JP2003105324A - Abrasive grain and method for producing the same, polishing tool and method for producing the same, grindstone for polishing and method for producing the same and polishing apparatus - Google Patents

Abrasive grain and method for producing the same, polishing tool and method for producing the same, grindstone for polishing and method for producing the same and polishing apparatus

Info

Publication number
JP2003105324A
JP2003105324A JP2002161393A JP2002161393A JP2003105324A JP 2003105324 A JP2003105324 A JP 2003105324A JP 2002161393 A JP2002161393 A JP 2002161393A JP 2002161393 A JP2002161393 A JP 2002161393A JP 2003105324 A JP2003105324 A JP 2003105324A
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
particles
cutting edge
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002161393A
Other languages
Japanese (ja)
Other versions
JP3990936B2 (en
Inventor
Hiroyuki Endo
弘之 遠藤
Susumu Cho
軍 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002161393A priority Critical patent/JP3990936B2/en
Publication of JP2003105324A publication Critical patent/JP2003105324A/en
Priority to US10/452,380 priority patent/US7141086B2/en
Priority to US11/558,973 priority patent/US7396372B2/en
Application granted granted Critical
Publication of JP3990936B2 publication Critical patent/JP3990936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide abrasive grains capable of carrying out polishing processing having an ultrahigh processing efficiency without sacrificing processed surface roughness and a polishing tool and a polishing apparatus of long life using the abrasive grains. SOLUTION: The abrasive grains are a granular porous material prepared by heat-treating secondary grains formed by making a plurality of primary grains aggregate at a temperature for forming necks in connecting points of the mutual primary grains and partially and mutually loosely binding a plurality of fine cutting edge-forming grains with formed voids. Since the cutting edge- forming grains have constitution formed by growing the primary grains during the heat treatment, processing can extremely efficiently and stably be carried out over a long period while maintaining excellent quality.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン、ガラス
等の硬脆材料や、鉄鋼、アルミニウム等の金属材料を仕
上げ加工するための研磨具とその製造方法、そのような
研磨具を得るための砥粒、さらに研磨具を備えた研磨装
置に関し、特に加工の高品位化、高能率化を行うための
長寿命な研磨具およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing tool for finishing hard and brittle materials such as silicon and glass, and metal materials such as steel and aluminum, and a method for manufacturing the same, and a method for obtaining such a polishing tool. The present invention relates to a polishing apparatus including abrasive grains and a polishing tool, and more particularly to a polishing tool having a long life for improving the quality and efficiency of processing and a manufacturing method thereof.

【0002】[0002]

【従来の技術】シリコンウェーハやガラスディスクをは
じめ各種硬脆材料や金属材料からなる部品の最終仕上げ
には、研磨剤スラリーを用いた研磨加工が用いられてき
た。この加工法は、微細な砥粒を使用しやすいため、優
れた仕上げ面を容易に得ることができ、また大量の研磨
剤スラリーを使用することで安定した加工特性を維持す
ることができるため、広く用いられてきた。
2. Description of the Related Art Abrasive processing using an abrasive slurry has been used for final finishing of parts made of various hard and brittle materials such as silicon wafers and glass disks and metallic materials. This processing method, since it is easy to use fine abrasive grains, it is possible to easily obtain an excellent finished surface, and it is possible to maintain stable processing characteristics by using a large amount of abrasive slurry, It has been widely used.

【0003】しかし、このような研磨剤スラリーを用い
る研磨加工においては大量のスラリーを要すると同時
に、大量のスラリー廃液を排出するため環境への負荷が
極めて高く、また加工能率の向上にも限界がある。こう
したことから、研磨剤スラリーを用いる研磨加工仕上げ
と同等以上の優れた仕上げ面を得ることのできる固定砥
粒加工工具の開発が各方面で活発に行われている。
However, in polishing using such an abrasive slurry, a large amount of slurry is required, and at the same time, a large amount of slurry waste liquid is discharged, so that the load on the environment is extremely high, and there is a limit to the improvement of processing efficiency. is there. For these reasons, development of fixed-abrasive machining tools capable of obtaining a finished surface that is equal to or better than the polishing finish using an abrasive slurry is being actively carried out in various fields.

【0004】ここで、砥粒加工において良好な加工面粗
さを得るには、微細な砥粒を使用することが有利であ
り、固定砥粒加工工具においても同様に微細な砥粒が用
いられている。しかし、鏡面のような優れた加工面を得
るために、粒径が数μm以下の砥粒の固定砥粒加工工具
を使用すると、砥粒と基材とを結合する結合材と工作物
との接触が生じ、また、切りくずが砥粒同士の間に蓄積
されて目詰まりが発生し、その結果、加工抵抗が急増
し、最悪の場合には加工ができなくなってしまう。
Here, it is advantageous to use fine abrasive grains in order to obtain good surface roughness in the abrasive grain processing, and fine abrasive grains are also used in the fixed abrasive grain processing tool. ing. However, in order to obtain an excellent machined surface such as a mirror surface, when a fixed-abrasive machining tool having abrasive grains with a grain size of several μm or less is used, the bonding material that bonds the abrasive grains and the base material together with the workpiece. Contact occurs, and chips are accumulated between the abrasive grains to cause clogging. As a result, machining resistance increases rapidly, and in the worst case, machining becomes impossible.

【0005】ここで、砥粒結合材と被工作物との接触を
抑制するような手段を講じた場合であっても、砥粒径が
小さいため、加工能率が低下してしまうと云った問題が
ある。
Even if a means for suppressing the contact between the abrasive grain binding material and the workpiece is taken, the grain size is small and the machining efficiency is lowered. There is.

【0006】一方、加工能率を向上させるためは大粒径
の砥粒を選択しなければならないが、この場合、加工能
率は向上するものの、加工面品位が落ちて鏡面が得にく
くなる。
On the other hand, in order to improve the machining efficiency, it is necessary to select abrasive grains having a large grain size. In this case, although the machining efficiency is improved, the quality of the machined surface is deteriorated and it becomes difficult to obtain a mirror surface.

【0007】これらの問題を解決するものとして、微細
な砥粒を造粒し、凝集した状態の粉末を砥粒として使用
する固定砥粒加工工具が、特開平7−164324号、
特開平8−155840号、特表平9−504235
号、特開2000−198073、特開2000−23
7962、特開2000−176842、特開2001
−129764等の公報で提案されている。これらの固
定砥粒加工工具において、その微細な砥粒の作用により
優れた加工面粗さが得られ、同時に凝集した砥粒による
加工能率の向上等が実現される。
As a means for solving these problems, a fixed-abrasive machining tool which granulates fine abrasive grains and uses powder in the agglomerated state as abrasive grains is disclosed in Japanese Patent Laid-Open No. Hei 7-164324,
JP-A-8-155840, JP-A-9-504235
No. 2000-197807, 2000-23
7962, JP 2000-176842 A, JP 2001 A
It is proposed in the official gazette such as -129764. In these fixed-abrasive machining tools, an excellent machined surface roughness is obtained by the action of the fine abrasive grains, and at the same time, machining efficiency is improved by the agglomerated abrasive grains.

【0008】しかしながら、加工能率をさらに向上させ
ようとした場合に、砥粒を構成する微細な粒子同士の結
合力に関する着目のない、これら技術では、加工能率向
上の要求に応えられず、さらに固定砥粒加工工具の寿命
の点で不充分であるなどの問題が生じることが判った。
However, these techniques, which do not pay attention to the bonding force between the fine particles forming the abrasive grains, cannot meet the demand for improvement of the machining efficiency and further fixing when the machining efficiency is to be further improved. It has been found that problems such as insufficient life of the abrasive processing tool occur.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を改善する、すなわち、加工面粗さを犠牲にする
ことなく、加工能率が極めて高い研磨加工を長時間持続
して可能とする砥粒及びそのような砥粒を用いた長寿命
な研磨具、研磨装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, that is, polishing work with extremely high work efficiency can be continued for a long time without sacrificing the work surface roughness. It is an object of the present invention to provide an abrasive grain, and a long-life polishing tool and polishing apparatus using such an abrasive grain.

【0010】[0010]

【課題を解決するための手段】上記従来技術に係る、微
細な砥粒を造粒し、凝集した状態の粉末を砥粒として使
用する固定砥粒加工工具について、本発明者等がさらに
鋭意研究を重ねた結果、加工対象物にも左右されるが、
基本的に砥粒を構成する微細な粒子同士の結合力が非常
に重要なファクタであることが判明した。すなわちこれ
ら従来技術においては凝集した砥粒を構成する微細な粒
子同士の結合力に関する着目・考察が一切なされてなか
った。
The inventors of the present invention further diligently studied a fixed-abrasive machining tool that granulates fine abrasive grains and uses the agglomerated powder as abrasive grains according to the above-mentioned conventional technique. As a result of overlapping, it depends on the object to be processed,
Basically, it has been found that the bonding force between the fine particles forming the abrasive grains is a very important factor. That is, in these conventional techniques, no attention has been paid to the bonding force between the fine particles constituting the aggregated abrasive grains.

【0011】ここで、砥粒は研磨・研削工程での使用の
結果、徐々に摩耗して、平坦化された状態となっていく
が、この平坦化により生じた平面ないし略平面状の面が
加工面である。
Here, as a result of the use of the abrasive grains in the polishing / grinding process, the abrasive grains gradually wear and become in a flattened state. It is a processed surface.

【0012】焼結されているセラミックからなる砥粒の
場合には高い研磨能率が得られるが、空隙が存在せず
に、あまりにも硬すぎるので、被加工面に加工によっ
て、新たに大きなスクラッチをもたらし、加工面粗さを
劣化させる。
In the case of abrasive grains made of sintered ceramics, high polishing efficiency can be obtained, but since there are no voids and it is too hard, a large scratch is newly added by processing on the surface to be processed. And deteriorate the processed surface roughness.

【0013】一方、微細な一次粒子が凝集して形成され
た形成された二次粒子からなる砥粒の場合には、一次粒
子と空間とによって一種の切刃が形成されるため、高い
研磨品質が得られる。
On the other hand, in the case of an abrasive grain composed of secondary particles formed by agglomeration of fine primary particles, a kind of cutting edge is formed by the primary particles and the space, so that high polishing quality is obtained. Is obtained.

【0014】しかしながら、このような微細な一次粒子
が凝集して形成された二次粒子からなる砥粒では、一次
粒子が細かすぎ、あるいは、一次粒子同士の結合が制御
されていないために高い研磨能率が得られず、また、実
用に足る耐久性、寿命が得られない。
However, in an abrasive grain composed of secondary particles formed by agglomeration of such fine primary particles, the primary particles are too fine, or the bonding between the primary particles is not controlled, resulting in high polishing. The efficiency cannot be obtained, and practical durability and life cannot be obtained.

【0015】ここで、本発明者等は、細かい粒子が集ま
って形成された砥粒において、その細かい粒子同士の結
合力を適正に調整することによって、加工による砥粒の
摩耗を徐々に進行させることができ、その結果、常に新
しい切刃が発生し、被加工物に対して高加工能率で、か
つ、ナノメーターオーダーの高加工面品位が得られる優
れた加工特性を長時間維持することができ、このとき、
砥粒自体の磨耗は抑制されるので結果として工具寿命を
長くできることを見出した。
Here, in the abrasive grains formed by aggregating fine particles, the inventors of the present invention appropriately adjust the binding force between the fine particles to gradually promote the abrasion of the abrasive grains due to processing. As a result, new cutting edges are constantly generated, high processing efficiency for the work piece, and high processing surface quality on the order of nanometers can be obtained and excellent processing characteristics can be maintained for a long time. Yes, at this time
It has been found that the wear of the abrasive grains themselves is suppressed, and as a result, the tool life can be extended.

【0016】すなわち、本発明の砥粒は上記課題を解決
するため請求項1に記載のように、多数の一次粒子が凝
集して形成された二次粒子を一次粒子同士の結合点にネ
ックが形成される温度で加熱処理して得た、多数の微細
な切刃形成粒子が部分的に、かつ、空隙を形成して、互
いにゆるく結合してなる粒状の多孔質体であって、該切
刃形成粒子が上記加熱処理時に一次粒子が成長して形成
されたものであることを特徴とする砥粒である。
That is, in order to solve the above-mentioned problems, the abrasive grain of the present invention has a secondary particle formed by agglomeration of a large number of primary particles having a neck at the bonding point between the primary particles. A granular porous body obtained by heating at a temperature for forming, in which a large number of fine cutting edge forming particles are loosely bonded to each other partially and forming voids, The blade-forming particles are abrasive grains formed by growing primary particles during the heat treatment.

【0017】このような構成によれば、上記砥粒は、実
際の使用時に、請求項2に記載のようにその加工面にお
ける前記切刃形成粒子の少なくとも空隙に接する部分が
切刃として機能し、該切刃形成粒子が摩耗して切刃とな
る部分を失うにしたがって脱落するとともに、新たな切
刃形成粒子が加工面に順次突き出される機能を有し、研
磨、研削加工時に、砥粒に常に自生発刃が生じ、切り屑
の除去も良好で、優れた品位を維持して極めて能率良
く、かつ、長時間に亘って安定して加工を実施すること
ができる。
According to such a constitution, the abrasive grain functions as a cutting edge at the time of actual use, as in claim 2, at least a portion of the machined surface of the cutting edge forming particle which is in contact with the void. , The cutting edge forming particles are worn away and fall off as the cutting edge is lost, and new cutting edge forming particles have a function of sequentially protruding to the processing surface. In addition, self-generated blades are always generated, chip removal is good, excellent quality is maintained, efficiency is extremely high, and stable machining can be performed for a long time.

【0018】請求項3の発明は、請求項1または請求項
2に記載の砥粒において、圧縮破壊強度が1MPa以上
500MPa以下である構成を有する。このような請求
項3の発明によれば、砥粒として、砥粒自身の摩耗と切
刃形成粒子が摩耗して切刃となる部分を失うにしたがっ
て生じる脱落の度合いとが最適化され、良好な加工面品
位を保ちながらさらに高能率で加工できると同時に、砥
粒の磨耗を抑えることもできるので、加工能率、加工品
質と長寿命とのバランスが良い砥粒とすることができ、
このような砥粒を有する研磨具の寿命をより長くするこ
とができる。
A third aspect of the present invention is the abrasive grain according to the first or second aspect, wherein the compressive fracture strength is 1 MPa or more and 500 MPa or less. According to the invention of claim 3, as the abrasive grains, the abrasion of the abrasive grains themselves and the degree of detachment that occurs as the cutting edge forming particles wear away the portion that becomes the cutting edge are optimized, and it is favorable. It is possible to process with a higher efficiency while maintaining a good surface quality, and at the same time, it is possible to suppress the wear of the abrasive grains, so it is possible to make the abrasive grains with a good balance of processing efficiency, processing quality and long life,
The life of the polishing tool having such abrasive grains can be extended.

【0019】ここで、砥粒の圧縮破壊強度が500MP
aを越えると、加工面にスクラッチが発生しやすくな
り、加工面品位を劣化させてしまう恐れがある。また、
逆に圧縮破壊強度が1MPaよりも小さい場合、切刃形
成粒子の結合力があまりにも弱すぎるために、充分な研
磨、研削加工ができずに、逆に砥粒自体の磨耗が激し
く、加工能率が極端に低下し、加工物の前加工面を完全
に除去できない恐れがある。さらに砥石に応用した場合
に研削焼けが生じやすくなる。
Here, the compressive fracture strength of the abrasive grains is 500MP.
When it exceeds a, scratches are likely to occur on the machined surface, which may deteriorate the quality of the machined surface. Also,
On the other hand, if the compressive fracture strength is less than 1 MPa, the binding force of the cutting edge forming particles is too weak, and sufficient polishing and grinding cannot be performed. May be extremely reduced, and the pre-machined surface of the workpiece may not be completely removed. Further, when applied to a grindstone, grinding burn is likely to occur.

【0020】研削焼けとは、研削砥石において砥粒の突
き出しが得られず、砥粒を固定する結合剤と工作物とが
接触して生じる現象であって、このとき、正常な研削加
工を行うことができずに研削面の温度が上昇し、研削面
に変色が発生することを云う。
Grinding burn is a phenomenon in which protrusion of abrasive grains cannot be obtained in a grinding wheel and a binder that fixes the abrasive grains comes into contact with a workpiece. At this time, normal grinding is performed. It means that the temperature of the ground surface rises and the ground surface is discolored.

【0021】請求項4の発明は、請求項3に記載の砥粒
において、圧縮破壊強度が20MPa以上300MPa
以下である構成を有する。このような請求項4記載の発
明によれば、高加工面品位を保ちながらさらに高能率で
加工できると同時に、さらに効果的に砥粒の磨耗を抑え
ることができ、このような砥粒を有する研磨具の寿命を
より長くすることができる。
According to a fourth aspect of the present invention, in the abrasive grain according to the third aspect, the compressive fracture strength is 20 MPa or more and 300 MPa.
It has the following configuration. According to the invention described in claim 4, it is possible to perform the processing with higher efficiency while maintaining the quality of the machined surface, and at the same time, it is possible to more effectively suppress the abrasion of the abrasive grains. The life of the polishing tool can be extended.

【0022】請求項5の発明は、請求項1または請求項
2に記載の砥粒において、細孔比表面積が18000c
2/cm3以上700000cm2/cm3以下である構
成を有する。砥粒として、砥粒自身の摩耗と切刃形成粒
子が摩耗して切刃となる部分を失うにしたがって生じる
脱落の度合いとが最適化され、良好な加工面品位を保ち
ながらさらに高能率で加工できると同時に、砥粒の磨耗
を抑えることもできるので、加工能率、加工品質と長寿
命とのバランスが良い砥粒とすることができ、このよう
な砥粒を有する研磨具の寿命をより長くすることができ
る。
The invention according to claim 5 is the abrasive grain according to claim 1 or 2, wherein the specific surface area of the pores is 18000c.
m has a 2 / cm 3 or more 700000Cm 2 / cm 3 or less structure. As the abrasive grain, the wear of the abrasive grain itself and the degree of detachment that occurs as the cutting edge forming particle wears away and loses the part that becomes the cutting edge, and it is possible to process with high efficiency while maintaining good surface finish. At the same time, it is possible to suppress the wear of the abrasive grains, so that it is possible to make the abrasive grains that have a good balance of processing efficiency, processing quality and long life, and to extend the life of the polishing tool having such abrasive grains. can do.

【0023】ここで、砥粒の細孔比表面積が18000
cm2/cm3未満であると、加工面にスクラッチが発生
しやすくなり、加工面品位を劣化させてしまう恐れがあ
る。また、逆に細孔比表面積が700000cm2/c
3よりも大きい場合、切刃形成粒子同士の結合力があ
まりにも弱すぎるために、充分な研磨、研削加工ができ
ずに、逆に砥粒自体の磨耗が激しく、加工能率が極端に
低下し、加工物の前加工面を完全に除去できない恐れが
ある。さらに砥石に応用した場合に研削焼けが生じやす
くなる。
Here, the specific pore surface area of the abrasive grains is 18,000.
When it is less than cm 2 / cm 3 , scratches are likely to occur on the machined surface, which may deteriorate the quality of the machined surface. On the contrary, the pore specific surface area is 700000 cm 2 / c
If it is larger than m 3, the bonding force between the cutting edge forming particles is too weak, so sufficient polishing and grinding cannot be performed, and conversely, the abrasive grains themselves are severely worn and the processing efficiency is extremely reduced. However, there is a possibility that the pre-processed surface of the processed product cannot be completely removed. Further, when applied to a grindstone, grinding burn is likely to occur.

【0024】請求項6の発明は、請求項5に記載の砥粒
において、細孔比表面積が100000cm2/cm3
上300000cm2/cm3以下である構成を有する。
このような請求項6記載の発明によれば、高加工面品位
を保ちながらさらに高能率で加工できると同時に、さら
に効果的に砥粒の磨耗を抑えることができ、このような
砥粒を有する研磨具の寿命をより長くすることができ
る。
The invention according to claim 6 is the abrasive grain according to claim 5, wherein the pore specific surface area is 100,000 cm 2 / cm 3 or more and 300,000 cm 2 / cm 3 or less.
According to the invention described in claim 6, it is possible to perform the processing with higher efficiency while maintaining the high processed surface quality, and at the same time, it is possible to more effectively suppress the abrasion of the abrasive grains. The life of the polishing tool can be extended.

【0025】請求項7の発明は、請求項1ないし請求項
9のいずれかに記載の砥粒において、切刃形成粒子の平
均粒径が5μm以下である構成を有する。このような請
求項7記載の発明によれば、優れた加工品位を確実に得
ることができる。ここで、前記切刃形成粒子の平均粒径
が5μmを越えると、加工面にスクラッチが発生して加
工品位が低下してしまう恐れがあり、好ましくない。こ
こで、切刃形成粒子の平均粒径が5μmを越えないよう
にするためには加熱処理条件を調整することで達成する
ことができる。
The invention according to claim 7 is the abrasive grain according to any one of claims 1 to 9, wherein the cutting edge forming particles have an average particle diameter of 5 μm or less. According to the invention described in claim 7, it is possible to surely obtain excellent processing quality. Here, if the average particle diameter of the cutting edge forming particles exceeds 5 μm, scratches may occur on the processed surface and the processing quality may be deteriorated, which is not preferable. Here, in order to prevent the average particle diameter of the cutting edge forming particles from exceeding 5 μm, it can be achieved by adjusting the heat treatment conditions.

【0026】さらに、請求項8記載の発明はる請求項1
ないし請求項7のいずれかに記載の砥粒において、切刃
形成粒子同士を結合するためのバインダを含まない構成
を有する。
Further, the invention according to claim 8 is claim 1
The abrasive grain according to any one of claims 1 to 7 has a configuration that does not include a binder for binding the cutting edge forming particles to each other.

【0027】このような構成によって、切刃形成粒子が
摩耗して切刃となる部分を失うにしたがって脱落すると
ともに、新たな切刃形成粒子が加工面に順次突き出され
る際に、切刃形成粒子のバインダからの突き出し量が不
充分となることがなく、また、目つぶれ、目詰まり、バ
インダの残留やそのバインダへの切りくずの付着等によ
るスクラッチの発生の加工品位上の問題発生を回避する
ことができる。
With this structure, the cutting edge forming particles are worn away and fall off as the cutting edge portion is lost, and when new cutting edge forming particles are sequentially ejected to the machined surface, the cutting edge forming particles are formed. The amount of protrusion of particles from the binder does not become insufficient, and it avoids the occurrence of scratches due to crushing, clogging, binder residue and chip adhesion to the binder, which causes problems in processing quality. can do.

【0028】上記のような、優れた砥粒を得るために、
本発明の砥粒の製造方法は請求項9に記載のように多数
の一次粒子を凝集させて二次粒子を得る工程と、該二次
粒子を一次粒子同士の結合点にネックが形成される温度
で加熱処理して、一次粒子を成長させて切刃形成粒子と
し、多数の微細な切刃形成粒子が部分的に、かつ、空隙
を形成して、互いにゆるく結合してなる粒状の多孔質体
からなる砥粒を得る工程とを有する。
In order to obtain excellent abrasive grains as described above,
According to the method for producing abrasive grains of the present invention, a step of aggregating a large number of primary particles to obtain secondary particles as described in claim 9 and a neck is formed at the bonding points of the secondary particles with each other. Heat treatment at a temperature to grow primary particles into cutting edge-forming particles, and a large number of fine cutting edge-forming particles partially and form voids that are loosely bonded to each other and are granular porous. And a step of obtaining abrasive grains composed of a body.

【0029】このような本発明の砥粒の製造方法によれ
ば、このような2つの工程により、得られる砥粒は、実
際の砥粒としての使用時に、請求項2に記載のようにそ
の加工面における前記切刃形成粒子の少なくとも空隙に
接する部分が切刃として機能し、該切刃形成粒子が摩耗
して切刃となる部分を失うにしたがって脱落するととも
に、新たな切刃形成粒子が加工面に順次突き出される機
能を有し、研磨、研削加工時に、砥粒に常に自生発刃が
形成され、切り屑の除去も良好で、優れた品位を維持し
て極めて能率良く、かつ、長時間に亘って安定して加工
を実施することができる。
According to the method for producing abrasive grains of the present invention as described above, the abrasive grains obtained by the two steps as described above are used as the actual abrasive grains as described in claim 2. At least a portion of the cutting edge forming particles in the processed surface which is in contact with the void functions as a cutting edge, and the cutting edge forming particles are worn off and fall off as the cutting edge is lost, and new cutting edge forming particles are formed. It has a function of sequentially protruding to the machined surface, during polishing and grinding, a self-generated blade is always formed on the abrasive grains, the removal of chips is also good, and excellent efficiency is maintained and extremely efficient, and It is possible to perform processing stably for a long time.

【0030】このとき請求項10に記載のように形成さ
れる切刃形成粒子の平均粒径が5μm以下となる条件で
加熱処理を行うことが望ましい。すなわち、切刃形成粒
子の平均粒径が5μmを越えると、加工面にスクラッチ
が発生して加工品位が低下してしまう恐れがあり、好ま
しくない。
At this time, it is desirable to perform the heat treatment under the condition that the average particle diameter of the cutting edge forming particles formed as described in claim 10 is 5 μm or less. That is, when the average particle diameter of the cutting edge forming particles exceeds 5 μm, scratches may occur on the processed surface and the processing quality may be deteriorated, which is not preferable.

【0031】また、請求項11記載の研磨具のようにこ
のような請求項1ないし請求項7のいずれかに記載の砥
粒を研磨面に有する研磨具は、その優れた本発明に係る
砥粒により、優れた品位を維持して極めて能率良く、か
つ、長時間に亘って安定して加工を実施することができ
る。
A polishing tool having the abrasive grains according to any one of claims 1 to 7 on the polishing surface, like the polishing tool according to claim 11, is an excellent polishing tool according to the present invention. With the granules, excellent quality can be maintained, the efficiency is extremely high, and the processing can be stably performed for a long time.

【0032】また、請求項12に記載の研磨具は、請求
項11に記載の研磨具において、研磨具の研磨面表面に
砥粒が露出していることを特徴とする。このような構成
により砥粒同士、あるいは、砥粒とそれを支持する基材
とを固定するバインダによる加工品質の低下を防止する
ことができる。ここで、バインダとしては樹脂、セラミ
ック、金属のいずれか1種以上を用いることができ、ま
た、例えばセラミック前駆体を用いてその後加熱処理な
どによりセラミックとしても良い。
A polishing tool according to a twelfth aspect is the polishing tool according to the eleventh aspect, wherein abrasive grains are exposed on the surface of the polishing surface of the polishing tool. With such a configuration, it is possible to prevent deterioration in processing quality due to the abrasive grains or the binder that fixes the abrasive grains and the base material that supports the abrasive grains. Here, as the binder, one or more of resin, ceramic, and metal can be used, and, for example, a ceramic precursor may be used to obtain a ceramic by subsequent heat treatment.

【0033】また、請求項13に記載の研磨具は、請求
項11または請求項12に記載の研磨具において、前記
研磨具が研磨フィルム、研磨布及び研磨用砥石のいずれ
かであることを特徴とする。研磨具がこのように研磨フ
ィルム、研磨布及び研磨用砥石のいずれかであることに
より、上記請求項1ないし請求項7のいずれかに記載の
砥粒による高い加工能率で、かつ、高品位な加工が可能
となる効果を特に効果的に発揮させることができる。
The polishing tool according to claim 13 is the polishing tool according to claim 11 or 12, wherein the polishing tool is any one of a polishing film, a polishing cloth and a polishing grindstone. And Since the polishing tool is any one of the polishing film, the polishing cloth, and the polishing grindstone as described above, it is possible to obtain high processing efficiency and high quality with the abrasive grains according to any one of claims 1 to 7. The effect that enables processing can be exerted particularly effectively.

【0034】研磨フィルムとした場合、前記砥粒の効果
を充分に得ることが可能となるとともに、研磨フィルム
自体が安価な研磨具であり、いわゆる、使い捨てないし
使い捨てに近い使用条件であっても比較的低コストの研
磨加工が可能とすることができる。
When the polishing film is used, the effect of the above-mentioned abrasive grains can be sufficiently obtained, and the polishing film itself is an inexpensive polishing tool. It is possible to perform polishing processing at a relatively low cost.

【0035】研磨布の場合、前記砥粒の効果を充分に得
ることが可能となるとともに、工具として従来の研磨加
工機やラップ加工機において、その定盤に置き換えて使
用することができ、また研磨フィルムと異なり、摩耗と
ともに新たな砥粒が研磨具表面に現れるため、長時間使
用することができる。したがって、工作物を能率よく、
優れた加工面品位に仕上げられるとともに、寿命が長い
ため、工具コストが安くなり、同時に工具取り替えなど
の作業者の負担を低減できる。
In the case of a polishing cloth, the effect of the above-mentioned abrasive grains can be sufficiently obtained, and the polishing cloth can be used as a tool in a conventional polishing machine or lapping machine by replacing it with a surface plate. Unlike the polishing film, new abrasive grains appear on the surface of the polishing tool as it wears, so that it can be used for a long time. Therefore, the workpiece can be efficiently
The finished surface has excellent quality, and the tool life is long, so the tool cost is low, and at the same time, the burden on the operator such as tool change can be reduced.

【0036】また、研磨用砥石に応用して砥石内に添加
することにより、研磨、研削加工時に、研削焼けを生じ
ることなく、安定に能率良く優れた加工面品位に工作物
を仕上げることができる。
Further, by applying it to the grindstone by applying it to the grindstone for polishing, it is possible to stably and efficiently finish the workpiece with excellent work surface quality without causing grinding burn during polishing and grinding. .

【0037】また、請求項14に記載の研磨具は、請求
項13に記載の研磨具において前記研磨具が研磨フィル
ムであって、前記砥粒を基材フィルムに固定するための
バインダ層の厚さが該砥粒の最大直径よりも小さいこと
を特徴とする。このような構成により、バインダが被研
磨面に接触することによる研磨品質の低下を防止し、砥
粒の突き出し量が保証される。
The polishing tool according to claim 14 is the polishing tool according to claim 13, wherein the polishing tool is a polishing film, and a thickness of a binder layer for fixing the abrasive grains to the base film. Is smaller than the maximum diameter of the abrasive grains. With such a configuration, it is possible to prevent the polishing quality from being deteriorated due to the binder coming into contact with the surface to be polished, and to guarantee the protrusion amount of the abrasive grains.

【0038】また、請求項15に記載の研磨具は、請求
項11ないし請求項14のいずれかに記載の研磨具にお
いて、砥粒を有する部分における前記砥粒の含有率が5
体積%以上90体積%以下であることを特徴とする。こ
のような構成により優れた加工面品位を高い能率で得る
ことが可能となる。前記砥粒の含有率が5体積%未満で
あると添加の効果が充分に得られない場合があり、一
方、含有率90体積%をこえると研磨具の結合材量が少
なすぎて、砥粒保持強度が著しく低下し、研磨具として
用いることができない。
A polishing tool according to a fifteenth aspect is the polishing tool according to any one of the eleventh to fourteenth aspects, wherein the content rate of the abrasive grains in the portion having the abrasive grains is 5
It is characterized in that it is from 90% by volume to 90% by volume. With such a configuration, it becomes possible to obtain excellent processed surface quality with high efficiency. If the content of the abrasive grains is less than 5% by volume, the effect of addition may not be sufficiently obtained. On the other hand, if the content exceeds 90% by volume, the amount of the binder in the polishing tool is too small, and The holding strength is remarkably reduced and it cannot be used as a polishing tool.

【0039】また、請求項16の研磨具の製造方法は、
多数の一次粒子を凝集させて二次粒子を得る工程と、該
二次粒子を一次粒子同士の結合点にネックが形成される
温度で加熱処理して、一次粒子を成長させて切刃形成粒
子とし、多数の微細な切刃形成粒子が部分的に、かつ、
空隙を形成して、互いにゆるく結合してなる粒状の多孔
質体からなる砥粒を得る工程、該砥粒を基材に固定する
工程とを有する。このような構成により、優れた品位を
維持しつつ、極めて能率良く研磨加工できる長寿命の研
磨具を容易に得ることができる。
A polishing tool manufacturing method according to claim 16 is
A step of aggregating a large number of primary particles to obtain secondary particles, and heat-treating the secondary particles at a temperature at which a neck is formed at a binding point between the primary particles to grow the primary particles to form a cutting edge forming particle. And a large number of fine cutting edge forming particles partially, and
The method includes the steps of forming voids to obtain abrasive grains composed of granular porous bodies loosely bonded to each other, and fixing the abrasive grains to a base material. With such a configuration, it is possible to easily obtain a long-life polishing tool that can perform polishing with extremely high efficiency while maintaining excellent quality.

【0040】また、請求項16の研磨具の製造方法にお
いて、請求項17に記載のように、、前記砥粒を基材に
固定する工程において、樹脂、セラミック及び金属から
選ばれた1種以上のバインダを用いることにより、求め
られる耐熱性、強度などを満足する研磨具を得ることが
できる。なお、このとき用いる砥粒の表面を改質処理
し、バインダとの密着性を向上させることも可能であ
る。
Further, in the method for manufacturing an abrasive tool according to claim 16, as described in claim 17, in the step of fixing the abrasive grains to the base material, at least one selected from resins, ceramics and metals. By using the above binder, it is possible to obtain a polishing tool satisfying the required heat resistance and strength. The surface of the abrasive grains used at this time may be modified to improve the adhesion with the binder.

【0041】固定方法としては、例えばバインダと砥粒
とからなる混合物を例えばワイヤバーコータ、グラビア
コータ、リバースロールコータあるいはナイフコータな
どを用いて基材に塗布することによって行うことができ
る。
The fixing method can be carried out, for example, by applying a mixture of a binder and abrasive grains to the base material using, for example, a wire bar coater, a gravure coater, a reverse roll coater or a knife coater.

【0042】また、この請求項17の研磨具の製造方法
において、請求項18に記載のように、前記砥粒を基材
に固定する工程において、砥粒を強化材とともに基材に
固定することにより寿命の長い研磨具を得ることができ
る。ここで強化材としては請求項19に記載のように、
金属粉末、炭素繊維、ガラス繊維などの無機繊維、ポリ
アクリロニトリル繊維などの有機繊維、あるいは金属繊
維などが挙げられる。繊維を用いる場合、必要に応じて
チョップドファイバー、ミルドファイバーなどの適当な
長さとして用いることができる。また、さらにこれら繊
維の表面を改質処理し、バインダとの密着性を向上させ
ることも可能である。また、強化材としては、上記の
他、各種ウィスカーなども用いることもできる。
Further, in the polishing tool manufacturing method of the seventeenth aspect, as in the eighteenth aspect, in the step of fixing the abrasive grains to the base material, the abrasive grains are fixed to the base material together with the reinforcing material. This makes it possible to obtain a polishing tool having a long life. Here, as the reinforcing material, as described in claim 19,
Examples thereof include metal powder, carbon fiber, inorganic fiber such as glass fiber, organic fiber such as polyacrylonitrile fiber, and metal fiber. When fibers are used, they can be used as chopped fibers, milled fibers or the like, if necessary. Further, the surface of these fibers can be further modified to improve the adhesion with the binder. In addition to the above, various whiskers can be used as the reinforcing material.

【0043】また、請求項20に記載の研磨具の製造方
法は、請求項16ないし請求項19のいずれかに記載の
研磨具の製造方法において、研磨具が研磨フィルムある
いは研磨布であることを特徴とする。
The method for manufacturing a polishing tool according to a twentieth aspect is the method for manufacturing a polishing tool according to any one of the sixteenth to nineteenth aspects, wherein the polishing tool is a polishing film or a polishing cloth. Characterize.

【0044】また、請求項21に記載の研磨用砥石の製
造方法は、多数の一次粒子を凝集させて二次粒子を得る
工程、該二次粒子を一次粒子同士の結合点にネックが形
成される温度で加熱処理して、複数の一次粒子を成長さ
せて切刃形成粒子とし、多数の微細な切刃形成粒子が部
分的に、かつ、空隙を形成して、互いにゆるく結合して
なる粒状の多孔質体からなる砥粒とする工程、該砥粒を
結合させるバインダと該砥粒とを混合あるいは混練して
砥粒混合材料を得る工程、及び、該砥粒混合材料を成形
して研磨用砥石とする工程を有する研磨用砥石の製造方
法であり、このような製造方法により、優れた品位を維
持して極めて能率良く加工をおこなうことができる研磨
用砥石を容易に得ることができる。ここでバインダとし
ては樹脂、セラミック、金属のいずれか1種以上を用い
ることができ、また、例えばセラミック前駆体を用いて
その後加熱処理などによりセラミックとしても良い。
Further, in the method for producing a polishing grindstone according to a twenty-first aspect, a step of aggregating a large number of primary particles to obtain secondary particles, a neck is formed at the connecting points of the secondary particles with each other. Heat treatment at a certain temperature to grow a plurality of primary particles to form cutting edge-forming particles, and a large number of fine cutting edge-forming particles partially and form voids and are loosely bonded to each other. A step of forming abrasive particles composed of a porous body, a step of mixing or kneading the binder for binding the abrasive particles and the abrasive particles to obtain an abrasive particle mixed material, and molding and polishing the abrasive particle mixed material It is a method for manufacturing a polishing grindstone having a step of forming a polishing grindstone, and by such a manufacturing method, it is possible to easily obtain a polishing grindstone capable of performing processing with extremely high efficiency while maintaining excellent quality. Here, as the binder, one or more of resin, ceramic, and metal can be used, and, for example, a ceramic precursor may be used to obtain a ceramic by subsequent heat treatment.

【0045】さらに請求項22に記載の研磨用砥石の製
造方法において、請求項21に記載のように前記砥粒と
該砥粒を結合させる結合材料とを混合あるいは混練して
砥粒混合材料を得る工程において、強化材を添加するこ
とにより剛性や耐磨耗性を向上させることができ、さら
に寿命の長い研磨用砥石とすることができる。このと
き、請求項23に記載のように、前記強化材としては、
有機繊維、無機繊維及び金属繊維が挙げられ、これら繊
維を必要に応じてチョップドファイバー、ミルドファイ
バーなどの適当な長さとして用いることができる。ま
た、さらにこれら繊維の表面を改質処理し、バインダと
の密着性を向上させることも可能である。また、強化材
としては、各種ウィスカーなどを用いることもできる。
さらにこれら強化材の表面を改質処理し、バインダとの
密着性を向上させることも可能である。
Further, in the method for producing a polishing grindstone according to the twenty-second aspect, as described in the twenty-first aspect, the abrasive grains and a binding material for binding the abrasive grains are mixed or kneaded to form an abrasive grain mixed material. In the step of obtaining, it is possible to improve rigidity and wear resistance by adding a reinforcing material, and it is possible to obtain a polishing grindstone having a long life. At this time, as described in claim 23, as the reinforcing material,
Examples thereof include organic fibers, inorganic fibers and metal fibers, and these fibers can be used in an appropriate length such as chopped fiber or milled fiber, if necessary. Further, the surface of these fibers can be further modified to improve the adhesion with the binder. Further, various whiskers or the like can be used as the reinforcing material.
Furthermore, the surface of these reinforcing materials can be modified to improve the adhesion with the binder.

【0046】また、請求項24に記載の研磨装置は前記
請求項11ないし請求項15のいずれかに記載の研磨具
を有する。このような研磨装置は研磨効率と研磨品質と
が高く、かつ、研磨具の寿命が長いのでその交換の手間
が少なくて済む。このような研磨具は、高い加工能率
で、かつ、高品位な加工が可能となり、また、長寿命で
ある。
A polishing apparatus according to a twenty-fourth aspect has the polishing tool according to any one of the eleventh to fifteenth aspects. Such a polishing apparatus has high polishing efficiency and polishing quality, and since the polishing tool has a long life, it is possible to replace it with little labor. Such a polishing tool is capable of high-quality processing with high processing efficiency and has a long life.

【0047】[0047]

【発明の実施の形態】本発明の砥粒は、多数の一次粒子
が凝集して形成された二次粒子を一次粒子同士の結合点
にネックが形成される温度で加熱処理して得た、多数の
微細な切刃形成粒子が部分的に、かつ、空隙を形成し
て、互いにゆるく結合してなる粒状の多孔質体であっ
て、この切刃形成粒子は上記加熱処理時に一次粒子が成
長して形成されている砥粒である。
BEST MODE FOR CARRYING OUT THE INVENTION The abrasive grains of the present invention are obtained by heat-treating secondary particles formed by aggregating a large number of primary particles at a temperature at which a neck is formed at a bonding point between primary particles. A large number of fine cutting edge forming particles are partially, and form a void, a granular porous body formed by loosely bonding to each other, and the cutting edge forming particles grow primary particles during the heat treatment. It is an abrasive grain formed by.

【0048】このように、従来の微細な一次粒子が単に
凝集して形成された二次粒子からなる砥粒とは異なり、
多数の微細な切刃形成粒子が部分的に、かつ、空隙を形
成して、互いにゆるく結合してなる粒状の多孔質体の構
造が維持されながらも、上記従来の砥粒内の一次粒子同
士の結合と比べ、一次粒子が加熱処理により成長してな
る切刃形成粒子同士の結合部分にネックが形成されてい
るためにその結合が強いので、研磨効率と研磨品質を有
しながらも、長時間の使用が可能とすることができる。
As described above, unlike the conventional abrasive grains composed of secondary particles formed by simply aggregating fine primary particles,
A large number of fine cutting edge-forming particles are partially formed, and form a void, while maintaining the structure of a granular porous body loosely bonded to each other, but the primary particles in the conventional abrasive grains Compared with the bond of No. 1, since the bond is strong because the neck is formed in the bonding portion of the cutting edge forming particles formed by the growth of the primary particles by the heat treatment, the polishing efficiency and the polishing quality are maintained, but the long The use of time can be enabled.

【0049】本発明における切刃形成粒子とは、多数の
一次粒子が凝集して形成された二次粒子中の一次粒子が
加熱処理によって成長した粒子であって、少なくともそ
の一部分が研磨、研削加工への使用時に工作物に対して
切刃として加工物に対して加工作用を及ぼす粒子であ
る。
The cutting edge forming particles in the present invention are particles in which primary particles in secondary particles formed by aggregating a large number of primary particles are grown by heat treatment, and at least a part thereof is polished or ground. Particles that exert a working action on a work piece as a cutting edge on the work piece when used for.

【0050】さらに、上記のように一次粒子が成長する
加熱処理によれば、粒子を構成する物質の物質移動によ
り一次粒子が成長するのみならず、粒子同士の結合箇所
は、粒子を形成する物質の物質移動により太くなり、不
連続点のないなだらかな曲面となり、1葉双曲面状(鼓
状)にくびれた、いわゆる「ネック」状となる。この加
熱処理時の物質移動による一次粒子の成長及び「ネッ
ク」形成については、株式会社産業技術センター発行
「セラミック材料技術集成」(昭和54年4月10日初
版第1刷発行)の「2.3 物質移動の機構と焼結のモ
デル」に詳細に記載されている。
Further, according to the heat treatment for growing the primary particles as described above, not only the primary particles grow due to the mass transfer of the substance constituting the particles, but also the binding points between the particles form the substance forming the particles. It becomes thicker due to the mass transfer, and becomes a smooth curved surface without discontinuities, and becomes a so-called “neck” shape that is constricted in a one-leaf hyperboloid shape (hand drum shape). Regarding the growth of primary particles and the formation of “neck” due to the mass transfer during the heat treatment, “2. of“ Ceramic material technology compilation ”issued by Industrial Technology Center Co., Ltd. 3 Mass Transfer Mechanisms and Sintering Models ".

【0051】本発明ではこのように、切刃形成粒子同士
が切刃形成粒子を構成する物質自体より結合しているた
めに、砥粒としてバインダを含まず、その結果、切刃形
成粒子が摩耗して切刃となる部分を失うにしたがって脱
落するとともに、新たな切刃形成粒子が加工面に順次突
き出されるため、バインダを用いて砥粒を形成したとき
に生じる、切刃形成粒子のバインダからの突き出し量が
不充分となる、また、目つぶれ、目詰まり、バインダの
残留やそのバインダへの切りくずの付着等によるスクラ
ッチの発生の加工品位上の瑕疵発生等の問題を回避する
ことができる。
As described above, in the present invention, since the cutting edge forming particles are bonded to each other by the substance itself constituting the cutting edge forming particles, no binder is contained as abrasive grains, and as a result, the cutting edge forming particles are worn. And as it falls off as it loses the part that becomes the cutting edge, new cutting edge forming particles are sequentially ejected to the processing surface, so the binder of the cutting edge forming particles that occurs when the abrasive grains are formed using the binder In addition, it is possible to avoid problems such as insufficient amount of protrusion from the machine, scratches due to crushing, clogging, binder remaining and chip adherence to the binder, etc. it can.

【0052】ただし、多数の一次粒子を互いに凝集させ
て二次粒子を形成する際には、加熱処理により酸化、分
解あるいは蒸発等により完全に消滅するような、例えば
有機物からなるバインダは用いることが可能で、その場
合には砥粒としての使用時にバインダが残留していない
ので上記不都合は回避される。
However, when a large number of primary particles are aggregated with each other to form secondary particles, it is preferable to use a binder made of, for example, an organic substance, which is completely eliminated by heat treatment such as oxidation, decomposition or evaporation. This is possible, and in that case, the above-mentioned inconvenience is avoided because the binder does not remain when used as abrasive grains.

【0053】このような、粒子同士の結合箇所がネック
状となることにより、切刃形成粒子同士の結合の強さは
強化され、その結果、粒子自体の成長と相まって、高い
加工能率で、かつ、高品位な加工が可能でありながら、
長時間の加工が可能な砥粒を得ることができる。
By thus forming the neck-like bonding points between the particles, the strength of the bonding between the cutting edge forming particles is strengthened, and as a result, together with the growth of the particles themselves, a high processing efficiency and , While being capable of high-quality processing,
It is possible to obtain abrasive grains that can be processed for a long time.

【0054】本発明において、一次粒子を構成する原料
としては、上記のような加熱処理によって粒子を構成す
る物質が物質移動して成長するものであって、砥粒とし
たときに受容できる物性を有する硬質無機材料であれば
よく、シリカ、セリア、キュービック窒化ホウ素(cB
N)、アルミナ、炭化珪素、酸化ジルコニウムなどが挙
げられ、一次粒子の大きさとしては、平均粒径が5μm
以下のものを用いることが望ましい。
In the present invention, the raw material forming the primary particles is a material in which the substance forming the particles is mass-transferred and grows by the heat treatment as described above, and has physical properties that can be accepted when used as abrasive grains. Any hard inorganic material can be used, such as silica, ceria, cubic boron nitride (cB
N), alumina, silicon carbide, zirconium oxide, etc., and the average primary particle size is 5 μm.
It is desirable to use the following.

【0055】本発明における二次粒子とは多数の微細な
一次粒子からなる凝集体である。多数の微細な一次粒子
を互いに凝集させてこのような二次粒子を得る方法とし
ては、スプレードライヤー(一般的に、1μm〜300
μmまでのサイズが得られる。粒度分布がシャープでな
いときには分級プロセスを加える)、ゾルゲル法、溶媒
を併用する凍結乾燥法及び溶媒乾燥法等が挙げられる。
さらに、固体の熱分解及び固相反応を利用する方法、あ
るいは気体からの形成方法として、蒸発−凝集、気相分
解法、その他の気相反応なども用いることができる。
The secondary particles in the present invention are aggregates composed of many fine primary particles. As a method for obtaining such secondary particles by aggregating a large number of fine primary particles with each other, a spray dryer (generally 1 μm to 300 μm) is used.
Sizes up to μm are obtainable. When the particle size distribution is not sharp, a classification process is added), a sol-gel method, a freeze-drying method in which a solvent is used in combination, a solvent drying method, and the like.
Further, as a method utilizing the thermal decomposition and solid phase reaction of a solid, or a method of forming from a gas, an evaporation-aggregation method, a gas phase decomposition method, and other gas phase reactions can be used.

【0056】上記のようにして得た二次粒子に対して加
熱処理を行い、二次粒子内の一次粒子を成長させる。本
発明における加熱処理は上記のように多数の一次粒子が
凝集して形成された二次粒子中の一次粒子が成長する条
件(温度、時間)でおこなう必要がある。
The secondary particles obtained as described above are heat-treated to grow the primary particles in the secondary particles. The heat treatment in the present invention needs to be performed under the conditions (temperature, time) in which the primary particles among the secondary particles formed by aggregating a large number of primary particles as described above grow.

【0057】その加熱処理の条件は、一次粒子を構成す
る物質によって適宜選択するが、通常は加熱処理が10
分〜数時間以内に終了する程度の温度を選択する。加熱
処理時間が長すぎると制御が困難となり、通常のセラミ
ック製の砥粒のように焼結してしまって、焼結までは至
らなくとも、切刃形成粒子が大きくなってしまって、実
質焼結してしまったのと同じになった場合には、本発明
の効果が得られない。
The condition of the heat treatment is appropriately selected depending on the substance constituting the primary particles, but usually the heat treatment is 10
Select a temperature that will finish within minutes to a few hours. If the heat treatment time is too long, it will be difficult to control, and it will sinter like normal ceramic abrasive grains. If the result is the same as the result of binding, the effect of the present invention cannot be obtained.

【0058】ここで、予めいくつかの異なった温度、時
間で加熱処理の試験を行い、処理後の粒子内部の構造を
電子顕微鏡等で観察して、切刃形成粒子同士の結合箇所
が、不連続点のないなだらかな曲面となり、1葉双曲面
状にくびれた、いわゆる「ネック」状となる条件の範囲
(一次粒子が成長したことを示す)であって、多数の微
細な切刃形成粒子が部分的に、かつ、空隙を形成して、
互いにゆるく結合してなる粒状の多孔質体構造が保たれ
ている範囲の条件を探し出す。
Here, the heat treatment test was conducted in advance at several different temperatures and times, and the internal structure of the treated particles was observed with an electron microscope or the like to confirm that the bonding points between the cutting edge forming particles were not observed. A number of fine cutting edge forming particles within a range of conditions (indicating that primary particles have grown) in which a so-called “neck” shape is formed, which is a smooth curved surface with no continuous points and is constricted in a one-leaf hyperboloid shape. Partially and forming a void,
A condition is searched for within a range in which the granular porous body structure loosely bonded to each other is maintained.

【0059】これら温度、時間は材料によって大きく異
なるが上記例示した材料では概ね500〜1600℃、
数分〜24時間である。このとき必要に応じて加圧して
行うことも可能である。
These temperatures and times vary greatly depending on the material, but in the materials exemplified above, the temperature is generally 500 to 1600 ° C.
Several minutes to 24 hours. At this time, it is also possible to pressurize if necessary.

【0060】ただし、砥粒を構成する切刃形成粒子が成
長して大きくなりすぎると、上記バランスが崩れ、本発
明の効果が得られなくなるおそれがあるため、加熱処理
は砥粒内の切刃形成粒の平均粒径が5μm以下となる条
件で行うことが望ましい。
However, if the cutting edge-forming particles constituting the abrasive grains grow and become too large, the above balance may be lost and the effects of the present invention may not be obtained. It is desirable to carry out under the condition that the average grain size of the formed grains is 5 μm or less.

【0061】上記加熱処理において、得られる砥粒の圧
縮破壊強度が1MPa以上500MPa以下となる条
件、あるいは、細孔比表面積が18000cm2/cm3
以上700000cm2/cm3以下となる条件で行うこ
とが好ましい。このとき、高加工面品位をさらに高能率
で研磨できると同時に、砥粒の磨耗を抑えることが可能
となり、この砥粒を有する研磨具をより長く使用するこ
とができ、研磨具交換の手間を省き、かつ、研磨具交換
に要するコストを低くすることができる。
In the above heat treatment, the abrasive grains obtained have a compressive fracture strength of 1 MPa or more and 500 MPa or less, or a pore specific surface area of 18000 cm 2 / cm 3.
It is preferable to carry out under the condition of not less than 700,000 cm 2 / cm 3 . At this time, it is possible to polish high-processed surface quality with even higher efficiency, and at the same time, it is possible to suppress wear of the abrasive grains, and it is possible to use the abrasive tool having the abrasive grains for a longer period of time, which makes it difficult to replace the abrasive tool. The cost required for exchanging the polishing tool can be reduced and the cost can be reduced.

【0062】[0062]

【実施例】以下に本発明の砥粒について具体的に実施例
を挙げて説明する。ただし、本発明はこれら実施例に限
定されるものではなく、本発明の骨子を逸脱しない範囲
で種々変形して実施することができる。
EXAMPLES The abrasive grains of the present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples, and various modifications can be carried out without departing from the gist of the present invention.

【0063】なお、本発明において平均粒径は、堀場製
作所製レーザ回折/散乱式粒度分布測定装置LA−92
0を用いて、乾式で行い、頻度積算50%のところの粒
径を以って平均粒径(通常、メジアン径と云われる)と
した。
In the present invention, the average particle size is LA-92, a laser diffraction / scattering particle size distribution analyzer manufactured by Horiba, Ltd.
No. 0 was used to perform the dry process, and the particle size at the frequency cumulative 50% was used as the average particle size (usually called the median size).

【0064】また、圧縮破壊強度試験は、平松、岡、木
山による報告(日本鉱業会誌、81,1024(196
5))に基づく島津製作所(株)製微小圧縮試験機MC
TM500PCを用いておこなった。
The compressive fracture strength test was reported by Hiramatsu, Oka and Kiyama (Journal of the Japan Mining Industry, 81, 1024 (196).
5)) Shimadzu Corporation's micro compression tester MC
It was performed using TM500PC.

【0065】試験条件として、試験荷重を10〜100
0mN、負荷速度は0.446mN/secとし、平面
圧子を用いて、被測定顆粒に対して圧縮を行い、顆粒が
圧縮により破壊されたときの強度を測定する。このとき
の圧縮変位と荷重との関係をモデル的に図1に示す。圧
縮破壊強度は図1における破線丸内の曲線屈折部での荷
重値を読みとり、この値から算出した。
As a test condition, a test load is 10 to 100.
0 mN, the load speed is 0.446 mN / sec, the granules to be measured are compressed using a flat indenter, and the strength when the granules are broken by the compression is measured. The relationship between the compression displacement and the load at this time is shown as a model in FIG. The compressive fracture strength was calculated by reading the load value at the curved refraction part in the circle within the broken line in FIG.

【0066】一方、加工面の面粗さの評価はテーラホプ
ソン社製フォームタリサーフS4Cを用いて行った。ま
た、本発明における細孔比表面積は、相対圧0.3にお
ける窒素ガスの吸脱着BET1点法により測定したBE
T比表面積を砥粒を構成する材料の密度を乗した値を用
いた。
On the other hand, the evaluation of the surface roughness of the machined surface was carried out using a foam Talysurf S4C manufactured by Thera Hopson. Further, the specific surface area of the pores in the present invention is BE measured by adsorption and desorption of nitrogen gas at a relative pressure of 0.3 by the BET one-point method.
The value obtained by multiplying the T specific surface area by the density of the material forming the abrasive grains was used.

【0067】[実施例1]粒径が50〜60nmからな
る超微細酸化ジルコニウム(ZrO2)粉末を水(水系
バインダ例えば,ポリビニルアルコール−水混合物を用
いても良い)を加えてスラリーとし、これをスプレード
ライヤーで噴霧して、平均粒径で50μmの二次粒子α
を得た。この二次粒子αの圧縮破壊強度は0.47MP
aであった。二次粒子αの全体の走査型電子顕微鏡(S
EM)写真と、部分拡大した走査型電子顕微鏡(SE
M)写真とを図2及び図3に示す。
Example 1 Ultrafine zirconium oxide (ZrO 2 ) powder having a particle size of 50 to 60 nm was slurried by adding water (aqueous binder, for example, polyvinyl alcohol-water mixture may be used). Is sprayed with a spray drier and the average particle size of the secondary particles α is 50 μm.
Got The compressive fracture strength of this secondary particle α is 0.47MP
It was a. Whole scanning electron microscope (S
EM photograph and partially enlarged scanning electron microscope (SE
M) Photographs are shown in FIGS. 2 and 3.

【0068】この二次粒子αを電気炉で加熱処理した。
この加熱処理により、上記のように二次粒子形成時にバ
インダとして用いたポリビニルアルコールは完全に除去
される。
The secondary particles α were heat-treated in an electric furnace.
By this heat treatment, the polyvinyl alcohol used as the binder during the formation of the secondary particles as described above is completely removed.

【0069】ここで予め調べた条件に従い、砥粒として
の使用時に切刃形成粒子として機能する多孔質粒体内部
の内部粒子が5μm以下になるように加熱処理温度と加
熱処理時間を調整した。適切な条件での加熱処理を行っ
た、この酸化ジルコニウムからなる多孔質粒体(砥粒
β)の一例について部分拡大したSEM写真(図3と同
倍率)を図4に示す。
According to the conditions examined in advance, the heat treatment temperature and the heat treatment time were adjusted so that the internal particles inside the porous granules functioning as the cutting edge forming particles when used as abrasive grains were 5 μm or less. FIG. 4 shows a partially enlarged SEM photograph (same magnification as in FIG. 3) of an example of the porous particles (abrasive particles β) made of zirconium oxide that have been subjected to heat treatment under appropriate conditions.

【0070】図4により、砥粒としての使用時に切刃形
成粒子として機能する多孔質粒体は図3に示した一次粒
子よりも明らかに大きく成長していて、その粒子同士の
結合は1葉双曲面状にくびれた、いわゆる「ネック」状
となっていること、及び、多数の微細な切刃形成粒子が
部分的に、かつ、空隙を形成して、互いにゆるく結合し
ていることが確認できる。なお、加熱処理の際、その時
間を長くしすぎたり、あるいは、温度を高くしすぎる
と、一次粒子同士が完全に結合して、ほぼ完全な焼結体
となる。
As shown in FIG. 4, the porous particles that function as cutting edge forming particles when used as abrasive grains are clearly larger than the primary particles shown in FIG. 3, and the bonding between the particles is one leaf. It can be confirmed that it has a so-called “neck” shape that is constricted in a curved shape, and that a large number of fine cutting edge forming particles partially and form voids and are loosely bonded to each other. . When the heat treatment is performed for an excessively long time or an excessively high temperature, the primary particles are completely bonded to each other to form a substantially perfect sintered body.

【0071】このようにして得た圧縮破壊強度が92.
6MPaの、平均粒径50μmの本発明に係る砥粒β
を、粒子の体積比が35体積%となるよう、液状のウレ
タン樹脂と混合し、さらに溶媒としてメチルエチルケト
ンを加え、溶液粘度を調整した後、撹拌機を用いて10
分程度混合攪拌して混合物を作製した。撹拌は、室温
で、回転数は砥粒を破壊しない程度として50rpmで
行った。
The compression fracture strength thus obtained was 92.
Abrasive grain β of 6 MPa having an average particle size of 50 μm according to the present invention
Was mixed with a liquid urethane resin so that the volume ratio of the particles was 35% by volume, and methyl ethyl ketone was further added as a solvent to adjust the solution viscosity.
A mixture was prepared by mixing and stirring for about a minute. The stirring was carried out at room temperature and at a rotation speed of 50 rpm so as not to destroy the abrasive grains.

【0072】この混合物を基材上(厚さ約75μmのP
ETフィルムにワイヤバーコータを用いて塗布し、その
後、60℃に保った恒温槽内で1時間乾燥させ、研磨具
である研磨フィルムAを得た。
This mixture was applied to a substrate (P with a thickness of about 75 μm).
It was applied to the ET film using a wire bar coater and then dried in a constant temperature bath kept at 60 ° C. for 1 hour to obtain a polishing film A as a polishing tool.

【0073】得られた塗布層(砥粒を有する部分)の最
大厚さは粒度分布を持つ本発明に係る砥粒の最大径にほ
ぼ等しい厚さになる(上記のように溶媒を併用すること
によりバインダ層の厚さを薄くすることが容易とな
る)。このように作製した研磨フィルムAをラップ定盤
に取りつけ、最大高さ粗さRyが2μmとなるように調
整した直径30mmの光学ガラスディスク(硼珪酸クラ
ウンガラス(BK7相当品))を加工した結果(加工条
件:定盤回転数60rpm、加工圧力46kPa)、2
分間でスクラッチのない、最大高さ粗さRyが30nm
以下の鏡面を得ることができた。
The maximum thickness of the obtained coating layer (portion having abrasive grains) is almost equal to the maximum diameter of the abrasive grains according to the present invention having a particle size distribution (using a solvent as described above). This makes it easy to reduce the thickness of the binder layer). The polishing film A thus produced was attached to a lapping plate, and an optical glass disk (borosilicate crown glass (BK7 equivalent product)) having a diameter of 30 mm adjusted to have a maximum height roughness Ry of 2 μm was processed. (Processing conditions: surface plate rotation speed 60 rpm, processing pressure 46 kPa), 2
Maximum height roughness Ry of 30 nm without scratches in a minute
The following mirror surface was obtained.

【0074】また、引き続き同条件で同様のガラスディ
スクを20枚を加工しても、加工能率や加工面粗さの低
下がほぼ見られなかった。ここで、ガラスディスクの加
工前の表面拡大写真を図5に、そのときの表面粗さ測定
結果(チャート)を図6に、また、加工後の表面拡大写
真(図5と拡大倍率が同じ)及び表面粗さ測定結果をそ
れぞれ図7及び図8に示す。これらより加工前に存在し
た凹凸が加工後では殆どなくなり、鏡面になっているこ
とが判る。
Further, even if 20 similar glass disks were subsequently processed under the same conditions, there was almost no decrease in the processing efficiency or the processed surface roughness. Here, an enlarged photograph of the surface of the glass disk before processing is shown in FIG. 5, a surface roughness measurement result (chart) at that time is shown in FIG. 6, and an enlarged photograph of the surface after processing (the same magnification as in FIG. 5) is used. 7 and FIG. 8 show the surface roughness measurement results. From these, it can be seen that the unevenness that existed before the processing was almost eliminated after the processing and became a mirror surface.

【0075】また、ガラスディスクを10枚加工後の研
磨フィルムA上の砥粒磨耗状況を調べた。その表面の状
態を図9に示す。図9から、切刃形成粒子同士の結合力
が適切であるため、加工進行するに伴い、徐々に磨耗が
進み、砥粒における大きな破損や基材からの脱落がない
ことが判る。
Further, the abrasion condition of the abrasive grains on the polishing film A after processing ten glass disks was examined. The state of the surface is shown in FIG. It can be seen from FIG. 9 that since the cutting blade forming particles have an appropriate bonding force, the abrasion gradually progresses as the processing progresses, and the abrasive grains are not largely damaged or dropped from the base material.

【0076】[比較例1〜2]実施例1での二次粒子α
を用いて砥粒β作製と同様に、ただし加熱処理条件を変
化させて、圧縮破壊強度が0.6MPaで細孔比表面積
が1000000cm 2/cm3の砥粒γ、及び、圧縮破
壊強度が613MPaで細孔比表面積が3000cm2
/cm3の砥粒δを得た。これらの平均粒径はともに5
0μmであった。
[Comparative Examples 1 and 2] Secondary particles α in Example 1
As in the production of abrasive grains β, but with the heat treatment conditions changed.
And has a compressive fracture strength of 0.6 MPa and a pore specific surface area
Is 1,000,000 cm 2/ Cm3Abrasive grain γ and compression fracture
Breaking strength is 613 MPa and pore specific surface area is 3000 cm2
/ Cm3Abrasive grain δ was obtained. These average particle sizes are both 5
It was 0 μm.

【0077】これら砥粒γ及びδをそれぞれ走査型電子
顕微鏡で観察したところ、圧縮破壊強度が0.6MPa
の砥粒δでは、「ネック」形成が見られず、加熱処理が
不充分で一次粒子が成長していないことが判った。一
方、圧縮破壊強度が613MPaの砥粒δでは、多数の
微細な切刃形成粒子が部分的に、かつ、空隙を形成し
て、互いにゆるく結合してなる構造がなく、ほぼ完全焼
結体となっていた。
Observation of these abrasive grains γ and δ with a scanning electron microscope revealed that the compressive fracture strength was 0.6 MPa.
No formation of "neck" was observed with the abrasive grain δ of No. 1, and it was found that the heat treatment was insufficient and the primary particles did not grow. On the other hand, in the case of the abrasive grain δ having a compressive fracture strength of 613 MPa, a large number of fine cutting edge forming particles partially and form voids, and there is no structure in which they are loosely bonded to each other, are almost completely sintered bodies. Was becoming.

【0078】これら2種類の砥粒γあるいはδをそれぞ
れ用いて、研磨フィルムA同様にして上記同じ方法で研
磨フィルムB(砥粒γの圧縮破壊強度:0.6MPa、
比較例1)と研磨フィルムC(砥粒δの圧縮破壊強度:
613MPa、比較例2)を作製した。これら研磨フィ
ルムBとCをそれぞれ同じように上記のラップ盤に取り
付け、同じ加工条件で最大高さ粗さRyが2μmになる
ように調整したBK7光学ガラスディスクに対して、加
工を行った。研磨フィルムBの場合は、20分加工を行
ったが、最大高さ粗さRyは1.275μmにしか到達
できなかった。
Polishing film B (compressive breaking strength of abrasive grains γ: 0.6 MPa, using the same method as described above for polishing film A) using these two types of abrasive grains γ or δ, respectively.
Comparative Example 1) and polishing film C (compressive fracture strength of abrasive grains δ:
613 MPa, Comparative Example 2) was prepared. Each of these polishing films B and C was similarly attached to the above lapping machine, and processing was performed on the BK7 optical glass disk adjusted so that the maximum height roughness Ry was 2 μm under the same processing conditions. The polishing film B was processed for 20 minutes, but the maximum height roughness Ry could only reach 1.275 μm.

【0079】また、加熱処理を行っていない二次粒子α
(圧縮破壊強度0.47MPa)を用いて作製した研磨
フィルムを用いて同様に加工テストを行ったところ、研
磨フィルムBでの結果よりもさらに加工能率が低く、前
加工面を改善できなかった。
The secondary particles α which have not been heat-treated
A similar processing test was carried out using a polishing film prepared by using (compressive fracture strength 0.47 MPa). As a result, the processing efficiency was lower than that of the polishing film B, and the pre-processed surface could not be improved.

【0080】加工前のガラスディスクのガラスディスク
の加工前の表面の拡大写真を図10に、表面粗さ測定結
果を図11に、及び20分間の加工後の表面の拡大写真
(拡大倍率は図10と同じ)及び表面粗さ測定結果をそ
れぞれ図12及び図13に示す。また加工使用後の研磨
フィルムB上の砥粒の状態を図14に示す
FIG. 10 shows an enlarged photograph of the surface of the glass disc before processing before processing, FIG. 11 shows the result of surface roughness measurement, and enlarged photograph of the surface after processing for 20 minutes. 10) and the surface roughness measurement results are shown in FIGS. 12 and 13, respectively. FIG. 14 shows the state of the abrasive grains on the polishing film B after processing and use.

【0081】これら結果より、研磨フィルムBを用いた
20分間の研磨によって、ガラスディスクの面粗さが多
少改善されたものの、砥粒自身の磨耗が激しく(図14
参照)、ガラスディスクの前加工面が完全には除去でき
ていないことが判る。
From these results, although the surface roughness of the glass disk was slightly improved by polishing with the polishing film B for 20 minutes, the abrasion of the abrasive grains was severe (FIG. 14).
It can be seen that the pre-processed surface of the glass disc has not been completely removed.

【0082】一方、研磨フィルムCを用いた場合、一次
粒子同士が完全に結合した完全焼結体となった砥粒をも
ちいているので、ガラスディスクの表面に逆に加工によ
って、新たに大きなスクラッチを発生させ、最大高さ粗
さRyが2.7228μmとむしろ劣化させた(図15
には表面拡大写真(スクラッチが見える)を、図16に
は表面粗さ測定結果(スクラッチの存在が確認される)
を示す)そして、砥粒自身もあまり磨耗せず、顕微鏡に
よる観察でも先端部分の平坦化が見られなかった。
On the other hand, when the polishing film C is used, since the abrasive grains which are completely sintered bodies in which the primary particles are completely bonded to each other are used, a large scratch is newly formed on the surface of the glass disk by processing the surface in reverse. And the maximum height roughness Ry was deteriorated to 2.7228 μm (FIG. 15).
Fig. 16 shows an enlarged photograph of the surface (scratches are visible), and Fig. 16 shows the surface roughness measurement results (the existence of scratches is confirmed).
Then, the abrasive grains themselves were not much worn, and the tip portion was not flattened by observation with a microscope.

【0083】同様に、さまざまな圧縮破壊強度の砥粒を
有する研磨フィルムを作製し、その圧縮破壊強度と加工
面粗さ(記号:□)及び加工能率(記号:◇)との関係
を調べた。結果を図17に示す。図17中縦軸の加工能
率は単位時間当たりの研削量を相対的に示したものであ
り、グラフ中、上になるほど加工能率が高い。
Similarly, polishing films having abrasive grains of various compressive fracture strength were prepared, and the relationship between the compressive fracture strength and the machined surface roughness (symbol: □) and the machining efficiency (symbol: ◇) was investigated. . Results are shown in FIG. The machining efficiency on the vertical axis in FIG. 17 relatively indicates the grinding amount per unit time, and the higher the machining efficiency in the graph, the higher the machining efficiency.

【0084】図17から、圧縮破壊強度が小さすぎると
(圧縮破壊強度:1MPa未満)、つまり切刃形成粒子
の結合力が弱すぎると、加工能率が低く、また、加工圧
力による砥粒自身の破壊が進むために、前加工面を完全
に除去しきれないので、加工面粗さも殆ど改善されな
い。一方、圧縮破壊強度があまり高すぎると、例えば、
ぼほ完全な焼結体(圧縮破壊強度:613MPa)の場
合、加工能率は著しく高くなるが、その反面加工面品位
も大きく劣化した。このように、適切な切刃形成粒子の
結合力を有する本発明に係る砥粒だけは、高加工面品位
(鏡面)を高能率で達成することができた。そして、そ
のとき、砥粒自身の磨耗も抑えられ、研磨具寿命も延び
ることが判った。
From FIG. 17, when the compressive fracture strength is too small (compressive fracture strength: less than 1 MPa), that is, when the binding force of the cutting edge forming particles is too weak, the machining efficiency is low, and the abrasive grains themselves are not affected by the machining pressure. Since the pre-processed surface cannot be completely removed due to the progress of destruction, the processed surface roughness is hardly improved. On the other hand, if the compressive fracture strength is too high, for example,
In the case of an almost completely sintered body (compressive fracture strength: 613 MPa), the processing efficiency was remarkably increased, but on the other hand, the quality of the processed surface was also greatly deteriorated. As described above, only the abrasive grain according to the present invention having an appropriate binding force for the cutting edge forming particles was able to achieve high processing surface quality (mirror surface) with high efficiency. At that time, it was also found that abrasion of the abrasive grains themselves was suppressed and the life of the polishing tool was extended.

【0085】上記図17でのさまざまな圧縮破壊強度の
砥粒について、砥粒の内部構造を表すパラメータである
細孔比表面積と加工能率との関係を調べた図を図18に
示した。ここで、細孔比表面積とは通常の比表面積(単
位は「cm2/g」あるいは「m2/g」等)とは異な
り、材料の比重の違いによる影響を除外してあるため、
内部構造の違いをより顕著に示すパラメータである。ま
た、図18中縦軸の加工能率は単位時間当たりの研削量
を相対的に示したものであり、グラフ中、上になるほど
加工能率が高い。
FIG. 18 shows a diagram in which the relationship between the specific surface area of pores, which is a parameter representing the internal structure of the abrasive grains, and the working efficiency was examined for the abrasive grains having various compressive fracture strengths shown in FIG. Here, the pore specific surface area is different from the normal specific surface area (the unit is “cm 2 / g” or “m 2 / g” etc.), and the influence due to the difference in the specific gravity of the material is excluded.
This is a parameter that shows the difference in internal structure more significantly. Further, the machining efficiency on the vertical axis in FIG. 18 indicates the relative amount of grinding per unit time, and the higher the machining efficiency in the graph, the higher the machining efficiency.

【0086】図18から、加熱処理の効果が充分に発揮
されず、細孔比表面積が大きすぎると(細孔比表面積:
700000cm2/cm3超)、つまり切刃形成粒子の
結合力が弱すぎると、加工能率が低く、また、加工圧力
による砥粒自身の破壊が進むために、前加工面を完全に
除去しきれないので、加工面粗さも殆ど改善されない。
一方、細孔比表面積があまりに小さすぎる、多数の微細
な切刃形成粒子が部分的に、かつ、空隙を形成して、互
いにゆるく結合してなる構造が失われている、例えば、
ぼほ完全な焼結体(細孔比表面積:5000cm2/c
3以下)の場合、加工能率は著しく高くなるが、その
反面加工面品位も大きく劣化した。このように、適切な
切刃形成粒子の結合力と特定の構造を有する本発明に係
る砥粒だけは、高加工面品位(鏡面)を高能率で達成す
ることができた。そして、そのとき、砥粒自身の磨耗も
抑えられ、研磨具寿命も延びることが判った。
From FIG. 18, the effect of heat treatment is not sufficiently exerted and the pore specific surface area is too large (pore specific surface area:
(More than 700,000 cm 2 / cm 3 ), that is, when the binding force of the cutting edge forming particles is too weak, the machining efficiency is low, and since the abrasive grains themselves are destroyed by the machining pressure, the pre-machined surface cannot be completely removed. Since it does not exist, the machined surface roughness is hardly improved.
On the other hand, the pore specific surface area is too small, a large number of fine cutting edge forming particles are partially, and form a void, the structure loosely bonded to each other is lost, for example,
Boho perfect sintered body (pore specific surface area: 5000 cm 2 / c
In the case of m 3 or less), the machining efficiency was remarkably increased, but on the other hand, the quality of the machined surface was significantly deteriorated. As described above, only the abrasive grain according to the present invention having an appropriate cutting edge forming particle binding force and a specific structure was able to achieve a high processed surface quality (mirror surface) with high efficiency. At that time, it was also found that abrasion of the abrasive grains themselves was suppressed and the life of the polishing tool was extended.

【0087】[実施例2]コロイダルシリカからなる一
次粒子径(平均粒径50nm)からなるシリカ砥粒を、
ゾルゲル法により平均粒径が30μmとなるように凝集
させ、得られたシリカ粉を乾燥させ、細孔に含まれる水
分及び有機溶媒を除去し二次粒子εを得た。
[Example 2] Silica abrasive grains having a primary particle diameter (average particle diameter 50 nm) of colloidal silica were
The silica powder thus obtained was agglomerated by the sol-gel method so that the average particle diameter was 30 μm, and the obtained silica powder was dried to remove water and organic solvent contained in the pores to obtain secondary particles ε.

【0088】このようにして得た二次粒子εについて、
様々な条件で加熱処理を行った後、走査型電子顕微鏡観
察を行い、これらのうちから、多数の微細な切刃形成粒
子が部分的に、かつ、空隙を形成して、互いにゆるく結
合してなる粒状の多孔質体であって、該切刃形成粒子が
上記加熱処理時に一次粒子が成長して形成された粒状の
多孔質である本発明に係る砥粒ζを得た。この砥粒ζの
圧縮破壊強度は124.2MPaであり、切刃形成粒子
の大きさは1.2μmであった。
With respect to the secondary particles ε thus obtained,
After heat treatment under various conditions, scanning electron microscope observation was carried out, and from among these, many fine cutting edge forming particles partially and form voids and loosely bound to each other. An abrasive grain ζ according to the present invention is obtained, which is a granular porous body having the following shape, and the cutting edge forming particles are granular porous particles formed by growing primary particles during the heat treatment. The compressive fracture strength of the abrasive grains ζ was 124.2 MPa, and the size of the cutting edge forming particles was 1.2 μm.

【0089】得られた砥粒ζを体積比で35体積%とな
るように、及び、平均粒径3μmの銅粉末(強化材)を
体積比で15体積%となるように、ポリウレタン樹脂と
混合し、撹拌機で60rpm、15分間混合攪拌して、
混合物を得た(この際、必要に応じて独立気泡を形成す
るための発泡剤を添加することも可能である)。
The obtained abrasive grain ζ was mixed with a polyurethane resin so that the volume ratio was 35% by volume, and the copper powder (reinforcing material) having an average particle size of 3 μm was 15% by volume. Then, mix and stir at 60 rpm for 15 minutes with a stirrer,
A mixture was obtained (at this time, if necessary, a foaming agent for forming closed cells can be added).

【0090】この混合物を円形金型(450mmΦ)に
注入し、次いで120℃で10時間の加熱処理によって
硬化させて研磨布を得た。得られた研磨布を所定の大き
さに切り出して定盤に貼り付け、予め#2000相当の
砥石で研削加工した直径30mmのシリコンウェーハを
研磨加工した。
This mixture was poured into a circular mold (450 mmΦ) and then cured by heat treatment at 120 ° C. for 10 hours to obtain a polishing cloth. The obtained polishing cloth was cut into a predetermined size and attached to a surface plate, and a silicon wafer having a diameter of 30 mm which had been previously ground with a grindstone corresponding to # 2000 was polished.

【0091】その結果、10分間の加工でスクラッチの
ない、加工面最大高さ粗さRyが20nm以下の鏡面を
得ることができた。また、引き続きシリコンウェーハを
20枚研磨加工行っても、加工能率や加工面粗さの低下
は認められなかった。
As a result, it was possible to obtain a mirror surface having a maximum processed surface height roughness Ry of 20 nm or less without scratching after processing for 10 minutes. Further, even when 20 silicon wafers were subsequently polished, no reduction in processing efficiency or processed surface roughness was observed.

【0092】ここで実施例2で用いた本発明に係る研磨
布を研磨装置であるシリコン加工用研磨装置に取りつけ
た例を図19にモデル的に示す。図中符号1で示される
のが被加工物であるシリコンウェーハであり、シリコン
ウェーハ1は回転部10に取りつけられていて、この回
転部10の回転によって回転し、また、その回転部10
の上下方向の動きに応じて定盤20上に固定された本発
明に係る研磨布(研磨布の代わりに研磨フィルムを固定
しても良い)に接触し、その下面が研磨される。なお、
定盤20も回転するため、シリコンウェーハ1下面全体
が均一に研磨されるようになっている。
Here, an example in which the polishing cloth according to the present invention used in Example 2 is attached to a polishing apparatus for silicon processing, which is a polishing apparatus, is schematically shown in FIG. Reference numeral 1 in the drawing denotes a silicon wafer which is a workpiece, and the silicon wafer 1 is attached to the rotating part 10 and is rotated by the rotation of the rotating part 10.
The polishing cloth of the present invention fixed on the surface plate 20 (the polishing film may be fixed instead of the polishing cloth) is brought into contact with the lower surface of the polishing cloth, and the lower surface thereof is polished. In addition,
Since the surface plate 20 also rotates, the entire lower surface of the silicon wafer 1 is uniformly polished.

【0093】[実施例3]上記二次粒子εに対して実施
例2とは異なった条件で加熱処理を行って得た圧縮破壊
強度が18.5MPaで、切刃形成粒子の大きさが0.
2μmのシリカ砥粒について研磨布として検討を行っ
た。
[Example 3] The above-mentioned secondary particles ε were subjected to heat treatment under the conditions different from those of Example 2 to obtain a compressive fracture strength of 18.5 MPa and a size of cutting edge forming particles of 0. .
A study was made on a 2 μm silica abrasive grain as a polishing cloth.

【0094】このシリカ砥粒を用いて実施例2同様にし
て研磨布を製造し、さらに、同様にしてその研磨布を用
いてシリコンウェーハの加工テストを行った。その結
果、15分間の加工時間で、加工面最大高さ粗さRyが
20nm以下の鏡面を得ることができたが、引き続き加
工を実施したところ、徐々に加工能率が低下し、加工枚
数5枚では開始時に比べ、加工面粗さは同等であるもの
の、加工能率が30%ほど低下し、15枚目以降は加工
が不可能となった。
A polishing cloth was produced in the same manner as in Example 2 by using the silica abrasive grains, and a silicon wafer processing test was conducted using the polishing cloth in the same manner. As a result, it was possible to obtain a mirror surface with a maximum surface roughness Ry of 20 nm or less in a processing time of 15 minutes, but when the processing was continued, the processing efficiency gradually decreased, and the number of processed sheets was 5 Although the processed surface roughness was the same as that at the start, the processing efficiency decreased by about 30%, and the processing was impossible after the 15th sheet.

【0095】[実施例4]上記実施例2で用いたものと
同じ平均粒子径30μmで圧縮破壊強度124.2MP
aの本発明に係る砥粒を体積比で最終的に45体積%と
なるように、及び、平均粒径3μmのニッケル粉末(強
化材)を体積比で最終的に15体積%となるようにフェ
ノール樹脂と混合し、撹拌機で60rpm、15分間混
合攪拌して、混合物を得た。この混合物を金型に入れ、
加圧しながら150℃程度で5時間程度硬化処理を施
し、研磨用砥石とした。
Example 4 The same average particle size as used in Example 2 above, 30 μm, and compressive rupture strength, 124.2 MP.
so that the volume ratio of the abrasive grains according to the present invention of (a) is finally 45% by volume, and that the nickel powder (reinforcing material) having an average particle size of 3 μm is finally 15% by volume. The mixture was mixed with a phenol resin and mixed with a stirrer at 60 rpm for 15 minutes to obtain a mixture. Put this mixture in the mold,
Curing treatment was applied at about 150 ° C. for about 5 hours while applying pressure to obtain a grinding stone.

【0096】このように得た研磨用砥石を縦軸のインフ
ィード研削盤に装着し、ラッピング仕上がりのシリコン
ウェーハを研削加工した結果、1分間の加工時間で、加
工面最大高さ粗さRyが30nm以下の鏡面を得ること
ができた。また、引き続きシリコンウェーハを20枚研
削加工行っても、研削焼けは生じず、加工能率や加工面
粗さの低下も認められなかった。
The polishing grindstone thus obtained was mounted on an in-feed grinder on the vertical axis, and a silicon wafer having a lapping finish was ground and processed, and as a result, the maximum height roughness Ry of the machined surface was found in one minute of machining time. A mirror surface of 30 nm or less could be obtained. Further, even if 20 silicon wafers were subsequently ground, no grinding burn occurred, and no reduction in processing efficiency or surface roughness was observed.

【0097】[実施例5]実施例3で用いたものと同じ
圧縮破壊強度18.5MPaの本発明に係る砥粒を用
い、それ以外は上記実施例4と同様にして研磨用砥石を
製造し、シリコンウェーハの研削加工テストを行った。
その結果、1分間の加工時間で、加工面最大高さ粗さR
yが30nm以下の鏡面を得ることができたが、引き続
き加工を実施したところ、加工枚数10枚で、ウェーハ
面で研削焼けが発生した。
[Example 5] A polishing grindstone was produced in the same manner as in Example 4 except that the abrasive grains according to the present invention having the same compressive fracture strength of 18.5 MPa as those used in Example 3 were used. A silicon wafer grinding test was performed.
As a result, the machining surface maximum height roughness R
Although a mirror surface with y of 30 nm or less could be obtained, when the processing was continued, grinding burn occurred on the wafer surface with 10 processed sheets.

【0098】[0098]

【発明の効果】以上、説明したように、本発明の砥粒は
多数の一次粒子が凝集して形成された二次粒子を一次粒
子同士の結合点にネックが形成される温度で加熱処理し
て得た、多数の微細な切刃形成粒子が部分的に、かつ、
空隙を形成して、互いにゆるく結合してなる粒状の多孔
質体であって、該切刃形成粒子が上記加熱処理時に一次
粒子が成長して形成されたものである構成を有するた
め、砥粒としての使用時に、その加工面における前記切
刃形成粒子の少なくとも空隙に接する部分が切刃として
機能し、該切刃形成粒子が摩耗して切刃となる部分を失
うにしたがって脱落するとともに、新たな切刃形成粒子
が加工面に順次突き出され、さらに切刃形成粒子同士の
結合力が最適化されているために、優れた品位を維持し
て極めて能率良く、かつ、長時間に亘って安定して加工
をおこなうことができる。
As described above, in the abrasive grain of the present invention, the secondary particles formed by aggregating a large number of primary particles are heat-treated at a temperature at which a neck is formed at the bonding point between the primary particles. A large number of fine cutting edge-forming particles partially obtained, and
Abrasive grains having a structure in which voids are formed and are loosely bonded to each other, and the cutting edge forming particles are formed by growing primary particles during the heat treatment. At the time of use as, at least the portion of the cutting edge forming particles in contact with the void functioning as a cutting edge functions as a cutting edge, and the cutting edge forming particles are worn away and fall off as the cutting edge is lost. Since various cutting edge forming particles are sequentially projected to the processed surface and the binding force between cutting edge forming particles is optimized, excellent quality is maintained and extremely efficient, and stable for a long time. Can be processed.

【0099】また、本発明の研磨具は、高い加工能率
で、かつ、高品位な加工が可能となり、また、長寿命な
研磨具である。また、本発明の研磨装置は、研磨効率と
研磨品質とが高く、かつ、研磨具の寿命が長い研磨装置
である。
Further, the polishing tool of the present invention is a polishing tool capable of high-efficiency and high-quality processing and having a long life. Further, the polishing apparatus of the present invention has high polishing efficiency and polishing quality, and has a long life of the polishing tool.

【0100】また、本発明の砥粒の製造方法によれば、
研磨、研削加工時に、砥粒に常に自生発刃が形成され、
切り屑の除去も良好で、優れた品位を維持して極めて能
率良く加工をおこなうことができる砥粒を、安定して生
産性よく確実に得ることができる。
Further, according to the method for producing abrasive grains of the present invention,
During polishing and grinding, self-developing blades are always formed on the abrasive grains,
The removal of chips is also good, and it is possible to reliably and reliably obtain abrasive grains that can be machined extremely efficiently while maintaining excellent quality.

【0101】また、本発明の研磨具の製造方法によれ
ば、優れた品位を維持して極めて能率良く加工をおこな
うことができる長寿命の研磨具を得ることができる。ま
た、本発明の研磨用砥石の製造方法によれば、優れた品
位を維持して極めて能率良く加工をおこなうことができ
る研磨用砥石を得ることができる。
Further, according to the method for manufacturing a polishing tool of the present invention, it is possible to obtain a polishing tool having a long life and capable of performing processing with extremely high efficiency while maintaining excellent quality. Further, according to the method for manufacturing a polishing grindstone of the present invention, it is possible to obtain a polishing grindstone capable of maintaining excellent quality and performing processing with extremely high efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】砥粒の圧縮破壊強度試験の荷重と圧縮変位との
関係の例を示した図である。
FIG. 1 is a diagram showing an example of a relationship between a load and a compressive displacement in a compressive fracture strength test of abrasive grains.

【図2】二次粒子の走査型電子顕微鏡(SEM)写真で
ある(全体を示す図である)。
FIG. 2 is a scanning electron microscope (SEM) photograph of secondary particles (a diagram showing the whole).

【図3】二次粒子の走査型電子顕微鏡(SEM)写真で
ある(部分拡大したもの(加熱処理前))。
FIG. 3 is a scanning electron microscope (SEM) photograph of secondary particles (partially enlarged (before heat treatment)).

【図4】本発明に係る砥粒の走査型電子顕微鏡(SE
M)写真写真である(部分拡大したもの(加熱処理
後))。
FIG. 4 is a scanning electron microscope (SE) of abrasive grains according to the present invention.
M) Photograph (a partially enlarged image (after heat treatment)).

【図5】実施例1における研磨前のガラスディスク表面
の拡大写真である。
5 is an enlarged photograph of the surface of the glass disk before polishing in Example 1. FIG.

【図6】実施例1における研磨前のガラスディスク表面
の表面粗さ測定結果を示すチャートである。
FIG. 6 is a chart showing the results of measuring the surface roughness of the glass disk surface before polishing in Example 1.

【図7】実施例1における研磨後のガラスディスク表面
の拡大写真である。
FIG. 7 is an enlarged photograph of the glass disk surface after polishing in Example 1.

【図8】実施例1における研磨後のガラスディスク表面
の表面粗さ測定結果を示すチャートである。
8 is a chart showing the results of measuring the surface roughness of the glass disk surface after polishing in Example 1. FIG.

【図9】実施例1における研磨使用後の研磨フィルム表
面上の砥粒の状態を示す拡大写真である。
FIG. 9 is an enlarged photograph showing the state of abrasive grains on the surface of the polishing film after polishing in Example 1.

【図10】比較例1における研磨前のガラスディスク表
面の拡大写真である。
10 is an enlarged photograph of the surface of the glass disk before polishing in Comparative Example 1. FIG.

【図11】比較例1における研磨前のガラスディスク表
面の表面粗さ測定結果を示すチャートである。
11 is a chart showing the results of measuring the surface roughness of the glass disk surface before polishing in Comparative Example 1. FIG.

【図12】比較例1における研磨後のガラスディスク表
面の拡大写真である。
12 is an enlarged photograph of the surface of the glass disk after polishing in Comparative Example 1. FIG.

【図13】比較例1における研磨後のガラスディスク表
面の表面粗さ測定結果を示すチャートである。
13 is a chart showing the results of measuring the surface roughness of the glass disk surface after polishing in Comparative Example 1. FIG.

【図14】比較例1における研磨使用後の研磨フィルム
表面上の砥粒の状態を示す拡大写真である。
FIG. 14 is an enlarged photograph showing the state of abrasive grains on the surface of a polishing film after polishing in Comparative Example 1.

【図15】比較例2における研磨後のガラスディスク表
面の拡大写真である。
15 is an enlarged photograph of the surface of the glass disk after polishing in Comparative Example 2. FIG.

【図16】比較例2おける研磨後のガラスディスク表面
の表面粗さ測定結果を示すチャートである。
16 is a chart showing the results of measuring the surface roughness of the glass disk surface after polishing in Comparative Example 2. FIG.

【図17】さまざまな圧縮破壊強度の砥粒を有する研磨
フィルムでの砥粒の圧縮破壊強度と加工面粗さ及び加工
能率との関係を調べた図である。
FIG. 17 is a diagram showing the relationship between the compressive fracture strength of abrasive grains, the machined surface roughness, and the machining efficiency in a polishing film having abrasive grains of various compressive fracture strength.

【図18】さまざまな圧縮破壊強度の砥粒を有する研磨
フィルムでの砥粒の細孔比表面積と加工面粗さ及び加工
能率との関係を調べた図である。
FIG. 18 is a graph showing the relationship between the specific pore surface area of the abrasive grains, the machined surface roughness, and the machining efficiency in the polishing film having the abrasive grains having various compressive fracture strengths.

【図19】本発明に係る砥粒を有する研磨用砥石を備え
たシリコン加工用研磨装置の例を示す図である。
FIG. 19 is a diagram showing an example of a silicon processing polishing apparatus provided with a polishing grindstone having abrasive grains according to the present invention.

【符号の説明】[Explanation of symbols]

1 シリコンウェーハ 2 研磨布(あるいは研磨フィルム) 10 回転部 20 定盤 1 Silicon wafer 2 Polishing cloth (or polishing film) 10 rotating parts 20 surface plate

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B24D 3/02 310 B24D 3/02 310E 3/06 3/06 Z 3/14 3/14 3/28 3/28 11/00 11/00 A Fターム(参考) 3C063 AA02 AB05 AB07 BB01 BB02 BB03 BB04 BB14 BC02 BC03 BC05 BD08 BG07 BG08 CC17 EE10 FF20 FF22 FF23 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B24D 3/02 310 B24D 3/02 310E 3/06 3/06 Z 3/14 3/14 3/28 3 / 28 11/00 11/00 AF term (reference) 3C063 AA02 AB05 AB07 BB01 BB02 BB03 BB04 BB14 BC02 BC03 BC05 BD08 BG07 BG08 CC17 EE10 FF20 FF22 FF23

Claims (24)

【特許請求の範囲】[Claims] 【請求項1】 多数の一次粒子が凝集して形成された二
次粒子を一次粒子同士の結合点にネックが形成される温
度で加熱処理して得た、多数の微細な切刃形成粒子が部
分的に、かつ、空隙を形成して、互いにゆるく結合して
なる粒状の多孔質体であって、該切刃形成粒子が上記加
熱処理時に一次粒子が成長して形成されたものであるこ
とを特徴とする砥粒。
1. A large number of fine cutting edge forming particles obtained by heat-treating secondary particles formed by agglomeration of a large number of primary particles at a temperature at which a neck is formed at a bonding point between primary particles. Particulate and porous particles that are loosely bonded to each other and form voids, and the cutting edge forming particles are formed by growing primary particles during the heat treatment. Abrasive grain characterized by.
【請求項2】 砥粒としての使用時に、その加工面にお
ける前記切刃形成粒子の少なくとも空隙に接する部分が
切刃として機能し、該切刃形成粒子が摩耗して切刃とな
る部分を失うにしたがって脱落するとともに、新たな切
刃形成粒子が加工面に順次突き出されることを特徴とす
る請求項1に記載の砥粒。
2. When used as an abrasive grain, at least a portion of the cutting edge forming particle in contact with the void on the processing surface functions as a cutting edge, and the cutting edge forming particle is abraded and loses a cutting edge portion. The abrasive grains according to claim 1, wherein the abrasive grains are removed in accordance with the above, and new cutting edge forming particles are sequentially projected to the processed surface.
【請求項3】 圧縮破壊強度が1MPa以上500MP
a以下であることを特徴とする請求項1または請求項2
に記載の砥粒。
3. The compressive fracture strength is 1 MPa or more and 500 MP.
It is a or less, Claim 1 or Claim 2 characterized by the above-mentioned.
Abrasive grain described in.
【請求項4】 前記圧縮破壊強度が20MPa以上30
0MPa以下であることを特徴とする請求項3に記載の
砥粒。
4. The compressive fracture strength is 20 MPa or more and 30.
It is 0 MPa or less, The abrasive grain of Claim 3 characterized by the above-mentioned.
【請求項5】 細孔比表面積が18000cm2/cm3
以上700000cm2/cm3以下であることを特徴と
する請求項1または請求項2に記載の砥粒。
5. A pore specific surface area of 18000 cm 2 / cm 3
It is above 700,000 cm 2 / cm 3 and below, The abrasive grain according to claim 1 or claim 2 characterized in that.
【請求項6】 前記細孔比表面積が100000cm2
/cm3以上300000cm2/cm3以下であること
を特徴とする請求項5に記載の砥粒。
6. The specific surface area of the pores is 100,000 cm 2
/ Cm 3 or more and 300,000 cm 2 / cm 3 or less, the abrasive grain according to claim 5.
【請求項7】 前記切刃形成粒子の平均粒径が5μm以
下であることを特徴とする請求項1ないし請求項6のい
ずれかに記載の砥粒。
7. The abrasive grain according to claim 1, wherein the cutting edge forming particles have an average particle diameter of 5 μm or less.
【請求項8】 切刃形成粒子同士を結合するためのバイ
ンダを含まないことを特徴とする請求項1ないし請求項
7のいずれかに記載の砥粒。
8. The abrasive grain according to any one of claims 1 to 7, which does not contain a binder for binding the cutting edge forming particles to each other.
【請求項9】 多数の一次粒子を凝集させて二次粒子を
得る工程と、該二次粒子を一次粒子同士の結合点にネッ
クが形成される温度で加熱処理して、一次粒子を成長さ
せて切刃形成粒子とし、多数の微細な切刃形成粒子が部
分的に、かつ、空隙を形成して、互いにゆるく結合して
なる粒状の多孔質体からなる砥粒を得る工程とを有する
ことを特徴とする砥粒の製造方法。
9. A step of aggregating a large number of primary particles to obtain secondary particles, and heating the secondary particles at a temperature at which a neck is formed at a bonding point between the primary particles to grow the primary particles. As the cutting edge forming particles, and a large number of fine cutting edge forming particles partially and form voids to obtain abrasive grains composed of a granular porous body loosely bonded to each other. A method for producing abrasive grains, characterized by:
【請求項10】 上記で形成される切刃形成粒子の平均
粒径が5μm以下であることを特徴とする請求項9に記
載の砥粒の製造方法。
10. The method for producing abrasive grains according to claim 9, wherein the cutting edge forming particles formed above have an average particle diameter of 5 μm or less.
【請求項11】 前記請求項1ないし請求項7のいずれ
かに記載の砥粒を研磨面に有する研磨具。
11. A polishing tool having a polishing surface having the abrasive grains according to any one of claims 1 to 7.
【請求項12】 前記研磨具の研磨面表面に砥粒が露出
していることを特徴とする請求項11に記載の研磨具。
12. The polishing tool according to claim 11, wherein abrasive grains are exposed on the surface of the polishing surface of the polishing tool.
【請求項13】 前記研磨具が研磨フィルム、研磨布及
び研磨用砥石のいずれかであることを特徴とする請求項
11または請求項12に記載の研磨具。
13. The polishing tool according to claim 11 or 12, wherein the polishing tool is any one of a polishing film, a polishing cloth and a polishing grindstone.
【請求項14】 前記研磨具が研磨フィルムであって、
前記砥粒を基材フィルムに固定するためのバインダ層の
厚さが該砥粒の最大直径よりも小さいことを特徴とする
請求項13に記載の研磨具。
14. The polishing tool is a polishing film,
The polishing tool according to claim 13, wherein the thickness of the binder layer for fixing the abrasive grains to the base film is smaller than the maximum diameter of the abrasive grains.
【請求項15】 上記研磨具の、砥粒を有する部分にお
ける上記砥粒の含有率が5体積%以上90体積%以下で
あることを特徴とする請求項11ないし請求項14のい
ずれかに記載の研磨具。
15. The content of the abrasive grains in a portion having abrasive grains of the polishing tool is 5% by volume or more and 90% by volume or less, according to any one of claims 11 to 14. Polishing tool.
【請求項16】 多数の一次粒子を凝集させて二次粒子
を得る工程と、該二次粒子を一次粒子同士の結合点にネ
ックが形成される温度で加熱処理して、一次粒子を成長
させて切刃形成粒子とし、多数の微細な切刃形成粒子が
部分的に、かつ、空隙を形成して、互いにゆるく結合し
てなる粒状の多孔質体からなる砥粒を得る工程、該砥粒
を基材に固定する工程とを有する研磨具の製造方法。
16. A step of aggregating a large number of primary particles to obtain secondary particles, and heat-treating the secondary particles at a temperature at which a neck is formed at a bonding point between the primary particles to grow the primary particles. As a cutting edge forming particle, a step of obtaining an abrasive grain consisting of a granular porous body in which a large number of fine cutting edge forming particles are partially and form voids and are loosely bonded to each other. And a step of fixing the same to a base material.
【請求項17】 前記砥粒を基材に固定する工程におい
て、樹脂、セラミック及び金属から選ばれた1種以上の
バインダを用いることを特徴とする請求項16の研磨具
の製造方法。
17. The method of manufacturing an abrasive tool according to claim 16, wherein at least one binder selected from resins, ceramics and metals is used in the step of fixing the abrasive grains to the base material.
【請求項18】 前記砥粒を基材に固定する工程におい
て、砥粒を強化材とともに基材に固定することを特徴と
する請求項17または請求項17に記載の研磨具の製造
方法。
18. The method for manufacturing a polishing tool according to claim 17, wherein in the step of fixing the abrasive grains to the base material, the abrasive grains are fixed to the base material together with a reinforcing material.
【請求項19】 上記強化材が、金属粉末、有機繊維、
無機繊維及び金属繊維から選ばれる1種以上であること
を特徴とする請求項18の研磨具の製造方法。
19. The reinforcing material is metal powder, organic fiber,
The method for manufacturing a polishing tool according to claim 18, wherein the polishing tool is one or more selected from inorganic fibers and metal fibers.
【請求項20】 前記研磨具が研磨フィルムあるいは研
磨布であることを特徴とする請求項16ないし請求項1
9のいずれかに記載の研磨具の製造方法。
20. The polishing tool according to claim 16, wherein the polishing tool is a polishing film or a polishing cloth.
9. The method for manufacturing a polishing tool according to any one of 9 above.
【請求項21】 多数の一次粒子を凝集させて二次粒子
を得る工程、該二次粒子を一次粒子同士の結合点にネッ
クが形成される温度で加熱処理して、複数の一次粒子を
成長させて切刃形成粒子とし、多数の微細な切刃形成粒
子が部分的に、かつ、空隙を形成して、互いにゆるく結
合してなる粒状の多孔質体からなる砥粒とする工程、該
砥粒を結合させるバインダと該砥粒とを混合あるいは混
練して砥粒混合材料を得る工程、及び、該砥粒混合材料
を成形して研磨用砥石とする工程を有することを特徴と
する研磨用砥石の製造方法。
21. A step of aggregating a large number of primary particles to obtain secondary particles, wherein the secondary particles are heated at a temperature at which a neck is formed at a bonding point between the primary particles to grow a plurality of primary particles. And cutting edge forming particles, a large number of fine cutting edge forming particles partially, forming a void, to form an abrasive grain consisting of a granular porous body loosely bonded to each other, the abrasive Polishing characterized by including a step of mixing or kneading a binder for binding grains and the abrasive grains to obtain an abrasive grain mixed material, and a step of molding the abrasive grain mixed material into a grinding stone Method of manufacturing whetstone.
【請求項22】 前記砥粒と該砥粒を結合させる結合材
料とを混合あるいは混練して砥粒混合材料を得る工程に
おいて、強化材を添加することを特徴とする請求項21
に記載の研磨用砥石の製造方法。
22. A strengthening agent is added in the step of mixing or kneading the abrasive grains and a binding material for binding the abrasive grains to obtain an abrasive grain mixed material.
A method for producing a grinding wheel for polishing according to.
【請求項23】 前記強化材が金属粉末、有機繊維、無
機繊維及び金属繊維から選ばれる1種以上であることを
特徴とする請求項22の研磨用砥石の製造方法。
23. The method for producing a polishing grindstone according to claim 22, wherein the reinforcing material is one or more selected from metal powder, organic fiber, inorganic fiber and metal fiber.
【請求項24】 前記請求項11ないし請求項15のい
ずれかに記載の研磨具を有することを特徴とする研磨装
置。
24. A polishing apparatus comprising the polishing tool according to any one of claims 11 to 15.
JP2002161393A 2001-07-23 2002-06-03 Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus Expired - Lifetime JP3990936B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002161393A JP3990936B2 (en) 2001-07-23 2002-06-03 Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus
US10/452,380 US7141086B2 (en) 2002-06-03 2003-06-03 Abrasive grain and method for producing it, polishing tool and method for producing it, grinding wheel and method for producing it, and polishing apparatus
US11/558,973 US7396372B2 (en) 2002-06-03 2006-11-13 Abrasive grain and method for producing it, polishing tool and method for producing it, grinding wheel and method for producing it, and polishing apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-221811 2001-07-23
JP2001221811 2001-07-23
JP2002161393A JP3990936B2 (en) 2001-07-23 2002-06-03 Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus

Publications (2)

Publication Number Publication Date
JP2003105324A true JP2003105324A (en) 2003-04-09
JP3990936B2 JP3990936B2 (en) 2007-10-17

Family

ID=26619120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161393A Expired - Lifetime JP3990936B2 (en) 2001-07-23 2002-06-03 Abrasive grain and manufacturing method thereof, polishing tool and manufacturing method thereof, polishing grindstone and manufacturing method thereof, and polishing apparatus

Country Status (1)

Country Link
JP (1) JP3990936B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082323A (en) * 2002-06-26 2004-03-18 Ricoh Co Ltd Grinding tool and manufacturing method therefor
JP2005014190A (en) * 2003-06-27 2005-01-20 Ricoh Co Ltd Polishing film and polishing method
JP2005349498A (en) * 2004-06-08 2005-12-22 Ricoh Co Ltd Grinder and producing method of grinder
JP2006192546A (en) * 2005-01-14 2006-07-27 Ricoh Co Ltd Surface polishing method and device therefor
JP2010105136A (en) * 2008-10-31 2010-05-13 Jgc Catalysts & Chemicals Ltd Silica sol for polishing and method for manufacturing the same
WO2011104996A1 (en) * 2010-02-23 2011-09-01 三菱電機株式会社 Thermosetting resin composition, b-stage thermally conductive sheet, and power module
JP2013177617A (en) * 2013-05-09 2013-09-09 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, and composition for polishing
JP2015112709A (en) * 2013-12-16 2015-06-22 株式会社リコー Polishing sheet and polishing tool
JP2016140930A (en) * 2015-01-30 2016-08-08 株式会社リコー Polishing sheet, polishing tool, and polishing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082323A (en) * 2002-06-26 2004-03-18 Ricoh Co Ltd Grinding tool and manufacturing method therefor
JP2005014190A (en) * 2003-06-27 2005-01-20 Ricoh Co Ltd Polishing film and polishing method
JP4621441B2 (en) * 2004-06-08 2011-01-26 株式会社リコー Polishing tool and method for manufacturing polishing tool
JP2005349498A (en) * 2004-06-08 2005-12-22 Ricoh Co Ltd Grinder and producing method of grinder
JP2006192546A (en) * 2005-01-14 2006-07-27 Ricoh Co Ltd Surface polishing method and device therefor
US7470171B2 (en) 2005-01-14 2008-12-30 Ricoh Company, Ltd. Surface polishing method and apparatus thereof
JP4646638B2 (en) * 2005-01-14 2011-03-09 株式会社リコー Surface polishing processing method and processing apparatus
JP2010105136A (en) * 2008-10-31 2010-05-13 Jgc Catalysts & Chemicals Ltd Silica sol for polishing and method for manufacturing the same
WO2011104996A1 (en) * 2010-02-23 2011-09-01 三菱電機株式会社 Thermosetting resin composition, b-stage thermally conductive sheet, and power module
US9029438B2 (en) 2010-02-23 2015-05-12 Mitsubishi Electric Corporation Thermosetting resin composition, B-stage heat conductive sheet, and power module
JP2013177617A (en) * 2013-05-09 2013-09-09 Jgc Catalysts & Chemicals Ltd Silica sol for polishing, and composition for polishing
JP2015112709A (en) * 2013-12-16 2015-06-22 株式会社リコー Polishing sheet and polishing tool
US9440331B2 (en) 2013-12-16 2016-09-13 Ricoh Company, Ltd. Polishing sheet and polishing tool
JP2016140930A (en) * 2015-01-30 2016-08-08 株式会社リコー Polishing sheet, polishing tool, and polishing method
US10105814B2 (en) 2015-01-30 2018-10-23 Ricoh Company, Ltd. Polishing sheet, polishing tool and polishing method

Also Published As

Publication number Publication date
JP3990936B2 (en) 2007-10-17

Similar Documents

Publication Publication Date Title
US7396372B2 (en) Abrasive grain and method for producing it, polishing tool and method for producing it, grinding wheel and method for producing it, and polishing apparatus
JP4851435B2 (en) Roll grinding method
EP2767364B1 (en) A bonded abrasive tool
KR100623900B1 (en) Porous abrasive tool and method for making the same
JPH04336971A (en) Binder grinding body abrasive grain, and its manufacture
CN1662626A (en) Coated abrasives
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2972488B2 (en) Sintered composite abrasive grits, their production and use
JP2003105324A (en) Abrasive grain and method for producing the same, polishing tool and method for producing the same, grindstone for polishing and method for producing the same and polishing apparatus
US8696409B2 (en) Self-bonded foamed abrasive articles and machining with such articles
JP4301434B2 (en) Polishing abrasive grains and polishing tool
JP2006297528A (en) Method for manufacturing resinoid grinding tool having massive abrasive grain
JPH04256581A (en) Composite grinding wheel
JP2000024934A (en) Super abrasive grain grinding wheel for mirror finished surface
JP4849590B2 (en) Polishing tool and manufacturing method thereof
JP3040441B2 (en) Precision polishing method for ceramics
JP4231262B2 (en) Manufacturing method of polishing sheet
JP3406163B2 (en) Superabrasive stone and its manufacturing method
JP4601317B2 (en) Polishing tool and manufacturing method thereof
JP2005349542A (en) Grindstone and method of producing the same
JPH0673807B2 (en) Polishing surface plate
JPH10113876A (en) Diamond grindstone, its manufacturing method and tool
JP4621441B2 (en) Polishing tool and method for manufacturing polishing tool
JP3143651B2 (en) Manufacturing method of alumina grindstone
JP2003011062A (en) Polishing tool and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3990936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

EXPY Cancellation because of completion of term