JP2013200718A - Finite element model creation method of twisted cord, finite element model creation program, and finite element model creation apparatus - Google Patents
Finite element model creation method of twisted cord, finite element model creation program, and finite element model creation apparatus Download PDFInfo
- Publication number
- JP2013200718A JP2013200718A JP2012068763A JP2012068763A JP2013200718A JP 2013200718 A JP2013200718 A JP 2013200718A JP 2012068763 A JP2012068763 A JP 2012068763A JP 2012068763 A JP2012068763 A JP 2012068763A JP 2013200718 A JP2013200718 A JP 2013200718A
- Authority
- JP
- Japan
- Prior art keywords
- finite element
- twisted cord
- element model
- physical property
- stiffness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 68
- 230000000704 physical effect Effects 0.000 claims abstract description 106
- 230000006835 compression Effects 0.000 claims abstract description 89
- 238000007906 compression Methods 0.000 claims abstract description 89
- 239000000463 material Substances 0.000 claims abstract description 41
- 238000005452 bending Methods 0.000 claims description 102
- 239000007787 solid Substances 0.000 claims description 31
- 239000013013 elastic material Substances 0.000 claims description 24
- 239000004033 plastic Substances 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 7
- 238000004590 computer program Methods 0.000 claims 1
- 238000004364 calculation method Methods 0.000 abstract description 7
- 238000004458 analytical method Methods 0.000 description 24
- 230000014509 gene expression Effects 0.000 description 19
- 238000012360 testing method Methods 0.000 description 18
- 239000004760 aramid Substances 0.000 description 9
- 229920003235 aromatic polyamide Polymers 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000012545 processing Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
Abstract
Description
本発明は、コンピュータにより撚りコードの有限要素モデルを作成する撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置に関する。 The present invention relates to a twisted cord finite element model creating method, a finite element model creating program, and a finite element model creating device for creating a finite element model of a twisted cord by a computer.
従来から、伝動ベルトなどのベルトにおいて、金属、ガラス、その他高分子材料の繊維材料を撚った撚りコードを心線として、ゴムその他の高分子材料を補強している。そして、ベルトに用いられる撚りコードは、主に長手方向への「引張」、ベルト屈曲による「曲げ」、プーリへの噛み込み時の「径方向への圧縮」の三つの変形を受ける。そのため、有限要素法による構造解析の際には、これらの変形に対して適切な剛性を有する有限要素モデルを用いる必要がある。 Conventionally, in a belt such as a transmission belt, rubber and other polymer materials are reinforced by using a twisted cord obtained by twisting a metal, glass, or other polymer material as a core. The twisted cord used for the belt is mainly subjected to three deformations of “tensile” in the longitudinal direction, “bending” by bending the belt, and “compressing in the radial direction” when the pulley is engaged. Therefore, in the structural analysis by the finite element method, it is necessary to use a finite element model having appropriate rigidity against these deformations.
ここで、ベルトに用いられる撚りコードは、引張剛性に対して曲げ剛性は低い(即ち、引張に強く曲げやすい)。また、Vベルトがプーリに食い込むときにはベルトが幅方向に圧縮されるが、このとき内部の心線(撚りコード)も心線径方向に圧縮され、この径方向の圧縮剛性は、曲げ剛性よりも更に低い。このように、心線の各変形形態における剛性は、大きな方から順に、「引張剛性」>「曲げ剛性」>「径方向圧縮剛性」となるが、これらはそれぞれ2桁程度ずつの大きな違いとなる。そのため、有限要素モデルの構築には工夫が必要となる。 Here, the twist cord used for the belt has a low bending rigidity with respect to the tensile rigidity (that is, it is strong against tension and is easily bent). Further, when the V-belt bites into the pulley, the belt is compressed in the width direction. At this time, the inner core wire (twisted cord) is also compressed in the core wire radial direction, and the radial compression rigidity is larger than the bending rigidity. Even lower. Thus, the rigidity in each deformation form of the core wire is “tensile rigidity”> “bending rigidity”> “radial compression rigidity” in order from the largest, but these are large differences of about two digits each. Become. Therefore, a device is required for the construction of the finite element model.
そして、撚りコードを円柱状または多角形柱状で扱って有限要素モデルを作成する技術が開発されている。例えば、特許文献1に示す技術では、撚りコードをソリッド要素のみで有限要素モデルを作成しており、特許文献2に示す技術では、ソリッド要素に加えて長手方向にトラスやビームなどの補強要素を追加配置することにより有限要素モデルを作成しており、特許文献3に示す技術では、ソリッド要素の材料物性を異方性として、各方向の剛性を独立して調整することにより有限要素モデルを作成している。 Further, a technique for creating a finite element model by handling a twisted cord in a cylindrical shape or a polygonal column shape has been developed. For example, in the technique shown in Patent Document 1, a finite element model is created with only twisted cords, and in the technique shown in Patent Document 2, reinforcing elements such as trusses and beams are added in the longitudinal direction in addition to the solid elements. A finite element model is created by additional placement. The technology shown in Patent Document 3 creates a finite element model by independently adjusting the rigidity in each direction with the material properties of the solid element as anisotropic. doing.
しかしながら、従来の有限要素モデルでは、「引張剛性」、「曲げ剛性」、「径方向圧縮剛性」の3つの全ての剛性を正確に表すことが出来なかった。例えば、特許文献1に示すソリッド要素のみの有限要素モデルでは、等方性材料とすると剛性は上記3つの内、ただ一つにしか合わせられない。また、特許文献2に示すトラス要素を加えた有限要素モデルでも、長手方向の「引張剛性」と、「曲げ剛性」または「径方向圧縮剛性」のどちらか一方、つまり2つの剛性にしか合わせられない。更に、特許文献3に示す異方性の材料物性を用いれば3つの剛性に合わせられる可能性があるが、異方性材料物性の調整は難しく、従来技術においても、異方性物性を利用して3つの剛性に合わせた事例はない上に、簡易的な有限要素法解析ソフトウェアでは、異方性物性の設定が出来ない場合があり、汎用性に欠ける。従って、例示した特許文献1〜3のいずれも、上記3つの剛性を全て合わせることに関して言及しておらず、また、特許文献1〜3の技術を組み合わせても上記3つの剛性を全て合わせることは出来ない。 However, the conventional finite element model cannot accurately represent all three stiffnesses of “tensile stiffness”, “bending stiffness”, and “radial compression stiffness”. For example, in the finite element model having only solid elements shown in Patent Document 1, the rigidity can be adjusted to only one of the above three when the isotropic material is used. In addition, the finite element model including the truss element shown in Patent Document 2 can be adjusted only to one of “tension stiffness” in the longitudinal direction and “bending stiffness” or “radial compression stiffness”, that is, two stiffnesses. Absent. Furthermore, if the anisotropic material properties shown in Patent Document 3 are used, there is a possibility that the three stiffnesses can be adjusted. However, it is difficult to adjust the anisotropic material properties, and the conventional technology also uses anisotropic properties. In addition, there are no examples that match the three stiffnesses, and simple finite element method analysis software may not be able to set anisotropic physical properties, so it lacks versatility. Accordingly, none of the exemplified Patent Documents 1 to 3 refers to combining all the above three stiffnesses, and even combining the techniques of Patent Documents 1 to 3 does not combine all the above three stiffnesses. I can't.
そこで、コンピュータにより、「引張剛性」、「曲げ剛性」、「径方向圧縮剛性」の3つの剛性全てが目標値(試験で測定された値や、コードの設計段階で設定された値など)に合致する撚りコードの有限要素法モデルを作成することができる撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置を提供するものである。 Therefore, all three stiffnesses of “tensile stiffness”, “bending stiffness”, and “radial compression stiffness” are set to the target values (values measured in the test, values set at the code design stage) by the computer. A finite element model creation method, a finite element model creation program, and a finite element model creation apparatus for a twisted cord that can create a finite element method model of a matching twisted cord are provided.
本発明に係る撚りコードの有限要素モデル作成方法は、コンピュータにより撚りコードの有限要素モデルを作成する撚りコードの有限要素モデル作成方法であって、撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する工程と、前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する工程と、を備えることを特徴とする。 The method for creating a finite element model for a twisted cord according to the present invention is a method for creating a finite element model for a twisted cord by a computer, wherein the twisted cord is divided into two concentric layers, and the outermost A hollow cylinder of the outer member, a solid cylinder inside the outer member or a hollow cylinder as an inner member, a step of creating a finite element model by modeling with a solid element, and a tensile rigidity in the longitudinal direction of the twisted cord, Based on a theoretical formula and an approximate expression set in advance so that the bending stiffness accompanying the bending of the twisted cord and the radial compression stiffness of the twisted cord match the target value, the physical property value of the outer member of the finite element model And a step of setting a physical property value of the inner member and a diameter of the inner member.
本発明に係る撚りコードの有限要素モデル作成プログラムは、撚りコードの有限要素モデルを作成する撚りコードの有限要素モデル作成プログラムであって、撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する工程と、前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する工程と、をコンピュータに実行させることを特徴とする。 A twisted cord finite element model creating program according to the present invention is a twisted cord finite element model creating program for creating a stranded element finite element model, and the twisted cord is divided into two concentric layers, and the outermost hollow A step of creating a finite element model by modeling with a solid element using a cylinder as an outer member, a solid cylinder or a hollow cylinder inside the outer member as an inner member, and a tensile rigidity in the longitudinal direction of the twisted cord, the twisted cord The physical properties of the outer member of the finite element model based on the theoretical and approximate expressions set in advance so that the bending stiffness accompanying the bending of the wire and the radial compression stiffness of the twisted cord match the target value, And a step of setting a physical property value of the inner member and a diameter of the inner member.
本発明に係る撚りコードの有限要素モデル作成装置は、コンピュータ上に実装され、撚りコードの有限要素モデルを作成する撚りコードの有限要素モデル作成装置であって、撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する手段と、前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する手段と、を備えることを特徴とする。 The twisted cord finite element model creation device according to the present invention is a twisted cord finite element model creation device that is mounted on a computer and creates a finite element model of a twisted cord. The twisted cord is composed of two concentric circular layers. The outermost hollow cylinder as an outer member, the solid cylinder or hollow cylinder inside the outer member as an inner member, a means for modeling with a solid element to create a finite element model, and a longitudinal direction of the twisted cord The external of the finite element model is based on a theoretical formula and an approximate formula set in advance so as to match the tensile stiffness, the bending stiffness associated with the bending of the twisted cord, and the radial compression stiffness of the twisted cord with a target value. Means for setting a physical property value of the material, a physical property value of the inner member, and a diameter of the inner member.
これによると、撚りコードを同心円状に2層に分け、外側の中空円柱を外部材、内側の中空円柱または中実円柱を内部材とし、外部材と内部材とは異なる寸法と物性値の異なる材料とする有限要素モデルとし、予め設定した理論式及び近似式に基づいて、外部材の物性値(線形弾性問題においては、ヤング率とポアソン比)、内部材の物性値、内部材の直径(即ち、内部材と外部材の境界となる円筒面の直径)の3つ(なお、外部材の直径は、即ち撚りコードの直径となるため、その値に固定されて変更することはできない。)を適切に設定することにより、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を、全て同時に目標値(試験で測定された撚りコードの実際の値や、撚りコードの設計段階で設定された値など)に合わせることができ、実際の値に実用上問題のないレベルで合わせることができる。
即ち、撚りコードの3つの変形モード(引張、曲げ、径方向圧縮)についての試験から物性値を同定し、また、有限要素モデルの寸法を決めるためには、変形モードごとに下記の2つの理論式が必要となる。
1.試験(撚りコード寸法、外力、変位の各データ)から、剛性を計算する式。
2.有限要素モデル寸法、物性値(ヤング率等)の物性データから、剛性を計算する式。
つまり、試験から式1で計算された3つの剛性の値を基準(目標値)として、それに合うように有限要素モデル寸法、物性値とを合わせこむことにより、3つの剛性のすべてに合致する有限要素モデルを構築することができる。
According to this, the twisted cord is concentrically divided into two layers, the outer hollow cylinder is the outer member, the inner hollow cylinder or the solid cylinder is the inner member, and the outer member and the inner member have different dimensions and physical property values. The material is a finite element model, and based on a theoretical formula and approximation formula set in advance, the physical property value of the outer member (in the case of linear elasticity, Young's modulus and Poisson's ratio), the physical property value of the inner member, the diameter of the inner member ( That is, three diameters (the diameter of the cylindrical surface serving as a boundary between the inner member and the outer member) (Note that the diameter of the outer member is the diameter of the twisted cord, and thus is fixed to that value and cannot be changed). By appropriately setting the three values of the tensile strength in the longitudinal direction of the twisted cord, the bending stiffness accompanying bending, and the radial compressive stiffness, all the target values (actual values of the twisted cord measured in the test) Value and twisted cord design stage In can be tailored to, etc.) set value, it is possible to match the actual no practical problem on the value level.
That is, in order to identify physical property values from tests on three deformation modes (tensile, bending, and radial compression) of twisted cords and determine the dimensions of the finite element model, the following two theories are used for each deformation mode. An expression is required.
1. Formula to calculate rigidity from test (each data of twisted cord dimensions, external force, displacement).
2. Formula to calculate stiffness from physical property data of finite element model dimensions and physical property values (Young's modulus, etc.).
In other words, using the three stiffness values calculated from Equation 1 from the test as the reference (target value), and matching the finite element model dimensions and physical property values to match them, the finiteness that matches all three stiffnesses An element model can be constructed.
また、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、前記物性値は、線形等方性弾性材料、線形異方性弾性材料、超弾性材料、或いは、塑性材料を用いて良い。 The twisted cord finite element model creation method, the finite element model creation program, and the finite element model creation device according to the present invention are characterized in that the physical property values are linear isotropic elastic material, linear anisotropic elastic material, and superelastic material. Alternatively, a plastic material may be used.
これによると、外部材の物性値及び内部材の物性値は、基本は線形等方性弾性材料(ヤング率とポアソン比)だが、それ以外にも、線形異方性弾性材料、超弾性材料、或いは、塑性材料を用いることにより、線形等方性弾性以外の材料挙動を表現できるという利点がある。 According to this, the physical property value of the outer member and the physical property value of the inner member are basically linear isotropic elastic material (Young's modulus and Poisson's ratio), but besides that, linear anisotropic elastic material, super elastic material, Or there exists an advantage that material behavior other than linear isotropic elasticity can be expressed by using a plastic material.
また、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、前記撚りコードを同心円状の3層以上で分けて良い。 In addition, the twisted cord finite element model creation method, the finite element model creation program, and the finite element model creation device according to the present invention may divide the twisted cord into three or more concentric layers.
これによると、撚りコードを同心円状に3層以上に分け、最も外側の中空円柱を外部材、内側の中空円柱または中実円柱を内部材とし、外部材と複数の内部材とは異なる寸法と物性値の異なる材料とする有限要素モデルとすることにより、調整の自由度が増えるという利点がある。 According to this, the twisted cord is concentrically divided into three or more layers, the outermost hollow cylinder is the outer member, the inner hollow cylinder or the solid cylinder is the inner member, and the outer member and the plurality of inner members have different dimensions. By using a finite element model with materials having different physical property values, there is an advantage that the degree of freedom of adjustment increases.
また、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、前記有限要素モデルは、ソリッド要素に、トラス要素又はビーム要素を組み合わせてモデル化して良い。 Further, in the finite element model creation method, the finite element model creation program, and the finite element model creation apparatus for the twisted cord according to the present invention, the finite element model may be modeled by combining a truss element or a beam element with a solid element. .
これによると、ソリッド要素にトラス要素(曲げ剛性を有しない棒要素)またはビーム要素(曲げ剛性を有する棒要素)を組み合わせることにより、調整の自由度が増えるという利点がある。 According to this, there is an advantage that the degree of freedom of adjustment is increased by combining the truss element (bar element not having bending rigidity) or the beam element (bar element having bending rigidity) with the solid element.
尚、本発明に係る撚りコードの有限要素モデル作成プログラムは、リムーバブル型記録媒体やハードディスクなどの固定型記録媒体に記録して配布可能である他、有線又は無線の電気通信手段によってインターネットなどの通信ネットワークを介して配布可能である。 Note that the finite element model creation program for twisted cords according to the present invention can be recorded and distributed on a fixed recording medium such as a removable recording medium or a hard disk, or can be communicated by the wired or wireless telecommunication means such as the Internet. Distribution is possible via a network.
本発明の撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、撚りコードを同心円状に2層に分け、外側の中空円柱を外部材、内側の中空円柱または中実円柱を内部材とし、外部材と内部材とは異なる寸法と物性値の異なる材料とする有限要素モデルとし、予め設定した理論式及び近似式に基づいて、外部材の物性値(線形弾性問題においては、ヤング率とポアソン比)、内部材の物性値、内部材の直径(即ち、内部材と外部材の境界となる円筒面の直径)の3つを適切に設定することにより、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を、全て同時に目標値(試験で測定された撚りコードの実際の値や、撚りコードの設計段階で設定された値など)に合わせることができ、実際の値に実用上問題のないレベルで合わせることができる。 The twisted cord finite element model creating method, the finite element model creating program, and the finite element model creating device according to the present invention divide the twisted cord into two layers concentrically, the outer hollow cylinder as the outer member, the inner hollow cylinder or the middle A real cylinder is used as the inner member, and the outer member and inner member are made of finite element models with different dimensions and physical property values. Based on preset theoretical and approximate equations, the physical properties of the outer member (linear elasticity problem) In this case, the twisted cord is set by appropriately setting three of the Young's modulus and Poisson's ratio), the physical property value of the inner member, and the diameter of the inner member (that is, the diameter of the cylindrical surface serving as the boundary between the inner member and the outer member). The three values of tensile stiffness in the longitudinal direction, bending stiffness associated with bending, and radial compression stiffness are all set at the same time (the actual value of the twisted cord measured in the test and the design phase of the twisted cord). The Can be adjusted to a value, etc.), it can be combined with no actual values practical problem level.
以下、図面を参照しつつ、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置を実施するための形態について、具体的な一例に即して説明する。尚、以下に説明するものは、例示したものにすぎず、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置の適用限界を示すものではない。すなわち、本発明に係る撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、下記の実施形態に限定されるものではなく、特許請求の範囲に記載した限りにおいてさまざまな変更が可能なものである。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for implementing a finite element model creation method, a finite element model creation program, and a finite element model creation apparatus for a twisted cord according to the present invention will be described based on a specific example with reference to the drawings. . In addition, what is demonstrated below is only what was illustrated and does not show the application limit of the finite element model creation method of a twisted cord, a finite element model creation program, and a finite element model creation apparatus concerning the present invention. That is, the finite element model creation method, the finite element model creation program, and the finite element model creation device of the twisted cord according to the present invention are not limited to the following embodiments, and various as long as they are described in the claims. Can be changed.
まず、本実施形態に係る撚りコードの有限要素モデル作成方法について、図1に基づいて説明する。図1は、本実施形態に係る撚りコードの有限要素モデル作成方法の処理の手順を示すフローチャート図である。
尚、以下で説明する本実施形態に係る撚りコードの有限要素モデル作成方法の処理は、計算機においても同様に、撚りコードの有限要素モデル作成プログラムとしてCPUにより読み出して実行することができる。また、この撚りコードの有限要素モデル作成プログラムは、リムーバブルな記憶媒体に記録しておくことにより、様々な計算機の記憶装置にインストールすることが可能である。
First, a method for creating a finite element model of a twisted cord according to the present embodiment will be described with reference to FIG. FIG. 1 is a flowchart showing a processing procedure of a finite element model creation method for twisted cords according to the present embodiment.
Note that the processing of the twisted cord finite element model creating method according to the present embodiment described below can be similarly read and executed by the CPU as a twisted cord finite element model creating program in a computer. Further, the finite element model creation program for the twisted cord can be installed in storage devices of various computers by recording it on a removable storage medium.
図1に示すように、コンピュータにおいて、図3に示す撚りコード3の有限要素モデルに基づいて、外部材1の物性値及び寸法値(即ち直径)、内部材2の物性値及び寸法値(即ち直径)の初期値を設定する(ステップS1)。ここで、本実施形態に係る撚りコードの有限要素モデルについて、図3に基づいて、説明する。図3は、本実施形態に係る撚りコードの有限要素モデルとして、撚りコードを外部材と内部材に分けた状態を示す図である。本実施形態に係る撚りコード3は、図3に示すように、同心円状の2層の円柱として、ソリッド要素で有限要素モデルとし、外側の中空円柱部を外部材1、内側の中実円柱部を内部材2と称する。そして、外部材1と内部材2とは物性値の異なる材料とする。また、本実施形態に係る撚りコード3の外部材1の物性値、内部材2の物性値は、線形等方性弾性材料であるヤング率とポアソン比とする。また、外部材1の直径は、固定値であり、撚りコードの直径と等しくなる。ここで、固定条件として、外部材1の直径以外にも、外部材1あるいは内部材2の物性値の一部を固定値として設定しても良い。尚、このステップにおいて、撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の初期値は、設定しなくても良い。 As shown in FIG. 1, in a computer, based on the finite element model of the twisted cord 3 shown in FIG. 3, the physical property value and dimension value (that is, diameter) of the outer member 1, and the physical property value and dimension value of the inner member 2 (that is, An initial value of (diameter) is set (step S1). Here, the finite element model of the twisted cord according to the present embodiment will be described with reference to FIG. FIG. 3 is a diagram showing a state in which the twisted cord is divided into an outer member and an inner member as a finite element model of the twisted cord according to the present embodiment. As shown in FIG. 3, the twisted cord 3 according to the present embodiment is a finite element model made of solid elements as two concentric circular cylinders, the outer hollow cylindrical part is the outer member 1, and the inner solid cylindrical part Is called the inner member 2. The outer member 1 and the inner member 2 are made of materials having different physical property values. Further, the physical property value of the outer member 1 and the physical property value of the inner member 2 of the twisted cord 3 according to this embodiment are a Young's modulus and a Poisson's ratio, which are linear isotropic elastic materials. Moreover, the diameter of the outer member 1 is a fixed value, and is equal to the diameter of the twisted cord. Here, as a fixing condition, in addition to the diameter of the outer member 1, a part of the physical property value of the outer member 1 or the inner member 2 may be set as a fixed value. In this step, the physical property value of the outer member 1 of the twisted cord 3, the physical property value of the inner member 2, and the initial value of the diameter of the inner member 2 need not be set.
次に、引張剛性、曲げ剛性及び径方向圧縮剛性の目標値を設定する(ステップS2)。目標値は、実際の撚りコードの各剛性を試験により測定した値や、撚りコードの設計段階で設定された値等である。試験では、撚りコードを心線としたベルトを用いてもよい。 Next, target values for tensile rigidity, bending rigidity and radial compression rigidity are set (step S2). The target value is a value obtained by measuring each rigidity of an actual twisted cord by a test, a value set at the design stage of the twisted cord, or the like. In the test, a belt having a twisted cord as a cord may be used.
そして、撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を変量する(ステップS3)。変量条件として、固定された外部材1の直径に対する内部材2の直径の複数種類の比率や、外部材1の物性値に対する内部材2の物性値の複数種類の比率で設定する。ここで、固定された外部材1の直径に対する内部材2の直径の複数種類の比率は、0.2以上0.7以下であることが好ましい。固定された外部材1の直径に対する内部材2の直径の複数種類の比率が0.2より小さいと有限要素メッシュが細かくなりすぎ、解析効率が低下するからである。また、固定された外部材1の直径に対する内部材2の直径の複数種類の比率が0.7より大きいと、後述する径方向圧縮剛性の近似式の範囲外となるからである。 And the physical property value of the outer member 1 of the twisted cord 3, the physical property value of the inner member 2, and the value of the diameter of the inner member 2 are varied (step S3). As a variable condition, a ratio of a plurality of types of the diameter of the inner member 2 to a diameter of the fixed outer member 1 and a ratio of a plurality of types of physical property values of the inner member 2 to the physical property values of the outer member 1 are set. Here, the ratio of the plurality of types of the diameter of the inner member 2 to the diameter of the fixed outer member 1 is preferably 0.2 or more and 0.7 or less. This is because if the ratio of the plurality of types of the diameter of the inner member 2 to the diameter of the fixed outer member 1 is smaller than 0.2, the finite element mesh becomes too fine and the analysis efficiency decreases. Further, when the ratio of the plurality of types of the diameter of the inner member 2 to the diameter of the fixed outer member 1 is larger than 0.7, it is outside the range of the approximate expression of the radial compression rigidity described later.
次に、予め設定した理論式及び近似式に基づいて、引張剛性、曲げ剛性及び径方向圧縮剛性を計算する(ステップS4)。
ここで、本実施形態に係る撚りコードの物性データに基づいて、本実施形態に係る撚りコードの引張剛性、曲げ剛性及び径方向圧縮剛性を計算するために、予め設定した理論式及び近似式の定義について、図4〜図6に基づいて、以下で説明する。図4は、本実施形態に係る撚りコードの引張剛性を示す図である。図5は、本実施形態に係る撚りコードの曲げ剛性を示す図である。図6は、本実施形態に係る撚りコードの径方向圧縮剛性を示す図である。尚、後述するが、撚りコードの物性データから撚りコードの引張剛性及び曲げ剛性を計算するための式は、理論式で表現でき、撚りコードの物性データから撚りコードの径方向圧縮剛性を計算するための式は、近似式で表現する。
また、図3に示す本実施形態に係る撚りコードの有限要素モデルについて、外部材1のヤング率をE1、ポアソン比をν1とし、内部材2のヤング率をE2、ポアソン比をν2とする。
Next, the tensile stiffness, the bending stiffness, and the radial compression stiffness are calculated based on a preset theoretical formula and approximate formula (step S4).
Here, based on the physical property data of the twisted cord according to the present embodiment, in order to calculate the tensile stiffness, bending stiffness and radial compression stiffness of the twisted cord according to the present embodiment, The definition will be described below with reference to FIGS. FIG. 4 is a diagram showing the tensile rigidity of the twisted cord according to the present embodiment. FIG. 5 is a diagram showing the bending rigidity of the twisted cord according to the present embodiment. FIG. 6 is a diagram showing the radial compression stiffness of the twisted cord according to the present embodiment. As will be described later, formulas for calculating the tensile stiffness and bending stiffness of the twisted cord from the physical property data of the twisted cord can be expressed by theoretical equations, and the radial compression stiffness of the twisted cord is calculated from the physical property data of the twisted cord. The expression for this is expressed by an approximate expression.
Further, in the finite element model of the twisted cord according to this embodiment shown in FIG. 3, the Young's modulus of the outer member 1 is E 1 , the Poisson's ratio is ν 1 , the Young's modulus of the inner member 2 is E 2 , and the Poisson's ratio is ν. 2 .
[撚りコードの引張剛性]
撚りコードの引張剛性に関しては、図4に示すとおり、元の長さがL0の撚りコード3を長手方向にFSの力で引っ張り、長さがLになったとする。また、外部材1の断面積をA1、内部材2の断面積をA2とする。
まず、試験から剛性を計算する式を検討する。元の長さがL0の撚りコード3を長手方向にFSの力で引っ張り、長さがLになったときの工学ひずみをεSとすると、εSは下記の通りとなる。
εS=(L−L0)/L0 式(1.1)
このときの引張剛性をKS とすると、KSは、「単位ひずみを生じさせる力」となり、数1に示す式(1.2)となる。単位は、力の単位(SI単位系では[N])となる。
[Tensile rigidity of twisted cord]
Regarding the tensile rigidity of the twisted cord, as shown in FIG. 4, it is assumed that the length of the twisted cord 3 whose original length is L 0 is pulled by the force of F S in the longitudinal direction and the length becomes L. The cross-sectional area of the outer member 1 is A 1 and the cross-sectional area of the inner member 2 is A 2 .
First, consider the formula for calculating stiffness from the test. When the twisted cord 3 having the original length L 0 is pulled in the longitudinal direction by the force of F S and the engineering strain when the length becomes L is ε S , ε S is as follows.
ε S = (L−L 0 ) / L 0 formula (1.1)
If the tensile stiffness of the time and K S, K S is a next "force causes the unit strain", the formula shown in Equation 1 (1.2). The unit is a unit of force ([N] in the SI unit system).
次に、物性データから剛性を計算する式を検討する。撚りコード3全体に作用する力Fを、外部材1が受け持つ力F1と、内部材2が受け持つ力F2に分けて考え、応力とひずみの式「σ=E・ε」、応力の定義「σ=F/A」を考慮すると、力Fは、数2に示す式(1.3)となる。 Next, the formula for calculating the stiffness from the physical property data is examined. The force F acting on the entire twisted cord 3 is divided into the force F 1 that the outer member 1 takes and the force F 2 that the inner member 2 takes, and the stress and strain equation “σ = E · ε”, the definition of stress In consideration of “σ = F / A”, the force F is expressed by Equation (1.3) shown in Formula 2.
したがって、式(1.3)を式(1.2)に代入すると、引張剛性KSについて、数3に示す式(1.4)が得られ、物性値(E)と寸法(A)から剛性が計算できる。尚、D1は外部材1の径であり、定数となる。 Therefore, when the formula (1.3) is substituted into the formula (1.2), the formula (1.4) shown in Equation 3 is obtained for the tensile stiffness K S , from the physical property value (E) and the dimension (A). Stiffness can be calculated. D 1 is the diameter of the outer member 1 and is a constant.
[撚りコードの曲げ剛性]
撚りコードの曲げ剛性に関しては、図5に示すとおり、元が直線状の撚りコードを、力のモーメントMで屈曲させ、撚りコード中心軸の曲率半径がRになったとする。また、外部材1の断面2次モーメントをI1、内部材2の断面2次モーメントをI2とする。
まず、試験から剛性を計算する式を検討する。このとき、曲げ剛性をKBとすると、試験結果からKBは下記の式(2.1)にて求められる。単位は、力の単位×長さの単位×長さの単位(SI単位系では、[N・m2])となる。
KB=M・R 式(2.1)
[Bending rigidity of twisted cord]
Regarding the bending rigidity of the twisted cord, as shown in FIG. 5, it is assumed that the originally straight twisted cord is bent at a moment of force M and the radius of curvature of the central axis of the twisted cord becomes R. Further, the cross-sectional secondary moment of the outer member 1 is I 1 , and the cross-sectional secondary moment of the inner member 2 is I 2 .
First, consider the formula for calculating stiffness from the test. In this case, when the bending rigidity and K B, K B from the test results obtained by the following equation (2.1). The unit is force unit × length unit × length unit ([N · m 2 ] in the SI unit system).
K B = M · R Formula (2.1)
次に、物性データから剛性を計算する式を検討する。撚りコード3全体の曲げ剛性KBは、外部材1の曲げ剛性KB1と、内部材2の曲げ剛性KB2の和になり、曲げ剛性は、ヤング率Eと断面2次モーメントIの積であることから、全体の曲げ剛性は、下記の数4に示す式(2.2)となる。尚、数4に示す式(2.2)では、円断面の断面2次モーメントの式「I=πD4/64」を用いている。 Next, the formula for calculating the stiffness from the physical property data is examined. Flexural rigidity of the entire twisted cord 3 K B is the bending stiffness K B1 of the outer member 1, the sum of the flexural rigidity K B2 of the inner member 2, the bending rigidity is the product of the Young's modulus E and geometrical moment of inertia I Therefore, the overall bending rigidity is expressed by the following equation (2.2) shown in the following equation 4. Note that in Formula (2.2) shown in Expression 4, the second moment of the circular cross-section the formula "I = [pi] D 4/64" used.
[撚りコードの径方向圧縮剛性]
撚りコードの径方向圧縮剛性に関しては、材料力学上の定義はないが、実用上の定義として、下記の通り定めるものとする。図6に示すとおり、撚りコードを径方向に剛体板で挟み、径方向に、撚りコードの単位長さあたりFrの力で圧縮する。これで元の撚りコード直径D0がDになったとする。ここで、単位長さとは、撚りコードの長さであって、図6の垂直方向の長さとなる。
まず、試験から剛性を計算する式を検討する。径方向に、撚りコードの単位長さあたりFrの力で圧縮し、撚りコード直径D0がDになった際の、径方向のひずみεrを下式の通り定義する。尚、圧縮変化なので、本来のひずみの定義ならば、εrは負の値となるが、以後の計算を単純化するため、圧縮時に正の値になるようにしている。
εr=(D−D0)/D0 式(3.1)
このときの径方向圧縮剛性をKrとして、Krを下式で定義する。この剛性は、「撚りコードの単位長さあたりの、径方向圧縮剛性」として定義される。単位は、力の単位(SI単位系では[N])となる。
Kr=Fr/εr=FD0/(D−D0) 式(3.2)
[Radial compression stiffness of twisted cord]
Regarding the radial compression stiffness of the twisted cord, there is no definition in terms of material mechanics, but a practical definition is as follows. As shown in FIG. 6, the twisted cord is sandwiched between rigid plates in the radial direction, and compressed in the radial direction with a force of Fr per unit length of the twisted cord. This original twisted cord diameter D 0 is to become D. Here, the unit length is the length of the twisted cord and is the length in the vertical direction of FIG.
First, consider the formula for calculating stiffness from the test. The radial strain ε r when the twisted cord diameter D 0 becomes D when compressed in the radial direction with a force of F r per unit length of the twisted cord is defined as follows. Since compression changes, if the original strain of definition, epsilon r is a negative value, to simplify the subsequent computation, so that a positive value at the time of compression.
ε r = (D−D 0 ) / D 0 formula (3.1)
The radial compression stiffness at this time is defined as Kr , and Kr is defined by the following equation. This stiffness is defined as “radial compression stiffness per unit length of twisted cord”. The unit is a unit of force ([N] in the SI unit system).
K r = F r / ε r = FD 0 / (D-D 0) Equation (3.2)
次に、物性データから剛性を計算する式を検討する。図6の変形状態については、力Frとひずみεrの関係式を理論で導くことが難しい。従って、有限要素法解析を用いて近似式を求める。即ち、図6の変形状態を有限要素法解析で模擬し、力Frと径方向ひずみεrから径方向剛性Krを求める。そして、外部材1・内部材2の物性や寸法を変量して解析し、その結果から規則性を見つけ出して、近似式として一般化する。
図7に径方向圧縮剛性の近似式を導出するための有限要素法解析モデルを示す。
また、有限要素法解析の解析方法等は以下の通りとした。
・形状と荷重の対称性から、1/4円モデルとした。
・要素は平面ひずみ要素を用い、厚みは、単位厚み(1mm)とした。
・剛体面と心線間の摩擦は無し(摩擦無し接触)とした。
・材料物性は線形弾性材料とした(ヤング率とポアソン比で定義)。
・接触を含むため、大変形オプションはONにした。
また、有限要素法解析の条件として、下記の通りとした。
<固定条件>
・外部材1直径: 2mm(半径1mm)
・外部材1ヤング率: 1.0 [MPa]
・径方向ひずみ: 0.1(10%)
<変量条件>
内部材2の直径とヤング率を、外部材1に対する比率で表して変量した。
・内部材2直径/外部材1直径(D2/D1):0,0.1,0.2,0.3,0.4,0.5,0.6,0.7(0.7以上は、外部材の潰れが大きく、計算出来なかった)
・内部材2ヤング率/外部材1ヤング率(E2/E1):1,2,5,10,20,50,100,1000,10000
Next, the formula for calculating the stiffness from the physical property data is examined. Regarding the deformed state of FIG. 6, it is difficult to theoretically derive the relational expression between the force F r and the strain ε r . Therefore, an approximate expression is obtained using finite element method analysis. That is, to simulate the deformed state of FIG. 6 in finite element analysis to determine the radial stiffness K r from the force F r and the radial strain epsilon r. Then, the physical properties and dimensions of the outer member 1 and the inner member 2 are varied and analyzed, and regularity is found from the results and generalized as an approximate expression.
FIG. 7 shows a finite element method analysis model for deriving an approximate expression of radial compression stiffness.
The analysis method of the finite element method analysis was as follows.
-Due to symmetry of shape and load, a quarter circle model was used.
-A plane strain element was used as the element, and the thickness was a unit thickness (1 mm).
・ There was no friction between the rigid surface and the core wire (contact without friction).
-The material properties were linear elastic materials (defined by Young's modulus and Poisson's ratio).
・ The large deformation option was turned on because it included contact.
The conditions for the finite element method analysis were as follows.
<Fixed conditions>
・ Outer member 1 diameter: 2 mm (radius 1 mm)
-Outer member 1 Young's modulus: 1.0 [MPa]
-Radial strain: 0.1 (10%)
<Variable conditions>
The diameter and Young's modulus of the inner member 2 were expressed as a ratio with respect to the outer member 1 and varied.
Inner member 2 diameter / outer member 1 diameter (D 2 / D 1 ): 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 (0. 7 and above could not be calculated due to the large collapse of the outer member)
Inner member 2 Young's modulus / outer member 1 Young's modulus (E 2 / E 1 ): 1, 2, 5, 10, 20, 50, 100, 1000, 10000
以上の条件で、有限要素法解析を行い、解析結果に基づいて、撚りコードの単位長さあたりの径方向圧縮剛性(Kr)を計算し、横軸にE2/E1、縦軸にKrを取って、D2/D1毎にプロットしたグラフを、図8に示す(図8の横軸は対数目盛になっている)。図8は、本実施形態に係る撚りコードの径方向圧縮剛性の有限要素法解析結果を示す図である。
図8を見ると、E2/E1が約50以上の領域においては、Krの変化がほとんど無いことが分かる。つまり、内部材2が外部材1よりも50倍以上大きいヤング率なら、その値はいくらであってもKrには影響しないということになる。内部材は主に引張剛性を調整する役割を持っているため、通常は外部材よりも数桁大きなヤング率になる。そのため、「50倍以上大きい」という制約条件はあまり問題がなく、それによってE2がKrに対して無関係になる(独立性が高まる)。従って、E2/E1は近似式に含めないことにする。
Under the above conditions, the finite element method analysis is performed, and based on the analysis result, the radial compression stiffness (K r ) per unit length of the twisted cord is calculated. The horizontal axis represents E 2 / E 1 , and the vertical axis represents FIG. 8 shows a graph in which Kr is taken and plotted for each D 2 / D 1 (the horizontal axis of FIG. 8 is a logarithmic scale). FIG. 8 is a diagram showing a finite element method analysis result of the radial compression stiffness of the twisted cord according to the present embodiment.
FIG. 8 shows that there is almost no change in Kr in the region where E 2 / E 1 is about 50 or more. That is, if the inner member 2 is 50 times or more greater Young's modulus than the outer member 1, the values are that it does not affect the K r be much. Since the inner member mainly has a role of adjusting the tensile rigidity, it usually has a Young's modulus several orders of magnitude greater than that of the outer member. Therefore, the constraint condition of “50 times larger” is not a problem, and E 2 becomes irrelevant to K r (independence is increased). Therefore, E 2 / E 1 is not included in the approximate expression.
次に、径方向圧縮剛性の近似式を導出する。図9は、本実施形態に係る撚りコードの径方向圧縮剛性と外部材と内部材の直径の比率との関係を示す図である。図9は、E2/E1=10000の値を用い、D2/D1とKrの関係をプロットし、エクセルのグラフ機能で2次式近似した結果である。この図9から、D1=2[mm]、E1=1.0[MPa]の時の径方向圧縮剛性は数5で示す式(3.3)で近似出来る。 Next, an approximate expression of radial compression stiffness is derived. FIG. 9 is a diagram showing the relationship between the radial compression stiffness of the twisted cord according to this embodiment and the ratio of the diameters of the outer member and the inner member. FIG. 9 is a result of plotting the relationship between D 2 / D 1 and K r using a value of E 2 / E 1 = 10000, and approximating a quadratic equation using the Excel graph function. From FIG. 9, the radial compression stiffness when D 1 = 2 [mm] and E 1 = 1.0 [MPa] can be approximated by the equation (3.3) expressed by Equation 5.
これまでは外部材1の径(D1)とヤング率(E1)を固定していたが、次に任意のD1、E1について考える。まず、ヤング率E1については、E2/E1が固定されている場合、E1がA倍になれば、E2もA倍になるので、有限要素モデル全体のヤング率が一斉にA倍となる。従って、径方向圧縮剛性Krも単純にA倍すれば良い。上述の式(3.3)はE1=1.0[MPa]の場合の式なので、任意のE1の場合はE1倍すればよい。次にD1だが、D2/D1が固定されていると、D1がA倍になるとD2もA倍になるので、モデル全体が相似形でA倍に拡大されることになる(平面ひずみ要素の厚みは、単位厚みのまま)。したがって、径方向圧縮剛性もA倍となる。上述の式(3.3)はD1=2[mm]の場合の式なので、任意のD1の場合は(D1/2)倍すれば良い。
以上から、任意のE1、E2、D1、D2に対する径方向圧縮剛性Krの近似式は、数6で示す下記の式(3.4)の通りとなる。尚、式(3.4)において、Krの単位:N、E1の単位:MPa、 D1及びD2の単位:mmである。
Until now, the diameter (D 1 ) and Young's modulus (E 1 ) of the outer member 1 have been fixed. Next, arbitrary D 1 and E 1 will be considered. First, regarding the Young's modulus E 1 , when E 2 / E 1 is fixed, if E 1 becomes A times, E 2 also becomes A times, so the Young's modulus of the entire finite element model is A Doubled. Accordingly, the radial compressive stiffness K r also may be simply A multiplied by. Since the above equation (3.3) is a formula in the case of E 1 = 1.0 [MPa], in the case of any E 1 may be multiplied by E 1. Next, D 1 is fixed, but if D 2 / D 1 is fixed, if D 1 becomes A times, D 2 also becomes A times, so that the entire model is enlarged to A times in a similar shape ( The thickness of the plane strain element remains the unit thickness). Accordingly, the radial compression rigidity is also A times. Since the above equation (3.3) is a formula in case of D 1 = 2 [mm], in the case of any D 1 may be multiplied by (D 1/2).
From the above, the approximate expression of the radial compression stiffness Kr for any E 1 , E 2 , D 1 , D 2 is expressed by the following expression (3.4) shown in Equation 6. In Expression (3.4), a unit of K r: N, the unit of E 1: MPa, the D 1 and D 2 Unit: it is in mm.
そして、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致したかどうかを判断する(ステップS5)。ここで、目標値に対する計算された値と目標値との差の比率を誤差とし、所定の誤差として許容できる範囲(例えば、±5%の範囲など)を予め設定する。 Then, it is determined whether or not the calculated values of tensile rigidity, bending rigidity, and radial compression rigidity coincide with the target values within a predetermined error range (step S5). Here, the ratio of the difference between the calculated value with respect to the target value and the target value is set as an error, and a range allowable as a predetermined error (for example, a range of ± 5%) is set in advance.
そして、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致していないと判断された場合(ステップS5:NO)、ステップS3に戻る。 If it is determined that the calculated tensile stiffness, bending stiffness, and radial compression stiffness do not match the target value within a predetermined error range (step S5: NO), the process returns to step S3.
一方、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致していると判断された場合(ステップS5:YES)、ステップS4で算出された撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を出力する(ステップS6)。尚、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致している場合が複数ある際には、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値と目標値との誤差がもっとも小さい外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を出力する。 On the other hand, when it is determined that the calculated values of tensile stiffness, bending stiffness, and radial compression stiffness match the target values within a predetermined error range (step S5: YES), the values calculated in step S4 are calculated. The physical property value of the outer member 1 of the twisted cord 3, the physical property value of the inner member 2, and the value of the diameter of the inner member 2 are output (step S6). When there are multiple cases where the calculated tensile stiffness, bending stiffness, and radial compression stiffness are consistent with the target value within a predetermined error range, the calculated tensile stiffness, bending stiffness, and diameter The physical property value of the outer member 1, the physical property value of the inner member 2, and the diameter value of the inner member 2 with the smallest error between the value of the directional compression stiffness and the target value are output.
以上により、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を全て同時に目標値に合わせた撚りコードの有限要素モデルが作成される。 As described above, a finite element model of a twisted cord in which the three stiffnesses of the tensile strength in the longitudinal direction of the twisted cord, the bending stiffness accompanying bending, and the radial compression stiffness are all adjusted to the target value at the same time is created.
次に、本実施形態に係る撚りコードの有限要素モデル作成装置について、図2に基づいて説明する。図2は、本実施形態に係る撚りコードの有限要素モデル作成装置のブロック図である。撚りコードの有限要素モデル作成装置10は、演算部と、記憶部と、入力部と、出力部と、から構成されて、コンピュータ上に実装される。ここで、図2に示されている撚りコードの有限要素モデル作成装置10の各部(演算部、記憶部、入力部、及び、出力部)は、例えば汎用のパーソナルコンピュータ等の計算機によって構成されている。かかる計算機には、CPU、ROM、RAM、ハードディスク、CD−ROMの駆動装置などのハードウェアが収納されており、ハードディスクには、プログラム(このプログラムは、リムーバブルな記憶媒体に記録しておくことにより、様々なコンピュータにインストールすることが可能である)を含む各種のソフトウェアが記録されている。そして、これらのハードウェアおよびソフトウェアが組み合わされることによって、上述の各部が構築されている。 Next, a twisted cord finite element model creating apparatus according to the present embodiment will be described with reference to FIG. FIG. 2 is a block diagram of a twisted cord finite element model creation device according to the present embodiment. The twisted cord finite element model creation device 10 includes an arithmetic unit, a storage unit, an input unit, and an output unit, and is mounted on a computer. Here, each unit (arithmetic unit, storage unit, input unit, and output unit) of the twisted cord finite element model creation device 10 shown in FIG. 2 is configured by a computer such as a general-purpose personal computer. Yes. Such a computer stores hardware such as a CPU, ROM, RAM, hard disk, and CD-ROM drive, and the hard disk stores a program (this program is recorded on a removable storage medium). Can be installed on a variety of computers). And the above-mentioned each part is constructed | assembled by combining these hardware and software.
撚りコードの有限要素モデル作成装置10は、外部材の物性値、内部材の物性値及び内部材の直径の初期値11と、引張剛性、曲げ剛性及び径方向圧縮剛性の目標値12と、外部材の物性値、内部材の物性値及び内部材の直径の変量部21と、理論式・近似式による引張剛性、曲げ剛性及び径方向圧縮剛性計算部22と、引張剛性、曲げ剛性及び径方向圧縮剛性比較部23と、引張剛性、曲げ剛性及び径方向圧縮剛性出力部24とを備える。 The apparatus 10 for creating a finite element model of a twisted cord includes a physical property value of an outer member, a physical property value of an inner member, and an initial value 11 of a diameter of the inner member, a target value 12 of tensile stiffness, bending stiffness, and radial compression stiffness, Variable part 21 of material physical property value, internal member physical property value and inner member diameter, tensile stiffness, bending stiffness and radial compression stiffness calculation unit 22 by theoretical formula / approximation formula, tensile stiffness, bending stiffness and radial direction A compression stiffness comparison unit 23 and a tensile stiffness, bending stiffness and radial compression stiffness output unit 24 are provided.
外部材の物性値、内部材の物性値及び内部材の直径の初期値11は、図3に示す撚りコード3の有限要素モデルに基づいて、外部材1の物性値及び寸法値(即ち直径)、内部材2の物性値及び寸法値(即ち直径)の初期値が、入力部やネットワークを介して入力されて記憶するためのものである。なお、外部材の物性値、内部材の物性値及び内部材の直径の初期値11の作用は、上述した撚りコードの有限要素モデル作成方法のステップS1の処理と同じであり、詳細な説明を省略する。 The physical property value of the outer member, the physical property value of the inner member, and the initial value 11 of the inner member diameter are based on the finite element model of the twisted cord 3 shown in FIG. The initial values of the physical property value and the dimension value (that is, the diameter) of the inner member 2 are input and stored via an input unit or a network. In addition, the effect | action of the physical property value of an outer member, the physical property value of an inner member, and the initial value 11 of the diameter of an inner member is the same as the process of step S1 of the finite element model preparation method of the twisted cord mentioned above, Detailed description Omitted.
引張剛性、曲げ剛性及び径方向圧縮剛性の目標値12は、引張剛性、曲げ剛性及び径方向圧縮剛性の目標値が、入力部やネットワークを介して入力されて記憶するためのものである。なお、引張剛性、曲げ剛性及び径方向圧縮剛性の目標値12の作用は、上述した撚りコードの有限要素モデル作成方法のステップS2の処理と同じであり、詳細な説明を省略する。 The target values 12 of the tensile stiffness, the bending stiffness, and the radial compression stiffness are for inputting and storing the target values of the tensile stiffness, the bending stiffness, and the radial compression stiffness via the input unit or the network. In addition, the effect | action of the target value 12 of tensile rigidity, bending rigidity, and radial direction compression rigidity is the same as the process of step S2 of the finite element model preparation method of the twisted cord mentioned above, and detailed description is abbreviate | omitted.
外部材の物性値、内部材の物性値及び内部材の直径の変量部21は、撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を変量するためのものである。なお、外部材の物性値、内部材の物性値及び内部材の直径の変量部21の作用は、上述した撚りコードの有限要素モデル作成方法のステップS3の処理と同じであり、詳細な説明を省略する。 The variable part 21 of the physical property value of the external material, the physical property value of the internal member, and the diameter of the internal member, the physical property value of the external member 1 of the twisted cord 3, the physical property value of the internal member 2, and the value of the diameter of the internal member 2 It is for variable. In addition, the effect | action of the physical property value of an outer member, the physical property value of an inner member, and the variable part 21 of the diameter of an inner member is the same as the process of step S3 of the finite element model creation method of the twisted cord mentioned above, and detailed description is given. Omitted.
理論式・近似式による引張剛性、曲げ剛性及び径方向圧縮剛性計算部22は、予め設定した理論式及び近似式に基づいて、引張剛性、曲げ剛性及び径方向圧縮剛性を計算するためのものである。なお、有限要素法による引張剛性、曲げ剛性及び径方向圧縮剛性計算部22の作用は、上述した撚りコードの有限要素モデル作成方法のステップS4の処理と同じであり、詳細な説明を省略する。 The tensile stiffness, bending stiffness and radial compression stiffness calculation unit 22 based on theoretical and approximate equations is used to calculate tensile stiffness, bending stiffness and radial compression stiffness based on preset theoretical and approximate equations. is there. Note that the operations of the tensile stiffness, bending stiffness, and radial compression stiffness calculation unit 22 by the finite element method are the same as the processing in step S4 of the finite element model creation method of the twisted cord described above, and detailed description thereof is omitted.
引張剛性、曲げ剛性及び径方向圧縮剛性比較部23は、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致したかどうかを判断するためのものである。引張剛性、曲げ剛性及び径方向圧縮剛性比較部23で一致したと判断しなかった場合は、その結果が、外部材の物性値、内部材の物性値及び内部材の直径の変量部21に出力される。なお、引張剛性、曲げ剛性及び径方向圧縮剛性比較部23の作用は、上述した撚りコードの有限要素モデル作成方法のステップS5の処理と同じであり、詳細な説明を省略する。 The tensile stiffness, bending stiffness, and radial compression stiffness comparison unit 23 determines whether the calculated tensile stiffness, bending stiffness, and radial compression stiffness values match the target value within a predetermined error range. Is. If the tensile rigidity, bending rigidity, and radial compression rigidity comparison unit 23 does not determine that they match, the result is output to the variable part 21 of the physical property value of the outer member, the physical property value of the inner member, and the diameter of the inner member. Is done. The action of the tensile rigidity, bending rigidity, and radial compression rigidity comparison unit 23 is the same as the processing in step S5 of the above-described twisted cord finite element model creation method, and detailed description thereof is omitted.
引張剛性、曲げ剛性及び径方向圧縮剛性出力部24は、引張剛性、曲げ剛性及び径方向圧縮剛性比較部23で一致したと判断した場合、その結果が入力され、引張剛性、曲げ剛性及び径方向圧縮剛性計算部22の有限要素法で計算された撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を出力するためのものである。なお、引張剛性、曲げ剛性及び径方向圧縮剛性出力部24の作用は、上述した撚りコードの有限要素モデル作成方法のステップS6の処理と同じであり、詳細な説明を省略する。 When the tensile stiffness, bending stiffness and radial compression stiffness output unit 24 determines that the tensile stiffness, bending stiffness and radial compression stiffness comparison unit 23 match, the result is input, and the tensile stiffness, bending stiffness and radial direction are input. This is for outputting the physical property value of the outer member 1, the physical property value of the inner member 2, and the diameter value of the inner member 2 calculated by the finite element method of the compression rigidity calculation unit 22. Note that the operations of the tensile rigidity, bending rigidity, and radial compression rigidity output unit 24 are the same as the processing in step S6 of the above-described twisted cord finite element model creation method, and detailed description thereof is omitted.
尚、以上で説明した本実施形態の撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置を適用して作成された撚りコード3の有限要素モデルの物性値・寸法値(撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値)を用いて、実際に有限要素法解析を行い、効果を検証してもよい。 In addition, the physical property value / dimension value of the finite element model of the twisted cord 3 created by applying the finite element model creating method, the finite element model creating program, and the finite element model creating apparatus of the twisted cord of the present embodiment described above. Using the physical property value of the outer member 1 of the twisted cord 3, the physical property value of the inner member 2, and the value of the diameter of the inner member 2, the effect may be actually verified by performing a finite element method analysis.
より詳細には、図10に示すように、撚りコード3の有限要素モデルは、形状及び荷重条件の対象性により、径方向に半分の半円状としており、対称面は面内に拘束する。また、撚りコード長手方向の所定の長さの領域をモデル化し、切断面は面内に拘束する。本実施形態に係る撚りコードの有限要素モデルとして、6面体1次要素(ソリッド要素)を用い、最中心部の要素は形状の都合上、5面体に縮退する。また、解析オプションとして、大変形非線形オプションのみONとし、アップデートラグランジュ法による非線形解析を行う。これは、径方向圧縮条件にて剛体と撚りコードの接触が発生するので、これを考慮する必要があるためである。材料は線形等方性弾性材料とする。 More specifically, as shown in FIG. 10, the finite element model of the twisted cord 3 has a semicircular shape that is half in the radial direction depending on the shape and load conditions, and the symmetry plane is constrained in the plane. Moreover, the area | region of the predetermined length of a twisted cord longitudinal direction is modeled, and a cut surface is restrained in a surface. A hexahedral primary element (solid element) is used as the finite element model of the twisted cord according to the present embodiment, and the element at the center is degenerated into a pentahedron for convenience of shape. As the analysis option, only the large deformation nonlinear option is set to ON, and nonlinear analysis by the update Lagrangian method is performed. This is because contact between the rigid body and the twisted cord occurs under the radial compression condition, and this needs to be taken into consideration. The material is a linear isotropic elastic material.
そして、この撚りコードの有限要素モデルについて、図11に示すとおりの3通りの変形をさせる有限要素法解析を実施した。3通りの変形とは、図11(a)に示す引張、図11(b)に示す曲げ、図11(c)に示す径方向圧縮の3通りである。この3通りの変形において、対称条件による対称面、および長手方向の切断面は、「常に平面を保つが、面内での変形は許容する」という拘束を与える。また、図11(a)に示す引張、図11(b)に示す曲げ、図11(c)に示す径方向圧縮の各変形に対する個別の条件として、引張ひずみ、曲率半径、径方向ひずみを設定する。 Then, a finite element analysis was performed on the finite element model of the twisted cord to perform three kinds of deformation as shown in FIG. The three types of deformation are the three types of tension shown in FIG. 11 (a), bending shown in FIG. 11 (b), and radial compression shown in FIG. 11 (c). In these three types of deformation, the symmetry plane under the symmetry condition and the cut surface in the longitudinal direction give a constraint that “always keep the plane but allow the deformation in the plane”. In addition, tensile strain, radius of curvature, and radial strain are set as individual conditions for the deformation shown in FIG. 11 (a), bending shown in FIG. 11 (b), and radial compression shown in FIG. 11 (c). To do.
上記の条件の元、有限要素法解析ソフトでシミュレーションすることにより、撚りコード3に生じる上記3通りの変形の挙動を解析し、得られた変形状態から、上述の式(1.4)(2.2)(3.4)を用いて、引張剛性、曲げ剛性及び径方向圧縮剛性の各剛性を計算する。そして、解析された引張剛性、曲げ剛性及び径方向圧縮剛性の各剛性と目標値との誤差に基づいて、実用になる範囲で撚りコード3の3つの剛性を考慮した有限要素解析ができることを確認する。 Under the above conditions, the above-described three deformation behaviors generated in the twisted cord 3 are analyzed by simulating with the finite element method analysis software. From the obtained deformation state, the above formula (1.4) (2 .2) Using (3.4), calculate each stiffness of tensile stiffness, bending stiffness and radial compression stiffness. Based on the errors between the analyzed tensile stiffness, bending stiffness and radial compression stiffness and the target value, it was confirmed that finite element analysis considering the three stiffnesses of the twisted cord 3 was possible within the practical range. To do.
このように、本実施形態の撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置は、撚りコードを同心円状に2層以上に分け、最も外側の中空円柱を外部材、内側の中空円柱または中実円柱を内部材とし、外部材と内部材とは物性値の異なる材料とする有限要素モデルとし、予め設定した理論式及び近似式に基づいて、外部材の物性値(線形弾性問題においては、ヤング率とポアソン比)、内部材の物性値、内部材の直径(即ち、内部材と外部材の境界となる円筒面の直径)の3つを適切に設定することにより、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を、全て同時に目標値(試験で測定された撚りコードの実際の値や、撚りコードの設計段階で設定された値など)に合わせることができ、実際の値に実用上問題のないレベルで合わせることができる。 As described above, the finite element model creation method, the finite element model creation program, and the finite element model creation device for the twisted cord according to the present embodiment divide the twisted cord into two or more layers concentrically, and use the outermost hollow cylinder as the outer member. The inner hollow cylinder or solid cylinder is the inner member, and the outer member and inner member are finite element models with different physical property values, and the physical properties of the outer member are based on preset theoretical and approximate equations. (In the case of linear elasticity, Young's modulus and Poisson's ratio), the physical properties of the inner member, and the diameter of the inner member (that is, the diameter of the cylindrical surface that serves as the boundary between the inner member and the outer member) should be set appropriately. Therefore, the three values of the tensile stiffness in the longitudinal direction of the twisted cord, the bending stiffness accompanying bending, and the radial compressive stiffness are all simultaneously set to the target values (the actual value of the twisted cord measured in the test, design Can be matched to a value, etc.) set in the floor, it can be combined with the actual no practical problem on the value level.
以上、本発明の好適な実施の形態について説明したが、本発明は、前記実施の形態に限定されるものではなく、特許請求の範囲に記載した限りにおいてさまざまな変更が可能なものである。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims.
また、上記実施形態では、撚りコードを同心円状に2層の円柱に分けて有限要素モデルを作成したが、同心円状に3層以上の円柱に分けて有限要素モデルを作成してもよい。その場合は、予め設定される理論式・近似式を、最も外側にある外部材の物性値、外部材の内側にある2つ以上の内部材の物性値及び直径から、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を求められるように設定する。これにより、調整の自由度を増やすことができる。 In the above embodiment, the finite element model is created by concentrically dividing the twisted cord into two layers of cylinders. However, the finite element model may be created by concentrically dividing it into three or more layers of cylinders. In that case, the theoretical formula / approximation formula set in advance is calculated from the physical property values of the outermost outer member, the physical property values and diameters of two or more inner members inside the outer member, and in the longitudinal direction of the twisted cord. Three stiffnesses are set such as tensile stiffness, bending stiffness associated with bending, and radial compression stiffness. Thereby, the freedom degree of adjustment can be increased.
また、上記実施形態では、ソリッド要素により有限要素モデルを作成したが、ソリッド要素にトラス要素(曲げ剛性を有しない棒要素)またはビーム要素(曲げ剛性を有する棒要素)を組み合わせて有限要素モデルを作成してもよい。その場合は、ソリッド要素の物性値に加えて、組み合わせるトラス要素またはビーム要素の断面積や断面形状などの形状特性、及び、物性値を設定し、更にトラス要素またはビーム要素を追加した場合の撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性についての理論式・近似式を新たに作成する。このように、調整できる形状特性や物性値の数を増やすことによって、調整の自由度を増やすことができる。 In the above embodiment, the finite element model is created by the solid element. However, the finite element model is obtained by combining the solid element with a truss element (bar element having no bending rigidity) or a beam element (bar element having bending rigidity). You may create it. In that case, in addition to the physical property value of the solid element, set the shape characteristics such as the cross-sectional area and cross-sectional shape of the truss element or beam element to be combined, and the physical property value, and then twist when adding the truss element or beam element. Create theoretical and approximate formulas for the tensile stiffness in the longitudinal direction of the cord, the bending stiffness associated with bending, and the radial compression stiffness. Thus, the degree of freedom of adjustment can be increased by increasing the number of shape characteristics and physical property values that can be adjusted.
更に、上記実施形態に係る撚りコード3の外部材1の物性値、内部材2の物性値は、線形等方性弾性材料であるヤング率とポアソン比としているが、それに限らない。例えば、ヤング率とポアソン比以外の線形等方性弾性材料を用いてもよいし、線形異方性弾性材料、超弾性材料、或いは、塑性材料を用いることができる。その場合は、撚りコードの長手方向の引張剛性、屈曲に伴う曲げ剛性、及び、径方向圧縮剛性の3つの剛性を、外部材の物性値、内部材の物性値、内部材の直径から求めるための予め設定される理論式・近似式を、ヤング率とポアソン比以外の線形等方性弾性材料、線形異方性弾性材料、超弾性材料、或いは、塑性材料に基づいて設定する。これにより、ヤング率とポアソン比で定義される線形等方性弾性材料以外の材料挙動を表現できるという利点がある。 Furthermore, the physical property value of the outer member 1 and the physical property value of the inner member 2 of the twisted cord 3 according to the above embodiment are the Young's modulus and Poisson's ratio, which are linear isotropic elastic materials, but are not limited thereto. For example, a linear isotropic elastic material other than Young's modulus and Poisson's ratio may be used, or a linear anisotropic elastic material, a super elastic material, or a plastic material may be used. In that case, to obtain the three stiffnesses of the tensile strength in the longitudinal direction of the twisted cord, the bending stiffness accompanying bending, and the radial compression stiffness from the physical property value of the outer member, the physical property value of the inner member, and the diameter of the inner member. Are set based on a linear isotropic elastic material other than Young's modulus and Poisson's ratio, a linear anisotropic elastic material, a superelastic material, or a plastic material. Thereby, there exists an advantage that material behaviors other than the linear isotropic elastic material defined by Young's modulus and Poisson's ratio can be expressed.
次に、上述した本実施形態の撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置を適用した具体的な実施例について、以下に説明する。以下では、本実施形態の撚りコードの有限要素モデル作成方法(図1参照)を適用した具体的な実施例に基づいて説明し、本実施形態の撚りコードの有限要素モデル作成プログラム及び有限要素作成装置についての説明は同様であり省略する。上述した本実施形態の撚りコードの有限要素モデル作成方法、有限要素モデル作成プログラム並びに有限要素モデル作成装置をアラミド心線に適用した実施例について説明する。 Next, specific examples to which the finite element model creation method, the finite element model creation program and the finite element model creation apparatus of the above-described twisted cord according to this embodiment are applied will be described below. Below, it explains based on the concrete Example which applied the finite element model creation method (refer FIG. 1) of the twisted cord of this embodiment, and the finite element model creation program and finite element creation of the twisted cord of this embodiment The description of the apparatus is the same and will be omitted. An example in which the above-described finite element model creation method, finite element model creation program, and finite element model creation apparatus for a twisted cord according to this embodiment are applied to an aramid core wire will be described.
まず、コンピュータにおいて、図3に示す撚りコード3の有限要素モデルに基づいて、外部材1の物性値及び直径、内部材2の物性値及び直径の初期値を設定する(ステップS1)。ここで、本実施例において、アラミド心線の外部材1の物性値、内部材2の物性値は、線形等方性弾性材料(ヤング率とポアソン比で定義)とする。また、外部材1の直径D1は、1.19[mm](固定値)とする。そして、物性値については、ヤング率のみ調整の対象とし、外部材1及び内部材2のポアソン比は0.3で固定した。また、内部材2のヤング率と直径は、それぞれ外部材のヤング率と直径に対する比率で表すものとする。 First, in the computer, based on the finite element model of the twisted cord 3 shown in FIG. 3, the physical property value and diameter of the outer member 1 and the initial physical property value and diameter of the inner member 2 are set (step S1). Here, in this embodiment, the physical property value of the outer member 1 and the physical property value of the inner member 2 of the aramid core wire are linear isotropic elastic materials (defined by Young's modulus and Poisson's ratio). The diameter D 1 of the outer member 1, and 1.19 [mm] (fixed value). As for the physical property values, only the Young's modulus was adjusted, and the Poisson's ratio of the outer member 1 and the inner member 2 was fixed at 0.3. Further, the Young's modulus and the diameter of the inner member 2 are represented by the ratio of the Young's modulus and the diameter of the outer member, respectively.
次に、引張剛性、曲げ剛性及び径方向圧縮剛性の目標値を設定する(ステップS2)。ここで、本実施例において、目標値は、平均径(外部材1の直径)D1が1.19[mm]の実際のベルト用のアラミド心線の各剛性を試験により測定した値とする。このアラミド心線は、既に引張剛性と曲げ剛性の測定値が求められている。引張剛性は、処理ロープS−S(応力−歪み曲線)から0〜2%間の線形近似値を用いて導出している。また曲げ剛性は、オルゼン式曲げ試験機にて図12に示す本実施例で用いるアラミド心線をゴムに挟んだ試料で測定(試験片の一端をチャックに固定し、所定の曲げ角度に屈曲した時に、他端に加わる曲げモーメントとその曲げ角度から曲げ剛性を算出する)し、ゴムの曲げ剛性を減算して心線の曲げ剛性を求めている。
引張剛性 Ks:31187.27[N]
曲げ剛性 KB:115.171[N・mm2]
Next, target values for tensile rigidity, bending rigidity and radial compression rigidity are set (step S2). In the present embodiment, the target value is the average diameter (diameter outer member 1) D 1 is the actual value measured by testing each rigidity of aramid core wire belt of 1.19 [mm] . For this aramid cord, measured values of tensile rigidity and bending rigidity are already required. The tensile stiffness is derived from the treated rope SS (stress-strain curve) using a linear approximation between 0 and 2%. The bending stiffness was measured with a sample in which an aramid core wire used in this example shown in FIG. 12 was sandwiched between rubbers using an Olsen-type bending tester (one end of the test piece was fixed to a chuck and bent at a predetermined bending angle. Sometimes the bending stiffness is calculated from the bending moment applied to the other end and the bending angle), and the bending stiffness of the core is obtained by subtracting the bending stiffness of the rubber.
Tensile rigidity K s : 31187.27 [N]
Bending stiffness K B: 115.171 [N · mm 2]
径方向圧縮剛性については、心線単体で図6の変形モードとなる試験は実施していない。そこで代替データとして、径方向の弾性率から、上述の撚りコードの径方向圧縮剛性の近似式を求める際に説明した有限要素解析を用いて径方向圧縮剛性を計算した。アラミド心線の径方向弾性率は20[MPa]であり、有限要素解析による径方向剛性Kr(心線長さ1mmあたり)は下記の通りとなった。
Kr=8.24[N]
Regarding the radial compression stiffness, a test for the deformation mode of FIG. Therefore, as an alternative data, the radial compression stiffness was calculated using the finite element analysis described when obtaining the approximate expression of the radial compression stiffness of the above-described twisted cord from the elastic modulus in the radial direction. The radial elastic modulus of the aramid core wire was 20 [MPa], and the radial stiffness K r (per core wire length of 1 mm) by finite element analysis was as follows.
K r = 8.24 [N]
まとめると、本実施例で用いられるアラミド心線の各変形モード試験における剛性は下記の通りとなった。
引張剛性 Ks:31187.27[N]
曲げ剛性 KB:115.171[N・mm2]
径方向圧縮剛性 Kr:8.24[N](心線長さ1mmあたり)
In summary, the rigidity in each deformation mode test of the aramid core wire used in this example is as follows.
Tensile rigidity K s : 31187.27 [N]
Bending stiffness K B: 115.171 [N · mm 2]
Radial compressive stiffness K r: 8.24 [N] (per cord length 1mm)
そして、撚りコード3の外部材1の物性値、内部材2の物性値、ならびに、内部材2の直径の値を変量し(ステップS3)、予め設定した理論式及び近似式に基づいて、引張剛性、曲げ剛性及び径方向圧縮剛性を計算し(ステップS4)、計算された引張剛性、曲げ剛性及び径方向圧縮剛性の値が目標値と所定の誤差の範囲内で一致したかと判断されるまで(ステップS5)、ステップS3からの処理を繰り返す。 Then, the physical property value of the outer member 1 of the twisted cord 3, the physical property value of the inner member 2, and the value of the diameter of the inner member 2 are varied (step S3), and tension is determined based on preset theoretical and approximate equations. Rigidity, bending stiffness and radial compression stiffness are calculated (step S4), and it is determined that the calculated tensile stiffness, bending stiffness and radial compression stiffness values agree with the target value within a predetermined error range. (Step S5), the processing from Step S3 is repeated.
本実施例においては、上記ステップS2でまとめた3つの変形モードの剛性に全て合致するよう、2層ソリッド要素モデルの外部材・内部材の直径とヤング率を合わせ込む。尚、本実施例においては、エクセルのソルバー機能を用いた。外部材の直径(D1)は、心線外径(1.19[mm])として固定されているため、合わせ込む変数は内部材直径(D2)、外部材ヤング率(E1)、内部材ヤング率(E2)の3つである。これら3つの変数から、各変形モードの剛性が、上述した理論式および近似式によって計算される。 In this embodiment, the diameters and Young's moduli of the outer and inner members of the two-layer solid element model are matched so as to match all the rigidity of the three deformation modes summarized in step S2. In this example, the Excel solver function was used. Since the diameter (D 1 ) of the external material is fixed as the core wire outer diameter (1.19 [mm]), the variables to be adjusted are the inner member diameter (D 2 ), the outer member Young's modulus (E 1 ), The inner member Young's modulus (E 2 ) is three. From these three variables, the rigidity of each deformation mode is calculated by the above-described theoretical formula and approximate formula.
そして、目標値と調整結果の差(残差)から、(残差/目標値)2を計算している。それを各変形モードで合算し、それが最小値となるようにする。
また、制約条件として、「内部材の直径/外部材の直径」を、0.2より大きく、0.7より小さくしている。さらに、径方向圧縮剛性の近似式の成立条件である、「E2/E1>50」も制約条件として入れている。この条件でのエクセルソルバー実行により、本実施例におけるアラミド心線の外部材1のヤング率、内部材2のヤング率、ならびに、内部材2の直径の値が下記のように出力される。
外部材ヤング率 E1:18.60[MPa]
内部材ヤング率 E2:616517[MPa]
内部材直径 D2:0.248[mm]
Then, (residual / target value) 2 is calculated from the difference (residual) between the target value and the adjustment result. It is summed up in each deformation mode so that it becomes the minimum value.
Further, as a constraint condition, “the diameter of the inner member / the diameter of the outer member” is set larger than 0.2 and smaller than 0.7. Furthermore, “E 2 / E 1 > 50”, which is a condition for establishing an approximate expression of radial compression stiffness, is also included as a constraint condition. By executing the Excel solver under this condition, the Young's modulus of the outer member 1, the Young's modulus of the inner member 2, and the diameter of the inner member 2 in the present embodiment are output as follows.
External material Young's modulus E 1 : 18.60 [MPa]
Inner member Young's modulus E 2 : 616517 [MPa]
Inner member diameter D 2 : 0.248 [mm]
尚、算出された本実施例におけるアラミド心線の調整結果による、各変形モード剛性の推測値は下記の表1の通りである。表1では、引張剛性で誤差が若干大きめだが、良好に調整できていることがわかる。 In addition, the estimated value of each deformation mode rigidity by the adjustment result of the calculated aramid cord in this embodiment is as shown in Table 1 below. In Table 1, it can be seen that although the error is slightly larger in the tensile rigidity, it can be adjusted well.
ここで、上記実施例で有限要素モデルの物性値・寸法値(E1,E2,D2)を用いて、実際に有限要素法解析を行い、効果を検証した。図10にベルト用の撚りコードの有限要素モデルを示す。有限要素モデルは、形状及び荷重条件の対称性により、径方向に半分の半円状としており、対称面は面内に拘束した。また、撚りコード長手方向の長さは0.5mmの領域を有限要素モデル化し、切断面は面内に拘束した。有限要素は、6面体1次要素(ソリッド要素)を用いたが、最中心部の要素は形状の都合上、5面体に縮退させた。材料物性は線形等方性弾性とした。ヤング率は上記実施例で得られたとおりであり、ポアソン比は外部材、内部材共に0.3である。寸法は、上記実施例で算出された下記の通りである。
外部材ヤング率 E1:18.60[MPa]
内部材ヤング率 E2:616517[MPa]
内部材直径 D2:0.248[mm]
Here, using the physical property values and dimension values (E 1 , E 2 , D 2 ) of the finite element model in the above embodiment, the finite element method analysis was actually performed to verify the effect. FIG. 10 shows a finite element model of a twisted cord for a belt. The finite element model has a half-circular shape in the radial direction due to the symmetry of the shape and load conditions, and the symmetry plane is constrained in the plane. Moreover, the area | region whose length of a twisted cord longitudinal direction is 0.5 mm was made into the finite element model, and the cut surface was restrained in the surface. As the finite element, a hexahedral primary element (solid element) was used, but the element at the center was reduced to a pentahedron for convenience of shape. The material properties were linear isotropic elasticity. The Young's modulus is as obtained in the above example, and the Poisson's ratio is 0.3 for both the outer member and the inner member. The dimensions are as follows calculated in the above example.
External material Young's modulus E 1 : 18.60 [MPa]
Inner member Young's modulus E 2 : 616517 [MPa]
Inner member diameter D 2 : 0.248 [mm]
この有限要素モデルについて、図11に示すとおりの3通りの変形をさせる有限要素法解析を実施した。これらは(a)引張、(b)曲げ、(c)径方向圧縮の3通りである。この3通りにおいて、対称条件による対称面、および長手方向の切断面は、「常に平面を保つが、面内での変形は許容する」という拘束を与えた。
また、個別の条件は下記の通りである。
(a)引張 :引張ひずみ 0.02
(b)曲げ : 曲率半径 50mm
(c)径方向圧縮 :径方向ひずみ 0.1
計算環境は下記の通りである。
・計算機:SGI社製、Altix XE500
・CPU:Intel社製 Xeon5570×2個
・メモリ:12GB
・OS:SuSE Linux(登録商標)10
・有限要素解析ソフトウェア:MSC社製 「Marc2010.2」
・解析オプション
大変形非線形オプションのみONとして、アップデートラグランジュ法による非線形解析を行った。これは、径方向圧縮条件にて剛体と撚りコードの接触が発生するので、これを考慮する必要があるためである。材料は線形等方性弾性材料である。
For this finite element model, a finite element method analysis was performed in which three types of deformation as shown in FIG. 11 were performed. These are three types: (a) tension, (b) bending, and (c) radial compression. In these three ways, the symmetry plane according to the symmetry condition and the cut surface in the longitudinal direction gave a constraint that “always keep the plane but allow deformation in the plane”.
The individual conditions are as follows.
(A) Tensile: Tensile strain 0.02
(B) Bending: radius of curvature 50mm
(C) radial compression: radial strain 0.1
The calculation environment is as follows.
・ Computer: Altix XE500, manufactured by SGI
CPU: Xeon 5570 x 2 manufactured by Intel Corporation Memory: 12 GB
OS: SuSE Linux (registered trademark) 10
-Finite element analysis software: “Marc2010.2” manufactured by MSC
・ Analysis option Only the large deformation nonlinear option was turned ON, and nonlinear analysis was performed by the updated Lagrangian method. This is because contact between the rigid body and the twisted cord occurs under the radial compression condition, and this needs to be taken into consideration. The material is a linear isotropic elastic material.
上記の条件の元、有限要素法解析ソフトでシミュレーションすることにより、撚りコード3に生じる上記3通りの変形の挙動を解析し、得られた変形状態から、上述の式(1.4)(2.2)(3.4)を用いて、引張剛性、曲げ剛性及び径方向圧縮剛性の各剛性(Ks、KB、Kr)を計算した。ステップS4で計算された各剛性Ks、KB、Krの結果とステップS2で設定された目標値との比較を以下の表2に示す。 Under the above conditions, the above-described three deformation behaviors generated in the twisted cord 3 are analyzed by simulating with the finite element method analysis software. From the obtained deformation state, the above formula (1.4) (2 .2) Using (3.4), the respective stiffnesses (K s , K B , K r ) of tensile stiffness, bending stiffness and radial compression stiffness were calculated. Table 2 below shows a comparison between the results of the respective stiffnesses K s , K B and K r calculated in step S4 and the target values set in step S2.
表2に示すように、曲げ剛性の誤差がやや大きい(有限要素法の結果の方が多き)が、実用になる範囲で、撚りコードの3つの剛性を考慮した有限要素法解析ができることが確認できた。 As shown in Table 2, it is confirmed that the finite element method analysis considering the three stiffnesses of the twisted cord can be performed within the practical range, although the bending stiffness error is slightly large (the result of the finite element method is more). did it.
1 外部材
2 内部材
3 撚りコード
10 撚りコードの有限要素モデル作成装置
11 外部材の物性値、内部材の物性値及び内部材の直径の初期値
12 引張剛性、曲げ剛性及び径方向圧縮剛性の目標値
21 外部材の物性値、内部材の物性値及び内部材の直径変量部
22 理論式・近似式による引張剛性、曲げ剛性及び径方向圧縮剛性計算部
23 引張剛性、曲げ剛性及び径方向圧縮剛性比較部
24 引張剛性、曲げ剛性及び径方向圧縮剛性出力部
DESCRIPTION OF SYMBOLS 1 External material 2 Internal member 3 Twisted cord 10 Twisted cord finite element model creation apparatus 11 Physical property value of external material, physical property value of internal member, and initial value of diameter of internal member 12 Tensile stiffness, bending stiffness and radial compression stiffness Target value 21 Physical property value of external member, physical property value of inner member, and diameter variable portion 22 of inner member Tension stiffness, bending stiffness and radial compression stiffness calculation unit 23 by theoretical and approximate equations Tension stiffness, bending stiffness and radial compression Rigidity comparison unit 24 Tensile stiffness, bending stiffness and radial compression stiffness output unit
Claims (12)
撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する工程と、
前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する工程と、
を備えることを特徴とする撚りコードの有限要素モデル作成方法。 A method for creating a finite element model of a twisted cord by a computer to create a finite element model of a twisted cord,
The process of creating a finite element model by dividing a twisted cord into two concentric layers, modeling the outermost hollow cylinder as an outer member, and using the solid cylinder or hollow cylinder inside the outer member as an inner member, and modeling with solid elements When,
Based on a theoretical formula and an approximate formula set in advance so that the tensile stiffness in the longitudinal direction of the twisted cord, the bending stiffness associated with the bending of the twisted cord, and the radial compression stiffness of the twisted cord match the target value, Setting the physical property value of the outer member, the physical property value of the inner member, and the diameter of the inner member of the finite element model;
A method for creating a finite element model of a twisted cord, comprising:
撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する工程と、
前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する工程と、
をコンピュータに実行させることを特徴とする撚りコードの有限要素モデル作成プログラム。 A program for creating a finite element model of a twisted cord that creates a finite element model of a twisted cord,
The process of creating a finite element model by dividing a twisted cord into two concentric layers, modeling the outermost hollow cylinder as an outer member, and using the solid cylinder or hollow cylinder inside the outer member as an inner member, and modeling with solid elements When,
Based on a theoretical formula and an approximate formula set in advance so that the tensile stiffness in the longitudinal direction of the twisted cord, the bending stiffness associated with the bending of the twisted cord, and the radial compression stiffness of the twisted cord match the target value, Setting the physical property value of the outer member, the physical property value of the inner member, and the diameter of the inner member of the finite element model;
A computer program for creating a finite element model of a twisted cord, characterized by causing a computer to execute.
撚りコードを同心円状の2層で分け、最も外側の中空円柱を外部材、当該外部材の内側の中実円柱又は中空円柱を内部材として、ソリッド要素でモデル化して有限要素モデルを作成する手段と、
前記撚りコードの長手方向の引張剛性、前記撚りコードの屈曲に伴う曲げ剛性、及び、前記撚りコードの径方向圧縮剛性を目標値に合わせるように、予め設定した理論式及び近似式に基づいて、前記有限要素モデルの前記外部材の物性値、前記内部材の物性値、及び、前記内部材の直径を設定する手段と、
を備えることを特徴とする撚りコードの有限要素モデル作成装置。 A device for creating a finite element model of a twisted cord that is mounted on a computer and creates a finite element model of a twisted cord,
A method for creating a finite element model by dividing a twisted cord into two concentric layers, modeling the outermost hollow cylinder as an outer member, and using a solid cylinder or hollow cylinder inside the outer member as an inner member, and modeling with solid elements When,
Based on a theoretical formula and an approximate formula set in advance so that the tensile stiffness in the longitudinal direction of the twisted cord, the bending stiffness associated with the bending of the twisted cord, and the radial compression stiffness of the twisted cord match the target value, Means for setting a physical property value of the outer member, a physical property value of the inner member, and a diameter of the inner member of the finite element model;
An apparatus for creating a finite element model of a twisted cord, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012068763A JP5847625B2 (en) | 2012-03-26 | 2012-03-26 | Finite element model creation method, finite element model creation program and finite element model creation device for twisted cord |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012068763A JP5847625B2 (en) | 2012-03-26 | 2012-03-26 | Finite element model creation method, finite element model creation program and finite element model creation device for twisted cord |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013200718A true JP2013200718A (en) | 2013-10-03 |
JP5847625B2 JP5847625B2 (en) | 2016-01-27 |
Family
ID=49520910
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012068763A Active JP5847625B2 (en) | 2012-03-26 | 2012-03-26 | Finite element model creation method, finite element model creation program and finite element model creation device for twisted cord |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5847625B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105740504A (en) * | 2016-01-21 | 2016-07-06 | 北京现代汽车有限公司 | Modeling method as well as calculation method and apparatus for gas cylinder mounting strength of passenger vehicle |
CN110263441A (en) * | 2019-06-21 | 2019-09-20 | 武汉光谷北斗控股集团有限公司 | A kind of steel strand wires rope flexural property research method |
CN111125952A (en) * | 2019-12-17 | 2020-05-08 | 吉林大学 | Static prestretching-ultrasonic bending fatigue sample and design method |
CN113191004A (en) * | 2021-05-09 | 2021-07-30 | 甘肃省地震局 | Loess soil body internal rigidity calculation method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094916A (en) * | 2001-09-25 | 2003-04-03 | Sumitomo Rubber Ind Ltd | Method and device for manufacturing finite element model of composite body |
JP2004093530A (en) * | 2002-09-04 | 2004-03-25 | Yokohama Rubber Co Ltd:The | Dynamic characteristics simulation method of composite material |
JP2004102424A (en) * | 2002-09-05 | 2004-04-02 | Yokohama Rubber Co Ltd:The | Method for predicting dynamic characteristic of structure, method for predicting performance of tire, program for predicting dynamic characteristic of structure and input/output device |
JP2007034728A (en) * | 2005-07-27 | 2007-02-08 | Mitsuboshi Belting Ltd | Cord and method for preparing finite element model of its complex |
JP2012045975A (en) * | 2010-08-24 | 2012-03-08 | Yokohama Rubber Co Ltd:The | Method for forming tire model and method for designing tire using the same |
-
2012
- 2012-03-26 JP JP2012068763A patent/JP5847625B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003094916A (en) * | 2001-09-25 | 2003-04-03 | Sumitomo Rubber Ind Ltd | Method and device for manufacturing finite element model of composite body |
JP2004093530A (en) * | 2002-09-04 | 2004-03-25 | Yokohama Rubber Co Ltd:The | Dynamic characteristics simulation method of composite material |
JP2004102424A (en) * | 2002-09-05 | 2004-04-02 | Yokohama Rubber Co Ltd:The | Method for predicting dynamic characteristic of structure, method for predicting performance of tire, program for predicting dynamic characteristic of structure and input/output device |
JP2007034728A (en) * | 2005-07-27 | 2007-02-08 | Mitsuboshi Belting Ltd | Cord and method for preparing finite element model of its complex |
JP2012045975A (en) * | 2010-08-24 | 2012-03-08 | Yokohama Rubber Co Ltd:The | Method for forming tire model and method for designing tire using the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105740504A (en) * | 2016-01-21 | 2016-07-06 | 北京现代汽车有限公司 | Modeling method as well as calculation method and apparatus for gas cylinder mounting strength of passenger vehicle |
CN110263441A (en) * | 2019-06-21 | 2019-09-20 | 武汉光谷北斗控股集团有限公司 | A kind of steel strand wires rope flexural property research method |
CN111125952A (en) * | 2019-12-17 | 2020-05-08 | 吉林大学 | Static prestretching-ultrasonic bending fatigue sample and design method |
CN113191004A (en) * | 2021-05-09 | 2021-07-30 | 甘肃省地震局 | Loess soil body internal rigidity calculation method |
CN113191004B (en) * | 2021-05-09 | 2022-08-30 | 甘肃省地震局 | Method for calculating internal rigidity of loess soil body |
Also Published As
Publication number | Publication date |
---|---|
JP5847625B2 (en) | 2016-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Piscesa et al. | 3D Finite element modeling of circular reinforced concrete columns confined with FRP using a plasticity based formulation | |
WO2014141794A1 (en) | Stress-strain relationship simulation method, spring back prediction method, and spring back analyzing device | |
JP5847625B2 (en) | Finite element model creation method, finite element model creation program and finite element model creation device for twisted cord | |
JP2016095599A (en) | Structure analysis method | |
Zong et al. | Simulation of Reinforcing Bar Buckling in Circular Reinforced Concrete Columns. | |
Yang et al. | Improved nonlinear cyclic stress–strain model for reinforcing bars including buckling effect and experimental verification | |
Giżejowski et al. | Buckling resistance assessment of steel I-section beam-columns not susceptible to LT-buckling | |
Imamovic et al. | Geometrically exact initially curved Kirchhoff’s planar elasto-plastic beam | |
Capozucca et al. | Assessment of RC beams with NSM CFRP rectangular rods damaged by notches | |
Patil et al. | Comparison of cylindrical and conical helical springs for their buckling load and deflection | |
Bayón et al. | On the flexural vibration of cylinders under axial loads: Numerical and experimental study | |
España et al. | Evolutionary strategies as applied to shear strain effects in reinforced concrete beams | |
Tikka et al. | Effective length of reinforced concrete columns in braced frames | |
Michalczyk | Analysis of lateral vibrations of the axially loaded helical spring | |
Dahmani et al. | Lateral torsional buckling response of steel beam with different boundary conditions and loading | |
Sapountzakis et al. | Shear deformation effect in flexural-torsional vibrations of composite beams by boundary element method (BEM) | |
Bağcı | Neural network model for moment-curvature relationship of reinforced concrete sections | |
JP5006724B2 (en) | Finite element analysis method for anisotropic members | |
Ashtiani et al. | Cyclic response analysis of high-strength self-compacting concrete beam-column joints: Numerical modelling and experimental validation | |
Yuanfeng et al. | Non-linear damping of FRP-confined damaged reinforced concrete columns | |
WO2015037067A1 (en) | Ductile fracture evaluation system and ductile fracture evaluation method | |
JP2009259043A (en) | Simulation method for rubber material | |
Trogrlic et al. | The comparative body model in material and geometric nonlinear analysis of space R/C frames | |
JP5088265B2 (en) | Stress analysis apparatus and method | |
Sain et al. | Damage indices for failure of concrete beams under fatigue |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140905 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140905 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20140905 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20140905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151125 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5847625 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |