される乾燥空気の圧力Pa(吸着側圧
力)と、再生側の乾燥剤筒12の空気出口12bから導
入される乾燥空気の圧力Pb(再生側圧力)との圧力差
ΔP(=Pa−Pb)が境界値PT を超え、図5に示す
ように、急速充填弁19が閉弁状態となる。そして、両
乾燥剤筒11,12の空気出口11b,12b間が、オ
リフィス43のみを介して連通される。
At this time, the pressure Pa (pressure on the adsorption side) of the dry air discharged from the air outlet 11b of the desiccant cylinder 11 on the adsorption side and the dry air introduced from the air outlet 12b of the desiccant cylinder 12 on the regeneration side. The pressure difference .DELTA.P (= Pa-Pb) from the pressure Pb (regeneration side pressure) exceeds the boundary value PT, and the quick filling valve 19 is closed as shown in FIG. The air outlets 11b and 12b of the desiccant cylinders 11 and 12 are communicated with each other only through the orifice 43.

【0052】詳述すると、図6に示すように、吸着・再
生時間Taの間は、吸着側の圧力Paがほぼ第1圧力P
1となり、再生側の圧力Pbがほぼ大気圧P0となる。
このため、その圧力差ΔPが境界値PT を超え、図4に
示すように、弁体41が両コイルスプリング45,46
の弾性保持力に抗して中間位置から第2位置に移動す
る。すると、両流路37,38間の連通が遮断され、急
速充填弁19が閉弁状態となる。その結果、各供給流路
44を介しての、両乾燥剤筒11,12の空気出口11
b,12b間の連通が遮断される。
More specifically, as shown in FIG. 6, during the adsorption / regeneration time Ta, the pressure Pa on the adsorption side is substantially the first pressure P.
The pressure Pb on the regeneration side becomes almost atmospheric pressure P0.
Therefore, the pressure difference ΔP exceeds the boundary value PT, and as shown in FIG.
It moves from the intermediate position to the second position against the elastic holding force of. Then, the communication between the flow paths 37 and 38 is cut off, and the quick filling valve 19 is closed. As a result, the air outlets 11 of both desiccant cylinders 11 and 12 via the respective supply flow paths 44.
The communication between b and 12b is cut off.

【0053】従って、吸着・再生時間Ta中は、空気供
給源S1から供給される原料空気がこのとき吸着側であ
る乾燥剤筒11によって乾燥空気とされ、乾燥空気供給
領域S2に供給される。一方、乾燥剤筒11の空気出口
11bから再生側の乾燥剤筒12の空気出口12bへ、
オリフィス43によって流量制限された乾燥空気が供給
され、乾燥剤筒12の乾燥剤が再生される。
Therefore, during the adsorption / regeneration time Ta, the raw material air supplied from the air supply source S1 is made into dry air by the desiccant cylinder 11 on the adsorption side at this time and is supplied to the dry air supply region S2. On the other hand, from the air outlet 11b of the desiccant cylinder 11 to the air outlet 12b of the regeneration-side desiccant cylinder 12,
The dry air whose flow rate is restricted by the orifice 43 is supplied, and the desiccant in the desiccant cylinder 12 is regenerated.

【0054】次に、制御装置は、吸着・再生時間Taの
終了時点t2から吸着時間Tの終了時点t4までの間に
設定された吸着・切替時間Tcの間は、供給用二方弁1
3を開弁状態としたままで、放出用二方弁16を閉弁状
態とする第2供給制御を行う。この第2供給制御によ
り、吸着側の乾燥剤筒11の空気入口11aを空気供給
源S1に連通させ、同じく空気出口11bを乾燥空気供
給領域S2に連通させたままで、再生側の乾燥剤筒12
の空気入口12aの大気領域S3に対する連通を遮断す
る。
Next, the controller controls the supply two-way valve 1 during the adsorption / switching time Tc set between the end time t2 of the adsorption / regeneration time Ta and the end time t4 of the adsorption time T.
The second supply control is performed in which the discharge two-way valve 16 is closed while the valve 3 is left open. By this second supply control, the air inlet 11a of the adsorption side desiccant cylinder 11 is communicated with the air supply source S1, and the air outlet 11b is also communicated with the dry air supply region S2, while the regeneration side desiccant cylinder 12 is kept.
The communication of the air inlet 12a with the atmosphere region S3 is blocked.

【0055】このような第2供給制御により、除湿装置
10は、吸着・切替時間Tc中に、空気供給源S1から
吸着側の乾燥剤筒11に原料空気を供給するとともに乾
燥剤筒11で生成される乾燥空気を乾燥空気供給領域S
2に供給したままで、再生側の乾燥剤筒12から大気領
域S3への空気の放出を停止する。このため、吸着側の
乾燥剤筒11からオリフィス43を介して供給される乾
燥空気によって再生側の乾燥剤筒12内の圧力(ほぼ圧
力Pbに等しい。)が上昇する。
By such a second supply control, the dehumidifying device 10 supplies the raw material air from the air supply source S1 to the adsorbing-side desiccant cylinder 11 and generates the desiccant cylinder 11 during the adsorption / switching time Tc. The dry air to be supplied to the dry air supply region S
2 is still supplied, and the release of air from the regenerating side desiccant cylinder 12 to the atmosphere region S3 is stopped. Therefore, the pressure in the desiccant cylinder 12 on the regeneration side (which is substantially equal to the pressure Pb) is increased by the dry air supplied from the desiccant cylinder 11 on the adsorption side through the orifice 43.

【0056】このとき、吸着側の乾燥剤筒11から排出
される乾燥空気の圧力Paと、オリフィス43を介して
供給される乾燥空気によって上昇した再生側の乾燥剤筒
12の空気出口12b側の圧力Pbとの圧力差ΔPが境
界値PT 以下となり、図1に示すように、急速充填弁1
9が開弁状態となる。そして、両乾燥剤筒11,12の
空気出口11b,12b間が、オリフィス43に加え、
各供給流路44を介して連通する。
At this time, the pressure Pa of the dry air discharged from the adsorption side desiccant cylinder 11 and the air outlet 12b side of the regeneration side desiccant cylinder 12 increased by the dry air supplied through the orifice 43. The pressure difference ΔP from the pressure Pb becomes the boundary value PT or less, and as shown in FIG.
9 is opened. Then, between the air outlets 11b and 12b of both desiccant cylinders 11 and 12, in addition to the orifice 43,
It communicates via each supply channel 44.

