JP2003094916A - Method and device for manufacturing finite element model of composite body - Google Patents

Method and device for manufacturing finite element model of composite body

Info

Publication number
JP2003094916A
JP2003094916A JP2001292070A JP2001292070A JP2003094916A JP 2003094916 A JP2003094916 A JP 2003094916A JP 2001292070 A JP2001292070 A JP 2001292070A JP 2001292070 A JP2001292070 A JP 2001292070A JP 2003094916 A JP2003094916 A JP 2003094916A
Authority
JP
Japan
Prior art keywords
young
modulus
compression
cord
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292070A
Other languages
Japanese (ja)
Other versions
JP4750984B2 (en
Inventor
Naoaki Iwasaki
直明 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2001292070A priority Critical patent/JP4750984B2/en
Publication of JP2003094916A publication Critical patent/JP2003094916A/en
Application granted granted Critical
Publication of JP4750984B2 publication Critical patent/JP4750984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the analyzing accuracy of a composite body. SOLUTION: In this method of manufacturing a finite element model of the composite body, the finite element model Fa for analyzing the numerical values of the composite body is formed of the composite body F formed by covering a cord arranged body 9 having a cord c arranged thereon with a rubber g. The method comprises the steps of modeling the rubber g with a solid element e1 and modeling the cord arranged body 9 with a film element e2 for which anisotropy with different Young's moduli is defined between the longitudinal direction j of the cord c and a direction k orthogonal to the longitudinal direction j. At least the Young's modulus of the film element e2 in the longitudinal direction j of the cord comprises the Young's modulus for compression used for calculation when a compressed stress acts thereon and Young's modulus for tension used for calculation when a tensile stress acts thereon. The Young's modulus for compression is made smaller than the Young's modulus for tension.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コードとゴムとか
らなる複合体の解析精度を向上するのに役立つ複合体の
有限要素モデル作成方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for producing a finite element model of a composite which is useful for improving the analysis accuracy of the composite of a cord and rubber.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
有限要素法は広く工業製品の開発、設計に用いられ、例
えばタイヤの開発に際してシミュレーションなどにも好
適に用いられる。有限要素法により解析を行う場合、解
析対象物を有限個の要素で置き換えることにより数値解
析用のモデルを作成する必要がある。
2. Description of the Related Art In recent years,
The finite element method is widely used for development and design of industrial products, and is preferably used for simulation for tire development, for example. When performing analysis by the finite element method, it is necessary to create a model for numerical analysis by replacing the analysis target with a finite number of elements.

【0003】一方、タイヤは、図2(A)に略示するよ
うに、コードcを実質的に平行に配列したコード配列体
9をトッピング用のゴムgで被覆した複合体Fを積層す
る事によりカーカスプライ、ベルトプライといった骨格
部分が形成される。このような複合体Fは、コードcの
長手方向jと、該長手方向と直交する方向とでは剛性が
異なる(異方性)。また、前記複合体Fを有限要素法モ
デルに置き換える場合、コードcを一本毎にモデル化し
ていくと、要素が微小化されてしまいかつその数が膨大
となるため、解析に要する計算時間が著しく大になる。
これは、現在の計算機の能力では実用的ではない。
On the other hand, in a tire, as schematically shown in FIG. 2A, a composite body F in which a cord array 9 in which cords c are arranged substantially in parallel is covered with a rubber g for topping is laminated. Thereby, a skeleton portion such as a carcass ply or a belt ply is formed. Such a composite F has different rigidity in the longitudinal direction j of the cord c and the direction orthogonal to the longitudinal direction (anisotropic). Further, when the complex F is replaced with a finite element method model, if the code c is modeled for each one, the elements will be miniaturized and the number will be enormous, so the calculation time required for the analysis will be large. It becomes extremely large.
This is not practical with current computer capabilities.

【0004】そこで前記複合体Fを、図2(B)に分解
して示すように、コード配列体9については異方性を持
った膜要素e2で、ゴムgについてはソリッド要素e
1、e1でそれぞれモデル化し、これらを重ねて近似的
にモデル化することにより、要素数を大幅に削減しつつ
シミュレーションにおいて実機とほぼ等価の解析結果を
得ることが行われている。
Therefore, as shown in an exploded view of FIG. 2B, the composite F is a membrane element e2 having anisotropy for the code array 9 and a solid element e for the rubber g.
1 and e1 are modeled respectively, and these are overlaid and approximately modeled to obtain an analysis result which is substantially equivalent to the actual machine in the simulation while significantly reducing the number of elements.

【0005】ところで、従来の前記膜要素e2は引張、
圧縮とも同一のヤング率が設定されれる。しかしなが
ら、コードcは、複数の細い繊維(素線)を撚り合わせ
て形成されているため、引張力が作用すると撚り合わさ
れた素線同士が互いに密着し、各々の素線の持つ剛性が
ほぼそのままコード全体の剛性に寄与するので高い剛性
を示す一方、圧縮力が作用したときには撚り合わされた
素線同士の間隔が広がることができるので剛性が低くな
る。
By the way, the conventional membrane element e2 is
The same Young's modulus is set for compression. However, since the cord c is formed by twisting a plurality of thin fibers (strands), when the tensile force acts, the twisted strands come into close contact with each other, and the rigidity of each strand remains almost unchanged. Since it contributes to the rigidity of the entire cord, it exhibits high rigidity, but when a compressive force is applied, the interval between the twisted wires can be widened, and the rigidity becomes low.

【0006】そしてタイヤの一般的な使用では、空気圧
の充填によりコードcには引張側の応力が作用するた
め、圧縮と引張とにおける剛性差は問題とはなりにくい
が、内圧が0の状態でも所定の速度で走行可能なランフ
ラットタイヤ等を解析する場合にはコードcに圧縮力が
働くことがある。また自動二輪車用タイヤのように、ト
レッド面の曲率が大きいタイヤの場合、荷重負荷時にお
いてはトレッド接地部が局部的に大きく変形しこの部分
のコードcが圧縮力を受けることがある。従って、従来
の前記膜要素では、コードcに圧縮力が働く状況では、
実際の変形挙動と異なる結果、精度の良い解析結果を得
ることができないという問題がある。
In general use of the tire, since the tensile stress is applied to the cord c due to the filling of air pressure, the difference in rigidity between compression and tension is unlikely to be a problem, but even when the internal pressure is zero. When analyzing a run flat tire or the like that can travel at a predetermined speed, a compressive force may act on the code c. Further, in the case of a tire having a large tread surface curvature such as a motorcycle tire, the tread ground contact portion may be locally largely deformed when a load is applied, and the cord c of this portion may receive a compressive force. Therefore, in the conventional membrane element, in the situation where the compression force acts on the cord c,
As a result different from the actual deformation behavior, there is a problem that an accurate analysis result cannot be obtained.

【0007】本発明は、以上のような問題点に鑑み案出
なされたもので、膜要素について圧縮用のヤング率を引
張用のヤング率よりも小に設定することを基本として、
コードとゴムとからなる複合体の解析精度を向上するの
に役立つ複合体の有限要素モデル作成方法及び装置を提
供することを目的としている。
The present invention has been devised in view of the above problems, and basically sets the Young's modulus for compression of the membrane element to be smaller than the Young's modulus for tension.
It is an object of the present invention to provide a finite element model creating method and apparatus for a composite useful for improving the analysis accuracy of the composite composed of a cord and rubber.

【0008】[0008]

【課題を解決するための手段】本発明のうち請求項1記
載の発明は、コードを配列したコード配列体をゴムで被
覆した複合体から該複合体の数値解析用の有限要素モデ
ルを作成する複合体の有限要素モデル作成方法であっ
て、前記ゴムをソリッド要素でモデル化するステップ
と、前記コード配列体を、そのコードの長手方向とこの
長手方向と直交する方向とでヤング率が異なる異方性が
定義された膜要素でモデル化するステップとを含むとと
もに、少なくとも前記膜要素のコードの長手方向のヤン
グ率は、圧縮時の計算に用いられる圧縮用のヤング率
と、引張時の計算に用いられる引張用のヤング率とを含
み、かつ前記圧縮用のヤング率を前記引張用のヤング率
よりも小に決定することを特徴としている。
According to a first aspect of the present invention, a finite element model for numerical analysis of a composite is prepared from a composite in which a code array in which codes are arranged is covered with rubber. A method for creating a finite element model of a composite, wherein the step of modeling the rubber with a solid element and the cord array has different Young's moduli in the longitudinal direction of the cord and the direction orthogonal to the longitudinal direction. Modeling with a membrane element having a defined anisotropy, and at least the Young's modulus in the longitudinal direction of the cord of the membrane element is the Young's modulus for compression used in the calculation during compression and the calculation in tension. And the Young's modulus for tension used for the above, and the Young's modulus for compression is determined to be smaller than the Young's modulus for tension.

【0009】また請求項2記載の発明は、前記圧縮用の
ヤング率が0であることを特徴とする請求項1記載の複
合体の有限要素モデル作成方法である。
The invention according to claim 2 is the method for producing a finite element model of a composite according to claim 1, characterized in that the Young's modulus for compression is 0.

【0010】また請求項3記載の発明は、前記圧縮用の
ヤング率は、引張用のヤング率に0より大かつ1より小
の係数を乗じて計算されることを特徴とする請求項1記
載の複合体の有限要素モデル作成方法である。
According to a third aspect of the present invention, the Young's modulus for compression is calculated by multiplying the Young's modulus for tension by a coefficient larger than 0 and smaller than 1. Is a method of creating a finite element model of the complex of.

【0011】また請求項4記載の発明は、前記膜要素
は、少なくともコードの長手方向の圧縮用のヤング率、
引張用のヤング率がともに同一の値(≠0)に設定され
た第1の膜要素と、この第1の膜要素と節点を共有する
ことにより幾何学的に重なりしかもコードの長手方向の
圧縮用のヤング率が0に設定された第2の膜要素とから
なることを特徴とする請求項1又は3に記載の複合体の
有限要素モデル作成方法である。
According to a fourth aspect of the present invention, the membrane element has at least a Young's modulus for compression in the longitudinal direction of the cord,
The first membrane element in which the Young's modulus for tension is set to the same value (≠ 0) is geometrically overlapped by sharing a node with the first membrane element, and the cord is compressed in the longitudinal direction. A finite element model creating method for a composite according to claim 1 or 3, characterized in that the Young's modulus for use with the second membrane element is set to 0.

【0012】また請求項5記載の発明は、前記第1の膜
要素の前記ヤング率の値は、コード配列体の圧縮時のヤ
ング率に近似させて設定されるとともに、前記第2の膜
要素の引張用のヤング率が、コード配列体の引張時のヤ
ング率から前記第1の膜要素のヤング率を引いた値に設
定されることを特徴とする複合体の有限要素モデル作成
方法である。
According to a fifth aspect of the present invention, the value of the Young's modulus of the first membrane element is set so as to approximate to the Young's modulus of the cord array when compressed, and the second membrane element is also set. Is set to a value obtained by subtracting the Young's modulus of the first membrane element from the Young's modulus when the cord array is pulled, and a method for creating a finite element model of a composite. .

【0013】また請求項6記載の発明は、請求項1乃至
5の複合体の有限要素モデル作成方法を実行することを
特徴とするコンピュータを含む装置である。
The invention according to claim 6 is an apparatus including a computer, which is characterized by executing the method for creating a finite element model of a complex according to claims 1 to 5.

【0014】[0014]

【発明の実施の形態】以下本発明の実施の一形態を図面
に基づき説明する。図1は本実施形態の解析対象である
空気入りタイヤTの断面図を示す。空気入りタイヤT
は、トレッド部2からサイドウォール部3を経てビード
部4のビードコア5で折り返されたカーカスプライ6A
からなるカーカス6と、このカーカス6のタイヤ半径方
向外側かつトレッド部2の内部に配された内、外2枚の
ベルトプライ7A、7Bからなるベルト層7とを具え
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of a pneumatic tire T which is an analysis target of this embodiment. Pneumatic tire T
Is a carcass ply 6A folded back from the tread portion 2 through the sidewall portion 3 and the bead core 5 of the bead portion 4.
And a belt layer 7 composed of two outer and inner belt plies 7A and 7B arranged on the outer side in the tire radial direction of the carcass 6 and inside the tread portion 2.

【0015】前記カーカスプライ6A、ベルトプライ7
A(又は7B)は、いずれも図2(A)に部分的に示す
ように、コードcを配列したコード配列体9の両側面を
トッピング用のゴムgで被覆したプライ、即ち複合体F
から構成される。前記コードcは、素線ないし繊維材を
撚り合わせることにより形成された撚り線であって、例
えばスチールコード、有機繊維コード又は無機繊維コー
ドなど各種のコードを含む。
The carcass ply 6A and the belt ply 7
As shown in part (A) of FIG. 2, each of A (or 7B) is a ply in which both sides of the cord array 9 in which the cords c are arranged are covered with the rubber g for topping, that is, the composite F.
Composed of. The cord c is a stranded wire formed by twisting strands or fiber materials, and includes various cords such as a steel cord, an organic fiber cord or an inorganic fiber cord.

【0016】図3には、上述のような複合体Fから該複
合体の数値解析用の有限要素モデルFaを作成する複合
体の有限要素モデル作成装置を示す。本装置としては、
例えばコンピュータ10が使用される。コンピュータ1
0は、演算処理装置であるCPUと、このCPUの処理
手順などが予め記憶されるROMと、CPUの作業用メ
モリであるRAMと、入出力ポートと、これらを結ぶバ
スとを含んで構成されている。前記入出力ポートには、
本例では所定の情報を入力、設定するためのキーボー
ド、マウス等の入力手段Iと、入力結果などを表示しう
るディスプレイ、プリンタなどの出力手段Oと、磁気デ
ィスク、光磁気ディスクなどの外部記憶装置Dとが接続
される。また前記外部記憶装置Dには、本実施形態の方
法の手順などのプログラム、データが記憶される。
FIG. 3 shows a complex finite element model creating apparatus for creating a finite element model Fa for numerical analysis of the complex from the complex F as described above. For this device,
For example, the computer 10 is used. Computer 1
Reference numeral 0 is configured to include a CPU as an arithmetic processing unit, a ROM in which processing procedures of the CPU are stored in advance, a RAM as a working memory of the CPU, an input / output port, and a bus connecting these. ing. In the input / output port,
In this example, an input unit I such as a keyboard and a mouse for inputting and setting predetermined information, a display capable of displaying the input result, an output unit O such as a printer, and an external storage such as a magnetic disk or a magneto-optical disk. The device D is connected. Further, the external storage device D stores programs and data such as the procedure of the method of the present embodiment.

【0017】図4には本実施形態の複合体の有限要素モ
デル作成方法の処理手順の一例を示している。図4、図
2(B)に示すように、本実施形態では、先ず前記ゴム
gをソリッド要素e1でモデル化する(ステップS
1)。「ソリッド要素」は、モデル化対象物を立体的に
定義しうる要素である。ソリッド要素e1として本例で
は6面体ソリッド要素を用いたものを例示するが、これ
以外にも4面体ソリッド要素又は5面体ソリッド要素な
どを用いることができる。
FIG. 4 shows an example of the processing procedure of the method for creating a finite element model of a complex according to this embodiment. As shown in FIGS. 4 and 2B, in the present embodiment, first, the rubber g is modeled by the solid element e1 (step S).
1). The “solid element” is an element that can three-dimensionally define a modeling target. In this example, the solid element e1 uses a hexahedral solid element, but other than this, a tetrahedral solid element, a pentahedral solid element, or the like can be used.

【0018】モデル化に際しては、複合体Fのゴムgの
部分を適当な大きさに分割し、その分割された領域を順
次ソリッド要素e1にモデル化していく。本例では、コ
ード配列体9の上側及び下側のゴムgを、それぞれ上、
下のソリッド要素e1、e1としてモデル化している。
各ソリッド要素e1の厚さt1は、例えば複合体Fにお
けるコード配列体9の内外でコード輪郭に接する仮想直
線N、Nと複合体の外表面との間のゴム厚さtgに略等
しく設定される。
In modeling, the rubber g portion of the composite F is divided into appropriate sizes, and the divided regions are sequentially modeled into solid elements e1. In this example, the rubber g on the upper side and the lower side of the cord array 9 are respectively
The lower solid elements e1 and e1 are modeled.
The thickness t1 of each solid element e1 is set to be substantially equal to the rubber thickness tg between the virtual straight lines N, N contacting the cord contour inside and outside the cord array 9 in the complex F and the outer surface of the complex, for example. It

【0019】またコード配列体9の隣り合うコードc、
c間に満たされるゴムについては、少量でありかつ剛性
への寄与が少ないため本実施形態では無視している。ま
たソリッド要素e1は、その各節点nの座標、材料特性
(弾性率、比重)などが複合体Fのゴムgに基づき定義
される。
The adjacent codes c of the code array 9 are
The amount of rubber filled between c is small and contributes little to rigidity, so it is ignored in this embodiment. Further, the solid element e1 is defined based on the rubber g of the composite F such as coordinates of each node n, material characteristics (elastic modulus, specific gravity) and the like.

【0020】次に本実施形態では、前記コード配列体9
を、そのコードcの長手方向jとこの長手方向jと直交
する方向kとでヤング率が異なる異方性が定義された膜
要素e2でモデル化する(ステップS2)。
Next, in this embodiment, the code array 9 is
Is modeled by a membrane element e2 in which anisotropy is defined in which Young's moduli differ in the longitudinal direction j of the code c and the direction k orthogonal to the longitudinal direction j (step S2).

【0021】「膜要素」とは、面内の力のみ、すなわ
ち、引張、圧縮、面に沿った方向のせん断のみを伝える
要素であり、本例では四辺形膜要素を例示している。た
だし、例えば三角形膜要素なども適宜用いることができ
る。このような膜要素e2は、特にコードの長手方向j
の剛性に対してコードに沿って曲げる際の曲げ剛性が著
しく低い複合材の特徴を表現するのに適する。
The "membrane element" is an element that transmits only in-plane force, that is, tension, compression, and shear in a direction along the plane, and in this example, a quadrilateral membrane element is illustrated. However, for example, a triangular membrane element or the like can also be appropriately used. Such a membrane element e2 is particularly suitable for the longitudinal direction j of the cord.
It is suitable for expressing the characteristics of a composite material that has a significantly low bending rigidity when bending along a cord with respect to the rigidity of.

【0022】また図8に示すように、複合体Fは、厚さ
方向に関して、ひとつのソリッド要素e1と、ひとつの
膜要素e2とでモデル化することもできる。このとき、
ソリッド要素e1は、図2(A)における厚さ(2×t
g+D)が与えられる。なお膜要素は厚さを無視して取
り扱いできる。一般にコード配列体9の上側及び下側の
ゴムgは、0.5〜1.2mm程度と小厚さをなすた
め、このようなモデルは、ソリッド要素の厚さを図2
(B)のものより大にでき、要素のアスペクト比が悪化
して計算精度が低下するのを防止できる。
Further, as shown in FIG. 8, the composite body F can be modeled in the thickness direction by one solid element e1 and one membrane element e2. At this time,
The solid element e1 has a thickness (2 × t) in FIG.
g + D) is given. The membrane element can be handled without regard to its thickness. Generally, the rubber g on the upper side and the lower side of the cord array 9 has a small thickness of about 0.5 to 1.2 mm.
It can be made larger than that of (B), and it is possible to prevent deterioration of calculation accuracy due to deterioration of aspect ratio of elements.

【0023】図5に略示する如く、前記膜要素e2のコ
ードの長手方向jに沿うヤング率E1は、圧縮応力作用
時の計算に用いられる圧縮用のヤング率E1cと、引張
応力作用時の計算に用いられる引張用のヤング率E1t
とを含んで設定される。本例では、前記引張用のヤング
率E1tは、実際のコードcの引張時のヤング率に近似
した値が設定される。他方、前記圧縮用のヤング率E1
cは、前記引張用のヤング率E1tよりも小に設定され
る。
As schematically shown in FIG. 5, the Young's modulus E1 along the longitudinal direction j of the cord of the membrane element e2 is the Young's modulus E1c for compression used in the calculation when the compressive stress is applied, and the Young's modulus E1c when the tensile stress is applied. Young's modulus for tension E1t used for calculation
It is set including and. In this example, the Young's modulus E1t for tension is set to a value close to the Young's modulus of the actual cord c at the time of tension. On the other hand, the Young's modulus E1 for compression
c is set to be smaller than the Young's modulus E1t for pulling.

【0024】このように、圧縮用のヤング率E1cを引
張用のヤング率E1tよりも小に設定することにより、
膜要素e2の圧縮剛性を、複合体Fのコード配列体9の
変形挙動と近似させて設定することが可能となり、コー
ド配列体9が実際に引張、圧縮荷重を受けたときの特性
と近似した解析結果をうることが可能になる。従って、
より精度の高い解析が可能となる。
Thus, by setting the Young's modulus E1c for compression to be smaller than the Young's modulus E1t for tension,
It is possible to set the compressive rigidity of the membrane element e2 by approximating the deformation behavior of the cord array 9 of the composite F, and approximate the characteristics when the code array 9 is actually subjected to tensile and compressive loads. It becomes possible to obtain the analysis result. Therefore,
More accurate analysis is possible.

【0025】前記圧縮用のヤング率E1cは、引張用の
ヤング率E1tよりも小であれば特に限定はされない
が、例えばその値を0に設定することができる。この場
合、複合体FのモデルFaに圧縮力が作用すると、膜要
素e2は、前記ゴムgをモデル化したソリッド要素e
1、e1と一体となって変位するが、該膜要素には内部
応力が生じず、ポアソン比が大きいゴム部分をモデル化
したソリッド要素e1にのみ圧縮応力が作用するものと
して計算が行われる。これにより、従来に比してより実
機に近い解析結果を得るのに役立つ。
The Young's modulus E1c for compression is not particularly limited as long as it is smaller than the Young's modulus E1t for tension, but the value can be set to 0, for example. In this case, when a compressive force acts on the model Fa of the composite F, the membrane element e2 becomes a solid element e that models the rubber g.
1 and e1 are displaced together, but internal stress is not generated in the membrane element, and the calculation is performed assuming that the compressive stress acts only on the solid element e1 that models the rubber portion having a large Poisson's ratio. This is useful for obtaining an analysis result closer to that of the actual machine than the conventional one.

【0026】なお、このように膜要素e2のヤング率を
圧縮側と引張側とで異ならせる場合、応力の計算に際し
ては、要素に生じている変形が引張側なのか、或いは圧
縮側なのかを個々に判断しかつその結果に基づいて圧縮
用、引張用のヤング率を適用する必要があり、一見手間
のようにも考えられる。しかしながら、膜要素e2が圧
縮状態にある場合には、該膜要素e2についての応力の
計算を行う必要がないため、計算ステップの増加といっ
た不具合は実質的には生じない。
When the Young's modulus of the membrane element e2 is made to differ between the compression side and the tension side in this way, when calculating the stress, it is determined whether the deformation occurring in the element is the tension side or the compression side. It is necessary to judge Young's modulus for compression and tension based on the result of judgment individually, which may seem like a hassle. However, when the membrane element e2 is in a compressed state, it is not necessary to calculate the stress for the membrane element e2, so that the problem of an increase in calculation steps does not substantially occur.

【0027】また、さらに精度良く実際の複合体Fの挙
動などを解析したい場合には、前記膜要素の圧縮用のヤ
ング率E1cを引取用のヤング率E1tよりも低く設定
しつつ0よりも大の値に設定する。この場合、タイヤの
構成要素であるコード材料自体の特性をより良く再現す
ることが可能であるため、結果的にタイヤのたわみ等の
挙動を、さらに精度良く再現しうる。またコードcの材
料は、大別すると有機繊維と金属繊維とに分けられる。
引張側と圧縮側との剛性差は、とりわけ有機繊維の方が
大きく、金属繊維の場合には比較的小さい。従って、前
記のように圧縮用のヤング率E1cを0とする実施態様
は、例えば有機繊維材料からなるコードcをモデル化す
る場合に好適となる。
When it is desired to analyze the actual behavior of the composite F with higher accuracy, the Young's modulus E1c for compression of the membrane element is set lower than the Young's modulus E1t for take-up and is larger than 0. Set to the value of. In this case, the characteristics of the cord material itself, which is a constituent element of the tire, can be better reproduced, and as a result, the behavior such as the flexure of the tire can be more accurately reproduced. The material of the cord c is roughly classified into organic fiber and metal fiber.
The difference in rigidity between the tension side and the compression side is particularly large in the case of the organic fiber and is relatively small in the case of the metal fiber. Therefore, the embodiment in which the Young's modulus E1c for compression is set to 0 as described above is suitable when modeling the cord c made of an organic fiber material, for example.

【0028】また、コード配列体9は、繊維の撚り方、
打ち込み本数などによっても、圧縮、引張時の剛性差が
変化する。従って複合体Fの解析精度をさらに向上する
ためには、圧縮用のヤング率E1cと引張用のヤング率
E1tとの差を任意に設定できるものが望ましい。例え
ば、前記圧縮用のヤング率E1cは、引張用のヤング率
E1tに0より大かつ1より小の係数Gを乗じて計算す
ることもできる。係数Gは、撚りの方法、撚りピッチ、
撚り回数などに応じて経験則的に求めることもできる
し、また各種実験の結果から算出することもできる。こ
のような方法は、引張/圧縮の剛性を任意の比率で変え
ることが可能になる点で好ましい。またこのように要素
のヤング率を変化させる処理は、例えばサブルーチンと
して定義し、一般に市販されている有限要素法解析ソフ
トウエアの計算課程に組み入れることが望ましい。
The cord array 9 is composed of
The rigidity difference at the time of compression and tension also changes depending on the number of hammers and the like. Therefore, in order to further improve the analysis accuracy of the composite F, it is desirable that the difference between the Young's modulus E1c for compression and the Young's modulus E1t for tension can be arbitrarily set. For example, the Young's modulus E1c for compression can be calculated by multiplying the Young's modulus E1t for tension by a coefficient G larger than 0 and smaller than 1. The coefficient G is a twisting method, a twisting pitch,
It can be obtained empirically according to the number of twists, etc., or can be calculated from the results of various experiments. Such a method is preferable in that the tensile / compression rigidity can be changed at an arbitrary ratio. Further, it is desirable that the processing for changing the Young's modulus of the element as described above is defined as, for example, a subroutine and incorporated into the calculation process of generally commercially available finite element method analysis software.

【0029】図6には、本発明の他の実施形態を示して
いる。この実施形態では、コード配列体9をモデル化し
た膜要素e2は、少なくともコードcの長手方向jにお
いて、圧縮用のヤング率E1c’、引張用のヤング率E
1t’がともに同一の値(≠0)に定義された第1の膜
要素e2aと、この第1の膜要素e2aと節点nを共有
することにより幾何学的に重なりしかもコードの長手方
向jの圧縮用のヤング率が0に定義された第2の膜要素
e2bとから構成されたものを示す。
FIG. 6 shows another embodiment of the present invention. In this embodiment, the membrane element e2 modeling the cord array 9 has a Young's modulus E1c 'for compression and a Young's modulus E for tension at least in the longitudinal direction j of the cord c.
The first membrane element e2a in which both 1t 'are defined to have the same value (≠ 0) and the first membrane element e2a share a node n geometrically and overlap in the longitudinal direction j of the cord. The second film element e2b having a Young's modulus for compression defined as 0 is shown.

【0030】前記第1の膜要素e2aの圧縮用のヤング
率E1c’、引張用のヤング率E1t’の値は、ともに
実際のコード配列体9の圧縮時のヤング率に近似させて
定義される。他方、前記第2の膜要素e2bの引張用の
ヤング率E1c”は、実際のコード配列体9の引張時の
ヤング率から前記第1の膜要素e2aの引張用のヤング
率E1c’を引いた値に定義される。そして、膜要素e
2の変形計算は、前記第1、第2の膜要素e2a、e2
bが一体に重ね合わされたもの、即ち2枚の膜要素が節
点nの共有を保った状態で変形するものとして取り扱
う。これにより、実際の材料の特性を簡易に表現でき
る。
The values of the Young's modulus E1c 'for compression and the Young's modulus E1t' for tension of the first membrane element e2a are defined by being approximated to the actual Young's modulus of the cord array 9 during compression. . On the other hand, the Young's modulus E1c ″ for tension of the second membrane element e2b is obtained by subtracting the Young's modulus E1c ′ for tension of the first membrane element e2a from the Young's modulus of the actual cord array 9 in tension. Value, and membrane element e
The deformation calculation of 2 is performed by the first and second membrane elements e2a and e2.
It is treated as the one in which b is integrally laminated, that is, the two membrane elements are deformed while keeping the sharing of the node n. This makes it possible to easily express the characteristics of the actual material.

【0031】この実施形態では、第1の膜要素e2aに
ついては、ヤング率が引張、圧縮で同一の値が設定され
る。従って、該膜要素e2aの変形が圧縮か或いは引張
かを判断する必要がない、他方、第2の膜要素e2b
は、ヤング率が引張、圧縮で異なるため、膜要素e2b
の変形が圧縮か或いは引張かを判断する必要はあるが、
圧縮の場合には、応力計算をする必要がない。従って、
計算コストはやや増加するが、係数を乗じるものに比べ
て新たにユーザーサブルーチンを作成する必要が無い点
で好ましい。
In this embodiment, the Young's modulus of the first membrane element e2a is set to the same value for tension and compression. Therefore, it is not necessary to judge whether the deformation of the membrane element e2a is compression or tension, while on the other hand, the second membrane element e2b.
, The Young's modulus differs between tension and compression, so the membrane element e2b
It is necessary to judge whether the deformation of is compression or tension,
In the case of compression, it is not necessary to calculate stress. Therefore,
Although the calculation cost is slightly increased, it is preferable in that there is no need to create a new user subroutine as compared with the case where the coefficient is multiplied.

【0032】上記各実施形態では、膜要素について、コ
ードの配列方向jについてヤング率を違えるものを例に
挙げて説明したが、コードの配列方向と直交する方向k
については、引張、圧縮で剛性が実質的に変わらないた
め、ヤング率についても引張、圧縮で同一としても良
い。具体的な値は、一例として複合体Fの値を参考にし
適宜定めることができる。例えば実際の複合体Fのコー
ド配列方向jにおける引張時のヤング率をX、コードの
配列方向と直交する方向kの引張時のヤング率をY、モ
デルの前記方向jのヤング率をX1、モデルの前記方向
kのヤング率をY1とするとき、前記方向kの前記ヤン
グ率Y1は、Y・X1/Xにて算出しても良い。
In each of the above-mentioned embodiments, the membrane element has been described by taking the Young's modulus different in the cord arranging direction j as an example, but the direction k orthogonal to the cord arranging direction is described.
With regard to, since the rigidity does not substantially change between tension and compression, the Young's modulus may be the same between tension and compression. The specific value can be appropriately determined with reference to the value of the complex F as an example. For example, the Young's modulus in tension of the actual composite F in the cord arrangement direction j is X, the Young's modulus in tension in the direction k orthogonal to the cord arrangement direction is Y, the Young's modulus of the model in the direction j is X1, and the model is When the Young's modulus in the direction k of Y is Y1, the Young's modulus Y1 in the direction k may be calculated by Y · X1 / X.

【0033】以上本発明の実施形態について説明した
が、本発明は上記の実施形態に限定されるものではな
く、種々変更できる。例えばステップS1と、ステップ
S2とは、実行する順番を入れ替えても良いし、これら
を並列に処理することもできる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-mentioned embodiments and can be variously modified. For example, the execution order of step S1 and step S2 may be exchanged, or they may be processed in parallel.

【0034】[0034]

【実施例】耐パンク構造を有するサイズP225/60
R16のランフラットタイヤから表1の使用に基づき有
限要素モデルを作成した。タイヤは、カーカスプライが
有機繊維コードを用いた複合体で形成されるとともに、
ベルトプライが金属コードを用いた複合体で構成されて
いる。そして、このカーカスプライ、ベルトプライを本
発明に従って有限要素モデルにモデル化し、図7に示す
ようなタイヤ解析モデルを作成した。
[Example] Size P225 / 60 having a puncture resistant structure
A finite element model was created from R16 runflat tires based on the use of Table 1. The tire has a carcass ply formed of a composite using organic fiber cords,
The belt ply is composed of a composite using a metal cord. Then, the carcass ply and the belt ply were modeled into a finite element model according to the present invention, and a tire analysis model as shown in FIG. 7 was created.

【0035】またこのタイヤ解析モデルに、内圧充填条
件(200kPa、リム7JJ、縦荷重5.0kN)と
パンク条件(0kPa、リム7JJ、縦荷重5.0k
N)をそれぞれ設定し、タイヤの縦撓み量を計算するシ
ミュレーションを行った。シミュレーションは、解析ソ
フトとして汎用陽解法ソフトウエアLS−DYNAを、
またハードウエアとして日本電気(株)社製のコンピュ
ータSX−4を用いて行った。また実際のタイヤについ
ても同様の条件で試験を行い、実機と解析モデルとの差
異を評価した。テストの結果などを表1に示すが、ヤン
グ率は、従来例の値を100とする指数表示である。ま
た各実施例、比較例は概略次の手順で作成された。
In this tire analysis model, internal pressure filling conditions (200 kPa, rim 7JJ, longitudinal load 5.0 kN) and puncture conditions (0 kPa, rim 7JJ, longitudinal load 5.0 k) were used.
N) was set for each and a simulation for calculating the vertical deflection amount of the tire was performed. The simulation uses general-purpose explicit software LS-DYNA as analysis software,
As the hardware, a computer SX-4 manufactured by NEC Corporation was used. Further, actual tires were also tested under the same conditions to evaluate the difference between the actual machine and the analytical model. The test results and the like are shown in Table 1, and the Young's modulus is an index display with the value of the conventional example as 100. In addition, each example and comparative example were prepared by the following procedure.

【0036】(従来例)コード配列体を1枚の膜要素で
モデル化している。圧縮用のヤング率、引張用のヤング
率はともに同一の値に設定されている。
(Conventional example) A code array is modeled by one membrane element. The Young's modulus for compression and the Young's modulus for tension are both set to the same value.

【0037】(実施例1)コード配列体を1枚の膜要素
でモデル化している。圧縮用のヤング率は、有機繊維コ
ードの配列体(カーカスプライ)、金属コードの配列体
ともに0に設定している(請求項2に対応)。
(Example 1) The code array is modeled by one membrane element. The Young's modulus for compression is set to 0 for both the array of organic fiber cords (carcass ply) and the array of metal cords (corresponding to claim 2).

【0038】(実施例2)コード配列体を1枚の膜要素
でモデル化している。圧縮用のヤング率は、引張用のヤ
ング率に係数を乗じて計算している。このような処理を
実行するユーザーサブルーチンを定義した(請求項3に
対応)。
(Example 2) The code array is modeled by one membrane element. The Young's modulus for compression is calculated by multiplying the Young's modulus for tension by a coefficient. A user subroutine for executing such processing is defined (corresponding to claim 3).

【0039】(実施例3)コード配列体を第1、第2の
膜要素でモデル化している。第1の膜要素の前記ヤング
率の値は、コード配列体の圧縮時のヤング率に近似させ
て定義される。第2の膜要素の引張時のヤング率が、コ
ード配列体の引張時のヤング率から前記第1の膜要素の
ヤング率を引いた値に定義される(請求項5に対応)。
テストの結果などを表1に示す。
(Embodiment 3) The code array is modeled by the first and second membrane elements. The value of the Young's modulus of the first membrane element is defined by approximating the Young's modulus of the code array when compressed. The Young's modulus of the second membrane element in tension is defined as a value obtained by subtracting the Young's modulus of the first membrane element from the Young's modulus of the cord array body in tension (corresponding to claim 5).
Table 1 shows the test results and the like.

【0040】[0040]

【表1】 [Table 1]

【0041】テストの結果、比較例、実施例とも内圧充
填条件では、実機に非常に近い解析結果を得ていること
が確認できる。しかし、コードに圧縮応力が作用するパ
ンク条件においては、比較例では実機との差が大きく精
度が悪くなっていることが判る。他方、実施例1〜3の
解析モデルでは、パンク条件においても実機と近い良好
な結果が得られている。また解析に要したコンピュータ
計算時間についても比較例と大きな差は無い。
As a result of the test, it can be confirmed that in the comparative example and the example, an analysis result very close to the actual machine is obtained under the internal pressure filling condition. However, under the puncture condition in which the compressive stress acts on the cord, it is understood that the comparative example has a large difference from the actual machine and the accuracy is deteriorated. On the other hand, in the analytical models of Examples 1 to 3, good results close to those of the actual machine were obtained even under the puncture condition. Also, the computer calculation time required for the analysis is not much different from that of the comparative example.

【0042】[0042]

【発明の効果】上述したように、請求項1記載の発明で
は、コード配列体をモデル化した膜要素において、圧縮
用のヤング率を引張用のヤング率よりも小に設定するこ
とにより、膜要素の圧縮剛性を、実際のコード配列体の
圧縮挙動と近似させて設定することが可能となる。従っ
て、コード配列体が実際に引張、圧縮荷重を受けたとき
の特性と近似した解析結果をうることが可能になり、解
析精度を向上するのに役立つ。
As described above, according to the first aspect of the invention, in the membrane element that models the code array, the Young's modulus for compression is set to be smaller than the Young's modulus for tension. It is possible to set the compression rigidity of the element by approximating the compression behavior of the actual code array. Therefore, it becomes possible to obtain an analysis result that is similar to the characteristic when the cord array is actually subjected to tensile and compression loads, which is useful for improving the analysis accuracy.

【0043】また請求項2記載の発明のように、前記圧
縮用のヤング率を0とする方法は、膜要素が圧縮変形す
るときの応力計算を不要とするため、変形計算時間の短
縮に役立つほか、引張時と圧縮側との剛性差が比較的大
きい有機繊維からなるコードのモデル化に大きな誤差を
生じることなく好適に採用しうる。
Further, the method of setting the Young's modulus for compression to 0 as in the second aspect of the invention makes it unnecessary to calculate the stress when the membrane element is compressed and deformed, and therefore is useful for shortening the deformation calculation time. In addition, it can be suitably used without causing a large error in modeling a cord made of an organic fiber having a relatively large rigidity difference between the tension side and the compression side.

【0044】また請求項3記載の発明のように、前記圧
縮用のヤング率を、引張用のヤング率に0より大かつ1
より小の係数を乗じて得るときには、簡単な方法で圧縮
用のヤング率を得ることができるとともに、コードの撚
りなどに応じて圧縮用のヤング率をより実機に近い値に
設定しうる。
According to a third aspect of the invention, the Young's modulus for compression is greater than 0 and 1 for the Young's modulus for tension.
When it is obtained by multiplying by a smaller coefficient, the Young's modulus for compression can be obtained by a simple method, and the Young's modulus for compression can be set to a value closer to the actual machine according to the twist of the cord and the like.

【0045】また請求項4及び5記載の発明のように、
前記膜要素を第1、第2の膜要素を重ね合わせかつ各膜
要素の圧縮、引張のヤング率を規制することによって
も、膜要素の圧縮剛性を、コード配列体の圧縮剛性と近
似させて設定することが可能となる。
According to the invention described in claims 4 and 5,
The compression rigidity of the membrane element can be approximated to the compression rigidity of the cord array by superimposing the membrane element on the first and second membrane elements and regulating the Young's modulus of compression and tension of each membrane element. It becomes possible to set.

【図面の簡単な説明】[Brief description of drawings]

【図1】タイヤの断面図である。FIG. 1 is a sectional view of a tire.

【図2】(A)は複合体であるプライの断面斜視図、
(B)はその有限要素モデルの分解斜視図である。
FIG. 2A is a cross-sectional perspective view of a composite ply,
(B) is an exploded perspective view of the finite element model.

【図3】本発明の処理を行うコンピュータ装置の一例を
示すブロック図である。
FIG. 3 is a block diagram showing an example of a computer device that performs the processing of the present invention.

【図4】本発明の処理の一例を示すフローチャートであ
る。
FIG. 4 is a flowchart showing an example of processing of the present invention.

【図5】膜要素を例示する斜視図である。FIG. 5 is a perspective view illustrating a membrane element.

【図6】本発明の他の実施形態を示す膜要素の分解斜視
図である。
FIG. 6 is an exploded perspective view of a membrane element showing another embodiment of the present invention.

【図7】有限要素モデルの斜視図である。FIG. 7 is a perspective view of a finite element model.

【図8】本発明の他の実施形態を示す有限要素モデルの
分解斜視図である。
FIG. 8 is an exploded perspective view of a finite element model showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

9 コード配列体 c コード g ゴム F 複合体 Fa 複合体の有限要素モデル 9 Code array c code g rubber F complex Finite element model of Fa complex

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】コードを配列したコード配列体をゴムで被
覆した複合体から該複合体の数値解析用の有限要素モデ
ルを作成する複合体の有限要素モデル作成方法であっ
て、 前記ゴムをソリッド要素でモデル化するステップと、 前記コード配列体を、そのコードの長手方向とこの長手
方向と直交する方向とでヤング率が異なる異方性が定義
された膜要素でモデル化するステップとを含むととも
に、 少なくとも前記膜要素のコードの長手方向のヤング率
は、圧縮時の計算に用いられる圧縮用のヤング率と、引
張時の計算に用いられる引張用のヤング率とを含み、 かつ前記圧縮用のヤング率を前記引張用のヤング率より
も小に設定することを特徴とする複合体の有限要素モデ
ル作成方法。
1. A method for creating a finite element model of a composite, which comprises creating a finite element model for numerical analysis of the composite from a composite in which a code array in which codes are arranged is covered with rubber. Modeling with an element, and modeling the code array with a membrane element in which anisotropy is defined in which Young's moduli are different in the longitudinal direction of the code and the direction orthogonal to the longitudinal direction. At the same time, at least the Young's modulus in the longitudinal direction of the cord of the membrane element includes the Young's modulus for compression used in the calculation during compression and the Young's modulus for tension used in the calculation during tension, and Is set to be smaller than the Young's modulus for tension, which is a method for creating a finite element model of a composite.
【請求項2】前記圧縮用のヤング率が0であることを特
徴とする請求項1記載の複合体の有限要素モデル作成方
法。
2. The method for producing a finite element model of a composite according to claim 1, wherein the Young's modulus for compression is 0.
【請求項3】前記圧縮用のヤング率は、引張用のヤング
率に0より大かつ1より小の係数を乗じて計算されるこ
とを特徴とする請求項1記載の複合体の有限要素モデル
作成方法。
3. The finite element model of a composite according to claim 1, wherein the Young's modulus for compression is calculated by multiplying the Young's modulus for tension by a coefficient larger than 0 and smaller than 1. How to make.
【請求項4】前記膜要素は、少なくともコードの長手方
向の圧縮用のヤング率、引張用のヤング率がともに同一
の値(≠0)に設定された第1の膜要素と、 この第1の膜要素と節点を共有することにより幾何学的
に重なりしかもコードの長手方向の圧縮用のヤング率が
0に設定された第2の膜要素とからなることを特徴とす
る請求項1又は3に記載の複合体の有限要素モデル作成
方法。
4. The first membrane element, wherein at least the Young's modulus for compression and the Young's modulus for tension in the longitudinal direction of the cord are both set to the same value (≠ 0), and the first membrane element. 5. A second membrane element which geometrically overlaps with the membrane element of (1) and which has a Young's modulus for compression in the longitudinal direction of the cord set to 0, and which is geometrically overlapped. A method for creating a finite element model of a complex described in.
【請求項5】前記第1の膜要素の前記ヤング率の値は、
コード配列体の圧縮時のヤング率に近似させて設定され
るとともに、 前記第2の膜要素の引張用のヤング率が、コード配列体
の引張時のヤング率から前記第1の膜要素のヤング率を
引いた値に設定されることを特徴とする複合体の有限要
素モデル作成方法。
5. The value of the Young's modulus of the first membrane element is
The Young's modulus for tension of the second membrane element is set to be close to the Young's modulus of the cord array for compression, and the Young's modulus of the first membrane element for tension is determined from the Young's modulus of the cord array for tension. A method for creating a finite element model of a complex, characterized by being set to a value obtained by subtracting a rate.
【請求項6】請求項1乃至5の複合体の有限要素モデル
作成方法を実行することを特徴とするコンピュータを含
む装置。
6. An apparatus including a computer for executing the method for creating a finite element model of a complex according to claim 1.
JP2001292070A 2001-09-25 2001-09-25 Method and apparatus for creating complex finite element model Expired - Fee Related JP4750984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292070A JP4750984B2 (en) 2001-09-25 2001-09-25 Method and apparatus for creating complex finite element model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292070A JP4750984B2 (en) 2001-09-25 2001-09-25 Method and apparatus for creating complex finite element model

Publications (2)

Publication Number Publication Date
JP2003094916A true JP2003094916A (en) 2003-04-03
JP4750984B2 JP4750984B2 (en) 2011-08-17

Family

ID=19114108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292070A Expired - Fee Related JP4750984B2 (en) 2001-09-25 2001-09-25 Method and apparatus for creating complex finite element model

Country Status (1)

Country Link
JP (1) JP4750984B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062554A (en) * 2004-08-27 2006-03-09 Bridgestone Corp Analysis model of bead part of tire, tire model, vehicle body model, analysis method for bead part of tire, behavior simulation method for tire, behavior analysis program of tire, and recording medium recording behavior analysis program
JP2006240540A (en) * 2005-03-04 2006-09-14 Sumitomo Rubber Ind Ltd Tire performance prediction method and designing method
JP2006525530A (en) * 2003-05-02 2006-11-09 ビジョン・シーアールシー・リミテッド Design and calculation of pressure profile behind contact lens
JP2008230375A (en) * 2007-03-19 2008-10-02 Bridgestone Corp Method, device and program for creating analytic model of tire cord
JP2009020837A (en) * 2007-07-13 2009-01-29 Mitsuboshi Belting Ltd Finite element analysis method for anisotropic member
JP2013200718A (en) * 2012-03-26 2013-10-03 Mitsuboshi Belting Ltd Finite element model creation method of twisted cord, finite element model creation program, and finite element model creation apparatus
JP2014121912A (en) * 2012-12-20 2014-07-03 Yokohama Rubber Co Ltd:The Simulation method for tire, evaluation method for tire characteristic, manufacturing method for tire, and pneumatic tire
JP2016057232A (en) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 Analysis method of rubber product and computer program for analyzing rubber product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164815A (en) * 1993-10-06 1995-06-27 Bridgestone Corp Designing method of pneumatic tire
WO1998006550A1 (en) * 1996-08-08 1998-02-19 Bridgestone Corporation Method of designing multicomponent material, optimization analyzer and storage medium on which multicomponent material optimization analysis program is recorded
JPH11153520A (en) * 1997-11-25 1999-06-08 Sumitomo Rubber Ind Ltd Method and apparatus for simulation of performance of tire
JPH11201875A (en) * 1998-01-19 1999-07-30 Sumitomo Rubber Ind Ltd Method for simulating tire performance
JPH11201874A (en) * 1998-01-19 1999-07-30 Sumitomo Rubber Ind Ltd Method for simulating tire performance
JP2001050848A (en) * 1999-08-09 2001-02-23 Bridgestone Corp Design of pneumatic tire, optimization analyzer and storage medium storing optimization analyzing program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07164815A (en) * 1993-10-06 1995-06-27 Bridgestone Corp Designing method of pneumatic tire
WO1998006550A1 (en) * 1996-08-08 1998-02-19 Bridgestone Corporation Method of designing multicomponent material, optimization analyzer and storage medium on which multicomponent material optimization analysis program is recorded
JPH11153520A (en) * 1997-11-25 1999-06-08 Sumitomo Rubber Ind Ltd Method and apparatus for simulation of performance of tire
JPH11201875A (en) * 1998-01-19 1999-07-30 Sumitomo Rubber Ind Ltd Method for simulating tire performance
JPH11201874A (en) * 1998-01-19 1999-07-30 Sumitomo Rubber Ind Ltd Method for simulating tire performance
JP2001050848A (en) * 1999-08-09 2001-02-23 Bridgestone Corp Design of pneumatic tire, optimization analyzer and storage medium storing optimization analyzing program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525530A (en) * 2003-05-02 2006-11-09 ビジョン・シーアールシー・リミテッド Design and calculation of pressure profile behind contact lens
US8911083B2 (en) 2003-05-02 2014-12-16 Vision Crc Limited Calculation of post-lens pressure profile for contact lens
JP2006062554A (en) * 2004-08-27 2006-03-09 Bridgestone Corp Analysis model of bead part of tire, tire model, vehicle body model, analysis method for bead part of tire, behavior simulation method for tire, behavior analysis program of tire, and recording medium recording behavior analysis program
JP4557640B2 (en) * 2004-08-27 2010-10-06 株式会社ブリヂストン Tire analysis method, tire bead analysis method, tire behavior simulation method, tire behavior analysis program, and recording medium on which tire behavior analysis program is recorded
JP2006240540A (en) * 2005-03-04 2006-09-14 Sumitomo Rubber Ind Ltd Tire performance prediction method and designing method
JP2008230375A (en) * 2007-03-19 2008-10-02 Bridgestone Corp Method, device and program for creating analytic model of tire cord
JP2009020837A (en) * 2007-07-13 2009-01-29 Mitsuboshi Belting Ltd Finite element analysis method for anisotropic member
JP2013200718A (en) * 2012-03-26 2013-10-03 Mitsuboshi Belting Ltd Finite element model creation method of twisted cord, finite element model creation program, and finite element model creation apparatus
JP2014121912A (en) * 2012-12-20 2014-07-03 Yokohama Rubber Co Ltd:The Simulation method for tire, evaluation method for tire characteristic, manufacturing method for tire, and pneumatic tire
JP2016057232A (en) * 2014-09-11 2016-04-21 住友ゴム工業株式会社 Analysis method of rubber product and computer program for analyzing rubber product

Also Published As

Publication number Publication date
JP4750984B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP3892652B2 (en) Creating a tire analysis model
CN101923589B (en) Method for simulating radial tire forming process
JP2004093530A (en) Dynamic characteristics simulation method of composite material
JP4750984B2 (en) Method and apparatus for creating complex finite element model
JP4559694B2 (en) Structure mechanical property prediction method, tire performance prediction method, structure mechanical property prediction program, and input / output device
JP2009190427A (en) Tire simulation method
JP2003225952A (en) Method for simulating tire manufacturing process, program for putting this method into practice, method for manufacturing pneumatic tire, and pneumatic tire
JP2011122279A (en) Method for preparing twist structure model and computer program for preparing twist structure model
JP5211549B2 (en) Tire model creation method, tire model performance prediction method, and tire design method
JP5834456B2 (en) Tire simulation method, computer program for simulation, and structure simulation method
JP2006240600A (en) Method and device for predicting tire performance
JP6039210B2 (en) Prediction method of tire durability
JP5636856B2 (en) Structure simulation method
JP2006163472A (en) Equivalent young's modulus calculation method and device
JP6405166B2 (en) Rubber product analysis method and computer program for analyzing rubber product
JP6312975B2 (en) Tire durability evaluation method and design method using the same
JP7343752B2 (en) Twisted structure model creation device, twisted structure model simulation method, and twisted structure model creation program
JP5075323B2 (en) Tire model creation method and tire model creation device
JP6286875B2 (en) Tire evaluation method and tire evaluation computer program
JP2003240651A (en) Physical quantity display method for tire
JP6163749B2 (en) Tire simulation method, tire characteristic evaluation method, tire manufacturing method
JP5785457B2 (en) Prediction method of tire durability
JP2013049383A (en) Simulation method and simulation device
JP2011213176A (en) Method of predicting tire performance and tire performance predicting device
JP2017129467A (en) Simulation method and evaluation method of pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4750984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees