JP2003103235A - Method and apparatus for removing carbon dioxide by using biomass - Google Patents

Method and apparatus for removing carbon dioxide by using biomass

Info

Publication number
JP2003103235A
JP2003103235A JP2001302103A JP2001302103A JP2003103235A JP 2003103235 A JP2003103235 A JP 2003103235A JP 2001302103 A JP2001302103 A JP 2001302103A JP 2001302103 A JP2001302103 A JP 2001302103A JP 2003103235 A JP2003103235 A JP 2003103235A
Authority
JP
Japan
Prior art keywords
carbon dioxide
biomass
hydrogen
methane
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001302103A
Other languages
Japanese (ja)
Other versions
JP3935197B2 (en
Inventor
Asao Tada
旭男 多田
Yoshitaka Togo
芳孝 東郷
Masahiro Tatara
昌浩 多田羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2001302103A priority Critical patent/JP3935197B2/en
Publication of JP2003103235A publication Critical patent/JP2003103235A/en
Application granted granted Critical
Publication of JP3935197B2 publication Critical patent/JP3935197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/04Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/04Bioreactors or fermenters combined with combustion devices or plants, e.g. for carbon dioxide removal
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M43/00Combinations of bioreactors or fermenters with other apparatus
    • C12M43/08Bioreactors or fermenters combined with devices or plants for production of electricity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M45/00Means for pre-treatment of biological substances
    • C12M45/02Means for pre-treatment of biological substances by mechanical forces; Stirring; Trituration; Comminuting
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for removing carbon dioxide by using biomass, whereby carbon dioxide can be effectively removed from the atmospheric air in an energetically self-sufficient manner. SOLUTION: Biomass B in which carbon dioxide in the atmospheric air has been fixed is ground into an organic matter slurry S, the organic slurry S is subjected to methane fermentation by using methanogens kept at the activation temperature. While the methane gas produced by the fermentation is heated to the decomposition temperature, it is decomposed into hydrogen and solid carbon by contact with a catalyst 14. The carbon dioxide in the atmospheric air is removed in an energetically self-sufficient manner as solid carbon by covering the energy necessary to keep the grinding and activation temperatures and to heat the methane to the decomposition temperature by the combustion energy of the hydrogen. Desirably, the power necessary for the entire system is supported by the system itself by maintaining the methane decomposition reaction by using part of the hydrogen and transforming another part of the hydrogen into electric power and high-temperature water, which keep the temperature of the slurry S, by a fuel battery 17.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はバイオマス利用の二
酸化炭素除去方法及び装置に関し、とくに大気中又は水
中の二酸化炭素をバイオマスの媒介により固体炭素とし
て除去する方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for removing carbon dioxide using biomass, and more particularly to a method and apparatus for removing carbon dioxide in the air or water as solid carbon by mediating biomass.

【0002】[0002]

【従来の技術】地球温暖化の原因となる二酸化炭素(CO
2)等の温室効果ガスは、産業革命以後の化石燃料消費
量の増大に伴い大気中の濃度が増加している。排出を抑
制せずに現在の経済成長を続けたとすれば、大気中のCO
2濃度は現在360ppm程度であるのに対し、2030年には450
ppm、2100年に700ppmになるとの予想がある。大気中のC
O2濃度が700ppmになると地球上の平均気温が約2℃(1
〜3.5℃)上昇し、異常気象の発生、生態系の混乱や食
料生産の変化、海面の上昇による陸地の減少(国土の減
少)等様々な分野に計り知れない影響が出ると考えられ
ている。このため、大気中のCO2濃度の低減を目的とし
て、CO2の排出抑制と共に大気中のCO2の除去が求められ
ている。
2. Description of the Related Art Carbon dioxide (CO) that causes global warming
Concentrations of greenhouse gases such as 2 ) in the atmosphere have increased with the increase in fossil fuel consumption since the Industrial Revolution. If current economic growth continued without curbing emissions, atmospheric CO
2 The concentration is currently around 360ppm, while it will be 450ppm in 2030.
ppm, it is expected to reach 700 ppm in 2100. C in the atmosphere
When the O 2 concentration reaches 700 ppm, the average temperature on the earth is about 2 ° C (1
It is thought that there will be immeasurable effects in various fields such as abnormal weather occurrence, ecosystem disruption and changes in food production, land land loss (reduction of national land) due to sea level rise, etc. . Therefore, for the purpose of reducing the CO 2 concentration in the atmosphere, the removal of CO 2 in the atmosphere with emissions of CO 2 are required.

【0003】従来から、CO2の除去に関する要素技術と
して、高分子膜やセラミック膜等により空気中から膜分
離する方法、PSA(Pressure Swing Adsorption)等の吸
着・回収法、深海や地中に貯留する方法、有機溶剤に吸
収する方法、触媒によりメタノール、固体炭素等に還元
して固定化する方法等の物理・化学的方法が提案されて
いる。
[0003] Conventionally, as the elemental technology relating to the removal of CO 2 , a method of membrane separation from the air with a polymer membrane or a ceramic membrane, an adsorption / recovery method such as PSA (Pressure Swing Adsorption), and storage in the deep sea or underground There have been proposed physical and chemical methods such as a method for absorption, a method for absorbing in an organic solvent, a method for reducing and immobilizing to methanol, solid carbon or the like by a catalyst.

【0004】図6は、天然ガス(メタン、CH4)を還元
剤としたCO2の固体炭素への還元固定システムを図式的
に示したものである。同図では、1段反応器26において
CH4を触媒(Ni/SiO2触媒)により固体炭素と水素とに
分解し(吸熱反応)、その水素とCO2とを2段反応器27
においてCH4と水(水蒸気)とに転化し(発熱反応)、
このCH4を凝縮器28において水から分離した後、外部か
ら補給するCH4と共に1段反応器26に戻して還元剤とし
て再利用する。結局、図6における正味の反応はCH4+C
O2→2C+2H2O(下記(3)式)となる。
FIG. 6 schematically shows a system for reducing and fixing CO 2 to solid carbon using natural gas (methane, CH 4 ) as a reducing agent. In the figure, in the one-stage reactor 26
CH 4 is decomposed into solid carbon and hydrogen by a catalyst (Ni / SiO 2 catalyst) (endothermic reaction), and the hydrogen and CO 2 are separated into a two-stage reactor 27
Is converted into CH 4 and water (steam) at (exothermic reaction),
After this CH 4 is separated from water in the condenser 28, it is returned to the one-stage reactor 26 together with CH 4 supplied from the outside and reused as a reducing agent. After all, the net reaction in Figure 6 is CH 4 + C.
O 2 → 2C + 2H 2 O (Equation (3) below).

【0005】また特開2000-271472号公報は、図7に示
すように、有機性廃棄物の嫌気処理により発生したCH4
を利用したCO2固定化装置を提案している。従来の物理
・化学的なCO2除去方法は主に発生源における高濃度CO2
を除去対象としているが、大気中のCO2濃度は360ppm程
度と極めて希薄であり、希薄なCO2を効率的に除去する
ためには生物の光合成作用等の利用が必要である。図7
(A)の装置は、このような視点から提案されたもので
ある。
Further, Japanese Patent Laid-Open No. 2000-271472 discloses that CH 4 generated by anaerobic treatment of organic waste as shown in FIG.
We have proposed a CO 2 fixation device that uses Conventional physical and chemical CO 2 removal methods mainly use high-concentration CO 2 at the source.
However, the concentration of CO 2 in the atmosphere is extremely dilute, about 360 ppm, and it is necessary to utilize the photosynthetic action of living organisms in order to efficiently remove dilute CO 2 . Figure 7
The device (A) is proposed from such a viewpoint.

【0006】図7(A)の装置は、大気中のCO2と有機
廃棄物処理部31で発生したバイオガス(CH4とCO2との混
合ガス)とをガス混合・凝縮器32で混合し、反応槽34に
おいて触媒を用いて下記(1)及び(2)式の反応を起こすこ
とにより固体炭素と水とを生成する。この場合の正味の
反応も図6の場合と同じく下記(3)式となる。(2)式にお
けるCO2の固体炭素への転化率は高くないが、同図
(B)に示すように未反応のCO2を循環させて反応槽34
へ送り込むことにより、ガス混合・凝縮器32中のCO2
全て固体炭素と水とに変換する。同装置は、バイオガス
中のCH4及びCO2の両者と大気中のCO2とを固体炭素とし
て固定化し、CO2の外部への排出を抑制することによ
り、大気中のCO2除去率の向上を目指すものである。
In the apparatus shown in FIG. 7A, CO 2 in the atmosphere and biogas (mixed gas of CH 4 and CO 2 ) generated in the organic waste treatment section 31 are mixed in a gas mixing / condensing unit 32. Then, in the reaction tank 34, solid carbon and water are produced by causing the reactions of the following formulas (1) and (2) using a catalyst. The net reaction in this case is also the following equation (3) as in the case of FIG. Although the conversion rate of CO 2 to solid carbon in the equation (2) is not high, as shown in FIG. 7B, the unreacted CO 2 is circulated and the reaction tank 34
All of the CO 2 in the gas mixer / condenser 32 is converted into solid carbon and water by being fed into the gas mixer / condenser 32. The apparatus includes a CO 2 both the atmospheric CH 4 and CO 2 in the biogas immobilized as solid carbon, by suppressing the discharge to the outside of the CO 2, the CO 2 removal rate of the atmosphere It is aimed at improvement.

【0007】[0007]

【化1】 CH4→C+2H2 ……………………………………………………(1) CO2+2H2→C+2H2O …………………………………………(2) CH4+CO2→2C+2H2O ……………………………………………(3)[Chemical 1] CH 4 → C + 2H 2 …………………………………………………… (1) CO 2 + 2H 2 → C + 2H 2 O ……………………………… ……………… (2) CH 4 + CO 2 → 2C + 2H 2 O …………………………………………… (3)

【0008】[0008]

【発明が解決しようとする課題】しかし、上述したCO2
の固定化除去システムは、何れもCO2除去のために外部
からエネルギーを供給しなければならない問題点があ
る。図6及び図7における正味の反応((3)式)は反応
熱の小さい発熱反応であるが、例えば図6のシステムで
は、2段反応器27からの熱回収及び回収した熱の1段反
応器26への伝達過程における熱損失、凝縮器28で水から
分離したCH4の再加熱に必要な熱等を考慮すると、外部
からの熱供給が不可欠であると推測される。また図7の
システムでは、有機廃棄物処理部31、反応槽34、触媒再
生器36等の加熱に必要な熱、システムの駆動電力等の供
給が必要である。
However, the above-mentioned CO 2
Each of the fixed removal systems of the above has a problem that energy must be supplied from the outside to remove CO 2 . The net reaction (equation (3)) in FIGS. 6 and 7 is an exothermic reaction with a small reaction heat. For example, in the system of FIG. 6, the heat recovery from the two-stage reactor 27 and the first-stage reaction of the recovered heat are performed. Considering heat loss in the transfer process to the reactor 26, heat required for reheating CH 4 separated from water in the condenser 28, and the like, it is presumed that external heat supply is indispensable. Further, in the system of FIG. 7, it is necessary to supply heat necessary for heating the organic waste treatment unit 31, the reaction tank 34, the catalyst regenerator 36 and the like, and drive power of the system.

【0009】図7のシステムにおいて、外部からのエネ
ルギー供給を減らすため、反応槽34内の未反応の水素を
水素分離器38によって回収し、回収した水素の一部を水
素燃焼器40で熱エネルギーに変換して有機廃棄物処理部
31、反応槽34、触媒再生器36へ供給し、余剰の水素を発
電に利用することが提案されている(同図(A)参
照)。しかし、(1)式で生成する水素はCO2の転化に必要
な基質であり、(2)式による水素の消費量が多ければ回
収できる水素量は少なくなるので、余剰水素に依存する
エネルギー供給・発電には限界がある。水素分離器38で
回収する水素量を増やせばエネルギーの自給性は高まる
が、反応槽34内の水素濃度が低下するので、CO2の除去
効率の低下を招くおそれがある。すなわち図7のシステ
ムでは、システム全体のエネルギーの自足は困難であ
る。
In the system of FIG. 7, in order to reduce energy supply from the outside, unreacted hydrogen in the reaction tank 34 is recovered by the hydrogen separator 38, and a part of the recovered hydrogen is converted into thermal energy by the hydrogen combustor 40. Converted to organic waste treatment department
It has been proposed that the surplus hydrogen be supplied to the reactor 31, the reaction tank 34, and the catalyst regenerator 36 and the surplus hydrogen be used for power generation (see FIG. 7A). However, the hydrogen produced by Eq. (1) is a substrate necessary for CO 2 conversion, and the more hydrogen consumed by Eq. (2), the less hydrogen can be recovered.・ There is a limit to power generation. If the amount of hydrogen recovered by the hydrogen separator 38 is increased, the self-sufficiency of energy is improved, but the hydrogen concentration in the reaction tank 34 is reduced, which may lead to a reduction in CO 2 removal efficiency. That is, in the system of FIG. 7, it is difficult for the energy of the entire system to be self-sufficient.

【0010】大気中のCO2を除去するために新たな化石
燃料を消費することは極力避けるべきであり、外部から
のエネルギー供給なしにCO2を効率的に除去できるシス
テムの開発が望まれている。そこで本発明の目的は、大
気中の二酸化炭素を効率的に且つエネルギー自足的に除
去できるバイオマス利用の二酸化炭素除去方法及び装置
を提供することにある。
Consumption of new fossil fuels to remove atmospheric CO 2 should be avoided as much as possible, and development of a system capable of efficiently removing CO 2 without external energy supply is desired. There is. Therefore, an object of the present invention is to provide a carbon dioxide removal method and device using biomass that can efficiently remove carbon dioxide in the atmosphere and energy itself.

【0011】[0011]

【課題を解決するための手段】本発明者は、大気中のCO
2が固定されエネルギー資源として利用できる生物体
(以下、バイオマスという。)をメタン発酵処理してバ
イオガスを発生させ、このバイオガス中のCH4を水素に
改質する方法を検討した結果、バイオガス中のCH4のみ
をCO2生成なしに水素に改質する方式によれば、大気中
のCO2の除去をエネルギー自足的に達成するという困難
な課題を解決できるとの見通しを得た。
[Means for Solving the Problems] The present inventor
As a result of examining the method of reforming CH 4 in this biogas into hydrogen by producing methane by subjecting the organism (hereinafter referred to as biomass) to which 2 is fixed and can be used as an energy resource to methane fermentation, It was concluded that the method of reforming only CH 4 in gas to hydrogen without generating CO 2 would solve the difficult problem of achieving self-sufficiency in removing CO 2 from the atmosphere.

【0012】地球上に生息している植物は光合成等によ
り大気中のCO2を体内に有機物として固定しており、そ
の植物の摂食等を通じて動物の体内にもCO2に基づく炭
素が有機物として蓄えられている。生物体中に固定され
た炭素は、燃焼等により再びCO2となって大気中に拡散
した場合でも、地球規模でのCO2のバランスを崩す原因
とはならない。このためバイオマスは、燃焼しても地球
規模でのCO2のバランスを崩さない環境調和型の代替エ
ネルギー源として注目されている。
CO 2 in the atmosphere is fixed as an organic substance in the body of plants living on the earth by photosynthesis and the like, and carbon based on CO 2 is also an organic substance in the body of animals through feeding of the plant. It is stored. Carbon fixed in organisms does not cause a global CO 2 imbalance even if it becomes CO 2 again by combustion and diffuses into the atmosphere. For this reason, biomass is drawing attention as an environmentally friendly alternative energy source that does not disturb the global CO 2 balance even when burned.

【0013】従来のCH4の水素への改質反応では、高温
下でCH4に水蒸気を添加して水素と一酸化炭素(CO)を
発生させ(水蒸気改質反応、(4)式)、更にCOに水蒸気
を添加して水素とCO2を発生させている(シフト反応、
(5)式)。正味の反応は(6)式のようになる(以下、この
反応を水蒸気改質という)。この反応ではH2OもH2源と
なるので水素発生量は多いが、同時にCO2が発生する。
このCO2は、上述したように地球規模でのCO2のバランス
を崩すものではないが、大気中のCO2除去という目的か
らはシステムにおけるCO2発生は好ましくない。また水
蒸気改質では(4)式による一酸化炭素(CO)の副生を回
避しがたいが、COがH2ガスに混じって燃料電池に入ると
電極の触媒が被毒するので選択接触酸化法等により事前
に除去する必要がある。
[0013] In the reforming reaction to the conventional CH 4 hydrogen, by adding water vapor to CH 4 at a high temperature to generate hydrogen and carbon monoxide (CO) (steam reforming reaction, (4)), Furthermore, steam is added to CO to generate hydrogen and CO 2 (shift reaction,
(Equation (5)). The net reaction is as shown in equation (6) (hereinafter this reaction is called steam reforming). In this reaction, H 2 O also serves as an H 2 source, so a large amount of hydrogen is generated, but at the same time CO 2 is generated.
This CO 2 does not disturb the global CO 2 balance as described above, but CO 2 generation in the system is not preferable for the purpose of removing CO 2 from the atmosphere. In steam reforming, it is difficult to avoid carbon monoxide (CO) by-product from Eq. (4), but when CO is mixed with H 2 gas and enters the fuel cell, the electrode catalyst is poisoned, so selective catalytic oxidation is performed. It is necessary to remove it beforehand by the method etc.

【0014】[0014]

【化2】 CH4+H2O→2CO+3H2 …………………………………………(4) CO+H2O→CO2+H2 ………………………………………………(5) CH4+2H2O→CO2+4H2 ……………………………………………(6)[Chemical formula 2] CH 4 + H 2 O → 2CO + 3H 2 …………………………………… (4) CO + H 2 O → CO 2 + H 2 ………………………………… ………………… (5) CH 4 + 2H 2 O → CO 2 + 4H 2 …………………………………………… (6)

【0015】CH4を固体炭素と水素とに直接分解する反
応として上記(1)式がある。(1)式によれば、水蒸気改質
法のようにCOやCO2を排出することがないので、分解後
の水素を燃料電池等の燃料として直接使用できる。ま
た、バイオマス中に固定したCO 2を再び大気中に拡散さ
せるのではなく固体炭素として取り出すことができる。
バイオマス中に固定したCO2を固体炭素として取り出せ
ば、結果的に大気中のCO2濃度を減らすことができる。
CHFourThat directly decomposes carbon into solid carbon and hydrogen
By the way, there is the above formula (1). According to equation (1), steam reforming
CO or CO like the law2Is not discharged, so after disassembling
Can be used directly as fuel for fuel cells and the like. Well
CO fixed in biomass 2Diffused back into the atmosphere
It can be taken out as solid carbon instead of being made to cause it.
CO fixed in biomass2Take out as solid carbon
As a result, the atmospheric CO2The concentration can be reduced.

【0016】図1の実施例を参照するに、本発明のバイ
オマス利用の二酸化炭素除去方法は、大気中の二酸化炭
素が固定されたバイオマスBを有機物スラリーSに粉砕
し、有機物スラリーSを活性温度に保持してメタン生成
菌群によりメタン発酵させ、発酵によるメタンガスを分
解温度に加熱しつつ触媒14と接触させて水素と固体炭素
とに分解し、前記粉砕と活性温度の保持と分解温度への
加熱とに要するエネルギーを前記水素のエネルギー変換
により賄うことにより大気中の二酸化炭素をエネルギー
自足的に固体炭素として除去してなるものである。
Referring to the embodiment of FIG. 1, the method for removing carbon dioxide using biomass according to the present invention is to pulverize the biomass B having carbon dioxide in the atmosphere fixed into an organic slurry S to activate the organic slurry S at an activation temperature. The methane is fermented by the group of methanogens, and the methane gas from the fermentation is heated to the decomposition temperature to bring it into contact with the catalyst 14 to decompose it into hydrogen and solid carbon. By supplying the energy required for heating with the energy conversion of hydrogen, carbon dioxide in the atmosphere is self-sufficiently removed as solid carbon.

【0017】好ましくは、前記水素の一部分で前記分解
温度への加熱エネルギーを賄い、前記水素の他の一部分
を燃料電池17により電力及び高温水に変換し、燃料電池
17からの高温水で前記活性温度の保持エネルギーを賄
い、燃料電池17からの電力で前記粉砕エネルギーを賄
う。更に好ましくは、触媒14の主成分をニッケル、鉄、
又はコバルトとし、前記メタンガスを200〜900℃に加熱
して触媒14と接触させる。
Preferably, a part of the hydrogen supplies heating energy to the decomposition temperature, and another part of the hydrogen is converted into electric power and high temperature water by the fuel cell 17,
The high temperature water from 17 supplies the holding energy of the activation temperature, and the electric power from the fuel cell 17 supplies the grinding energy. More preferably, the main component of the catalyst 14 is nickel, iron,
Alternatively, cobalt is used, and the methane gas is heated to 200 to 900 ° C. and brought into contact with the catalyst 14.

【0018】また、図1の実施例を参照するに、本発明
のバイオマス利用の二酸化炭素除去装置は、大気中の二
酸化炭素が固定されたバイオマスBを有機物スラリーS
に粉砕する粉砕手段2、3、メタン生成菌群を高濃度で
保持する発酵室20と発酵室20内に取り入れたスラリーS
をメタン生成菌群の活性温度に保つ保温手段7とを有す
るバイオリアクター6、バイオリアクター6からのメタ
ンガスを水素と固体炭素とに分解する触媒14が存在する
反応室16と前記水素の一部分でメタンガスを分解温度に
加熱する加熱手段15とを有するメタン分解手段13、及び
前記水素の他の一部分を電力と高温水とに変換する燃料
電池17を備え、燃料電池17からの高温水により保温手段
7を保温すると共に燃料電池17からの電力により粉砕手
段2、3を駆動して大気中の二酸化炭素をエネルギー自
足的に固体炭素として除去してなるものである。
Further, referring to the embodiment of FIG. 1, in the carbon dioxide removing apparatus using biomass of the present invention, the biomass B in which atmospheric carbon dioxide is fixed is mixed with the organic slurry S.
Crushing means 2 and 3 for crushing into a mixture, a fermentation chamber 20 for holding a group of methanogens at a high concentration, and a slurry S introduced into the fermentation chamber 20
Bioreactor 6 having a heat-retaining means 7 for keeping the methane-producing bacteria at the activation temperature, a reaction chamber 16 in which a catalyst 14 for decomposing methane gas from the bioreactor 6 into hydrogen and solid carbon is present, and methane gas in a part of the hydrogen. A methane decomposition means 13 having a heating means 15 for heating the hydrogen gas to a decomposition temperature, and a fuel cell 17 for converting another part of the hydrogen into electric power and high temperature water. Is kept warm and the pulverizing means 2 and 3 are driven by the electric power from the fuel cell 17 to remove carbon dioxide in the atmosphere as solid carbon by energy self-sufficiency.

【0019】[0019]

【発明の実施の形態】図1の実施例では、陸上又は水中
の二酸化炭素(CO2)固定化施設1において植物体をバ
イオマスBとして育成し、育成したバイオマスBを粉砕
手段2、3により単位重量当りのメタンガス(CH4)発
生量が多い高濃度有機物スラリーに粉砕する。バイオマ
スBとして、CO2利用効率が高い陸上の砂糖きびやとう
もろこし、油含有量の多い大豆やごま等、生長速度の速
い海草その他の海上の藻類等が利用可能であるが、本発
明で用いるバイオマスBは植物体に限定されない。本発
明によれば、有機物スラリーSに粉砕できることを条件
に、地球上に生息している多くの動植物またはその一部
(野菜類、果実類、植物性油、魚介類、肉類等)又はそ
れらの加工品、残渣(生ごみ等)、動物の排泄物等をCO
2除去用のバイオマスBとして利用できる。
BEST MODE FOR CARRYING OUT THE INVENTION In the embodiment shown in FIG. 1, plants are grown as biomass B in a land or water carbon dioxide (CO 2 ) immobilization facility 1, and the grown biomass B is used as a unit by crushing means 2 and 3. Grind to a high-concentration organic matter slurry that produces a large amount of methane gas (CH 4 ) per weight. As the biomass B, terrestrial sugar cane and corn having high CO 2 utilization efficiency, soybeans and sesame having a high oil content, seagrass having a high growth rate, and other seaweed algae can be used. Is not limited to plants. According to the present invention, many animals and plants inhabiting the earth or a part thereof (vegetables, fruits, vegetable oils, fish and shellfish, meats, etc.) or those of them are provided under the condition that they can be pulverized into the organic matter slurry S. CO for processed products, residues (garbage, etc.), animal excrement, etc.
2 Can be used as biomass B for removal.

【0020】CO2が転化したバイオマスB中の有機物の
代表的なものは多糖類、脂肪、蛋白質等であるが、これ
らの有機物をスラリー状に粉砕してメタン生成菌群によ
りメタン発酵すると、時間と共に徐々に分解され単純な
物質に変化していく。先ず第1段階では、メタン生成菌
群中の加水分解菌により、多糖類は単糖類に変化し蛋白
質はアミノ酸類に変化する。次いで、メタン生成菌群中
の酸生成菌により、これらの化合物は酢酸、酪酸、プロ
ピオン酸等の低級脂肪酸及び少量のアルコール、アルデ
ヒド等に分解される。最終的に、メタン生成菌群中のメ
タン生成菌により、CH4とCO2とを主成分とするガス状の
生成物となる。このガス状の生成物はバイオガスと呼ば
れており、CH4を60〜70%、CO2を30〜40%含んでいる。
Typical organic substances in the biomass B in which CO 2 has been converted are polysaccharides, fats, proteins and the like. When these organic substances are crushed into a slurry and methane-fermented by a methanogen group, Along with that, it is gradually decomposed into a simple substance. First, in the first step, the hydrolyzing bacteria in the methanogen group convert polysaccharides into monosaccharides and proteins into amino acids. Next, these compounds are decomposed into lower fatty acids such as acetic acid, butyric acid and propionic acid, and small amounts of alcohols and aldehydes by the acid-producing bacteria in the methanogenic bacteria group. Finally, the methanogens in the group of methanogens produce a gaseous product containing CH 4 and CO 2 as main components. The gaseous products are referred to as biogas, CH 4 and 60% to 70%, contains CO 2 30 to 40%.

【0021】大気中のCO2を効率的に除去するために
は、できるだけ多量のバイオガスGをバイオマスBから
効率的に回収する必要がある。バイオガスGの回収量を
増やすためには、バイオマスBを小粒径のスラリー状に
粉砕すること、好ましくは粒径1mm以下に粉砕すること
が有効である。図1の実施例では、異物分離機能付き粉
砕機2によりバイオマスB中のスラリー化不能部分を分
別すると共にスラリー化可能部分を所定大きさに砕き、
更に微粉砕機3によりスラリー化可能部分を平均数100
ミクロン程度にまで細かく粉砕する。本発明では、後述
するメタン分解手段13からの水素の一部分のエネルギー
変換により粉砕機2、3を駆動するので、異物分離及び
粉砕のための駆動エネルギーを外部から供給する必要は
ない。
In order to efficiently remove CO 2 in the atmosphere, it is necessary to efficiently recover as much biogas G as possible from biomass B. In order to increase the recovery amount of the biogas G, it is effective to grind the biomass B into a slurry having a small particle size, preferably to a particle size of 1 mm or less. In the embodiment shown in FIG. 1, the crusher 2 with a foreign matter separating function separates the non-slurryable portion in the biomass B and crushes the slurryable portion into a predetermined size.
Further, the average number of parts that can be slurried by the fine pulverizer 3 is 100.
Finely pulverize to about micron. In the present invention, since the pulverizers 2 and 3 are driven by energy conversion of a part of hydrogen from the methane decomposition means 13 described later, it is not necessary to supply drive energy for foreign matter separation and pulverization from the outside.

【0022】粉砕したスラリーSを流動性が良くなる程
度の量の水、例えば等量の水で希釈し、スラリータンク
4等へ一旦貯蔵する。スラリーSを余り希釈せず高有機
物濃度とすることは、希釈水コストが削減できるだけで
なく、バイオリアクター6の容積を小さくしてリアクタ
ー加熱エネルギーを減らせるので、システムのエネルギ
ー自足性を向上させる上で有効である。例えば希釈後の
スラリーSの有機物濃度(CODcr値、化学的酸素要求
量)を15〜20万mg/L(Lはリットルを表す。以下同
じ。)以上とする。貯蔵した有機物スラリーSをスラリ
ーポンプ5によりバイオリアクター6へ少しずつ送り込
む。
The crushed slurry S is diluted with an amount of water such that the fluidity is improved, for example, an equal amount of water, and temporarily stored in the slurry tank 4 or the like. Not only diluting the slurry S to a high concentration of organic matter can reduce the cost of dilution water, but also reduce the volume of the bioreactor 6 and reduce the heating energy of the reactor, thus improving the energy self-sufficiency of the system. Is effective in. For example, the concentration of organic matter (CODcr value, chemical oxygen demand) of the diluted slurry S is set to 150,000 to 200,000 mg / L (L represents liter, the same applies hereinafter) or more. The stored organic slurry S is gradually fed into the bioreactor 6 by the slurry pump 5.

【0023】バイオリアクター6におけるメタン発酵は
嫌気状態で行われるため、酸素の供給が不要であり、エ
ネルギー消費量が少ない。ただし、バイオリアクター6
でメタン発酵を効率的に行うためには(1)有機物スラ
リーSをpH6.5〜8.0程度に維持すること、(2)スラリ
ーSをメタン生成菌群の活性温度に維持すること、
(3)バイオリアクター6の発酵室20内にメタン生成菌
群を高濃度で保持すること、(4)スラリーS中に含ま
れている多量の固形分(SS)による閉塞等が発生しない
こと等の条件が必要である。
Since the methane fermentation in the bioreactor 6 is carried out in an anaerobic state, it is not necessary to supply oxygen and energy consumption is small. However, bioreactor 6
In order to efficiently perform methane fermentation, (1) maintaining the organic matter slurry S at a pH of about 6.5 to 8.0, (2) maintaining the slurry S at the activation temperature of the methanogen group,
(3) Maintaining a high concentration of methanogens in the fermentation chamber 20 of the bioreactor 6, (4) No clogging due to a large amount of solid content (SS) contained in the slurry S, etc. Conditions are required.

【0024】メタン生成菌群には、中温域(35〜40℃)
で活性を示す中温菌と、高温域(52〜58℃)で活性を示
す高温菌とがある。好ましくは、中温菌に比し分解速度
が速い高温菌を用い、所要のバイオガスを短時間で回収
する。本発明では、バイオリアクター6に設けた保温手
段7を、後述するメタン分解手段13からの水素の一部分
のエネルギー変換によりスラリーSをメタン生成菌群の
活性温度に保持するものとする。保温手段7の一例は、
例えば図2の実施例に示すように、水素の燃焼により加
熱した高温水と発酵室20内のスラリーSとの熱交換器で
ある。また、図2に示すスラリー循環ポンプ9も、例え
ば後述する燃料電池17による電力の一部分で駆動するこ
とができる。
In the methanogenic bacteria group, the medium temperature range (35-40 ° C)
There is a mesophilic bacterium that exhibits activity in 1. and a thermophilic bacterium that exhibits activity in a high temperature range (52 to 58 ° C). Preferably, thermophilic bacteria having a faster decomposition rate than mesophilic bacteria are used, and required biogas is recovered in a short time. In the present invention, the heat retention means 7 provided in the bioreactor 6 is intended to hold the slurry S at the activation temperature of the methane-producing bacteria group by energy conversion of a part of hydrogen from the methane decomposition means 13 described later. An example of the heat retaining means 7 is
For example, as shown in the embodiment of FIG. 2, it is a heat exchanger of high temperature water heated by combustion of hydrogen and the slurry S in the fermentation chamber 20. The slurry circulation pump 9 shown in FIG. 2 can also be driven by a part of the electric power from the fuel cell 17, which will be described later.

【0025】発酵室20内のメタン生成菌群の濃度を高め
る方法としては、微生物をグラニュール化するUASB法
(Upflow Anaerobic Sludge Blanket)、微生物が付着
した担体を発酵室20内に充填する固定床法等がある。図
2に示すバイオリアクター6の発酵室20内には、図3に
示すようなガラス繊維又は炭素繊維の不織布製の多孔質
周壁23を有する内径50〜70mmの中空筒体22が枠体24で支
持された微生物担体21を、縦に規則的に充填している。
担体21にメタン生成菌を付着させることにより、発酵室
20内の微生物濃度を高めることができる。また中空筒状
の担体21を縦に規則的に充填しているため、バイオガス
Gが円筒状担体21内をすり抜けることにより、SS等によ
る担体21の閉塞を防止できる。
As a method for increasing the concentration of the methanogens in the fermentation chamber 20, the UASB method (Upflow Anaerobic Sludge Blanket) for granulating microorganisms, a fixed bed for filling the fermentation chamber 20 with a carrier to which microorganisms adhere There are laws etc. In the fermentation chamber 20 of the bioreactor 6 shown in FIG. 2, a hollow cylindrical body 22 having an inner diameter of 50 to 70 mm and having a porous peripheral wall 23 made of a nonwoven fabric of glass fiber or carbon fiber as shown in FIG. The supported microorganism carriers 21 are vertically and regularly filled.
By attaching methanogens to the carrier 21, the fermentation chamber
The concentration of microorganisms in 20 can be increased. Further, since the hollow cylindrical carrier 21 is vertically and regularly filled, the biogas G can be prevented from blocking the carrier 21 due to SS or the like by passing through the cylindrical carrier 21.

【0026】バイオリアクター6で発生したバイオガス
G中のCH4は、バイオマスB中の有機物を構成している
炭素、すなわち大気中のCO2の炭素を含む。本発明で
は、このバイオガスG中のCH4の炭素原子を、メタン分
解手段13により固体炭素として取り出す((1)式参
照)。従来から、CH4を固体炭素と水素とに分解する複
数の触媒14、例えばニッケル、コバルト、鉄等を主成分
とする触媒が知られており、そのような触媒14を本発明
のメタン分解手段13の反応室16に存在させて利用でき
る。
CH 4 in the biogas G generated in the bioreactor 6 contains carbon constituting the organic matter in the biomass B, that is, carbon of CO 2 in the atmosphere. In the present invention, the carbon atom of CH 4 in the biogas G is taken out as solid carbon by the methane decomposition means 13 (see the formula (1)). Conventionally, a plurality of catalysts 14 for decomposing CH 4 into solid carbon and hydrogen, for example, a catalyst containing nickel, cobalt, iron or the like as a main component is known, and such a catalyst 14 is used as a methane decomposition means of the present invention. It can be used by being present in 13 reaction chambers 16.

【0027】図1及び図4では反応系を気−固系とし
て、反応器を固定床反応器として、また触媒14を固定床
反応器で使用できる状態、大きさ、形状等を備えた固体
として例示したが、反応系、反応器、及び触媒はそれぞ
れ、気−固系、固定床反応器、固定床用触媒に限定され
ない。反応系は例えば気−液−固系であってもよい。反
応器は例えば流動床反応器、移動床反応器等であっても
よい。触媒の状態は液体、気体でも良く、触媒の大き
さ、形状は微粉体、微小粒子、粉体、小径粒子等でも良
い。
1 and 4, the reaction system is a gas-solid system, the reactor is a fixed bed reactor, and the catalyst 14 is a solid having a state, size, shape, etc. that can be used in the fixed bed reactor. Although illustrated, the reaction system, the reactor, and the catalyst are not limited to the gas-solid system, the fixed bed reactor, and the fixed bed catalyst, respectively. The reaction system may be, for example, a gas-liquid-solid system. The reactor may be, for example, a fluidized bed reactor, a moving bed reactor or the like. The state of the catalyst may be liquid or gas, and the size and shape of the catalyst may be fine powder, fine particles, powder, small diameter particles, or the like.

【0028】図1及び図4では触媒を反応室に存在させ
る方法として、反応室にあらかじめ触媒を入れておく方
法を例示したが、触媒あるいは触媒前駆体を反応物であ
るCH 4ガスと一緒に反応室に導入する方法、あらかじめ
反応物であるCH4ガスを入れておき、そこに触媒あるい
は触媒前駆体を導入する方法等も採用できる。
In FIGS. 1 and 4, the catalyst is present in the reaction chamber.
One method is to put the catalyst in the reaction chamber in advance.
The method was exemplified, but the catalyst or catalyst precursor was used as a reactant.
CH FourHow to introduce into the reaction chamber together with gas, beforehand
Reactant CHFourPut gas in there, and there is a catalyst or
The method of introducing a catalyst precursor can also be adopted.

【0029】また、触媒は通常、主触媒成分、助触媒成
分、及び担体から構成され、正式には担持触媒と呼ばれ
るが、本発明で使用する触媒は、担持触媒に限定されな
い。例えば触媒前駆体そのものをCH4ガス雰囲気中で加
熱して活性化しそのまま触媒として使用したり、触媒前
駆体を溶液、ゾル、スラリー等の流体の形にして加熱し
たCH4ガスの中へ吹き込んで活性化しそのまま触媒とし
て使用したりすることもできる。
The catalyst is usually composed of a main catalyst component, a co-catalyst component, and a carrier, and is officially called a supported catalyst, but the catalyst used in the present invention is not limited to the supported catalyst. For example, the catalyst precursor itself is heated in a CH 4 gas atmosphere to be activated and used as it is as a catalyst, or the catalyst precursor is made into a fluid such as a solution, a sol or a slurry and blown into the heated CH 4 gas. It can be activated and used as it is as a catalyst.

【0030】(1)式の反応は吸熱反応であるため、CH4
加熱手段15により分解反応が起こる温度まで加熱する必
要がある。CH4ガスの加熱に要するエネルギーは、メタ
ン分解手段13で生成する水素の一部分で賄うことができ
る。例えば、メタン分解手段13で生成した水素の一部分
を加熱手段15へ導き燃焼することによりCH4を分解温度
にまで加熱する。
Since the reaction of the formula (1) is an endothermic reaction, it is necessary to heat CH 4 by the heating means 15 to a temperature at which the decomposition reaction occurs. The energy required for heating the CH 4 gas can be covered by a part of hydrogen generated by the methane decomposition means 13. For example, CH 4 is heated to the decomposition temperature by introducing a part of the hydrogen generated by the methane decomposition means 13 to the heating means 15 and burning it.

【0031】図4のメタン分解手段13では、触媒14の主
成分をニッケル、コバルト、鉄等としている。図示例で
は触媒14の形状を球状(同図(A)及び(B)参照)又
は四角錐状(同図(D)参照)としているが、触媒14の
形状は図示例に限定されず、例えば円筒状、ハニカム
状、粒状、螺旋状、ペレット状、リング状等種々の形状
を採用することができる。同図(D)の四角錐状触媒は
炭素を生成させた後、そのまま耐熱性電磁波吸収体とし
て利用するときに採用する。
In the methane decomposition means 13 of FIG. 4, the main component of the catalyst 14 is nickel, cobalt, iron or the like. In the illustrated example, the shape of the catalyst 14 is spherical (see (A) and (B) in the same figure) or quadrangular pyramid (see (D) in the same figure), but the shape of the catalyst 14 is not limited to the illustrated example. Various shapes such as a cylindrical shape, a honeycomb shape, a granular shape, a spiral shape, a pellet shape, and a ring shape can be adopted. The quadrangular pyramid catalyst shown in FIG. 3D is used when carbon is used and then used as it is as a heat-resistant electromagnetic wave absorber.

【0032】また図4の実施例では、CH4を200〜900℃
に加熱して触媒14と接触させる。温度が200℃未満であ
ると分解反応における転化率(水素発生量)が低くな
る。また、900℃を越えると触媒寿命が短くなり、転化
率は低下しないものの最終的な水素発生量が結果的に少
なくなる。本発明者は、CH4を前記分解温度に加熱して
触媒14と接触させることにより、(1)式に基づく理論計
算値とほぼ同じ量の水素が生成できることを実験的に確
認できた。
In the embodiment of FIG. 4, CH 4 is added at 200 to 900 ° C.
To contact the catalyst 14. When the temperature is lower than 200 ° C, the conversion rate (hydrogen generation amount) in the decomposition reaction becomes low. On the other hand, if the temperature exceeds 900 ° C, the catalyst life will be shortened and the conversion rate will not decrease, but the final hydrogen generation amount will decrease as a result. The present inventor has experimentally confirmed that by heating CH 4 to the decomposition temperature and bringing it into contact with the catalyst 14, hydrogen in an amount substantially the same as the theoretical calculated value based on the equation (1) can be produced.

【0033】分解温度に加熱した上で触媒14と接触させ
ることにより、CH4は固体炭素と水素にまで分解され、
固体炭素は触媒14上に蓄積される。蓄積される炭素の結
晶構造、形状は触媒14の種類により変り得るが、ニッケ
ル触媒14の場合は、蓄積される炭素の構造を、機能性材
料として有用な中空グラファイトフィラメント構造とす
ることができる。粉末あるいは粒子状の触媒を長時間反
応に使用すると、固体炭素の生成・成長に伴って触媒は
細分化され固体炭素中に埋没するので、通常の方法によ
り触媒と固体炭素とを分離することが困難になる。この
場合には、触媒が多量の固体炭素に広く分散されるので
固体炭素中の触媒含有率は極めて低い。用途によっては
そのまま機能性炭素材料として有効利用することができ
る。一方、触媒を回収したいときには、適当な方法で触
媒金属成分を固体炭素から除去し、触媒再生に利用す
る。本発明では、触媒金属成分の取り出しと触媒14の再
生に要するエネルギーも、メタン分解手段13で生成した
水素の一部分で賄うことが可能である。
By heating to the decomposition temperature and then contacting with the catalyst 14, CH 4 is decomposed into solid carbon and hydrogen,
Solid carbon accumulates on the catalyst 14. The crystal structure and shape of the accumulated carbon may vary depending on the type of the catalyst 14, but in the case of the nickel catalyst 14, the accumulated carbon structure can be a hollow graphite filament structure useful as a functional material. When a powder or particulate catalyst is used for a long period of time, the catalyst is subdivided and buried in solid carbon as the solid carbon is produced and grown. Therefore, the catalyst and solid carbon can be separated by a usual method. It will be difficult. In this case, the catalyst content in solid carbon is extremely low because the catalyst is widely dispersed in a large amount of solid carbon. Depending on the application, it can be effectively used as it is as a functional carbon material. On the other hand, when it is desired to recover the catalyst, the catalyst metal component is removed from the solid carbon by an appropriate method and used for catalyst regeneration. In the present invention, the energy required for taking out the catalytic metal component and regenerating the catalyst 14 can be covered by a part of the hydrogen generated by the methane decomposition means 13.

【0034】メタン分解手段13の反応室16から出たガス
は吸着、膜分離等の適当な方法により未反応CH4と水素
とに分離する。未反応CH4はメタン分解手段13に戻す。
水素は、燃焼した場合にもCO2を放出しないクリーンな
エネルギー源であるばかりでなく、単位重量あたりの発
熱エネルギーが石油の三倍もあり、更に燃料電池により
電気エネルギーに変換することができる。本発明では、
粉砕手段2、3及びバイオリアクター6においてバイオ
マスBから多量のバイオガスGを効率的に回収し、メタ
ン分解手段13においてバイオガスG中のCH4から理論計
算値とほぼ同じ量の水素を生成することにより、粉砕・
発酵・分解その他のシステム内部で必要なエネルギーを
全て賄える量の水素をメタン分解手段13から取り出すこ
とができる。しかも、バイオマスB中に固定された大気
中のCO2を固体炭素として取り出し、大気中に戻さない
ので、結果的に大気中のCO2濃度を低減できる。
The gas discharged from the reaction chamber 16 of the methane decomposition means 13 is separated into unreacted CH 4 and hydrogen by an appropriate method such as adsorption or membrane separation. Unreacted CH 4 is returned to the methane decomposition means 13.
Hydrogen is not only a clean energy source that does not release CO 2 even when it burns, but also has three times as much heat generation energy per unit weight as petroleum, and can be converted into electric energy by a fuel cell. In the present invention,
A large amount of biogas G is efficiently recovered from the biomass B in the crushing means 2 and 3 and the bioreactor 6, and almost the same amount of theoretically calculated hydrogen is produced from CH 4 in the biogas G in the methane decomposition means 13. By crushing
It is possible to take out from the methane decomposition means 13 an amount of hydrogen capable of supplying all the energy required for fermentation / decomposition and other systems. Moreover, since CO 2 in the atmosphere fixed in the biomass B is taken out as solid carbon and is not returned to the atmosphere, the CO 2 concentration in the atmosphere can be reduced as a result.

【0035】こうして本発明の目的である「大気中の二
酸化炭素を効率的に且つエネルギー自足的に除去できる
バイオマス利用の二酸化炭素除去方法及び装置」の提供
が達成できる。
Thus, the object of the present invention is to provide the "method and apparatus for removing carbon dioxide in the atmosphere, which can efficiently remove carbon dioxide in the atmosphere and energy itself".

【0036】[0036]

【実施例】バイオマスBを粉砕した有機物スラリーS
は、バイオリアクター6内で有機物の80〜90%がメタン
生成菌により分解され、バイオガスG及び発酵液Eとな
る。CODcr値が210g/L程度の有機物スラリーSを高温メ
タン発酵式バイオリアクター6で分解すると、スラリー
1トン当たり200Nm3程度のバイオガスが発生する。他
方、バイオリアクター6内に残った発酵液Eにも少量
(10〜20%)の有機物が含有されているので、図1の実
施例では発酵液Eを最終処理施設8へ送り、浄化したの
ち処理水として下水道や河川に放流している。最終処理
施設8では通常、好気性微生物を使った活性汚泥処理等
が行なわれる。ただし、バイオリアクター6内に残った
発酵液Eをそのまま液肥として利用することも可能であ
る。
[Example] Organic slurry S obtained by pulverizing biomass B
In the bioreactor 6, 80 to 90% of organic matter is decomposed by methanogens to become biogas G and fermented liquid E. When the organic matter slurry S having a CODcr value of about 210 g / L is decomposed by the high temperature methane fermentation bioreactor 6, about 200 Nm 3 of biogas is generated per ton of the slurry. On the other hand, since the fermentation liquor E remaining in the bioreactor 6 also contains a small amount (10 to 20%) of organic matter, the fermentation liquor E is sent to the final treatment facility 8 in the embodiment of FIG. It is discharged to sewers and rivers as treated water. In the final treatment facility 8, usually, activated sludge treatment using aerobic microorganisms is performed. However, it is also possible to use the fermentation liquid E remaining in the bioreactor 6 as it is as liquid fertilizer.

【0037】また、図1の実施例では、バイオリアクタ
ー6とメタン分解手段13との間に脱硫脱窒精製装置10と
メタン濃縮装置12とを設けている。バイオガスGは主に
CH4とCO2との混合ガスであるが、硫化水素やアンモニア
等の不純物質も数十ppm〜数百ppm含まれている。これら
の不純物質はメタン分解手段13の触媒14を劣化させたり
寿命を短縮したりするため、脱硫脱窒精製装置10におい
て除去する。図示例の脱硫脱窒精製装置10では、例えば
酸化鉄ペレット等により硫化水素を除去し、活性炭等に
よりアンモニアを除去することにより、バイオガスGを
精製している。メタン濃縮装置12は、精製後のバイオガ
スGからCO2を除去してCH4を例えば98%以上に濃縮する
ものである。図示例のメタン濃縮装置12では、PSA装置
によりCO2を吸着除去することにより、バイオガスG中
のCH4を濃縮している。
Further, in the embodiment shown in FIG. 1, a desulfurization and denitrification refining device 10 and a methane concentration device 12 are provided between the bioreactor 6 and the methane decomposition means 13. Biogas G is mainly
Although it is a mixed gas of CH 4 and CO 2, it contains tens of ppm to hundreds of ppm of impurities such as hydrogen sulfide and ammonia. Since these impurities deteriorate the catalyst 14 of the methane decomposition means 13 or shorten the life thereof, they are removed in the desulfurization denitrification refining apparatus 10. In the desulfurization and denitrification refining apparatus 10 of the illustrated example, the biogas G is refined by removing hydrogen sulfide with iron oxide pellets or the like and removing ammonia with activated carbon or the like. The methane concentrator 12 removes CO 2 from the purified biogas G to concentrate CH 4 to, for example, 98% or more. In the methane concentrator 12 of the illustrated example, CH 4 in the biogas G is concentrated by adsorbing and removing CO 2 with the PSA device.

【0038】メタン濃縮装置12においてバイオガスGか
ら除去したCO2は、例えば大気中へ戻すことができる。
バイオガスG中のCO2は、元来バイオマスB中に固定さ
れた大気中のCO2であり、大気中に戻した場合も地球規
模でのCO2のバランスを崩すものではない。また、バイ
オガスG中に30〜40%含まれるCO2を大気中に戻して
も、バイオガス中に60〜70%含まれるCH4を固体炭素と
して取り出せば、バイオマスB中に固定されたCO2(炭
素換算)を半分以上除去することができるので、大気中
のCO2除去の障害とはならない。またバイオガスGから
除去したCO2は、CH4から得られた固体炭素と反応させて
化学原料であるCOに変換して利用することもできる。
The CO 2 removed from the biogas G in the methane concentrator 12 can be returned to the atmosphere, for example.
CO 2 in the biogas G is a native of CO 2 fixed in the air in the biomass B, it does not break the balance of CO 2 on a global scale even when returning to the atmosphere. Moreover, even if CO 2 contained in the biogas G in an amount of 30 to 40% is returned to the atmosphere, if CH 4 contained in the biogas in an amount of 60 to 70% is taken out as solid carbon, CO fixed in the biomass B is reduced. Since it can remove more than half of 2 (carbon equivalent), it does not hinder the removal of CO 2 in the atmosphere. The CO 2 removed from the biogas G can also be used by reacting it with solid carbon obtained from CH 4 to convert it to CO as a chemical raw material.

【0039】更に、図1の実施例では燃料電池17を設
け、メタン分解手段13から取り出した水素の一部分を高
温水と電力とに変換している。燃料電池17の発電効率は
40〜50%程度であるが、燃料電池17から高温水(又は蒸
気)が排出されるので、この高温熱を有効に利用すれば
約80%程度の総合エネルギー効率を得ることができる
(広瀬研吉「燃料電池のおはなし」日本規格協会、1992
年7月5日第1版、p56)。燃料電池17の排熱である高温
水をバイオリアクター6の保温手段7に有効に利用す
る。また、燃料電池17からの電力の一部分により、図1
に示す粉砕手段2、3、バイオリアクター6のスラリー
循環ポンプ9(図2)、最終処理施設8、脱硫脱窒精製
装置10、メタン濃縮装置12等の駆動に必要な電力を賄
う。
Further, in the embodiment shown in FIG. 1, a fuel cell 17 is provided to convert a part of hydrogen taken out from the methane decomposition means 13 into high temperature water and electric power. The power generation efficiency of the fuel cell 17
Although it is about 40 to 50%, high-temperature water (or steam) is discharged from the fuel cell 17, so if this high-temperature heat is effectively used, a total energy efficiency of about 80% can be obtained (Kenichi Hirose "Fuel Cell Story" Japanese Standards Association, 1992
July 5, 1st edition, p56). The high temperature water which is the exhaust heat of the fuel cell 17 is effectively used for the heat retaining means 7 of the bioreactor 6. In addition, due to a part of the electric power from the fuel cell 17, FIG.
The electric power required to drive the crushing means 2 and 3 shown in FIG. 2, the slurry circulation pump 9 of the bioreactor 6 (FIG. 2), the final treatment facility 8, the desulfurization and denitrification refiner 10, the methane concentrator 12 and the like.

【0040】図1の実施例では、メタン分解手段13で発
生した水素の一部分により加熱手段15を加熱し、水素の
他の一部分を燃料電池17により電力及び高温水に変換し
ている。燃料電池17からの高温水の少なくとも一部分に
より保温手段7を保温し、燃料電池17からの電力の少な
くとも一部分により粉砕手段2、3等を駆動することが
でき、大気中のCO2をエネルギー自足的に固体炭素とし
て除去する。
In the embodiment shown in FIG. 1, the heating means 15 is heated by a part of the hydrogen generated in the methane decomposition means 13, and the other part of the hydrogen is converted into electric power and high temperature water by the fuel cell 17. At least a part of the high temperature water from the fuel cell 17 can be used to keep the heat insulating means 7 warm, and at least a part of the electric power from the fuel cell 17 can drive the crushing means 2, 3, etc., so that CO 2 in the atmosphere can be self-sufficient. To be removed as solid carbon.

【0041】本発明がエネルギー自足的であると判断す
る根拠の一つを、図8を参照して説明する。図8は、図
1においてメタン分解手段13の代わりに前述のメタン水
蒸気改質反応装置を用いたシステムの発電量とシステム
消費電力との関係を示すグラフである(クリーンエネル
ギー(2000年11月)、p34-38、東郷芳孝「メタクレスと
燃料電池」)。図中のグラフαはバイオマス(図8では
生ごみ)の処理量に応じた発電量、グラフβは同システ
ムの駆動に要する消費電力の変化を示す。同グラフによ
れば、バイオマスを1日5トン処理する場合の発電量
は、約3×103kWh/日であり、システムの駆動に要する
消費電力約1×103kWh/日を上回っている。しかも発電
量とこのシステム消費電力との差はバイオマスの処理量
が増大すると共に広がることが分かる。
One of the grounds for determining that the present invention is energy self-sufficiency will be described with reference to FIG. FIG. 8 is a graph showing the relationship between the power generation amount and system power consumption of the system using the above-described methane steam reforming reactor in place of the methane decomposition means 13 in FIG. 1 (clean energy (November 2000)). , P34-38, Yoshitaka Togo, "Metacles and Fuel Cells"). The graph α in the figure shows the amount of power generation according to the amount of processed biomass (garbage in FIG. 8), and the graph β shows the change in power consumption required to drive the system. According to the graph, the amount of power generated when processing 5 tons of biomass a day is approximately 3 × 10 3 kWh / day, which exceeds the power consumption required to drive the system of approximately 1 × 10 3 kWh / day. . Moreover, it can be seen that the difference between the amount of power generation and this system power consumption widens as the amount of biomass processed increases.

【0042】CH4からの水素製造に図8のようにメタン
水蒸気改質反応装置を用いた場合と本発明のようにメタ
ン分解手段13を用いた場合とを比較すると、(6)式と(1)
式との比較から明らかにように、メタン分解手段13を用
いた場合の水素発生量はメタン水蒸気改質反応装置を用
いた場合の半分になる。この点を考慮して図8を見る
と、メタン分解手段13を用いてバイオマスを1日5トン
処理する場合の発電量としては、約1.5×103kWh/日が
期待できる。
Comparing the case of using the methane steam reforming reactor as shown in FIG. 8 for producing hydrogen from CH 4 with the case of using the methane decomposition means 13 as in the present invention, the formula (6) and ( 1)
As is clear from the comparison with the equation, the amount of hydrogen generated when the methane decomposition means 13 is used is half that when the methane steam reforming reactor is used. Considering this point and looking at FIG. 8, about 1.5 × 10 3 kWh / day can be expected as the amount of power generation when the methane decomposition means 13 is used to process 5 tons of biomass per day.

【0043】他方、システムの駆動に要する消費電力を
比較すると、メタン分解手段13を用いた場合とメタン水
蒸気改質反応装置を用いた場合の反応のエンタルピー変
化は、水素1モル当たりでは反応温度500℃、800℃にお
いてほぼ同じになる。更に反応温度域もメタン分解で20
0〜900℃、メタン水蒸気改質で600〜850℃と重なる領域
がある。反応圧はそれぞれ常圧、20−30気圧であり、メ
タン分解の方が若干有利である(メタン水蒸気改質のデ
ータの引用文献:佐藤幹基、ペトロテック、vol.24、54
3 (2001))。以上の比較から、本発明のようにメタン分
解手段13を用いた場合のシステム消費電力は、図8のよ
うにメタン水蒸気改質反応装置を用いた場合の消費電力
(約1.0×103kWh/日)を下回ると推測される。すなわ
ち、メタン分解手段13を用いた場合には5.0×102kWh/
日(=1.5×103−1.0×103)程度の余剰電力を期待で
き、この余剰電力はバイオマスの処理量が増大すると共
に大きくなる。すなわち、本発明はエネルギー自足的で
あるといえる。
On the other hand, comparing the power consumption required to drive the system, the enthalpy change of the reaction when using the methane decomposition means 13 and when using the methane steam reforming reaction device, the reaction temperature is 500 per mol of hydrogen. Almost the same at ℃ and 800 ℃. Furthermore, the reaction temperature range is 20 due to methane decomposition.
There is a region that overlaps with 0-900 ℃ and 600-850 ℃ by methane steam reforming. The reaction pressures are normal pressure and 20-30 atm, respectively, and methane decomposition is slightly more advantageous (reference data of methane steam reforming: Miki Sato, Petrotech, vol. 24, 54
3 (2001)). From the above comparison, the system power consumption in the case of using the methane decomposition means 13 as in the present invention is the power consumption in the case of using the methane steam reforming reactor as shown in FIG. 8 (about 1.0 × 10 3 kWh / It is estimated to be less than (day). That is, when using the methane decomposition means 13, 5.0 × 10 2 kWh /
It is possible to expect surplus power of about a day (= 1.5 × 10 3 −1.0 × 10 3 ), and this surplus power increases as the amount of biomass processed increases. That is, the present invention can be said to be self-sufficient in energy.

【0044】図5は、大気中のCO2が固定されたバイオ
マスBを1日5トン処理する場合の物質収支、エネルギ
ー収支の一具体例を示す。5トンのバイオマスBは発酵
前に異物分離機能付き粉砕機2により異物を除去し、微
粉砕機3により微粉砕して有機物スラリーSとする。更
に、スラリーSの流動性を良くするために、希釈水5ト
ンを加えて2倍に希釈する。このときのCODcr値は約210
g/L、BOD値(生物学的酸素要求量)は約160g/Lであ
る。このスラリーSを高温菌の活性温度である55℃に保
温しつつバイオリアクター6において高温菌によりメタ
ン発酵させると、CODcrの85%程度が分解され、バイオ
ガスGが一日当たり1,000Nm3発生する。このバイオガス
G中のCH4の平均濃度は65%であり、CH4量としては一日
当たり650Nm3となる。バイオガスG中の不純物質を脱硫
脱窒精製装置10により除去し、更にメタン濃縮装置12に
よりCH4を98%以上に濃縮する。
FIG. 5 shows a specific example of the mass balance and the energy balance in the case of treating 5 tons of biomass B having CO 2 in the atmosphere fixed therein per day. Prior to fermentation, 5 tons of biomass B is pulverized by a pulverizer 2 having a foreign substance separating function to remove foreign substances, and finely pulverized by a fine pulverizer 3 to obtain an organic substance slurry S. Further, in order to improve the fluidity of the slurry S, 5 tons of dilution water is added to dilute it twice. The CODcr value at this time is about 210.
The g / L and BOD value (biological oxygen demand) are about 160 g / L. When this slurry S is subjected to methane fermentation by thermophilic bacteria in the bioreactor 6 while being kept at 55 ° C. which is the activation temperature of thermophilic bacteria, about 85% of CODcr is decomposed and biogas G is generated at 1,000 Nm 3 per day. The average concentration of CH 4 in this biogas G is 65%, and the amount of CH 4 is 650 Nm 3 per day. Impurities in biogas G are removed by desulfurization and denitrification refining device 10, and CH 4 is concentrated by a methane concentrating device 12 to 98% or more.

【0045】濃縮したCH4をメタン分解手段13に供給す
る。メタン分解手段13の反応室16は触媒14を有し、分解
温度500℃に保持されている。メタン分解手段13に650Nm
3/日のCH4を供給すると、一日当たり348kgの炭素と116
kgの水素とが取り出せる。取り出した水素の熱量は3,35
7×103kcal/日であり、その水素の一部はメタン分解手
段13の加熱手段15の燃料とする。650Nm3/日のCH4を500
℃で分解させるには622×103kcal/日(21kg-水素/日
に相当)を要するので、水素の残りの熱量は2,735×103
kcal/日(95kg-水素/日に相当)となる。この水素の
残りをリン酸型燃料電池17の燃料にした場合、水素を燃
料としたときの燃料電池17の発電効率は45%程度である
から、発電できる電力は1,431kwh/日となる。
The concentrated CH 4 is supplied to the methane decomposition means 13. The reaction chamber 16 of the methane decomposition means 13 has a catalyst 14 and is maintained at a decomposition temperature of 500 ° C. 650 Nm to methane decomposition means 13
Supplying 3 / day of CH 4 produces 348 kg of carbon and 116
Can extract kg of hydrogen. The amount of heat of hydrogen taken out is 3,35
It is 7 × 10 3 kcal / day, and part of the hydrogen is used as fuel for the heating means 15 of the methane decomposition means 13. 650Nm 3 / day CH 4 500
Decomposition at ℃ requires 622 × 10 3 kcal / day (21 kg-hydrogen / day), so the remaining heat of hydrogen is 2,735 × 10 3
It becomes kcal / day (95kg-equivalent to hydrogen / day). When the rest of the hydrogen is used as the fuel for the phosphoric acid fuel cell 17, the power generation efficiency of the fuel cell 17 when hydrogen is used as the fuel is about 45%, so the power that can be generated is 1,431 kwh / day.

【0046】図5のシステム全体の駆動に要する消費電
力は1,000〜1,200kwh/日程度であるから、燃料電池17
からの電力でシステム全体の電力消費を十分賄うことが
できる。なお、分解温度を800℃に上げた場合でも反応
熱は688×103kcal/日(24kg-水素/日に相当)なので
発電量は1,397kwh/日となり、システム消費電力を上回
る。また、水素の反応熱の45%程度が熱回収できるもの
とすると、燃料電池17からは1,231×103kcal/日の排熱
が生じるので、温水やスチームとして回収する。バイオ
マス及び希釈水の20℃から55℃への加熱に要する熱量は
350×103kcal/日程度であり、バイオリアクター6から
の放熱量は150×103kcal/日程度であるから、バイオリ
アクター6を55℃に保温するための熱量は500×103kcal
/日程度で足り、燃料電池17からの温水により十分賄う
ことができる。
Since the power consumption required to drive the entire system shown in FIG. 5 is about 1,000 to 1,200 kwh / day, the fuel cell 17
It is possible to fully cover the power consumption of the entire system with the power from the. Even when the decomposition temperature is raised to 800 ° C, the reaction heat is 688 × 10 3 kcal / day (equivalent to 24 kg-hydrogen / day), so the power generation is 1,397 kwh / day, which exceeds the system power consumption. Further, assuming that about 45% of the reaction heat of hydrogen can be recovered, exhaust heat of 1,231 × 10 3 kcal / day is generated from the fuel cell 17, so it is recovered as hot water or steam. The amount of heat required to heat biomass and dilution water from 20 ° C to 55 ° C
Since the amount of heat released from the bioreactor 6 is about 350 × 10 3 kcal / day and the amount of heat released from the bioreactor 6 is about 150 × 10 3 kcal / day, the amount of heat for keeping the bioreactor 6 at 55 ° C. is 500 × 10 3 kcal.
/ Day is enough, and the hot water from the fuel cell 17 can be sufficiently covered.

【0047】図5の流れ図から、本発明によれば大気中
のCO2が固定されたバイオマスBを5トン/日処理する
ことにより、348kgのCO2(炭素換算)を固体炭素として
除去できる。また、CO2の除去に要するエネルギーをシ
ステム内で回収した水素のエネルギー変換により全て賄
うことができ、エネルギー自足的にCO2を除去すること
が可能である。更に、231kwh/日(=1,431−1,200)程
度の余剰電力と731×103 kcal/日(=1,231×103−500
×103)程度の余剰高温水とを作り出すことができ、大
気中のCO2を除去しつつ発電施設としての経済性を得る
ことも期待できる。
From the flow chart of FIG. 5, according to the present invention, 348 kg of CO 2 (converted to carbon) can be removed as solid carbon by treating the biomass B in which atmospheric CO 2 is fixed at 5 tons / day. Further, it is possible to cover all the energy conversion of hydrogen to recover the energy required for the removal of CO 2 in the system, it is possible to remove the energy self-sufficient manner CO 2. Furthermore, surplus power of about 231 kwh / day (= 1,431-1,200) and 731 × 10 3 kcal / day (= 1,231 × 10 3 −500)
It is possible to generate excess hot water of approximately 10 3 ), and it is expected that the economical efficiency of a power generation facility will be obtained while removing CO 2 from the atmosphere.

【0048】[0048]

【発明の効果】以上説明したように、本発明のバイオマ
ス利用の二酸化炭素除去方法及び装置は、大気中の二酸
化炭素が固定されたバイオマスを有機物スラリーに粉砕
し、活性温度に保持してメタン生成菌群によりメタン発
酵させ、発酵によるメタンガスを分解温度に加熱しつつ
触媒と接触させて水素と固体炭素とに分解し、前記粉砕
と活性温度の保持と分解温度への加熱とに要するエネル
ギーを前記水素のエネルギー変換により賄うので、次の
顕著な効果を奏する。
INDUSTRIAL APPLICABILITY As described above, the method and apparatus for removing carbon dioxide using biomass of the present invention is to pulverize the biomass in which atmospheric carbon dioxide is fixed into an organic slurry and maintain the active temperature to generate methane. Fermented methane by the bacterial group, decomposed into hydrogen and solid carbon by contacting with the catalyst while heating methane gas by fermentation to the decomposition temperature, the energy required for the crushing and maintaining the activation temperature and heating to the decomposition temperature Since it is covered by the energy conversion of hydrogen, the following remarkable effects are achieved.

【0049】(イ)システム内で発生する水素を燃料と
してシステムを駆動することができるので、外部からの
エネルギー補充の必要がなく、大気中の二酸化炭素をエ
ネルギー自足的に固体炭素として除去できる。 (ロ)バイオマスを媒介とし大気中の二酸化炭素を除去
するので、極めて希薄な大気中の二酸化炭素を効率的に
除去できる。 (ハ)入手が容易な生ごみ等のバイオマスを利用すれ
ば、場所を選ばずに大気中の二酸化炭素除去施設を建設
することができる。 (ニ)エネルギー消費量が少ない嫌気処理を利用してい
るので、システム内のエネルギー消費量を最小限に抑え
て余剰エネルギーを熱及び電気として外部へ供給するこ
とも期待できる。 (ホ)活性の高い高温メタン生成菌等を用いることによ
り、バイオリアクター等の装置がコンパクトになり、経
済的にも有利である。 (ヘ)ニッケル、コバルト、鉄等を主成分とする触媒を
用いることにより、機能性材料として有用な構造・形状
を持つ固体炭素を取り出すことができ、電池の電極材
料、電磁波吸収体の損失材料等として固体炭素の有効利
用を図ることができる。
(A) Since hydrogen generated in the system can be used as a fuel to drive the system, it is not necessary to replenish energy from the outside, and carbon dioxide in the atmosphere can be self-sufficiently removed as solid carbon. (B) Since carbon dioxide in the atmosphere is removed using biomass as a medium, extremely dilute carbon dioxide in the atmosphere can be efficiently removed. (C) By using readily available biomass such as garbage, it is possible to construct a facility to remove carbon dioxide in the atmosphere from anywhere. (D) Since the anaerobic treatment, which consumes a small amount of energy, is used, it is expected that the amount of energy consumed in the system can be minimized to supply surplus energy as heat and electricity to the outside. (E) By using a highly active high-temperature methanogen or the like, a device such as a bioreactor becomes compact, which is economically advantageous. (F) By using a catalyst whose main component is nickel, cobalt, iron, etc., solid carbon having a structure and shape useful as a functional material can be taken out, and it is used as a battery electrode material and an electromagnetic wave absorber loss material. For example, it is possible to effectively use solid carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、本発明の一実施例の図式的流れ図である。FIG. 1 is a schematic flow diagram of one embodiment of the present invention.

【図2】は、本発明におけるバイオリアクターの説明図
である。
FIG. 2 is an explanatory diagram of a bioreactor according to the present invention.

【図3】は、本発明で用いる微生物担体の一例の説明図
である。
FIG. 3 is an explanatory diagram of an example of a microbial carrier used in the present invention.

【図4】は、メタン分解手段の一例の説明図である。FIG. 4 is an explanatory diagram of an example of methane decomposition means.

【図5】は、本発明における物質収支、エネルギー収支
の一例を示す図である。
FIG. 5 is a diagram showing an example of a material balance and an energy balance in the present invention.

【図6】は、従来の大気中の二酸化炭素除去方法の一例
の説明図である。
FIG. 6 is an explanatory diagram of an example of a conventional method for removing carbon dioxide in the atmosphere.

【図7】は、従来の大気中の二酸化炭素除去方法の他の
例の説明図である。
FIG. 7 is an explanatory diagram of another example of a conventional method for removing carbon dioxide in the atmosphere.

【図8】は、従来のメタン水蒸気改質反応装置を内蔵す
る燃料電池の発電量とシステム消費電力との関係の説明
図である。
FIG. 8 is an explanatory diagram of a relationship between a power generation amount of a fuel cell including a conventional methane steam reforming reaction device and system power consumption.

【符号の説明】[Explanation of symbols]

1…二酸化炭素固定化施設 2…異物分離機能付き粉砕機(粉砕手段) 3…微粉砕機(粉砕手段) 4…スラリータンク 5…スラリーポンプ 6…バイオリアクター 7…保温手段 8…最終処理施設 9…スラリー循環ポンプ 10…脱硫脱窒精製装置 12…メタン濃縮装置 13…メタン分解手段 14…触媒 15…加熱手段 16…反応室 17…燃料電池 20…発酵室 21…微生物担体 22…中空筒体 23…多孔質周壁 24…枠体 26…一次反応器 27…二次反応器 28…凝縮器 31…有機廃棄物処理部 32…ガス混合・凝縮器 33…ポンプ 34…反応槽 35…触媒・炭素分離器 36…触媒再生器 37…ポンプ 38…水素分離器 39…ポンプ 40…水素燃焼器 E…発酵液 G…バイオガス S…有機物スラリー 1… Carbon dioxide fixation facility 2. Crusher with a foreign matter separation function (crushing means) 3 ... Fine crusher (crushing means) 4 ... Slurry tank 5 ... Slurry pump 6 ... Bioreactor 7 ... Heat insulation means 8 ... Final treatment facility 9 ... Slurry circulation pump 10 ... Desulfurization denitrification refining equipment 12 ... Methane concentrator 13 ... Methane decomposition means 14 ... Catalyst 15 ... Heating means 16 ... Reaction chamber 17 ... Fuel cell 20 ... Fermentation room 21 ... Microbial carrier 22 ... Hollow cylinder 23 ... Porous peripheral wall 24 ... Frame 26 ... Primary reactor 27 ... Secondary reactor 28 ... Condenser 31 ... Organic waste treatment unit 32 ... Gas mixing / condenser 33 ... Pump 34 ... Reaction tank 35 ... Catalyst / carbon separator 36 ... Catalyst regenerator 37 ... Pump 38 ... Hydrogen separator 39 ... Pump 40 ... Hydrogen combustor E ... Fermentation liquid G ... Biogas S ... Organic slurry

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12M 1/107 C12N 1/00 P C12N 1/00 B09B 3/00 C D (72)発明者 東郷 芳孝 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 (72)発明者 多田羅 昌浩 東京都港区元赤坂一丁目2番7号 鹿島建 設株式会社内 Fターム(参考) 4B065 AA01X AA57X AC14 BB22 CA01 CA55 4D004 AA02 AA03 AA04 AA50 BA03 BA04 CA04 CA18 CB04 CB31 CC08 DA06 4D059 AA07 AA08 AA30 BA14 BA15 BA27 BA34 BK11 BK12 BK17 CA01 CA27 CC01 CC03 4G040 DA03 DC02 4G046 CA01 CC01 CC03 CC08 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (Reference) C12M 1/107 C12N 1/00 P C12N 1/00 B09B 3/00 CD (72) Inventor Togo Yoshitaka Tokyo Kashima Construction Co., Ltd., 1-2-7 Moto-Akasaka, Minato-ku, Tokyo (72) Inventor Masahiro Tada 1-2-7 Moto-Akasaka, Minato-ku, Tokyo Kashima Construction Co., Ltd. F-term (reference) 4B065 AA01X AA57X AC14 BB22 CA01 CA55 4D004 AA02 AA03 AA04 AA50 BA03 BA04 CA04 CA18 CB04 CB31 CC08 DA06 4D059 AA07 AA08 AA30 BA14 BA15 BA27 BA34 BK11 BK12 BK17 CA01 CA27 CC01 CC03 4G040 DA03 DC02 4G046 CA01 CC01 CC03 CC03 CC03 CC03 CC03 CC03 CC03 CC03 CC03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】大気中の二酸化炭素が固定されたバイオマ
スを有機物スラリーに粉砕し、前記有機物スラリーを活
性温度に保持してメタン生成菌群によりメタン発酵さ
せ、前記発酵によるメタンガスを分解温度に加熱しつつ
触媒と接触させて水素と固体炭素とに分解し、前記粉砕
と活性温度の保持と分解温度への加熱とに要するエネル
ギーを前記水素のエネルギー変換により賄うことにより
大気中の二酸化炭素をエネルギー自足的に固体炭素とし
て除去してなるバイオマス利用の二酸化炭素除去方法。
1. A biomass in which carbon dioxide in the atmosphere is fixed is pulverized into an organic matter slurry, the organic matter slurry is maintained at an active temperature and methane-fermented by a methanogen group, and methane gas produced by the fermentation is heated to a decomposition temperature. While contacting with the catalyst to decompose into hydrogen and solid carbon, the energy required for the crushing and maintaining the activation temperature and heating to the decomposition temperature is covered by the energy conversion of hydrogen to convert carbon dioxide in the atmosphere into energy. A method for removing carbon dioxide using biomass, which is self-sufficiently removed as solid carbon.
【請求項2】請求項1の除去方法において、前記水素の
一部分で前記分解温度への加熱エネルギーを賄い、前記
水素の他の一部分を燃料電池により電力及び高温水に変
換し、前記燃料電池からの高温水で前記活性温度の保持
エネルギーを賄い、前記燃料電池からの電力で前記粉砕
エネルギーを賄ってなるバイオマス利用の二酸化炭素除
去方法。
2. The removal method according to claim 1, wherein a part of the hydrogen covers heating energy to the decomposition temperature, and another part of the hydrogen is converted into electric power and high temperature water by a fuel cell, The method for removing carbon dioxide using biomass, wherein the high temperature water is used to cover the energy held at the activation temperature, and the electric power from the fuel cell is used to cover the grinding energy.
【請求項3】請求項1又は2の除去方法において、前記
バイオマスを二酸化炭素の利用効率が高い生物体とし、
該生物体を単位重量当りのメタンガス発生量が多い高濃
度有機物スラリーに粉砕してなるバイオマス利用の二酸
化炭素除去方法。
3. The removal method according to claim 1 or 2, wherein the biomass is an organism having high utilization efficiency of carbon dioxide,
A method for removing carbon dioxide using biomass, which comprises crushing the organism into a high-concentration organic matter slurry that produces a large amount of methane gas per unit weight.
【請求項4】請求項1から3の何れかの除去方法におい
て、前記触媒の主成分をニッケル、鉄、又はコバルトと
し、前記メタンガスを200〜900℃に加熱して前記触媒と
接触させてなるバイオマス利用の二酸化炭素除去方法。
4. The removal method according to claim 1, wherein the main component of the catalyst is nickel, iron, or cobalt, and the methane gas is heated to 200 to 900 ° C. and brought into contact with the catalyst. Carbon dioxide removal method using biomass.
【請求項5】請求項1から4の何れかの除去方法におい
て、前記有機物スラリーを52〜58℃に保持してメタン生
成菌群によりメタン発酵させてなるバイオマス利用の二
酸化炭素除去方法。
5. The method for removing carbon dioxide using biomass according to any one of claims 1 to 4, wherein the organic slurry is held at 52 to 58 ° C. and methane-fermented by a methanogen group.
【請求項6】大気中の二酸化炭素が固定されたバイオマ
スを有機物スラリーに粉砕する粉砕手段、メタン生成菌
群を高濃度で保持する発酵室と該発酵室内に取り入れた
前記スラリーをメタン生成菌群の活性温度に保つ保温手
段とを有するバイオリアクター、前記バイオリアクター
からのメタンガスを水素と固体炭素とに分解する触媒が
存在する反応室と前記水素の一部分で前記メタンガスを
分解温度に加熱する加熱手段とを有するメタン分解手
段、及び前記水素の他の一部分を電力と高温水とに変換
する燃料電池を備え、前記燃料電池からの高温水により
前記保温手段を保温すると共に前記燃料電池からの電力
により前記粉砕手段を駆動して大気中の二酸化炭素をエ
ネルギー自足的に固体炭素として除去してなるバイオマ
ス利用の二酸化炭素除去装置。
6. A pulverizing means for pulverizing biomass in which atmospheric carbon dioxide is fixed into an organic matter slurry, a fermentation chamber for holding a high concentration of methanogens, and a slurry for introducing the slurry into the fermentation chamber. A bioreactor having a heat-retaining means for keeping the methane gas from the bioreactor, and a heating means for heating the methane gas to a decomposition temperature in a reaction chamber in which a catalyst for decomposing methane gas from the bioreactor into hydrogen and solid carbon is present. And a fuel cell for converting another part of the hydrogen into electric power and high-temperature water, the high-temperature water from the fuel cell keeps the heat-retaining means warm, and the electric power from the fuel cell Carbon dioxide using biomass produced by driving the crushing means to self-sufficiently remove carbon dioxide in the atmosphere as solid carbon Removed by the device.
【請求項7】請求項6の除去装置において、前記触媒の
主成分をニッケル、鉄、又はコバルトとし、前記加熱手
段によりメタンガスを200〜900℃に加熱してなるバイオ
マス利用の二酸化炭素除去装置。
7. The carbon dioxide removing device according to claim 6, wherein the main component of the catalyst is nickel, iron, or cobalt, and the methane gas is heated to 200 to 900 ° C. by the heating means.
【請求項8】請求項6又は7の除去装置において、前記
バイオリアクターとメタン分解手段との間に脱硫脱窒精
製装置とメタン濃縮装置とを設けてなるバイオマス利用
の二酸化炭素除去装置。
8. The carbon dioxide removing device using biomass according to claim 6 or 7, wherein a desulfurizing and denitrifying refining device and a methane concentrating device are provided between the bioreactor and the methane decomposing means.
【請求項9】請求項6から8の何れかの除去装置におい
て、前記粉砕手段によりバイオマスを単位重量当りのメ
タンガス発生量が多い高濃度有機物スラリーに微粉砕し
てなるバイオマス利用の二酸化炭素除去装置。
9. The carbon dioxide removing device according to claim 6, wherein the pulverizing means finely pulverizes the biomass into a high-concentration organic substance slurry having a large amount of methane gas generated per unit weight. .
JP2001302103A 2001-09-28 2001-09-28 Method and apparatus for removing carbon dioxide using biomass Expired - Lifetime JP3935197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302103A JP3935197B2 (en) 2001-09-28 2001-09-28 Method and apparatus for removing carbon dioxide using biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302103A JP3935197B2 (en) 2001-09-28 2001-09-28 Method and apparatus for removing carbon dioxide using biomass

Publications (2)

Publication Number Publication Date
JP2003103235A true JP2003103235A (en) 2003-04-08
JP3935197B2 JP3935197B2 (en) 2007-06-20

Family

ID=19122412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302103A Expired - Lifetime JP3935197B2 (en) 2001-09-28 2001-09-28 Method and apparatus for removing carbon dioxide using biomass

Country Status (1)

Country Link
JP (1) JP3935197B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052690A (en) * 2003-08-04 2005-03-03 Tokyo Elex Kk Processing system and processing method for effectively utilizing biomass resources
JP2005330119A (en) * 2004-05-18 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and apparatus for producing carbon particulate
JP2006096590A (en) * 2004-09-28 2006-04-13 Asao Tada Apparatus for directly cracking lower hydrocarbon
JP2006169053A (en) * 2004-12-16 2006-06-29 Jipangu Energy:Kk Method and system for producing hydrogen gas
JP2007527348A (en) * 2003-11-21 2007-09-27 スタットオイル エイエスエイ Method for converting hydrocarbons
WO2009039358A1 (en) * 2007-09-19 2009-03-26 Tm Industrial Supply, Inc. Renewable energy system
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
WO2010097843A1 (en) * 2009-02-27 2010-09-02 国立大学法人帯広畜産大学 Fertilization method, method for production of liquid fertilizer, method for modification of irrigation water, and apparatuses for achieving the methods
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
JP2014024050A (en) * 2012-07-30 2014-02-06 Saisei Kk Biomass treatment system
JP2019525888A (en) * 2016-07-14 2019-09-12 ゼグ パワー アーエス Methods and apparatus for biogas property enhancement and hydrogen production from anaerobic fermentation of biological materials
CN113144892A (en) * 2021-05-26 2021-07-23 广州大学 Air processor
JPWO2021186924A1 (en) * 2020-03-19 2021-09-23
CN113811508A (en) * 2019-03-25 2021-12-17 海德鲁贝私人有限公司 Method and system for generating hydrogen
EP4043576A1 (en) * 2021-02-16 2022-08-17 EnerKa Conseil Method and installation for production of hydrogen gas and solid carbon with consumption of co2

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052690A (en) * 2003-08-04 2005-03-03 Tokyo Elex Kk Processing system and processing method for effectively utilizing biomass resources
JP2007527348A (en) * 2003-11-21 2007-09-27 スタットオイル エイエスエイ Method for converting hydrocarbons
JP2005330119A (en) * 2004-05-18 2005-12-02 Kangen Yoyu Gijutsu Kenkyusho:Kk Method and apparatus for producing carbon particulate
JP2006096590A (en) * 2004-09-28 2006-04-13 Asao Tada Apparatus for directly cracking lower hydrocarbon
JP4666985B2 (en) * 2004-09-28 2011-04-06 国立大学法人北見工業大学 Equipment for direct cracking of lower hydrocarbons
JP2006169053A (en) * 2004-12-16 2006-06-29 Jipangu Energy:Kk Method and system for producing hydrogen gas
WO2009039358A1 (en) * 2007-09-19 2009-03-26 Tm Industrial Supply, Inc. Renewable energy system
JP2010013333A (en) * 2008-07-07 2010-01-21 Tokyo Gas Co Ltd Separation, recovery and treatment apparatus of carbon dioxide in atmosphere
WO2010097843A1 (en) * 2009-02-27 2010-09-02 国立大学法人帯広畜産大学 Fertilization method, method for production of liquid fertilizer, method for modification of irrigation water, and apparatuses for achieving the methods
JP2010202427A (en) * 2009-02-27 2010-09-16 Mitsui Eng & Shipbuild Co Ltd Fertilization method, method for production of liquid fertilizer, method for modification of irrigation water, and apparatuses for achieving respective methods
WO2012042155A3 (en) * 2010-09-29 2012-08-30 Total Sa Process for producing an oxygen-containing compound
FR2965279A1 (en) * 2010-09-29 2012-03-30 Total Sa PROCESS FOR PRODUCING OXYGEN COMPOUND
JP2011116652A (en) * 2011-03-04 2011-06-16 Japan Steel Works Ltd:The Autonomous lower hydrocarbon direct decomposition process system
JP2014024050A (en) * 2012-07-30 2014-02-06 Saisei Kk Biomass treatment system
JP2019525888A (en) * 2016-07-14 2019-09-12 ゼグ パワー アーエス Methods and apparatus for biogas property enhancement and hydrogen production from anaerobic fermentation of biological materials
CN113811508A (en) * 2019-03-25 2021-12-17 海德鲁贝私人有限公司 Method and system for generating hydrogen
JPWO2021186924A1 (en) * 2020-03-19 2021-09-23
WO2021186924A1 (en) * 2020-03-19 2021-09-23 株式会社Ihi Hydrogen production apparatus
JP7315092B2 (en) 2020-03-19 2023-07-26 株式会社Ihi Hydrogen production equipment
AU2021239327B2 (en) * 2020-03-19 2023-08-24 Ihi Corporation Hydrogen production apparatus
EP4043576A1 (en) * 2021-02-16 2022-08-17 EnerKa Conseil Method and installation for production of hydrogen gas and solid carbon with consumption of co2
FR3119847A1 (en) * 2021-02-16 2022-08-19 EnerKa Conseil Process and installation for the production of gaseous hydrogen and solid carbon with CO2 consumption
CN113144892A (en) * 2021-05-26 2021-07-23 广州大学 Air processor

Also Published As

Publication number Publication date
JP3935197B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
Cantrell et al. Livestock waste-to-bioenergy generation opportunities
Lai et al. Hydrogen-driven microbial biogas upgrading: advances, challenges and solutions
Lee et al. Anaerobic hydrogen production with an efficient carrier‐induced granular sludge bed bioreactor
JP3935197B2 (en) Method and apparatus for removing carbon dioxide using biomass
Pandu et al. Comparisons and limitations of biohydrogen production processes: a review
Jain et al. Bio-hydrogen production through dark fermentation: an overview
Morya et al. Exploring rice straw as substrate for hydrogen production: Critical challenges and opportunities
KR100985374B1 (en) Method and apparatus for the production of hydrogen and methane from organic wastes
Liu et al. Bio-hydrogen production by dark fermentation from organic wastes and residues
CN102924189B (en) Method for recovering carbon-based ammonium bicarbonate in refuse landfill
JP2002276387A (en) Biomass generation system and biomass generation method using it
JP2011240238A (en) Anaerobic bioreactor
KR101181834B1 (en) Pre-thermal treatment of microalgae and high temperature and high efficiency hydrogen/methane fermentation process using waste heat of power-plant effluent gas
JP4844951B2 (en) Processing method and apparatus for garbage and paper waste
JP2000167523A (en) System for recovering energy of garbage
JP2005013045A (en) Method for continuously producing hydrogen from organic waste
US20190203250A1 (en) Microbial pretreatment for conversion of biomass into biogas
Sen et al. Biohydrogen production perspectives from organic waste with focus on Asia
JP2009050170A (en) Ammonia fermenter, apparatus for producing inflammable gas, and methods for operating them
JP4600921B2 (en) Organic waste treatment method and apparatus
TWM577017U (en) Biomass energy power generation system
JP2910999B1 (en) Shochu manufacturing equipment
JP2001149983A (en) Bio gas generator
KR101153467B1 (en) System for providing a biogas
CN214327720U (en) Biomass hydrogen production device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070317

R150 Certificate of patent or registration of utility model

Ref document number: 3935197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250