【0057】詳述すると、図6に示すように、吸着・再
生時間Taが終了した時点t2から乾燥剤筒12側の圧
力Pbが上昇し、少し遅れた時点t5で、乾燥剤筒11
側の圧力Paと圧力Pbとの圧力差ΔPが境界値Pb以
下となる。このため、弁体41が両コイルスプリング4
5,46の弾性保持力によって第2位置から第1位置側
に徐々に移動し、第1流路37と第2流路38とが各供
給流路44を介して連通される。その結果、急速充填弁
19が閉弁状態から徐々に開弁状態となり、各供給流路
44を介して両乾燥剤筒11,12間が連通される。
More specifically, as shown in FIG. 6, the pressure Pb on the side of the desiccant cylinder 12 rises from the time t2 when the adsorption / regeneration time Ta ends, and at a time t5 after a short delay, the desiccant cylinder 11
The pressure difference ΔP between the side pressure Pa and the pressure Pb becomes equal to or less than the boundary value Pb. For this reason, the valve body 41 becomes
The elastic holding force of 5, 46 gradually moves from the second position to the first position side, and the first flow path 37 and the second flow path 38 communicate with each other via the supply flow paths 44. As a result, the rapid filling valve 19 gradually changes from the closed state to the open state, and the two desiccant cylinders 11 and 12 are communicated with each other via the supply flow paths 44.

【0058】従って、吸着・切替時間Tc中には、空気
供給源S1から供給される原料空気がこのとき吸着側で
ある乾燥剤筒11によって乾燥空気とされ、乾燥空気供
給領域S2に供給される。一方、乾燥剤筒11の空気出
口11b側から再生側の乾燥剤筒12の空気出口12b
側へオリフィス43によって流量制限された乾燥空気に
加え、各供給流路44を介して乾燥空気が多量に供給さ
れる。その結果、再生側の乾燥剤筒12内の圧力が、吸
着側の乾燥剤筒11内の圧力まで急速に上昇する。
Therefore, during the adsorption / switching time Tc, the raw material air supplied from the air supply source S1 is made into dry air by the desiccant cylinder 11 on the adsorption side at this time and supplied to the dry air supply region S2. . On the other hand, from the air outlet 11b side of the desiccant tube 11 to the air outlet 12b of the regeneration side desiccant tube 12
In addition to the dry air whose flow rate is restricted to the side by the orifice 43, a large amount of dry air is supplied through each supply channel 44. As a result, the pressure in the regeneration-side desiccant cylinder 12 rapidly rises to the pressure in the adsorption-side desiccant cylinder 11.

【0059】次に、制御装置は、この吸着時間Tの終了
時点t4には、この吸着時間Tで再生側であった乾燥剤
筒12を新たに吸着側とし、同じく吸着側であった乾燥
剤筒11を新たに再生側として再び第1供給制御を行う
第3供給制御を行う。即ち、供給用二方弁13を閉弁
し、供給用二方弁14を開弁する。すると、この吸着時
間Tの間に再生された乾燥剤筒12によって吸着が行わ
れ、一方、吸着を行った乾燥剤筒11の乾燥剤が再生さ
れる。
Next, at the end time t4 of the adsorption time T, the control device newly sets the desiccant cylinder 12 on the regeneration side at the adsorption time T to the adsorption side, and the desiccant on the adsorption side as well. The third supply control is performed in which the cylinder 11 is newly set as the reproduction side and the first supply control is performed again. That is, the supply two-way valve 13 is closed and the supply two-way valve 14 is opened. Then, the desiccant cylinder 12 regenerated during the adsorption time T performs adsorption, while the adsorbent desiccant in the desiccant cylinder 11 is regenerated.

【0060】次に、以上詳述した本実施形態によって得
られる効果を列挙する。 (1) 両乾燥剤筒11,12の空気出口11b,12
b間を連通する管路23上に設けた急速充填弁19が、
両乾燥剤筒11,12での乾燥空気の圧力差ΔPに応じ
て自律的に開閉弁動作する。そして、再生側の乾燥剤筒
12の空気出口12bの大気領域S3に対する連通が遮
断されると、境界値PT を超えて上昇した圧力差ΔPに
よって開弁し、吸着側の乾燥剤筒11から乾燥空気を再
生側の乾燥剤筒12側に一次的に多量に供給する。
Next, the effects obtained by this embodiment described in detail above will be listed. (1) Air outlets 11b, 12 of both desiccant cylinders 11, 12
The rapid filling valve 19 provided on the pipe line 23 communicating between b
The opening / closing valve operates autonomously according to the pressure difference ΔP of the dry air in both the desiccant cylinders 11 and 12. Then, when the communication of the air outlet 12b of the desiccant cylinder 12 on the regeneration side to the atmosphere region S3 is cut off, the valve opens due to the pressure difference ΔP rising above the boundary value PT, and the desiccant cylinder 11 on the adsorption side is dried. A large amount of air is primarily supplied to the desiccant cylinder 12 side on the regeneration side.

【0061】従って、外部から制御を必要とする電磁弁
を用いることなく、吸着と再生とを切り替えるときに、
吸着側の乾燥剤筒11(12)側から再生側の乾燥剤筒
12(11)側に乾燥空気を一次的に多量に供給するこ
とができる。このことにより、再生側の乾燥剤筒12
(11)の再生が完了した時点からその内部の圧力が十
分に上昇するまでに要する時間を短縮し、吸着効率が低
下していく吸着側の乾燥剤筒11(12)で乾燥空気が
生成される時間を短縮して、生成される乾燥空気の乾燥
度が低下する状態を抑制することができる。その結果、
各電磁弁13〜16を制御する制御装置を含めた装置全
体のコスト上昇を招かず、また、装置全体の信頼性を低
下させることなしに、良質の乾燥空気を安定的に供給す
ることができる。
Therefore, when switching between adsorption and regeneration without using a solenoid valve that requires external control,
A large amount of dry air can be temporarily supplied from the adsorption side desiccant cylinder 12 (12) side to the regeneration side desiccant cylinder 12 (11) side. As a result, the desiccant cylinder 12 on the regeneration side
Dry air is generated in the desiccant cylinder 11 (12) on the adsorption side where the time required from the completion of the regeneration of (11) until the internal pressure rises sufficiently is shortened and the adsorption efficiency decreases. It is possible to reduce the drying time of the generated dry air and suppress a state in which the dryness of the generated dry air is reduced. as a result,
It is possible to stably supply high-quality dry air without increasing the cost of the entire device including the control device for controlling the solenoid valves 13 to 16 and without lowering the reliability of the entire device. .

【0062】(2) 急速充填弁19の弁体41に設け
られたオリフィス43が、両乾燥剤筒11,12の空気
出口11b,12b間を連通する。従って、両乾燥剤筒
11,12の空気出口11b,12b間をオリフィスを
介して連通するための管路(連通流路)を、急速充填弁
19が設けられた管路23と別に設ける必要がない。そ
の結果、除湿装置10の構成を簡素化することができ
る。
(2) The orifice 43 provided in the valve body 41 of the quick filling valve 19 communicates between the air outlets 11b and 12b of both desiccant cylinders 11 and 12. Therefore, it is necessary to provide a conduit (communication conduit) for communicating between the air outlets 11b, 12b of both desiccant cylinders 11, 12 via the orifice, separately from the conduit 23 provided with the quick filling valve 19. Absent. As a result, the configuration of the dehumidifying device 10 can be simplified.

【0063】また、弁室39を迂回して両流路37,3
8を連通するようにハウジング内に流路が設けられ、こ
の流路内にオリフィスが設けられた構成に比較して、ハ
ウジングの大型化を招かない。
In addition, bypassing the valve chamber 39, both flow paths 37, 3
The size of the housing is not increased as compared with the configuration in which the flow path is provided in the housing so as to communicate 8 and the orifice is provided in the flow path.

【0064】(3) 一対のコイルスプリング45,4
6が吸着側の圧力Paと再生側の圧力Pbとの圧力差Δ
Pに応じて弾性変形し、圧力差ΔPに応じた位置に弁体
41を保持する。このことによって、急速充填弁19
が、圧力差ΔPに応じて閉弁状態又は開弁状態に動作す
る。従って、急速充填弁19を簡単な機構とすることが
でき、その信頼性をより高くすることができる。
(3) A pair of coil springs 45, 4
6 is the pressure difference Δ between the pressure Pa on the adsorption side and the pressure Pb on the regeneration side.
The valve element 41 is elastically deformed according to P and holds the valve element 41 at a position corresponding to the pressure difference ΔP. As a result, the quick filling valve 19
Operates in the valve closed state or the valve open state depending on the pressure difference ΔP. Therefore, the quick filling valve 19 can be a simple mechanism, and its reliability can be further enhanced.

【0065】次に、上記実施形態以外の実施形態を列挙
する。 ・ 前記一実施形態で、急速充填弁19の弁体保持手段
は、両コイルスプリング45,46の代わりに、ばね部
材である1つのコイルスプリングであって、このコイル
スプリングは、第1流路37の嵌合部37aと弁体41
の嵌合部41bとに対しその各端部がそれぞれ固定され
ている構成とする。そして、このコイルスプリングは、
圧力差ΔPが境界値PT 以下のときに、弁体41を中間
位置に弾性的に保持する。また、吸着側の圧力Paが再
生側の圧力Pbより大きく、圧力差ΔPが境界値PT を
超えるときには、弾性的に伸張変形して弁体41を第2
位置に配置する。一方、圧力Pbが圧力Paよりも大き
く、圧力差ΔPが境界値PT を超えるときには、弾性的
に圧縮変形して弁体41を第1位置に配置する。このよ
うな構成の場合には、前記一実施形態の(1),(2)
に記載する効果に加えて、急速充填弁19をより一層簡
単な構成とすることができる。
Next, embodiments other than the above embodiment will be listed. In the above-described embodiment, the valve body holding means of the quick filling valve 19 is one coil spring which is a spring member instead of the coil springs 45 and 46, and the coil spring is the first flow path 37. Fitting portion 37a and valve body 41 of
The respective end portions are fixed to the fitting portion 41b of FIG. And this coil spring is
When the pressure difference ΔP is less than or equal to the boundary value PT, the valve element 41 is elastically held at the intermediate position. When the pressure Pa on the adsorption side is higher than the pressure Pb on the regeneration side and the pressure difference ΔP exceeds the boundary value PT, the valve body 41 is elastically stretched and deformed to the second position.
Place in position. On the other hand, when the pressure Pb is larger than the pressure Pa and the pressure difference ΔP exceeds the boundary value PT, the valve body 41 is placed in the first position by elastically compressively deforming. In the case of such a configuration, (1) and (2) of the above-mentioned one embodiment
In addition to the effect described in (1), the quick filling valve 19 can have an even simpler configuration.

【0066】・ 前記一実施形態で、弁体をその変位方
向に対向するように付勢する一対のコイルばねは、両コ
イルスプリング45,46の代わりに、弁体を第1流路
37側に引っ張り付勢する第1引っ張りコイルばねと、
同じく第2流路38側に引っ張り付勢する第2引っ張り
コイルばねであってもよい。この場合にも、前記一実施
形態の(1)〜(3)に記載した各効果を得ることがで
きる。
In the above-described embodiment, the pair of coil springs that bias the valve body so as to oppose each other in the displacement direction thereof is such that the valve body is placed on the side of the first flow path 37 instead of the coil springs 45 and 46. A first tension coil spring that pulls and urges,
Similarly, a second tension coil spring that pulls and urges the second flow path 38 may be used. Also in this case, the effects described in (1) to (3) of the above-described embodiment can be obtained.

【0067】・ 前記一実施形態で、絞りは、オリフィ
ス43の代わりに、急速充填弁19のハウジング30の
内部に、弁室39を迂回して第1流路37と第2流路3
8とを連通するように設けられた絞り流路である構成と
する。この場合にも、前記一実施形態の(1),(3)
に記載する効果に加えて、オリフィスが設けられた管路
を設ける必要がないので、除湿装置10の構成を簡素化
することができる。
In the above-described embodiment, the throttle bypasses the valve chamber 39 inside the housing 30 of the quick fill valve 19 instead of the orifice 43, and bypasses the first flow path 37 and the second flow path 3.
8 is a throttle channel provided so as to communicate with 8. Also in this case, (1) and (3) of the above-described embodiment
In addition to the effect described in (1), since it is not necessary to provide a conduit provided with an orifice, the dehumidifying device 10 can be simplified in configuration.

【0068】・ 前記一実施形態で、絞りは、オリフィ
ス43の代わりに、弁室39と弁体41との間に両流路
37,38を連通するように設けられた漏れ流路である
構成とする。この場合にも、前記一実施形態の(1),
(3)に記載する効果に加えて、オリフィスが設けられ
た管路を設ける必要がないので、除湿装置10の構成を
簡素化することができる。
In the above-described embodiment, the throttle is a leakage flow passage provided so as to connect the flow passages 37 and 38 between the valve chamber 39 and the valve body 41 instead of the orifice 43. And Also in this case, (1),
In addition to the effect described in (3), since it is not necessary to provide a pipeline provided with an orifice, the configuration of the dehumidifying device 10 can be simplified.

【0069】・ 前記一実施形態で、急速充填弁19に
はオリフィスを設けず、急速充填弁19が設けられた管
路と並列に設けられた供給管路上にオリフィスが設けら
れた構成とする。この構成では、前記一実施形態の
(1),(3)に記載する各効果を得ることができる。
In the above-described embodiment, the quick fill valve 19 is not provided with an orifice, and the orifice is provided on the supply pipeline provided in parallel with the pipeline where the quick fill valve 19 is provided. With this configuration, the effects described in (1) and (3) of the above-described embodiment can be obtained.

【0070】・ 前記一実施形態で、一対の供給用二方
弁13,14と、一対の放出用電磁二方弁15,16と
からなる構成を、従来のように、空気供給源S1から各
乾燥剤筒11,12に供給する原料空気を切り替えるた
めの三方型チェック弁と、乾燥剤筒11,12の内の再
生側となる方の空気入口を大気に連通させるための一対
の電磁二方弁とからなる構成とする。このような構成で
も、前記一実施形態の(1)〜(3)に記載した各効果
を得ることができる。
In the above-described embodiment, the configuration including the pair of supply two-way valves 13 and 14 and the pair of discharge electromagnetic two-way valves 15 and 16 from the air supply source S1 is different from the conventional one. A three-way check valve for switching the raw material air supplied to the desiccant cylinders 11 and 12, and a pair of electromagnetic two-way valves for communicating the air inlet of the desiccant cylinders 11 and 12 on the regeneration side with the atmosphere. It is configured with a valve. Even with such a configuration, the effects described in (1) to (3) of the embodiment can be obtained.

【0071】・ 前記一実施形態で、一対の二方型のチ
ェック弁17,18からなる構成を、従来のように、三
方型のチェック弁とした構成とする。このような構成で
も、前記一実施形態の(1)〜(3)に記載した各効果
を得ることができる。
In the above-described embodiment, the configuration including the pair of two-way check valves 17 and 18 is a three-way check valve as in the conventional case. Even with such a configuration, the effects described in (1) to (3) of the embodiment can be obtained.

【0072】・ 前記一実施形態で、連通流路は、管路
23でなく、除湿装置本体のハウジング内に設けられた
流路であってもよい。 ・ 方向制御弁は、圧力差ΔPによって自律的に開閉弁
動作し、両吸着容器間を連通する流路を連通又は連通遮
断するものであればよく、前記一実施形態の形態に限定
されない。
In the one embodiment, the communication flow path may be a flow path provided inside the housing of the dehumidification device main body, instead of the conduit line 23. The directional control valve is not limited to the above-described embodiment, as long as the directional control valve autonomously opens and closes by the pressure difference ΔP and connects or disconnects the flow path communicating between the adsorption vessels.

【0073】・ 除湿装置の一対の各乾燥剤筒は、それ
ぞれ複数の乾燥剤筒が並列接続されたものであってもよ
い。 ・ 本発明を実施する吸着分離装置は、除湿装置10に
限らず、原料空気から窒素を吸着分離して富酸素化空気
を生成する装置、原料空気から酸素を吸着分離して富窒
素化空気を生成する装置、原料水素から不純物を吸着分
離して精製水素を生成する装置等に実施してもよい。
Each of the pair of desiccant cylinders of the dehumidifier may have a plurality of desiccant cylinders connected in parallel. The adsorption / separation device for carrying out the present invention is not limited to the dehumidification device 10, and is a device that adsorbs and separates nitrogen from raw material air to generate oxygen-enriched air, and adsorbs and separates oxygen from raw material air to generate nitrogen-enriched air. It may be implemented in an apparatus for producing, an apparatus for producing purified hydrogen by adsorbing and separating impurities from raw material hydrogen.

【0074】以下、前述した各実施形態から把握される
技術的思想をその効果とともに記載する。 (1) 請求項3に記載の発明において、前記弾性保持
手段は、ばね部材(第1コイルスプリング45、第2コ
イルスプリング46)からなることを特徴とする方向制
御弁。このような構成によれば、方向制御弁をより一層
簡単な構成とすることができる。
Hereinafter, the technical idea understood from each of the above-mentioned embodiments will be described together with its effects. (1) In the invention according to claim 3, the directional control valve is characterized in that the elastic holding means includes a spring member (first coil spring 45, second coil spring 46). With such a configuration, the directional control valve can be made even simpler.

【0075】(2) 請求項1〜請求項4のいずれか一
項に記載の発明において、前記両ポート間を常時連通す
る絞り流路が設けられていることを特徴とする方向制御
弁。このような構成によれば、吸着分離装置において、
方向制御弁が設けられた流路を連通流路として使用する
ことができ、連通流路と別の流路を設ける必要がないの
で、構成を簡素化することができる。
(2) In the invention according to any one of claims 1 to 4, a directional control valve is provided, which is provided with a throttling flow path which constantly connects the both ports. According to such a configuration, in the adsorption separation device,
The flow path provided with the directional control valve can be used as a communication flow path, and it is not necessary to provide a flow path different from the communication flow path, so that the configuration can be simplified.

【0076】(3) 請求項6〜請求項8のいずれか一
項に記載の発明において、前記原料気体は原料空気であ
り、前記製品気体は、前記原料空気から水が吸着された
乾燥空気であることを特徴とする吸着分離装置。
(3) In the invention according to any one of claims 6 to 8, the raw material gas is raw material air, and the product gas is dry air in which water is adsorbed from the raw material air. An adsorption separation device characterized by being present.

【0077】(4)それぞれ吸着剤が収容され、気体入
口及び気体出口を供えた一対の吸着容器と、両吸着容器
の内で吸着を行わせる吸着側吸着容器の気体入口を、原
料気体を第1圧力で供給する気体供給源(空気供給源S
1)に連通させ、その気体出口を、第1圧力よりも低い
第2圧力の製品供給領域(乾燥空気供給領域S2)に連
通させる一方、両吸着容器の内で再生を行わせる再生側
吸着容器の気体入口を、第1圧力よりも低い第3圧力の
気体放出領域(大気領域S3)に連通させ、その気体出
口を、前記製品供給領域に対して連通遮断する第1供給
制御と、前記第1供給制御における制御状態から、前記
吸着側吸着容器の気体入口を気体供給源に連通させ、そ
の気体出口を製品供給領域に連通させ、前記再生側吸着
容器の気体出口を製品供給領域に対して連通遮断したま
まで、再生側吸着容器の気体入口を気体放出領域に対し
て連通遮断する第2供給制御と、前記第2供給制御にお
ける制御状態から、前記再生側吸着容器を新たに吸気側
吸着容器とし、前記吸着側吸着容器を新たに再生側吸着
容器として再び前記第1供給制御を行わせる第3供給制
御とを行うための供給制御手段(供給用電磁二方弁1
3,14、放出用電磁二方弁15,16、チェック弁1
7,18)と、前記両吸着容器の気体出口間を連通する
連通流路上に設けられた絞り(オリフィス43)とを備
えた吸着分離装置において、前記両吸着容器の気体出口
間を連通する流路上に前記絞りと並列に設けられ、該両
気体出口間の圧力差に応じて両気体出口間の連通状態を
調節する方向制御弁(急速充填弁19)を備え、該方向
制御弁は、前記第1供給制御時には、前記吸着側吸着容
器がその気体出口から排出する製品気体の吸着側圧力
(Pa又はPb)と、前記再生側吸着容器にその気体出
口から導入される製品気体の再生側圧力(Pb又はP
a)との圧力差によって両吸着容器の気体出口間の連通
を遮断し、前記第2供給制御時には、吸着側吸着容器か
ら前記絞りを介して供給される製品気体によって上昇し
た再生側圧力と吸着側圧力との圧力差によって両吸着容
器の気体出口間を連通させることを特徴とする吸着分離
装置。
(4) A pair of adsorption containers, each containing an adsorbent and provided with a gas inlet and a gas outlet, and a gas inlet of the adsorption side adsorption container for adsorbing in both adsorption containers Gas supply source (air supply source S
1), and its gas outlet is communicated with a product supply region (dry air supply region S2) having a second pressure lower than the first pressure, and at the same time, a regeneration side adsorption container for performing regeneration in both adsorption containers Of the gas supply port of the first gas supply device is connected to a gas discharge region (atmosphere region S3) having a third pressure lower than the first pressure, and the gas outlet is disconnected from the product supply region; From the control state in 1 supply control, the gas inlet of the adsorption side adsorption container is made to communicate with the gas supply source, the gas outlet thereof is made to communicate with the product supply region, and the gas outlet of the regeneration side adsorption container is made to the product supply region. From the second supply control in which the gas inlet of the regeneration side adsorption container is disconnected from the gas release region while the communication is blocked, and the control state in the second supply control, the regeneration side adsorption container is newly adsorbed on the intake side. As a container, in front Third supply control means for performing the supply control (supplying solenoid two-way valve to again perform the first supply control as a new reproduction side adsorption vessel the adsorption-side adsorbent vessel 1
3,14, electromagnetic two-way valve for discharge 15,16, check valve 1
7 and 18) and a restriction (orifice 43) provided on a communication channel that communicates between the gas outlets of the adsorption vessels, a flow that communicates between the gas outlets of the adsorption vessels. A directional control valve (quick filling valve 19) that is provided in parallel with the throttle on the road and adjusts the communication state between the gas outlets according to the pressure difference between the gas outlets is provided. At the time of the first supply control, the adsorption side pressure (Pa or Pb) of the product gas discharged from the gas outlet of the adsorption side adsorption container and the regeneration side pressure of the product gas introduced into the regeneration side adsorption container from the gas outlet. (Pb or P
Due to the pressure difference from a), the communication between the gas outlets of both adsorption vessels is cut off, and during the second supply control, the regeneration side pressure and adsorption increased by the product gas supplied from the adsorption side adsorption vessel through the throttle. An adsorption separation device, characterized in that the gas outlets of both adsorption vessels are communicated with each other by a pressure difference from the side pressure.

【0078】[0078]

【発明の効果】請求項1〜請求項5に記載の発明によれ
ば、互いに連通可能な2つの気体圧力領域間の圧力差に
よって動作し、この圧力差がある境界値を超えるときに
は気体圧力領域間の連通を遮断して気体の移動を禁止す
る一方、この圧力差が境界値以下のときには両気体圧力
領域間を連通させて圧力が高い方から低い方へ気体を移
動させることができる方向制御弁を提供することができ
る。
According to the invention described in claims 1 to 5, the gas pressure region operates by a pressure difference between two gas pressure regions which can communicate with each other, and when the pressure difference exceeds a certain boundary value. Direction control that allows the gas to move from the higher pressure side to the lower pressure side by blocking the communication between them and prohibiting the movement of gas, and when the pressure difference is below the boundary value A valve can be provided.

【0079】請求項6〜請求項8に記載の発明によれ
ば、吸着と再生とを交互に行わせるための一対の吸着容
器を備えた吸着分離装置において、外部から制御を必要
とする電磁弁を用いることなく、吸着と再生との切替時
に吸着側の吸着容器側から再生側の吸着容器側に製品気
体の一部を一次的に多量に供給することができる。
According to the sixth to eighth aspects of the invention, in the adsorption / separation device equipped with a pair of adsorption vessels for alternately performing adsorption and regeneration, a solenoid valve that requires external control. It is possible to temporarily supply a large amount of a part of the product gas from the adsorption container side on the adsorption side to the adsorption container side on the regeneration side at the time of switching between adsorption and regeneration without using.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施形態の急速充填弁を示す概略断面図。FIG. 1 is a schematic cross-sectional view showing a rapid filling valve of the present embodiment.

【図2】 (a)は図1におけるA−A線概略断面図、
(b)は同じくB−B線概略断面図。
2A is a schematic cross-sectional view taken along the line AA in FIG.
(B) is a similar BB line schematic sectional drawing.

【図3】 除湿装置を示す模式構成図。FIG. 3 is a schematic configuration diagram showing a dehumidifying device.

【図4】 弁体が第1位置に配置された急速充填弁を示
す概略断面図。
FIG. 4 is a schematic cross-sectional view showing a quick-fill valve in which a valve body is arranged in a first position.

【図5】 弁体が第2位置に配置された急速充填弁を示
す概略断面図。
FIG. 5 is a schematic cross-sectional view showing a quick-fill valve in which a valve body is arranged in a second position.

【図6】 各電磁二方弁と急速充填弁の動作タイミング
を示すタイムチャート。
FIG. 6 is a time chart showing the operation timing of each electromagnetic two-way valve and the quick filling valve.

【図7】 従来の吸着分離装置を示す模式構成図。FIG. 7 is a schematic configuration diagram showing a conventional adsorption separation device.

【符号の説明】[Explanation of symbols]

10…吸着分離装置としての除湿装置、11…吸着容器
としての乾燥剤筒、12…同じく乾燥剤筒、11a,1
2a…気体入口としての空気入口、11b,12b…気
体出口としての空気出口、13,14…供給制御手段を
構成する供給用電磁二方弁、15,16…同じく放出用
電磁二方弁、17,18…同じくチェック弁、19…方
向制御弁及び連通状態制御手段としての急速充填弁、2
3…連通流路としての管路、31…流路、35…第1ポ
ート、36…第2ポート、39…弁室、41…弁体、4
3…絞りとしてのオリフィス、44…供給流路、45…
弁位置制御手段及び弾性保持手段を構成するばね部材と
しての第1コイルスプリング、46…同じく第2コイル
スプリング、Pa…第1圧力、吸着側又は再生側圧力、
Pb…第2圧力、吸着側又は再生側圧力、PT …境界
値、S1…気体供給源としての空気供給源、S2…製品
供給領域としての乾燥空気供給領域、S3…気体放出領
域としての大気領域、ΔP…圧力差。
Reference numeral 10 ... Dehumidifying device as adsorption separation device, 11 ... Desiccant container as adsorption container, 12 ... Desiccant container, 11a, 1
2a ... Air inlet as gas inlet, 11b, 12b ... Air outlet as gas outlet, 13, 14 ... Supply two-way valve constituting supply control means, 15, 16 ... Release same two-way valve, 17 , 18 ... Similarly, a check valve, 19 ... A directional control valve and a quick filling valve as a communication state control means, 2
3 ... Pipe as a communication flow path, 31 ... Flow path, 35 ... First port, 36 ... Second port, 39 ... Valve chamber, 41 ... Valve body, 4
3 ... Orifice as throttle, 44 ... Supply channel, 45 ...
A first coil spring as a spring member constituting the valve position control means and the elastic holding means, 46 ... Similarly a second coil spring, Pa ... First pressure, adsorption side or regeneration side pressure,
Pb ... second pressure, adsorption side or regeneration side pressure, PT ... boundary value, S1 ... air supply source as gas supply source, S2 ... dry air supply area as product supply area, S3 ... atmosphere area as gas release area , ΔP ... pressure difference.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3H060 AA04 BB08 CC06 CC22 DC05 DD02 DD13 HH06 HH20 4D012 CA01 CA05 CB16 CD07 CE01 CF03 CG01 CJ03 4D052 AA01 CD01 DA02 DB01 GA01 GB04 GB08 HA02    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3H060 AA04 BB08 CC06 CC22 DC05                       DD02 DD13 HH06 HH20                 4D012 CA01 CA05 CB16 CD07 CE01                       CF03 CG01 CJ03                 4D052 AA01 CD01 DA02 DB01 GA01                       GB04 GB08 HA02

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 それぞれ流体が供給される第1ポート及
び第2ポートを備え、第1ポートに供給される流体の第
1圧力と、第2ポートに供給される流体の第2圧力との
圧力差が所定の境界値以内のときには前記両ポート間を
連通させ、前記圧力差が前記境界値を超えるときには両
ポート間の連通を遮断することを特徴とする方向制御
弁。
1. A pressure, comprising a first port and a second port, respectively, to which a fluid is supplied, and a first pressure of the fluid supplied to the first port and a second pressure of the fluid supplied to the second port. A directional control valve characterized in that when the difference is within a predetermined boundary value, the ports are communicated with each other, and when the pressure difference exceeds the boundary value, communication between the ports is blocked.
【請求項2】 前記両ポート間を連通する流路上に設け
られた弁室と、 弁室内を第1ポート側と第2ポート側とに区画するとと
もに、第1ポートと弁室との連通を遮断する第1位置
と、第2ポートと弁室との連通を遮断する第2位置との
間で変位可能な弁体と、 弁体が前記第1位置と第2位置との中間位置にあるとき
には弁室を介して両ポート間を連通させ、弁体が第1位
置にあるときには第1ポートと弁室との連通が弁体によ
って遮断され、弁体が第2位置にあるときには第2ポー
トと弁室との連通が弁体によって遮断される供給流路
と、 前記圧力差がある境界値以内のときには、前記第1位置
と第2位置との中間位置に前記弁体を保持し、前記第1
圧力が第2圧力よりも前記境界値を超える圧力差だけ大
きなときには、前記弁体を第2位置に保持し、また、第
2圧力が第1圧力よりも前記境界値を超える圧力差だけ
大きなときには、前記弁体を前記第1位置に保持する弁
位置制御手段とを備えたことを特徴とする請求項1に記
載の方向制御弁。
2. A valve chamber provided on a flow path communicating between the both ports, and dividing the valve chamber into a first port side and a second port side, and connecting the first port and the valve chamber to each other. A valve body displaceable between a first position for shutting off and a second position for shutting off communication between the second port and the valve chamber; and the valve body is at an intermediate position between the first position and the second position. Occasionally, the two ports communicate with each other via the valve chamber, the communication between the first port and the valve chamber is blocked by the valve body when the valve body is in the first position, and the second port when the valve body is in the second position. And a supply passage in which communication between the valve chamber and the valve chamber is blocked by the valve body, and when the pressure difference is within a certain boundary value, the valve body is held at an intermediate position between the first position and the second position, First
When the pressure is larger than the second pressure by the pressure difference exceeding the boundary value, the valve body is held in the second position, and when the second pressure is larger than the first pressure by the pressure difference exceeding the boundary value. The directional control valve according to claim 1, further comprising: a valve position control unit that holds the valve element in the first position.
【請求項3】 前記弁位置制御手段は、前記弁体を前記
第1位置と第2位置との間で弾性的に保持するととも
に、弁体を保持する位置を前記圧力差に応じて変化させ
る弾性保持手段であることを特徴とする請求項2に記載
の方向制御弁。
3. The valve position control means elastically holds the valve body between the first position and the second position, and changes the position holding the valve body according to the pressure difference. The directional control valve according to claim 2, wherein the directional control valve is an elastic holding means.
【請求項4】 前記弾性保持手段は、前記弁体をその変
位方向に対向するように付勢する一対のコイルばねであ
ることを特徴とする請求項3に記載の方向制御弁。
4. The directional control valve according to claim 3, wherein the elastic holding means is a pair of coil springs that bias the valve body so as to face each other in the displacement direction.
【請求項5】 前記弁体には、弁体の位置に関係なく前
記両ポート間を連通するオリフィスが設けられているこ
とを特徴とする請求項2〜請求項4のいずれか一項に記
載の方向制御弁。
5. The valve body according to claim 2, wherein the valve body is provided with an orifice that communicates between the two ports regardless of the position of the valve body. Directional control valve.
【請求項6】 それぞれ吸着剤を収容するとともに気体
入口及び気体出口を有する一対の吸着容器を備え、両吸
着容器の気体出口間を連通する連通流路上には絞りが設
けられ、両吸着容器のいずれか一方の吸着側吸着容器の
気体入口に原料気体を供給してその気体出口から排出さ
れる製品流体を外部に供給するとともに、この製品流体
の一部を前記連通流路を介して他方の再生側吸着容器の
気体出口に供給してその気体入口から排出される再生済
流体を外部に放出し、また、再生側吸着容器の気体入口
から排出される再生済流体の外部への放出を停止した後
に吸着側吸着容器と再生側吸着容器とを切り替える吸着
分離装置において、 前記両吸着容器の気体出口間を連通する流路上に前記絞
りと並列に設けられ、該両気体出口間の圧力差に応じて
両気体出口間の連通状態を制御する連通状態制御手段を
備え、該連通状態制御手段は、再生側吸着容器の気体入
口から再生済流体が外部に排出されているときの両気体
出口間の圧力差によって両気体出口間の連通を遮断し、
また、再生側吸着容器の気体出口から排出される再生済
流体の外部への放出が停止した状態での両気体出口間の
圧力差によって両気体出口間を連通させることを特徴と
する吸着分離装置。
6. A pair of adsorption containers each containing an adsorbent and having a gas inlet and a gas outlet are provided, and a throttle is provided on a communication flow path that communicates between the gas outlets of both adsorption containers. The raw material gas is supplied to the gas inlet of either one of the adsorption side adsorption containers and the product fluid discharged from the gas outlet is supplied to the outside, and a part of the product fluid is supplied to the other through the communication flow path. The regenerated fluid discharged from the gas inlet of the regeneration side adsorption container and discharged from the gas inlet is discharged to the outside, and the regeneration fluid discharged from the gas inlet of the regeneration side adsorption container is stopped to the outside. After that, in the adsorption separation device that switches the adsorption side adsorption vessel and the regeneration side adsorption vessel, it is provided in parallel with the throttle on the flow path that communicates between the gas outlets of the both adsorption vessels, and the pressure difference between the both gas outlets is According to The communication state control means for controlling the communication state between both gas outlets is provided, and the communication state control means is a pressure between both gas outlets when the regenerated fluid is discharged from the gas inlet of the regeneration side adsorption container to the outside. The communication between the two gas outlets is blocked by the difference,
Further, the adsorption separation device is characterized in that the two gas outlets are communicated with each other by the pressure difference between the two gas outlets in a state where the release of the regenerated fluid discharged from the gas outlet of the regeneration side adsorption container is stopped. .
【請求項7】 前記連通状態制御手段は請求項1〜請求
項4のいずれか一項に記載された方向制御弁であること
を特徴とする請求項6に記載の吸着分離装置。
7. The adsorption separation apparatus according to claim 6, wherein the communication state control means is the directional control valve according to any one of claims 1 to 4.
【請求項8】 前記連通状態制御手段は請求項5に記載
された方向制御弁であって、該方向制御弁は前記連通流
路上に設けられ、前記絞りは前記オリフィスであること
を特徴とする請求項6に記載の吸着分離装置。
8. The communication state control means is the directional control valve according to claim 5, wherein the directional control valve is provided on the communication flow path, and the throttle is the orifice. The adsorption / separation device according to claim 6.
JP2001285411A 2001-07-25 2001-09-19 Adsorption separation device Expired - Fee Related JP4908700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001285411A JP4908700B2 (en) 2001-07-25 2001-09-19 Adsorption separation device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-224675 2001-07-25
JP2001224675 2001-07-25
JP2001224675 2001-07-25
JP2001285411A JP4908700B2 (en) 2001-07-25 2001-09-19 Adsorption separation device

Publications (2)

Publication Number Publication Date
JP2003106469A true JP2003106469A (en) 2003-04-09
JP4908700B2 JP4908700B2 (en) 2012-04-04

Family

ID=26619248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001285411A Expired - Fee Related JP4908700B2 (en) 2001-07-25 2001-09-19 Adsorption separation device

Country Status (1)

Country Link
JP (1) JP4908700B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047444A (en) * 2009-08-26 2011-03-10 Psc Kk Variable restriction device
JP2011163386A (en) * 2010-02-05 2011-08-25 Psc Kk Gas-pressure actuator system
JP2011190875A (en) * 2010-03-15 2011-09-29 Psc Kk Variable throttle device
CN107452473A (en) * 2017-08-25 2017-12-08 杭州柯林电气股份有限公司 A kind of transformer breather
CN110566702A (en) * 2019-09-29 2019-12-13 上海阿普达实业有限公司 Combined air outlet valve for heatless regeneration adsorption dryer
JP2020162968A (en) * 2019-03-29 2020-10-08 株式会社医器研 Medical gas coupling, nasal cannula, and oxygen gas supply device
WO2024030018A1 (en) * 2022-08-05 2024-02-08 Jan Kelders Beheer B.V. Sealable pressure control device for pressurized fluid container, pressurized fluid container provided with such a sealable pressure control device and method for filling a pressurized fluid container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11859863B2 (en) * 2019-08-16 2024-01-02 Battelle Memorial Institute Method and system for dehumidification and atmospheric water extraction with minimal energy consumption

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936536Y1 (en) * 1968-10-17 1974-10-04
JPS5096926A (en) * 1973-12-28 1975-08-01
JPS50110483A (en) * 1974-02-12 1975-08-30
JPS52110631A (en) * 1976-03-12 1977-09-16 Blu Ray Inc Device for removing ammonia vapor dispersed from diazo copying machine
JPH04300477A (en) * 1991-03-28 1992-10-23 Osaka Gas Co Ltd Excessive flow prevention valve
JPH0518471A (en) * 1991-07-08 1993-01-26 Tokyo Gas Co Ltd Over-outflow preventive valve
JP2001031404A (en) * 1999-05-14 2001-02-06 Taizo Nagahiro Method for concentrating oxygen gas
JP2001163605A (en) * 1999-12-10 2001-06-19 Janekkusu:Kk Concentrating method and device for gaseous oxygen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936536Y1 (en) * 1968-10-17 1974-10-04
JPS5096926A (en) * 1973-12-28 1975-08-01
JPS50110483A (en) * 1974-02-12 1975-08-30
JPS52110631A (en) * 1976-03-12 1977-09-16 Blu Ray Inc Device for removing ammonia vapor dispersed from diazo copying machine
JPH04300477A (en) * 1991-03-28 1992-10-23 Osaka Gas Co Ltd Excessive flow prevention valve
JPH0518471A (en) * 1991-07-08 1993-01-26 Tokyo Gas Co Ltd Over-outflow preventive valve
JP2001031404A (en) * 1999-05-14 2001-02-06 Taizo Nagahiro Method for concentrating oxygen gas
JP2001163605A (en) * 1999-12-10 2001-06-19 Janekkusu:Kk Concentrating method and device for gaseous oxygen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011047444A (en) * 2009-08-26 2011-03-10 Psc Kk Variable restriction device
JP2011163386A (en) * 2010-02-05 2011-08-25 Psc Kk Gas-pressure actuator system
JP2011190875A (en) * 2010-03-15 2011-09-29 Psc Kk Variable throttle device
CN107452473A (en) * 2017-08-25 2017-12-08 杭州柯林电气股份有限公司 A kind of transformer breather
CN107452473B (en) * 2017-08-25 2024-04-12 杭州柯林电气股份有限公司 Transformer respirator
JP2020162968A (en) * 2019-03-29 2020-10-08 株式会社医器研 Medical gas coupling, nasal cannula, and oxygen gas supply device
JP7013409B2 (en) 2019-03-29 2022-01-31 株式会社医器研 Medical gas coupling, nasal cannula and oxygen gas supply
CN110566702A (en) * 2019-09-29 2019-12-13 上海阿普达实业有限公司 Combined air outlet valve for heatless regeneration adsorption dryer
WO2024030018A1 (en) * 2022-08-05 2024-02-08 Jan Kelders Beheer B.V. Sealable pressure control device for pressurized fluid container, pressurized fluid container provided with such a sealable pressure control device and method for filling a pressurized fluid container

Also Published As

Publication number Publication date
JP4908700B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
CA2478322C (en) Method and apparatus for pressure swing adsorption
EP1378286B1 (en) Adsorption gas dryer
US20020134246A1 (en) PSA with adsorbents sensitive to contaminants
CA2297590A1 (en) Single bed pressure swing adsorption process and system
KR20180028492A (en) Pressure swing adsorbers with flow control by orifices
EP2861324A2 (en) System and method for concentrating gas
JP4129926B2 (en) Gas concentrator
JP2003106469A (en) Direction control valve and adsorption/separation device
CN104801144A (en) Oxygen concentrator
KR101817154B1 (en) Control method of adsorption type air dryer apparatus
KR101647017B1 (en) Oxygen concentrating method and apparatus having condensate water removing function
CN103062439B (en) Suction valve assembly
US9480945B2 (en) Pressure swing adsorption apparatus
CA2267013A1 (en) Switching valve for multi-chamber adsorbent air and gas fractionation system
JP2023523860A (en) Apparatus and method for adsorbing gases from treated gas mixtures
US4479815A (en) Pneumatic controller and alarm for adsorbent fractionaters, particularly dessicant dryers
RU2164166C2 (en) Method and device for reducing content of pollutants such as nitric oxides in gaseous combustion products
EP0177173B1 (en) Improved apparatus for the separation of a gaseous mixture
JPH01288313A (en) Gas separation process
JPH11267439A (en) Gas separation and gas separator for performing same
US5074893A (en) Fluid adsorption system
KR102616452B1 (en) Moisture and Nitrogen Adsorption Integrated PSA Oxygen Generator
JPH074499B2 (en) Gas separation device by pressure fluctuation method
KR100926764B1 (en) Absorption type gas dryer
JPS62103210A (en) Car height adjusting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees