JP2003106231A - Fuel canister connection member, method of manufacturing the same, and fuel canister - Google Patents

Fuel canister connection member, method of manufacturing the same, and fuel canister

Info

Publication number
JP2003106231A
JP2003106231A JP2001298554A JP2001298554A JP2003106231A JP 2003106231 A JP2003106231 A JP 2003106231A JP 2001298554 A JP2001298554 A JP 2001298554A JP 2001298554 A JP2001298554 A JP 2001298554A JP 2003106231 A JP2003106231 A JP 2003106231A
Authority
JP
Japan
Prior art keywords
fuel container
thin film
carbon thin
connecting member
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001298554A
Other languages
Japanese (ja)
Inventor
Takahiro Nakahigashi
孝浩 中東
Katsumi Morohoshi
勝己 諸星
Hiroshi Kumagai
宏 熊谷
Kiyokazu Wakita
清和 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Nippon ITF Inc
Original Assignee
Nissan Motor Co Ltd
Nippon ITF Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Nippon ITF Inc filed Critical Nissan Motor Co Ltd
Priority to JP2001298554A priority Critical patent/JP2003106231A/en
Publication of JP2003106231A publication Critical patent/JP2003106231A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive fuel canister connection member capable of achieving both of the improvement of fuel-proof permeability and joining strength, and to provide its manufacturing method and the fuel canister. SOLUTION: This fuel canister connection member can be joined to the fuel canister, is made out of resin, has the cylindrical shape and is provided with a carbon thin film of a thickness of 0.05-5 μm on a part excluding a joining part. The carbon thin film has a atomic ratio of carbon:hydrogen = 3:7 through 8:2. A coated face is exposed to plasma such as fluorine-containing gas, hydrogen gas and oxygen gas, and then the carbon thin film is formed to be used as the fuel canister connection member. The carbon thin film is formed by a plasma CVD method. A modulating process for reducing the plasma intensity is performed at least once for 10-120 seconds.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃料容器連結用部
材、その製造方法及び燃料容器に係り、更に詳細には、
燃料チューブなどの燃料輸送手段と燃料タンクやキャニ
スタなどの燃料容器とを連結するための燃料容器連結用
部材、その製造方法及び燃料容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel container connecting member, a method of manufacturing the same, and a fuel container.
The present invention relates to a fuel container connecting member for connecting a fuel transportation means such as a fuel tube and a fuel container such as a fuel tank or a canister, a manufacturing method thereof, and a fuel container.

【0002】[0002]

【従来の技術】従来より、樹脂製燃料容器、例えば樹脂
製燃料タンクは、成形性、耐燃料性及び価格の面から、
高密度ポリエチレン(HDPE)を主たる材料とし、ブ
ロー成形により製造するのが一般的であり、更に燃料透
過を抑えることから、最近では、エチレン・ビニルアル
コール共重合体又はナイロンをバリア層とし、接着層を
介してHDPEと接着させる3種5層のような多層構成
が一般的である。
2. Description of the Related Art Conventionally, resin-made fuel containers, for example, resin-made fuel tanks, are
High-density polyethylene (HDPE) is the main material, and it is generally manufactured by blow molding. Further, since it suppresses fuel permeation, recently, ethylene-vinyl alcohol copolymer or nylon is used as a barrier layer and an adhesive layer. A multi-layered structure such as 3 types of 5 layers which is adhered to HDPE via is common.

【0003】また、樹脂製燃料容器に取り付けられる連
結用部材については、熱板等を用いた接合によって燃料
容器と接着することから、燃料容器と同一種の樹脂で作
製することが一般的である。しかし、前述のように、H
DPEを用いて成る連結用部材は耐燃料透過性能に乏し
いことから、該連結用部材の耐燃料透過性能の向上が求
められている。特に、燃料透過規制が更に厳しくなる今
後は、燃料容器に設置される連結用部材にも高い耐燃料
透過性能が要求されつつある。
Further, since the connecting member attached to the resin fuel container is bonded to the fuel container by joining using a hot plate or the like, it is generally made of the same resin as the fuel container. . However, as mentioned above, H
Since the connecting member made of DPE has poor fuel permeation resistance, it is required to improve the fuel permeation resistance of the connecting member. In particular, in the future where fuel permeation regulations will become more stringent, high fuel permeation resistance is also required for the connecting members installed in the fuel container.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、連結用
部材により強く求められる性能は樹脂製燃料容器との接
合強度であり、HDPE以外の材料を用いると、接合強
度を低下させることに繋がり易い。そして、種々の構造
で接合強度を維持させる手法が考えられるものの、現行
のHDPE製連結用部材では、接合強度と耐燃料透過性
能とを両立させた手法については、未だ開発されていな
い。
However, the performance strongly demanded of the connecting member is the joint strength with the resin fuel container, and if a material other than HDPE is used, the joint strength tends to be lowered. Although a method of maintaining the joint strength with various structures is conceivable, a method for achieving both the joint strength and the fuel permeation resistance performance has not yet been developed for the current HDPE connecting members.

【0005】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、耐燃料透過性能を改善し接合強度との両立を達成す
るとともに安価である燃料容器連結用部材、その製造方
法及び燃料容器を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to improve fuel permeation resistance, achieve compatibility with joint strength, and be inexpensive. A fuel container connecting member, a method for manufacturing the same, and a fuel container.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、炭素薄膜を所定の
膜厚で設けることにより、上記課題が解決されることを
見出し、本発明を完成するに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by providing a carbon thin film with a predetermined film thickness. The present invention has been completed.

【0007】即ち、本発明の燃料容器連結用部材は、接
合部を介して樹脂製の燃料容器と接合し得る樹脂製且つ
筒状の燃料容器連結用部材であって、上記接合部以外に
膜厚0.05〜5μmの炭素薄膜を備えることを特徴と
する。
That is, the fuel container connecting member of the present invention is a resin-made and tubular fuel container connecting member capable of being joined to a resin fuel container through a joint portion, and a membrane other than the joint portion. A carbon thin film having a thickness of 0.05 to 5 μm is provided.

【0008】また、本発明の燃料容器連結用部材の好適
形態は、上記炭素薄膜が、炭素原子及び水素原子を含ん
で成り、原子数比が炭素:水素=3:7〜8:2である
ことを特徴とする。
In a preferred embodiment of the fuel container connecting member of the present invention, the carbon thin film contains carbon atoms and hydrogen atoms, and the atomic ratio is carbon: hydrogen = 3: 7 to 8: 2. It is characterized by

【0009】更に、本発明の燃料容器連結部材の製造方
法は、上記燃料容器連結用部材を製造する方法であっ
て、被成膜面をフッ素含有ガス、水素ガス及び酸素ガス
から成る群より選ばれた少なくとも1種のガス、のプラ
ズマに曝してから、炭素薄膜を成膜することを特徴とす
る。
Further, the method for producing a fuel container connecting member of the present invention is a method for producing the above fuel container connecting member, wherein the film-forming surface is selected from the group consisting of fluorine-containing gas, hydrogen gas and oxygen gas. It is characterized in that the carbon thin film is formed after being exposed to the plasma of at least one selected gas.

【0010】更にまた、本発明の燃料容器連結部材の製
造方法の好適形態は、上記炭素薄膜をプラズマCVD法
により成膜することを特徴とする。
Furthermore, a preferred embodiment of the method for producing a fuel container connecting member of the present invention is characterized in that the carbon thin film is formed by a plasma CVD method.

【0011】また、本発明の燃料容器連結部材の製造方
法の他の好適形態は、上記炭素薄膜を成膜する際に、少
なくとも1回且つ10〜120秒間、プラズマ強度を成
膜中の平均プラズマ強度の1/2以下に低減する変調工
程を実行することを特徴とする。
Another preferred embodiment of the method for producing a fuel container connecting member of the present invention is that when the carbon thin film is formed, the average plasma intensity during film formation is at least once and for 10 to 120 seconds. It is characterized in that a modulation process for reducing the intensity to ½ or less is performed.

【0012】更に、本発明の燃料容器は、上記燃料容器
連結用部材を備えることを特徴とする。
Further, the fuel container of the present invention is characterized by including the above-mentioned fuel container connecting member.

【0013】[0013]

【発明の実施の形態】以下、本発明の燃料容器連結用部
材について、詳細に説明する。かかる燃料容器連結用部
材は、樹脂製且つ筒状をなし、樹脂製の燃料容器と接合
部を介して接合し得る部材である。また、接合部以外に
膜厚0.05〜5μmの炭素薄膜を備える。炭素薄膜の
膜厚をこの範囲とすることにより、燃料容器連結用部材
に耐燃料透過性能が発現し、また、他部品との干渉によ
って起こる摩擦への耐久性が向上する。また、本発明の
連結用部材は、従来の材料や型構造を用いて製造でき
る。即ち、これまでと同一の製造方法で連結用部材を製
造し、得られた連結用部材の表面処理のみによって、耐
燃料透過性能を向上させることができる。なお、燃料容
器連結用部材を構成する樹脂層の厚みは、代表的には1
〜5mmである。また、本燃料容器連結用部材は、例え
ば、フューエルカットバルブ、フィラーネックバルブ及
びベントチューブ等のようにパイプやチューブ類を介し
て、燃料を燃料容器から他部品に供給するために燃料容
器に設置される。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel container connecting member of the present invention will be described in detail below. Such a fuel container connecting member is a member which is made of resin and has a tubular shape, and which can be joined to the resin fuel container through a joining portion. In addition, a carbon thin film having a film thickness of 0.05 to 5 μm is provided in addition to the bonded portion. By setting the film thickness of the carbon thin film within this range, the fuel container connecting member exhibits fuel permeation resistance, and the durability against friction caused by interference with other parts is improved. Also, the connecting member of the present invention can be manufactured using conventional materials and mold structures. That is, the fuel permeation resistance can be improved only by manufacturing the connecting member by the same manufacturing method as that used so far and only by surface-treating the obtained connecting member. The thickness of the resin layer that constitutes the fuel container connecting member is typically 1
~ 5 mm. Further, the fuel container connecting member is installed in the fuel container in order to supply the fuel from the fuel container to other parts via pipes or tubes such as a fuel cut valve, a filler neck valve, and a vent tube. To be done.

【0014】また、炭素薄膜の膜厚を厚くするにつれ
て、言い換えれば、成膜時間を長くするにつれて、耐燃
料透過性能が向上する。しかしながら、ある一定の膜厚
になるとクラックが生じ易くなり、膜厚に比例して耐燃
料透過性能が向上し難い。このことから、膜厚は5μm
以下とすることが好適である。なお、「炭素薄膜」と
は、炭素原子(C)と他の原子から構成されている薄膜
であって、且つその骨格はSP、SP結合の混成し
た炭素原子−炭素原子の3次元構造を有する薄膜を示
す。また、炭素薄膜に含まれる他の原子としては、水素
(H)、フッ素(F)及び酸素(O)などが挙げられ
る。
Further, as the thickness of the carbon thin film becomes thicker, in other words, as the film forming time becomes longer, the fuel permeation resistance performance improves. However, when the film thickness is constant, cracks are likely to occur, and it is difficult to improve the fuel permeation resistance in proportion to the film thickness. From this, the film thickness is 5 μm
The following is preferable. The “carbon thin film” is a thin film composed of carbon atoms (C) and other atoms, and its skeleton has a three-dimensional carbon-carbon atom structure in which SP 3 and SP 2 bonds are mixed. Shows a thin film with. In addition, examples of other atoms contained in the carbon thin film include hydrogen (H), fluorine (F), and oxygen (O).

【0015】ここで、上記炭素薄膜は、燃料容器連結用
部材の内側及び外側のどちらに成膜されていてもよく、
更には両側に成膜されていてもよい。また、上記炭素薄
膜を燃料容器連結用部材の内部に設けることもできる。
例えば、図1に示すように、上記炭素薄膜5aを外表面
に備えた燃料容器連結用部材とすることができる。ま
た、図2に示すように、燃料容器連結用部材の外表面と
して炭素薄膜5bを成膜処理後に、この炭素薄膜を当該
部材を構成する樹脂(例えばポリエチレンなどのポリオ
レフィン)で包埋するなどして中間層とすること(オー
バーモールド型)が好適である。炭素薄膜は自己潤滑
性、耐傷つき性に優れるが、このような構成として炭素
薄膜を保護することで、他の部品と摺動する場合などに
は、炭素薄膜の欠損が著しく減少し得る。
Here, the carbon thin film may be formed inside or outside the member for connecting the fuel container,
Furthermore, the film may be formed on both sides. The carbon thin film may be provided inside the fuel container connecting member.
For example, as shown in FIG. 1, a fuel container connecting member having the carbon thin film 5a on its outer surface can be used. Further, as shown in FIG. 2, after the carbon thin film 5b is formed on the outer surface of the fuel container connecting member, the carbon thin film is embedded in a resin (for example, polyolefin such as polyethylene) forming the member. It is preferable to use the intermediate layer (overmold type). The carbon thin film is excellent in self-lubricating property and scratch resistance, but by protecting the carbon thin film with such a structure, the loss of the carbon thin film can be remarkably reduced when sliding with other parts.

【0016】また、上記炭素薄膜は、炭素原子(C)及
び水素原子(H)を含み、原子数比が炭素:水素=3:
7〜8:2であることが好適である。これより、炭素薄
膜の熱的安定性及び力学的強度が良好となり易い。炭素
の割合が上記範囲より上昇すると炭素薄膜の脆性が強く
なり易く、炭素の割合が減少すると炭素薄膜が十分な硬
度を持たないことがある。
The carbon thin film contains carbon atoms (C) and hydrogen atoms (H), and the atomic ratio is carbon: hydrogen = 3 :.
It is preferably 7 to 8: 2. As a result, the thermal stability and mechanical strength of the carbon thin film tend to be good. If the proportion of carbon is higher than the above range, the brittleness of the carbon thin film tends to become stronger, and if the proportion of carbon decreases, the carbon thin film may not have sufficient hardness.

【0017】更に、上記炭素薄膜には、燃料の透過を抑
制する面から、C及びHとともにフッ素(F)等の元素
を添加できる。但し、燃料に対する耐久性及び耐透過性
をより向上させる面からは、C及びHのみから成る炭素
薄膜が好適であり、このときC:H=3:7〜8:2で
あると、燃料に対する物理的耐久性(膨潤し難さ等)及
び耐燃料透過性能が高く、より望ましい膜組成となる。
Further, elements such as fluorine (F) can be added to the carbon thin film together with C and H from the viewpoint of suppressing fuel permeation. However, from the viewpoint of further improving the durability and permeation resistance to the fuel, a carbon thin film composed of only C and H is preferable, and when C: H = 3: 7 to 8: 2, the carbon thin film to the fuel is Physical durability (difficulty of swelling) and fuel permeation resistance are high, and a more desirable film composition is obtained.

【0018】更にまた、本発明の燃料容器連結用部材に
おいて、少なくとも該燃料容器との接合部は、該燃料容
器の被接合部と同一樹脂より成ることが好適である。即
ち、本燃料容器連結用部材は、耐燃料透過性能を有する
炭素薄膜がバリア材として機能しているため、炭素薄膜
を成膜する樹脂種は限定されないが、燃料容器との接合
強度を向上させるには、少なくとも接合部を該燃料容器
の被接合部と同一材料で構成することが有効である。こ
のような樹脂としては、例えば、ポリエチレン(P
E)、ポリプロピレン(PP)、ポリアミド(PA)及
びポリエステル(PET)などを挙げることができる。
Further, in the fuel container connecting member of the present invention, it is preferable that at least a joint portion with the fuel container is made of the same resin as a joint portion of the fuel container. That is, in this fuel container connecting member, since the carbon thin film having fuel permeation resistance functions as a barrier material, the resin species for forming the carbon thin film is not limited, but improves the bonding strength with the fuel container. It is effective that at least the joint portion is made of the same material as the joint portion of the fuel container. Examples of such a resin include polyethylene (P
E), polypropylene (PP), polyamide (PA), polyester (PET), etc. can be mentioned.

【0019】また、上記燃料容器連結用部材の、少なく
とも上記接合部は、高密度ポリエチレン(HDPE)よ
り成ることが好適である。この場合は、一般的に用いら
れているHDPE製の連結用部材に炭素薄膜を設けるこ
とにより、容易に本発明の燃料容器連結用部材が得られ
るため、接合強度が向上するという利点に加えて、型や
材料を変更することなく、安価に燃料容器連結用部材の
耐燃料透過性を向上させることができる。
It is preferable that at least the joint portion of the fuel container connecting member is made of high density polyethylene (HDPE). In this case, since the fuel container connecting member of the present invention can be easily obtained by providing a carbon thin film on the commonly used connecting member made of HDPE, in addition to the advantage that the joint strength is improved. The fuel permeation resistance of the fuel container connecting member can be improved at low cost without changing the mold or the material.

【0020】次に、本発明の燃料容器連結用部材の製造
方法について、詳細に説明する。かかる製造方法では、
フッ素含有ガス、水素ガス又は酸素ガス、及びこれらを
任意に混合したガス、のプラズマを曝した被成膜面に炭
素薄膜を成膜して、上述の燃料容器連結用部材を得る。
このようなプラズマガスで前処理することにより、被成
膜面の汚れ(オイル等)をガスとして脱離させ、炭素薄
膜が安定化するとともに、耐久寿命が著しく向上する。
また、フッ素含有ガス、水素ガス又は酸素ガス、及びこ
れらを任意に混合したガスのプラズマとしたのは、汚れ
を脱離させる作用の大きさ及び成膜工程への影響の少な
さの点から、これらが優れているからである。なお、フ
ッ素含有ガスとしては、フッ素ガス、3フッ化チッソガ
ス、6フッ化硫黄ガス、4フッ化炭素、4フッ化けい
素、6フッ化2けい素、3フッ化塩素及びフッ化水素等
を例示できるが、特にこれらのガスに限定されるもので
はない。
Next, the method for manufacturing the fuel container connecting member of the present invention will be described in detail. In this manufacturing method,
A carbon thin film is formed on the film formation surface exposed to plasma of a fluorine-containing gas, hydrogen gas or oxygen gas, and a gas in which any of these is mixed to obtain the above-mentioned fuel container connecting member.
By pretreatment with such a plasma gas, dirt (oil or the like) on the film formation surface is released as a gas, the carbon thin film is stabilized, and the durable life is significantly improved.
Further, the fluorine-containing gas, hydrogen gas or oxygen gas, and the plasma of a gas obtained by arbitrarily mixing these gases is used because it has a large effect of removing dirt and a small influence on the film forming process. This is because these are excellent. In addition, as the fluorine-containing gas, fluorine gas, nitrogen trifluoride gas, sulfur hexafluoride gas, carbon tetrafluoride, silicon tetrafluoride, silicon hexafluoride, chlorine trifluoride, hydrogen fluoride, etc. It can be exemplified, but is not particularly limited to these gases.

【0021】また、炭素薄膜は、プラズマCVD法によ
り成膜することが好ましい。この場合、上記プラズマガ
スによる被成膜面の処理を同一の装置内で行える、とい
う利点が得られる。ここで、「プラズマCVD法」と
は、希薄な気体中で放電を行い気体分子をラジカル化し
て、このラジカルに基材を曝すことで基材表面に膜を生
成する方法である。なお、プラズマCVD法の他には、
スパッタリング法やイオンプレーティング法などが挙げ
られ、これらの方法でも、プラズマCVDと同様に、成
膜時の温度上昇が少なく、燃料容器連結用部材の熱劣化
を抑制することが可能である。しかしながら、膜性能、
特に耐久性は被成膜面の処理によるところが大きいこと
から、被成膜面の処理と同一の装置内で施工可能なプラ
ズマCVD法を採用することが好ましく、生産性からも
有利である。
The carbon thin film is preferably formed by the plasma CVD method. In this case, there is an advantage that the film-forming surface can be treated with the plasma gas in the same apparatus. Here, the “plasma CVD method” is a method in which electric discharge is performed in a dilute gas to radicalize gas molecules, and the base material is exposed to the radicals to form a film on the surface of the base material. In addition to the plasma CVD method,
A sputtering method, an ion plating method, and the like can be mentioned. With these methods as well, similar to the plasma CVD, the temperature rise during film formation is small, and it is possible to suppress the thermal deterioration of the fuel container connecting member. However, the membrane performance,
In particular, since the durability depends largely on the treatment of the film-forming surface, it is preferable to adopt the plasma CVD method that can be carried out in the same apparatus as the treatment of the film-forming surface, which is also advantageous from the productivity.

【0022】上記プラズマCVD法では、ヘキサンを使
用することが好適である。この場合は、優れた耐燃料透
過性能を有する炭素薄膜、特に原子数比が炭素:水素=
3:7〜8:2である炭素薄膜が得られるので有効であ
る。なお、ヘキサン以外には、メタン、エタン、プロパ
ン、ブタン、アセチレン及びベンゼン等の炭化水素ガス
を適宜選択して使用できる。また、キャリアガスとし
て、水素ガスや不活性ガスも適宜使用できる。
Hexane is preferably used in the plasma CVD method. In this case, a carbon thin film having an excellent fuel permeation resistance, particularly an atomic ratio of carbon: hydrogen =
This is effective because a carbon thin film of 3: 7 to 8: 2 can be obtained. In addition to hexane, hydrocarbon gas such as methane, ethane, propane, butane, acetylene and benzene can be appropriately selected and used. Further, as the carrier gas, hydrogen gas or an inert gas can be appropriately used.

【0023】また、炭素薄膜を成膜する際には、代表的
にはプラズマCVD法による成膜中に、プラズマを変調
させる変調工程を実行することがより好ましい。これよ
り、連続のプラズマCVD法では、成膜中にミクロな欠
陥が生じ易く、この欠陥を通して燃料が透過することが
あるが、変調させることによって、欠陥発生が著しく減
少し、耐燃料透過性能の優れた膜を安定的に提供するこ
とが可能となる。具体的には、少なくとも1回且つ10
〜120秒間、プラズマ強度を成膜中の平均プラズマ強
度の1/2以下、より好ましくは0まで低減することが
できる。例えば、図3に示す変調プラズマのように、成
膜中に、60秒間、通常の出力電圧を1/2まで低減し
たり(a)、出力電圧を0の状態にしたり(b)するこ
とができる。なお、電圧を変調させる時間が10秒以上
であれば膜質を変化させることができる。一方、120
秒を超えると生産タクトが長くなるだけでなく、炭素薄
膜の品質を大きく低下させてしまうことがある。
Further, when forming a carbon thin film, it is preferable to execute a modulation step for modulating plasma, typically during film formation by a plasma CVD method. From this, in the continuous plasma CVD method, micro defects are likely to occur during film formation, and the fuel may permeate through these defects. However, by modulating, the defect generation is significantly reduced, and the fuel permeation resistance performance is improved. It is possible to stably provide an excellent film. Specifically, at least once and 10 times
The plasma intensity can be reduced to ½ or less of the average plasma intensity during film formation, and more preferably to 0 for 120 seconds. For example, like the modulated plasma shown in FIG. 3, during the film formation, the normal output voltage can be reduced to 1/2 (a) or the output voltage can be set to 0 (b) for 60 seconds. it can. The film quality can be changed if the voltage modulation time is 10 seconds or more. On the other hand, 120
If the time exceeds the second, not only the production tact becomes longer, but also the quality of the carbon thin film may be significantly deteriorated.

【0024】次に、本発明の燃料容器について、詳細に
説明する。かかる燃料容器は、上述の燃料容器連結用部
材を用いて成り、例えば、図1又は図2に示すように、
燃料容器連結用部材2を接合部3を介して容器部4と一
体化してなる燃料容器1を挙げることができる。また、
部材と容器部とは、例えば熱板溶着法、振動溶着法及び
レーザー溶着法などで溶着することで、接合できる。更
に、容器部としては、連結用部材と同様の樹脂を用いる
ことができ、例えば、ポリエチレン(PE)、ポリプロ
ピレン(PP)、ポリアミド(PA)及びポリエステル
(PET)などを使用できる。なお、部材と容器部との
接合部は、炭素薄膜を成膜しないことが望ましい。炭素
薄膜を成膜すると、成膜していない部分に比べて接合強
度が低下してしまうからである。また、炭素薄膜の成膜
法として、プラズマCVD法、イオンプレーティング法
を採用する場合は、接合面にマスキングを施すことで簡
便に所望位置に非成膜面を形成できるので効率的であ
る。
Next, the fuel container of the present invention will be described in detail. Such a fuel container is formed by using the above-mentioned fuel container connecting member, and for example, as shown in FIG. 1 or 2,
An example is a fuel container 1 in which the fuel container connecting member 2 is integrated with the container portion 4 via the joint 3. Also,
The member and the container portion can be joined by welding by a hot plate welding method, a vibration welding method, a laser welding method, or the like. Further, for the container part, the same resin as that for the connecting member can be used, and for example, polyethylene (PE), polypropylene (PP), polyamide (PA), polyester (PET) or the like can be used. In addition, it is desirable that a carbon thin film is not formed at the joint between the member and the container. This is because when the carbon thin film is formed, the bonding strength is reduced as compared with the part where the carbon thin film is not formed. Further, when a plasma CVD method or an ion plating method is adopted as a method for forming a carbon thin film, it is efficient because a non-film-forming surface can be easily formed at a desired position by masking the bonding surface.

【0025】[0025]

【実施例】以下、本発明の実施例及び比較例により更に
詳細に説明するが、本発明はこれらの実施例に限定され
るものではない。なお、以下の実施例1〜10及び比較
例1〜3では、燃料容器連結部材を形成し得る樹脂板を
製造し、実施例11及び12では、燃料タンクを製造
し、これらの耐燃料透過性及び耐傷つき性について評価
を行った。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples. In addition, in the following Examples 1 to 10 and Comparative Examples 1 to 3, resin plates capable of forming a fuel container connecting member were manufactured, and in Examples 11 and 12, fuel tanks were manufactured and their fuel permeation resistance was Also, the scratch resistance was evaluated.

【0026】(実施例1)高密度ポリエチレン(HDP
E)製の板表面を、水素ガスプラズマでクリーニングし
た後、ヘキサンガスを用いたプラズマCVDで炭素薄膜
を成膜(成膜時間10min、周波数13.56MH
z、電力200W)し、本例の樹脂板を得たた。なお、
炭素薄膜の膜厚は、電子顕微鏡による観察像から0.5
μmであり、膜組成は、XPS(X線光電子分光分析
法)からC:H=6:4であった。
(Example 1) High-density polyethylene (HDP)
After cleaning the plate surface made of E) with hydrogen gas plasma, a carbon thin film is formed by plasma CVD using hexane gas (film forming time 10 min, frequency 13.56 MH).
z, power 200 W) to obtain a resin plate of this example. In addition,
The thickness of the carbon thin film is 0.5 from the image observed with an electron microscope.
and the film composition was C: H = 6: 4 by XPS (X-ray photoelectron spectroscopy).

【0027】(実施例2)プラズマCVDでメタンガス
を用いた以外は、実施例1と同様の操作を繰り返して、
本例の樹脂板を得た。なお、炭素薄膜の膜厚は、電子顕
微鏡による観察像から0.5μmであり、膜組成は、X
PSからC:H=3:7であった。
Example 2 The same operation as in Example 1 was repeated except that methane gas was used in plasma CVD,
The resin plate of this example was obtained. The thickness of the carbon thin film was 0.5 μm from the image observed with an electron microscope, and the film composition was X.
From PS, it was C: H = 3: 7.

【0028】(実施例3)酸素ガスプラズマでクリーニ
ングした以外は、実施例1と同様の操作を繰り返して、
本例の樹脂板を得た。なお、炭素薄膜の膜厚は、電子顕
微鏡による観察像から0.5μmであり、膜組成は、X
PSからC:H=6:4であった。
Example 3 The same operation as in Example 1 was repeated except that the cleaning was performed with oxygen gas plasma.
The resin plate of this example was obtained. The thickness of the carbon thin film was 0.5 μm from the image observed with an electron microscope, and the film composition was X.
From PS, it was C: H = 6: 4.

【0029】(実施例4)6フッ化硫黄ガスプラズマで
クリーニングした以外は、実施例1と同様の操作を繰り
返して、本例の樹脂板を得た。なお、炭素薄膜の膜厚
は、電子顕微鏡による観察像から0.5μmであり、膜
組成は、XPSからC:H=6:4であった。
Example 4 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the cleaning was performed with sulfur hexafluoride gas plasma. In addition, the film thickness of the carbon thin film was 0.5 μm from an image observed by an electron microscope, and the film composition was C: H = 6: 4 from XPS.

【0030】(実施例5)成膜時間を100分にした以
外は、実施例1と同様の操作を繰り返して、本例の樹脂
板を得た。なお、炭素薄膜の膜厚は、電子顕微鏡による
観察像から5μmであり、膜組成は、XPSからC:H
=6:4であった。
Example 5 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the film forming time was 100 minutes. The film thickness of the carbon thin film was 5 μm from the image observed with an electron microscope, and the film composition was XPS to C: H.
= 6: 4.

【0031】(実施例6)成膜時間を1分にした以外
は、実施例1と同様の操作を繰り返して、本例の樹脂板
を得た。なお、炭素薄膜の膜厚は、電子顕微鏡による観
察像から0.05μmであり、膜組成は、XPSから
C:H=6:4であった。
Example 6 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the film formation time was 1 minute. The film thickness of the carbon thin film was 0.05 μm from the image observed with an electron microscope, and the film composition was C: H = 6: 4 from XPS.

【0032】(実施例7)プラズマCVDでアセチレン
ガスを用いた以外は、実施例1と同様の操作を繰り返し
て、本例の樹脂板を得た。なお、炭素薄膜の膜厚は、電
子顕微鏡による観察像から0.5μmであり、膜組成
は、XPSからC:H=8:2であった。
Example 7 The resin plate of this example was obtained by repeating the same operation as in Example 1 except that acetylene gas was used in plasma CVD. In addition, the film thickness of the carbon thin film was 0.5 μm from an image observed by an electron microscope, and the film composition was C: H = 8: 2 from XPS.

【0033】(実施例8)プラズマCVDで6フッ化プ
ロパン、メタン混合ガスを用いた以外は、実施例1と同
様の操作を繰り返して、本例の樹脂板を得た。なお、炭
素薄膜の膜厚は、電子顕微鏡による観察像から0.5μ
mであり、膜組成は、XPSからC:H:F=4:1:
5であった。
(Example 8) A resin plate of this example was obtained by repeating the same operation as in Example 1 except that a mixed gas of hexafluoropropane and methane was used in plasma CVD. The film thickness of the carbon thin film was 0.5 μm from the image observed with an electron microscope.
m, and the film composition is from XPS to C: H: F = 4: 1 :.
It was 5.

【0034】(実施例9)成膜中に、10秒間電力を1
00Wにして成膜した以外は、実施例1と同様の操作を
繰り返して、本例の樹脂板を得た。なお、炭素薄膜の膜
厚は、電子顕微鏡による観察像から0.5μmであり、
膜組成は、XPSからC:H=6:4であった。
(Embodiment 9) During film formation, electric power is set to 1 for 10 seconds.
The same operation as in Example 1 was repeated except that the film was formed to 00 W to obtain a resin plate of this example. The thickness of the carbon thin film was 0.5 μm from the image observed with an electron microscope,
The film composition was C: H = 6: 4 from XPS.

【0035】(実施例10)成膜中に、120秒間電力
を0Wにして成膜した以外は、実施例1と同様の操作を
繰り返して、本例の樹脂板を得た。なお、炭素薄膜の膜
厚は、電子顕微鏡による観察像から0.4μmであり、
膜組成は、XPSからC:H=6:4であった。
Example 10 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the film was formed by applying an electric power of 0 W for 120 seconds. The thickness of the carbon thin film was 0.4 μm from the image observed by an electron microscope,
The film composition was C: H = 6: 4 from XPS.

【0036】(実施例11)フィラーネックバルブ表面
に炭素薄膜を成膜した以外は、実施例1とほぼ同様の操
作を繰り返した後、接合部を燃料タンク本体(3種5層
燃料タンク、外表面はHDPE製)の被接合部に熱板溶
着し、本例の燃料タンクを得た。このとき接合部にはマ
スキングテープを貼付し、成膜されないようにした。な
お、炭素薄膜の膜厚は、電子顕微鏡による観察像から
0.5μmであり、膜組成は、XPSからC:H=6:
4であった。
(Embodiment 11) Except that a carbon thin film was formed on the surface of the filler neck valve, substantially the same operation as in Embodiment 1 was repeated, and then the joint was connected to the fuel tank main body (3 types, 5 layers fuel tank, outside). The surface was made of HDPE) and a hot plate was welded to the joined portion to obtain a fuel tank of this example. At this time, a masking tape was attached to the joint portion so that no film was formed. The film thickness of the carbon thin film was 0.5 μm from an image observed by an electron microscope, and the film composition was XPS C: H = 6:
It was 4.

【0037】(実施例12)フィラーネックバルブ表面
に炭素薄膜を成膜した後、膜表面にHDPEをオーバー
モールドした以外は、実施例1とほぼ同様の操作を繰り
返した後、接合部を燃料タンク本体(3種5層燃料タン
ク、外表面はHDPE製)の被接合部に熱板溶着し、本
例の燃料タンクを得た。このとき接合部にはマスキング
テープを貼付し、成膜されないようにした。なお、炭素
薄膜の膜厚は、電子顕微鏡による観察像から0.5μm
であり、膜組成は、XPSからC:H=6:4であっ
た。
(Example 12) After the carbon thin film was formed on the surface of the filler neck valve, the same operation as in Example 1 was repeated except that HDPE was overmolded on the surface of the film. A hot plate was welded to the joined portion of the main body (3 type 5 layer fuel tank, outer surface made of HDPE) to obtain the fuel tank of this example. At this time, a masking tape was attached to the joint portion so that no film was formed. The thickness of the carbon thin film is 0.5 μm from the image observed with an electron microscope.
And the film composition was C: H = 6: 4 from XPS.

【0038】(比較例1)HDPE製板を本例の樹脂板
とした。
Comparative Example 1 An HDPE plate was used as the resin plate of this example.

【0039】(比較例2)成膜時間を200分にした以
外は、実施例1と同様の操作を繰り返して、本例の樹脂
板を得た。なお、炭素薄膜の膜厚は、電子顕微鏡による
観察像から10μmであり、膜組成は、XPSからC:
H=6:4であった。
Comparative Example 2 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the film forming time was 200 minutes. The thickness of the carbon thin film is 10 μm from an image observed by an electron microscope, and the film composition is XPS to C:
H = 6: 4.

【0040】(比較例3)成膜時間を20秒にした以外
は、実施例1と同様の操作を繰り返して、本例の樹脂板
を得た。なお、炭素薄膜の膜厚は、電子顕微鏡による観
察像から0.01μmであり、膜組成は、XPSから
C:H=6:4であった。
Comparative Example 3 A resin plate of this example was obtained by repeating the same operation as in Example 1 except that the film forming time was 20 seconds. The film thickness of the carbon thin film was 0.01 μm from the image observed with an electron microscope, and the film composition was C: H = 6: 4 from XPS.

【0041】<性能評価方法> 1)耐燃料透過性 実施例1〜10及び比較例1〜3で作製された樹脂板、
実施例11及び12で作製された燃料タンクに対して、
JIS Z0208に準拠したアルミ製の容器に試験燃
料(レギュラーガソリン90体積部にエタノール10体
積部を混合したもの)を入れ、40℃雰囲気下で、約5
00時間経過後の燃料透過係数で比較を行った。表1に
示すように、燃料透過係数は、比較例1の値を100と
したときの相対値で示した。
<Performance Evaluation Method> 1) Fuel Permeation Resistance Resin plates prepared in Examples 1 to 10 and Comparative Examples 1 to 3,
For the fuel tanks produced in Examples 11 and 12,
Test fuel (a mixture of 90 parts by volume of regular gasoline and 10 parts by volume of ethanol) was placed in an aluminum container conforming to JIS Z0208, and the test fuel was stored at 40 ° C. for about 5 minutes.
A comparison was made using the fuel permeation coefficient after 00 hours had elapsed. As shown in Table 1, the fuel permeation coefficient is shown as a relative value when the value of Comparative Example 1 is 100.

【0042】2)耐傷つき性 実施例1〜10及び比較例1〜3で作製された樹脂板、
実施例11及び12で作製された燃料タンクに対して、
ステンレス製スパチュラーの角部で表面を約0.98N
(0.1kgf)の荷重で擦り、拡大鏡にて耐傷付き性
を評価した。
2) Scratch resistance Resin plates prepared in Examples 1 to 10 and Comparative Examples 1 to 3,
For the fuel tanks produced in Examples 11 and 12,
The surface of the spatula made of stainless steel is about 0.98N
It was rubbed with a load of (0.1 kgf), and scratch resistance was evaluated with a magnifying glass.

【0043】[0043]

【表1】 [Table 1]

【0044】表1に示すように、実施例で得られた樹脂
板及び燃料タンクは、所定の膜圧の炭素薄膜を備えてい
るため、耐燃料透過性及び耐傷つき性が良好である。こ
れに対して、比較例で得られた樹脂板は、耐燃料透過性
又は耐傷つき性が悪いことがわかる。
As shown in Table 1, since the resin plate and the fuel tank obtained in the examples are provided with the carbon thin film having a predetermined film pressure, they have good fuel permeation resistance and scratch resistance. On the other hand, it can be seen that the resin plates obtained in Comparative Examples have poor fuel permeation resistance or scratch resistance.

【0045】以上、本発明を好適実施例及び比較例によ
り詳細に説明したが、本発明はこれら実施例に限定され
るものではなく、本発明の要旨の範囲内において種々の
変形が可能である。例えば、炭素薄膜は、燃料容器連結
用部材の接合部以外に設けるが、このとき接合部以外の
樹脂層内であれば、所望部位に設けたり点在させて設け
てもよい。また、炭素薄膜を単独で積層して、又は他の
樹脂層と交互に積層して、燃料容器連結用部材を製造す
ることもできる。更に、本発明の燃料容器連結用部材及
び燃料容器が対象とする燃料としては、ガソリン、軽
油、メタノール混合ガソリン、エタノール混合ガソリン
及び灯油などがある。
Although the present invention has been described in detail with reference to the preferred examples and comparative examples, the present invention is not limited to these examples, and various modifications can be made within the scope of the gist of the present invention. . For example, the carbon thin film is provided in a portion other than the joint portion of the fuel container connecting member, but at this time, if it is in the resin layer other than the joint portion, it may be provided in a desired portion or may be provided in a scattered manner. Further, the fuel container connecting member can be manufactured by laminating the carbon thin films alone or alternately laminating with other resin layers. Further, the fuel to which the fuel container connecting member and the fuel container of the present invention are applicable include gasoline, light oil, methanol mixed gasoline, ethanol mixed gasoline, and kerosene.

【0046】[0046]

【発明の効果】以上説明してきたように、本発明によれ
ば、炭素薄膜を所定の膜厚で設けることとしたため、耐
燃料透過性能を改善し接合強度との両立を達成するとと
もに安価である燃料容器連結用部材、その製造方法及び
燃料容器を提供することができる。
As described above, according to the present invention, since the carbon thin film is provided with a predetermined film thickness, the fuel permeation resistance is improved, the compatibility with the bonding strength is achieved, and the cost is low. A fuel container connecting member, a method for manufacturing the member, and a fuel container can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料容器連結用部材を用いた燃料容器の一例を
示す断面図及び成膜部の拡大図である。
FIG. 1 is a cross-sectional view showing an example of a fuel container using a fuel container connecting member and an enlarged view of a film forming section.

【図2】燃料容器連結用部材を用いた燃料容器の他の例
を示す断面図及び成膜部の拡大図である。
FIG. 2 is a cross-sectional view showing another example of a fuel container using a fuel container connecting member and an enlarged view of a film forming section.

【図3】変調プラズマのイメージ図である。FIG. 3 is an image diagram of modulated plasma.

【符号の説明】[Explanation of symbols]

1 燃料容器 2 燃料容器連結用部材 3 接合部 4 容器部 5a、5b 炭素薄膜 1 fuel container 2 Fuel container connecting members 3 joints 4 container 5a, 5b carbon thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 諸星 勝己 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 熊谷 宏 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 脇田 清和 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 3D038 CA04 CA15 CB01 CC20 3E070 AA02 AB03 DA07 GB01 4K030 AA10 AA17 BA27 CA07 CA16 DA02 FA10 JA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsumi Moroboshi             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation (72) Inventor Hiroshi Kumagai             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation (72) Inventor Kiyokazu Wakita             Nissan, Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan             Inside the automobile corporation F term (reference) 3D038 CA04 CA15 CB01 CC20                 3E070 AA02 AB03 DA07 GB01                 4K030 AA10 AA17 BA27 CA07 CA16                       DA02 FA10 JA20

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 接合部を介して樹脂製の燃料容器と接合
し得る樹脂製且つ筒状の燃料容器連結用部材であって、 上記接合部以外に膜厚0.05〜5μmの炭素薄膜を備
えることを特徴とする燃料容器連結用部材。
1. A resin-made tubular fuel container connecting member capable of being joined to a resin-made fuel container through a joint portion, wherein a carbon thin film having a thickness of 0.05 to 5 μm is provided in addition to the joint portion. A member for connecting a fuel container, comprising:
【請求項2】 上記炭素薄膜が、炭素原子及び水素原子
を含んで成り、原子数比が炭素:水素=3:7〜8:2
であることを特徴とする請求項1に記載の燃料容器連結
用部材。
2. The carbon thin film comprises carbon atoms and hydrogen atoms, and the atomic ratio is carbon: hydrogen = 3: 7 to 8: 2.
The fuel container connecting member according to claim 1, wherein
【請求項3】 上記炭素薄膜が、炭素原子及び水素原子
から成ることを特徴とする請求項1又は2に記載の燃料
容器連結用部材。
3. The fuel container connecting member according to claim 1, wherein the carbon thin film comprises carbon atoms and hydrogen atoms.
【請求項4】 上記炭素薄膜を中間層として成ることを
特徴とする請求項1〜3のいずれか1つの項に記載の燃
料容器連結用部材。
4. The fuel container connecting member according to claim 1, wherein the carbon thin film serves as an intermediate layer.
【請求項5】 少なくとも上記接合部が、該燃料容器の
被接合部と同一樹脂より成ることを特徴とする請求項1
〜4のいずれか1つの項に記載の燃料容器連結用部材。
5. The at least the joint portion is made of the same resin as the joint portion of the fuel container.
The fuel container connecting member according to any one of items 1 to 4.
【請求項6】 少なくとも上記接合部が、高密度ポリエ
チレンより成ることを特徴とする請求項5に記載の燃料
容器連結用部材。
6. The fuel container connecting member according to claim 5, wherein at least the joint portion is made of high density polyethylene.
【請求項7】 請求項1〜6のいずれか1つの項に記載
の燃料容器連結用部材を製造する方法であって、 被成膜面をフッ素含有ガス、水素ガス及び酸素ガスから
成る群より選ばれた少なくとも1種のガス、のプラズマ
に曝してから、炭素薄膜を成膜することを特徴とする燃
料容器連結用部材の製造方法。
7. A method for manufacturing the fuel container connecting member according to any one of claims 1 to 6, wherein the film formation surface is selected from the group consisting of fluorine-containing gas, hydrogen gas and oxygen gas. A method of manufacturing a member for connecting a fuel container, which comprises forming a carbon thin film after exposing to plasma of at least one selected gas.
【請求項8】 上記炭素薄膜をプラズマCVD法により
成膜することを特徴とする請求項7に記載の燃料容器連
結用部材の製造方法。
8. The method for manufacturing a fuel container connecting member according to claim 7, wherein the carbon thin film is formed by a plasma CVD method.
【請求項9】 上記プラズマCVD法を、ヘキサンガス
を用いて行うことを特徴とする請求項8に記載の燃料容
器連結用部材の製造方法。
9. The method for manufacturing a fuel container connecting member according to claim 8, wherein the plasma CVD method is performed using hexane gas.
【請求項10】 上記炭素薄膜を成膜する際に、少なく
とも1回且つ10〜120秒間、プラズマ強度を成膜中
の平均プラズマ強度の1/2以下に低減する変調工程を
実行することを特徴とする請求項7〜9のいずれか1つ
の項に記載の燃料容器連結用部材の製造方法。
10. When the carbon thin film is formed, a modulation step is performed at least once for 10 to 120 seconds to reduce the plasma intensity to ½ or less of the average plasma intensity during film formation. The method for manufacturing a member for connecting a fuel container according to any one of claims 7 to 9.
【請求項11】 請求項1〜6のいずれか1つの項に記
載の燃料容器連結用部材を備えることを特徴とする燃料
容器。
11. A fuel container comprising the fuel container connecting member according to any one of claims 1 to 6.
JP2001298554A 2001-09-27 2001-09-27 Fuel canister connection member, method of manufacturing the same, and fuel canister Pending JP2003106231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298554A JP2003106231A (en) 2001-09-27 2001-09-27 Fuel canister connection member, method of manufacturing the same, and fuel canister

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298554A JP2003106231A (en) 2001-09-27 2001-09-27 Fuel canister connection member, method of manufacturing the same, and fuel canister

Publications (1)

Publication Number Publication Date
JP2003106231A true JP2003106231A (en) 2003-04-09

Family

ID=19119440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298554A Pending JP2003106231A (en) 2001-09-27 2001-09-27 Fuel canister connection member, method of manufacturing the same, and fuel canister

Country Status (1)

Country Link
JP (1) JP2003106231A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106920A (en) * 1997-10-08 1999-04-20 Nissin Electric Co Ltd Container and its production
JP2000096233A (en) * 1998-06-20 2000-04-04 Nissin Electric Co Ltd Carbon film and its formation, and carbon film coated article and its manufacture
JP2001206076A (en) * 1999-11-17 2001-07-31 Yachiyo Industry Co Ltd Fuel tank made of synthetic resin
JP2001234342A (en) * 2001-01-19 2001-08-31 Semiconductor Energy Lab Co Ltd Substrate having carbon film and film essentially consisting of carbon
JP2001240034A (en) * 2000-02-24 2001-09-04 Mitsubishi Shoji Plast Kk Plastic container for liquid containing volatile organic substance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106920A (en) * 1997-10-08 1999-04-20 Nissin Electric Co Ltd Container and its production
JP2000096233A (en) * 1998-06-20 2000-04-04 Nissin Electric Co Ltd Carbon film and its formation, and carbon film coated article and its manufacture
JP2001206076A (en) * 1999-11-17 2001-07-31 Yachiyo Industry Co Ltd Fuel tank made of synthetic resin
JP2001240034A (en) * 2000-02-24 2001-09-04 Mitsubishi Shoji Plast Kk Plastic container for liquid containing volatile organic substance
JP2001234342A (en) * 2001-01-19 2001-08-31 Semiconductor Energy Lab Co Ltd Substrate having carbon film and film essentially consisting of carbon

Similar Documents

Publication Publication Date Title
US6289915B1 (en) Permeation and leak preventative design for fuel tank attachments
US20040096610A1 (en) Fuel tanks
US20020005223A1 (en) Corrosion resistant metal tube and process for making the same
JP2003269682A (en) Liquid- or vapor-conducting system, bonding member, composite, and use of coextruded multilayer composite
CA2370167C (en) Method for manufacturing a pressure tank
JP4985200B2 (en) Oxygen moisture-absorbing pouch and packaging product using the same
CA2487080A1 (en) Use of a radiation-grafted fluoropolymer-based pipe for the transportation of gasoline in service stations
JPWO2006107096A1 (en) Laminated structure
JP2009040439A (en) Oxygen moisture absorbing pouch and packaged product using the same
JP2003106231A (en) Fuel canister connection member, method of manufacturing the same, and fuel canister
JP4148759B2 (en) Method for producing gas barrier film
US5882728A (en) Multilayer, fluorine-containing polymeric material
JP2005532187A (en) Tank opening sealing system and sealing method
EP2668019A1 (en) Method to improve the barrier properties of composite gas cylinders and high pressure gas cylinder having enhanced barrier properties
JP2008055640A (en) Low permeable hose
EP1728724A1 (en) Synthetic resin container with high gas barrier performance
US20070286974A1 (en) Sulfonated Fuel Tank
JP5604820B2 (en) Molded body and method for producing hollow molded body
WO2007146216A1 (en) Sulfonated fuel tank
JP2008100398A (en) Plastic container and method for producing plastic container
BE1008568A3 (en) PROCESS FOR THE SURFACE TREATMENT OF ITEM AND SILENCE by sulfonation.
JP2007537322A (en) Method for preparing a hollow element of a fuel system
JP2008230245A (en) Resin hose and its manufacturing method
JP2008018986A (en) Resin fuel container
JP4333382B2 (en) Gas barrier plastic container

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070316