JP2003094072A - Water quality improving agent and manufacturing method therefor - Google Patents

Water quality improving agent and manufacturing method therefor

Info

Publication number
JP2003094072A
JP2003094072A JP2001288557A JP2001288557A JP2003094072A JP 2003094072 A JP2003094072 A JP 2003094072A JP 2001288557 A JP2001288557 A JP 2001288557A JP 2001288557 A JP2001288557 A JP 2001288557A JP 2003094072 A JP2003094072 A JP 2003094072A
Authority
JP
Japan
Prior art keywords
shells
oysters
water
water quality
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001288557A
Other languages
Japanese (ja)
Inventor
Hideo Igami
英雄 居上
Minoru Igami
穰 居上
Ryoji Shibuya
良二 渋谷
Tsuneyoshi Shibuya
常義 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ARUMOA KENCHIKU KANKYO KENKYUS
ARUMOA KENCHIKU KANKYO KENKYUSHO KK
Clay Baan Gijutsu Kenkyusho Kk
Clay Baan Gijutsu Kenkyusho KK
Original Assignee
ARUMOA KENCHIKU KANKYO KENKYUS
ARUMOA KENCHIKU KANKYO KENKYUSHO KK
Clay Baan Gijutsu Kenkyusho Kk
Clay Baan Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ARUMOA KENCHIKU KANKYO KENKYUS, ARUMOA KENCHIKU KANKYO KENKYUSHO KK, Clay Baan Gijutsu Kenkyusho Kk, Clay Baan Gijutsu Kenkyusho KK filed Critical ARUMOA KENCHIKU KANKYO KENKYUS
Priority to JP2001288557A priority Critical patent/JP2003094072A/en
Publication of JP2003094072A publication Critical patent/JP2003094072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a water quality improving agent having a low oxidation- reduction potential at low cost by utilizing aquatic waste such as shells having difficulty in disposing of by eliminating defects such as not to have little effects on the prevention of oxidation of metals and cleaning of vegetables in a conventional method for manufacturing reduced water having the low oxidation- reduction potential which is suitable for drink water, or the like, by adding potassium to natural zeolite and baked shells and re-firing them. SOLUTION: The method prevents calcium carbonate in the shells from decomposing and a conchiolin layer therein from deoxidizing, and imparts conductivity as a glassy carbon matter in a strong reducing atmosphere. Thus, the method improves the water quality by absorbing an electromagnetic wave from an atmospheric electric field and discharging the electrolysis energy by itself.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、水産系廃棄物のう
ち腐敗もせず、焼却もできず、年々捨て場に堆積して処
分に困っているカルシウム系硬質廃棄物の転換利用技術
に関するものである。即ち、貝殻などの水産系廃棄物は
年間数十万トンに達し、大部分は未利用のまま捨てら
れ、臭気など環境に悪い廃棄物とされている。本発明は
これらの資源を利用して高付加価値の水質改良剤を造る
技術を提供することにより廃棄物処理技術の1分野を大
幅に進歩させようとする水質改良剤とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for converting and utilizing calcium-based hard waste, which cannot be decomposed or incinerated among marine-based wastes and is accumulated in a dump year by year, which is troublesome for disposal. is there. That is, the amount of seafood waste such as shells reaches hundreds of thousands of tons per year, and most of them are discarded as unused and are considered as environmentally harmful waste such as odor. The present invention relates to a water quality improver and a method for producing the same, which intends to greatly advance one field of waste treatment technology by providing a technology for producing a high value-added water quality improver by utilizing these resources.

【0002】[0002]

【従来の技術】前記廃棄物処理技術については、数年来
その必要性が認識されるに到り、後記のいくつかの従来
技術が提案され特許出願もされている。第1の従来技術
は特開2000−7418に見られるようなアルカリ還
元水を造るものであって、天然ゼオライトと蠣殻類、酸
化カリウムを原料としたアルカリ還元水を造るセラミッ
クの製造法であり、その目的は天然ゼオライトとカキ殻
等の貝殻類を熱処理加工した粉体と酸化カリウムとの3
種類の材料を以て球型体に成形したセラミックによっ
て、アルカリ還元水を造るものである。而して、その構
成は、天然ゼオライトとカキ殻を1100℃に焼いたも
のにK2Oを3%加えて有機バインダーで成形し350
℃〜840℃に加熱焼成した製品はpH10.9でO.
R.P−225mVが得られる。詳細には、天然ゼオラ
イトとカキ殻等の貝殻類をロータリーキルンで1100
℃で約30分乃至50分間加熱焼成し、これを5ミクロ
ン乃至10ミクロン程度の粉体を形成し、その後、該粉
体に酸化カリウムの粉体を3%混合した後、該粉体を有
機バインダーを使用して回転ドラムで3mm乃至5mm
程度の球型体に成形し、その後、球型体を350℃の電
気炉で2時間焼成し、更に温度を上昇させて840℃で
約24時間焼成処理するというものである。この発明は
以上のように製造されたので、セラミックを水に入れる
だけで簡単にアルカリ還元水を造ることができる効果が
結果として上げられ、酸化カリウムを使用することでセ
ラミックの反応速度が従来の3倍以上となり、短時間で
アルカリ還元水を得ることができるというものである。
2. Description of the Related Art Regarding the above-mentioned waste treatment technology, the necessity has been recognized for several years, and some of the following prior arts have been proposed and patent applications have been filed. The first conventional technique is to produce alkali-reduced water as disclosed in Japanese Patent Laid-Open No. 2000-7418, which is a method for producing a ceramic by producing alkali-reduced water using natural zeolite, husks and potassium oxide as raw materials. , Its purpose is to use natural zeolite and powder of heat-treated shells such as oyster shells and potassium oxide.
This is a method for producing alkali-reduced water by using a ceramic molded into a spherical body by using various kinds of materials. Then, the composition thereof is obtained by adding 3% of K 2 O to a mixture of natural zeolite and oyster shells baked at 1100 ° C. and molding with an organic binder.
The product which was heated and calcined at ℃ to 840 ℃ had a pH of 10.9 and an O.C.
R. P-225 mV is obtained. In detail, shells such as natural zeolite and oyster shells are placed in a rotary kiln for 1100
The powder is heated and baked at 30 ° C. for about 30 to 50 minutes to form a powder of about 5 to 10 microns, and then 3% of a powder of potassium oxide is mixed with the powder. 3 mm to 5 mm on a rotating drum using a binder
It is formed into a spherical body of a certain degree, and then the spherical body is fired in an electric furnace at 350 ° C. for 2 hours, further heated to 840 ° C. for about 24 hours. Since the present invention is manufactured as described above, the effect that the alkaline reduced water can be easily produced by simply putting the ceramic in water is raised, and by using potassium oxide, the reaction rate of the ceramic is less than that of the conventional one. It is three times or more, and the alkaline reduced water can be obtained in a short time.

【0003】第1の従来技術の他の例は特開平11−4
3365に見られるようなもので、天然ゼオライトと貝
殻焼成物に硝酸銀、MgO、K2O、Na2O、CaO、
FeOなどを加えて再度700℃〜1100℃に焼成す
るもので、O.R.Pは−100mV〜+100mVの
水が得られる。要約すると、飲料用等に適した低い酸化
還元電位を持つ還元水を容易に製造することのできる還
元水用粒状セラミックス及びその製造方法を提供するも
のである。その構成は、天然ゼオライトと貝殻とを主原
料とし、これに硝酸銀、酸化マグネシウム、酸化カリウ
ム、酸化ナトリウム、酸化セレン及び酸化第2鉄を添加
して所定条件下で焼成する。この従来技術の効果として
は、その粒状セラミックスは粒状化しているので、酸化
還元電位が高い、所謂、酸化水を飲料水、植物の成長促
進、動植物の腐敗防止及び鮮度保持、防錆効果を得るの
に好適な酸化還元電位をもつ還元水に容易に変えること
が可能なセラミックスを得ることができるというもので
ある。
Another example of the first prior art is Japanese Patent Laid-Open No. 11-4.
3365, silver nitrate, MgO, K 2 O, Na 2 O, CaO
FeO or the like is added and the mixture is fired again at 700 ° C to 1100 ° C. R. As for P, water of -100 mV to +100 mV is obtained. In summary, the present invention provides a granular ceramic for reduced water, which can easily produce reduced water having a low redox potential suitable for beverages and the like, and a method for producing the same. The composition is such that natural zeolite and shellfish are used as main raw materials, and silver nitrate, magnesium oxide, potassium oxide, sodium oxide, selenium oxide and ferric oxide are added to the raw materials and the mixture is fired under predetermined conditions. As the effect of this conventional technology, since the granular ceramics are granulated, the oxidation-reduction potential is high, so-called oxidizing water is obtained as drinking water, plant growth promotion, spoilage prevention and freshness preservation of animals and plants, and rust prevention effect. It is possible to obtain a ceramic that can be easily converted into reduced water having a redox potential suitable for.

【0004】第2の従来技術としては、特開2001−
26508に見られるように、抗菌剤を造るものであっ
て、貝殻を窒素ガス雰囲気で700℃〜2500℃で焼
成した抗菌剤の製造である。その課題は、人体への摂取
に問題がない天然素材を原料とし、低コストで大量に製
造することができ、しかも抗菌効果の高い抗菌剤を提供
するものである。その構成としては、ホッキ貝の貝殻粉
末を原料とし、この貝殻粉末を不活性ガス雰囲気中、最
終到達温度700〜2500℃で焼成するというもので
ある。また、その結果としては、この抗菌剤の製造方法
及びこの製造方法により得られる抗菌剤は、ホッキ貝な
どの貝殻粉末を不活性ガス雰囲気中で焼成して製造され
ることにより高い抗菌性を示す。具体的には、O−15
7等の大腸菌、黄色ブドウ球菌、緑膿菌、真菌、サルモ
ネラ菌、腸炎ピブリオ等の食中毒菌更にはウイルスに対
しても低濃度で殺菌効果を示すというものである。
A second conventional technique is Japanese Patent Laid-Open No. 2001-2001.
As shown in 26508, an antibacterial agent is produced, which is the production of an antibacterial agent by burning shells at 700 ° C to 2500 ° C in a nitrogen gas atmosphere. The problem is to provide an antibacterial agent which can be produced in large quantities at low cost and has a high antibacterial effect, using a natural material which is not ingested by the human body as a raw material. The structure is such that the shell powder of cinnamon oysters is used as a raw material, and this shell powder is fired in an inert gas atmosphere at a final temperature of 700 to 2500 ° C. In addition, as a result, the method for producing this antibacterial agent and the antibacterial agent obtained by this method exhibit high antibacterial activity by being produced by firing shell powder such as octopus shells in an inert gas atmosphere. . Specifically, O-15
It has a bactericidal effect at a low concentration against Escherichia coli such as No. 7, Staphylococcus aureus, Pseudomonas aeruginosa, fungus, Salmonella, Pibrio parahaemolyticus, and viruses as well as viruses at low concentrations.

【0005】第3の従来技術は、特開平7−29007
0に見られるように、食品の脱色、消臭剤である。即
ち、貝殻を加熱乾燥して、パール層と結晶層に間隙を造
り、塩酸で処理して、CaCO3+2HCl→CaCl2
+H2O+CO2の反応途中で乾燥して酸分を残し、加水
されたとき再び反応が進行するというものである。この
従来技術による脱色、消臭剤を水中に投入すれば、パー
ル層中に保持された残留酸とパール層又は粉砕貝殻に含
まれるカルシウム化合物との反応により、二酸化炭素が
発生するので、発生期の二酸化炭素が奏する還元性によ
り、処理対象物(食品等)を脱臭、脱色することが可能
となるとのことである。
A third conventional technique is disclosed in Japanese Patent Laid-Open No. 7-29007.
As seen in 0, it is a decolorizing and deodorant for foods. That is, the shell is heated and dried to form a gap between the pearl layer and the crystal layer, treated with hydrochloric acid, and CaCO 3 + 2HCl → CaCl 2
The reaction is + H 2 O + CO 2 in the course of drying to leave an acid content, and when water is added, the reaction proceeds again. When the decolorizing and deodorizing agent according to this conventional technique is added to water, carbon dioxide is generated due to the reaction between the residual acid retained in the pearl layer and the calcium compound contained in the pearl layer or the ground shell, so It is possible to deodorize and decolorize the object to be treated (food etc.) due to the reducing property of carbon dioxide.

【0006】[0006]

【発明が解決しようとする課題】然し乍ら、以上の従来
技術を考察すると、第1の従来技術は、貝殻と天然ゼオ
ライトを組み合わせ、ゼオライトのイオン交換性を利用
したものであるが、酸化還元電位を低下させる。効果
は、貝殻のもつ成分が主役ではなく、後で添加した強還
元イオンであるカリウム等の溶出によって起こるもので
あり、ミネラル還元水を造る技術であり、長期間続性が
少ない。第2の従来技術は窒素ガス等不活性ガス雰囲気
で700℃以上に焼成して抗菌剤の製造を目的とする技
術であり、蛋白質層の活性ミネラル成分を効果としたも
のであるが、窒素雰囲気のオートクレープ中で撹拌しな
がら900℃に加熱処理することは設備技術的に極めて
困難なものであり、大きいコスト負担により造られる。
従って、この従来技術は、技術上未解決の難点と共に、
経済的に成立つ可能性が非常に低いという大きな欠点を
有するものである。また、第3の従来技術は、貝殻類を
加熱乾燥してパール層の間隙に0.5%〜1.0%塩酸
を含ませて処理したもので加水後、反応は進行し発生期
の二酸化炭素を発生し、その還元性により脱臭等する
が、長期的な効果の持続性に問題がある。また、その還
元性は弱いという欠点を有している。本発明は前記多く
の従来技術の諸欠点、諸問題点を除去し改善して、改善
してこれらと全く異なる新規技術を開発した。即ち、大
気電界から電磁波を吸収して電気分解エネルギーを自発
的に発生し、併せて還元イオンの溶出を促進する。進歩
性なる新技術である。酸化還元電位(O.R.P)が従
来以上に高く、実用上有効なる水質改良剤を而も廃棄物
を最高に活用して、安価に供給する新技術を開発提供す
ることを目的とし、解決すべき課題とするものである。
However, considering the above-mentioned prior art, the first prior art is to combine the shell and natural zeolite and utilize the ion-exchange property of zeolite. Lower. The effect is caused by the elution of potassium, which is a strong reducing ion added later, because the component of the shell does not play a major role, it is a technology for producing mineral-reduced water, and it has little long-term sustainability. The second conventional technique is a technique for producing an antibacterial agent by baking at 700 ° C. or higher in an atmosphere of an inert gas such as nitrogen gas, and the effect is the active mineral component of the protein layer. It is extremely difficult in terms of equipment technology to heat-treat to 900 ° C. in the autoclave while stirring, and it is manufactured with a large cost burden.
Therefore, this conventional technique, along with technically unsolved difficulties,
It has a big drawback that it is very unlikely to be economically viable. In the third conventional technique, shells are heat-dried and treated by adding 0.5% to 1.0% hydrochloric acid to the pearl layer gap, and after the reaction, the reaction proceeds and the nascent dioxide Carbon is generated and deodorizes due to its reducing property, but there is a problem in the sustainability of long-term effects. Further, it has a drawback that its reducing property is weak. The present invention eliminates and improves the above-mentioned various drawbacks and problems of the prior art and develops a new technique which is completely different from these and improved. That is, electromagnetic waves are absorbed from the atmospheric electric field to spontaneously generate electrolysis energy, and at the same time, elution of reducing ions is promoted. It is an innovative new technology. The redox potential (ORP) is higher than ever, and the purpose is to develop and provide a new technology that supplies a water quality improving agent that is practically effective and at the lowest cost by maximizing the utilization of waste. This is a problem to be solved.

【0007】そこで、更に、具体的に本発明が解決しよ
うとする課題を説明する。本発明の理論的コンセプト
は、まず貝殻の主成分である炭酸カルシウムを分解させ
ることなく加熱し、副成分である硬蛋白質コンキオリン
中に、ナノメートルサイズで存在するストロンチウム、
亜鉛、鉄、マンガン、マグネシウム、カリウムなどのバ
イオミネラルを無定形の炭素中に封じ込めて磁性質体と
して複合された構造の焼成体とし、大気電界から電磁波
を吸収してエネルギーを取り入れ、複合界面の電位差に
よる界面電荷を利用して電気分解作用を誘発させ、酸化
還元電位(O.R.P)を低下させるものであり具体的
にはO.R.P+350mV〜500mVの一般用水を
処理してpH8.0〜11.0、O.R.P−100m
Vから−500mVのアルカリ還元水とすることが目的
である。
Therefore, the problem to be solved by the present invention will be described more concretely. The theoretical concept of the present invention is to first heat calcium carbonate which is the main component of the shell without decomposing, and in the hard protein conchiolin that is a minor component, strontium present in nanometer size,
A bio-mineral such as zinc, iron, manganese, magnesium, and potassium is enclosed in amorphous carbon to form a composite body that is a composite of magnetic materials. It absorbs electromagnetic waves from the atmospheric electric field and takes in energy to create a composite interface. It utilizes an interface charge due to a potential difference to induce an electrolysis action and lowers the redox potential (ORP). R. P + 350 mV to 500 mV of general-purpose water was treated to give a pH of 8.0 to 11.0 and an O.V. R. P-100m
The purpose is to obtain alkaline reduced water from V to -500 mV.

【0008】解決すべき課題の第1は炭酸カルシウムの
分解抑制方法である。貝殻の加熱重量減少を測定すると
400℃から800℃までの間は僅か2.5%〜3.0
%であり、この間は蛋白質の分解によるものであり、8
00℃を越えると急速に減少し、900℃に達すると4
5%〜46%になり、殆ど炭酸カルシウムに分解される
ものである。炭酸カルシウムが分解してCaOが生成さ
れると水に入れたとき消化してCa(OH)2となり、
水質処理剤としては好ましくないため、水中で粒状、又
は小片状で安定であることが必要である。解決すべき課
題の第2は、貝殻中に5%〜10%含まれる硬蛋白質で
あるコンキオリン層の炭化である。蛋白質が炭化されガ
ラス状カーボンとなるためには無酸素雰囲気で800℃
以上が必要であり、特に400℃からの分解開始時に酸
化させない雰囲気でなくてはならない。解決すべき課題
の第3は、使用目的に応じ、硬く焼成された粒状又は特
定の形状に成形されたものが必要である。又、効果が長
期持続性を持ち、更にpHも安定なものとする必要があ
るということである。
The first problem to be solved is a method for suppressing the decomposition of calcium carbonate. When the weight loss on heating of shells is measured, it is only 2.5% to 3.0 between 400 ℃ and 800 ℃.
%, During this period due to protein degradation, 8
It rapidly decreases when the temperature exceeds 00 ° C, and 4 when it reaches 900 ° C.
It becomes 5% to 46%, and is almost decomposed into calcium carbonate. When calcium carbonate is decomposed to produce CaO, it is digested when put in water to become Ca (OH) 2 .
Since it is not preferable as a water treatment agent, it must be stable in the form of particles or pieces in water. The second problem to be solved is carbonization of the conchiolin layer, which is a hard protein contained in the shell in an amount of 5% to 10%. 800 ° C in an oxygen-free atmosphere in order for the protein to be carbonized into glassy carbon
The above is necessary, and the atmosphere must be such that it does not oxidize especially at the start of decomposition from 400 ° C. The third problem to be solved is that it is required to be hard-baked to be granular or molded into a specific shape depending on the purpose of use. It is also necessary that the effect has long-term sustainability and that the pH is stable.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
め、本発明は従来にない以下の画期的手段によった。そ
の1番目の特徴は、蠣、アコヤ貝、帆立貝、の1以上を
含む貝殻類を、木片粉、モミ殻、藁の1以上を含む植物
繊維及び/又は粉末の中に埋没させ、還元雰囲気中にお
いて、400℃以上〜1100℃以下の温度で焼成さ
れ、該貝殻類中の炭酸カルシウムが分解されることな
く、かつ該貝殻中の硬蛋白質コンキオリンが無定形の炭
素になっていることを特徴とする水質改良剤であること
である。また、2番目の特徴は、蠣、アコヤ貝、帆立貝
の1以上を含む貝殻類を小片状として、pH1以下の希
硫酸液に浸漬反応させたものを、木片粉、モミ殻、藁の
1以上を含む植物繊維及び/又は粉末の中に埋没させ
て、400℃以上〜1100℃以下の温度で焼成されて
いる水津改良剤であることである。次ぎに3番目の特徴
は、蠣、アコヤ貝、帆立貝の1以上を含む貝殻類を小片
状とし木片粉、モミ殻、藁の1以上を含む植物繊維及び
/又は粉末の中に埋没させて400℃以上〜1100℃
以下の温度で焼成されたものを、希硫酸液に浸漬反応さ
せ、水洗してある水質改良剤であることである。更に4
番目の特徴は、蠣、アコヤ貝、帆立貝の1以上を含む貝
殻類を150μm以下に微粉砕した粉末を10〜30重
量%と、モミ殻、そば殻、木片粉の1以上を還元雰囲気
で燻焼又は炭化した炭材を5〜10重量%と、粘土(無
水物換算)60〜85重量%とを均質に混合したものを
造粒成形し、次いで、木片粉、モミ殻、藁の1以上を含
む植物繊維及び/又は粉末の中に埋没させて600℃以
上〜1100℃以下の温度で焼成する水質改良剤の製造
方法である。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has the following epoch-making means which have not been found in the prior art. The first feature is that shells containing one or more of oysters, pearl oysters and scallops are embedded in plant fiber and / or powder containing one or more of wood chips, fir shells and straw, and in a reducing atmosphere. In the above, it is calcined at a temperature of 400 ° C. or more and 1100 ° C. or less, the calcium carbonate in the shells is not decomposed, and the hard protein conchiolin in the shells is amorphous carbon. It is a water quality improving agent. The second feature is that shells containing at least one of oysters, pearl oysters, and scallops are made into small pieces, which are soaked in a dilute sulfuric acid solution having a pH of 1 or less to produce wood chips, fir shells, and straws. It is a Mizutsu improving agent which is buried in a plant fiber and / or powder containing the above and is fired at a temperature of 400 ° C to 1100 ° C. The third feature is that shells containing at least one of oysters, pearl oysters, and scallops are made into small pieces and embedded in plant fibers and / or powders containing at least one of wood chips, fir shells, and straws. 400 ° C or higher to 1100 ° C
That is, it is a water quality improving agent that is obtained by immersing a product that has been fired at the following temperature in a dilute sulfuric acid solution and washing with water. 4 more
The second characteristic is that 10 to 30% by weight of powder obtained by finely pulverizing shells containing at least one of oysters, pearl oysters and scallops to 150 μm or less, and one or more of fir shells, buckwheat husks and wood chips are smoked in a reducing atmosphere. A homogeneous mixture of 5 to 10% by weight of burned or carbonized carbonaceous material and 60 to 85% by weight of clay (anhydrous basis) is granulated, and then one or more of wood chip powder, fir shell and straw. Is a method for producing a water quality improver in which the water quality improver is embedded in a plant fiber and / or a powder containing and baked at a temperature of 600 ° C. or higher and 1100 ° C. or lower.

【0010】前記各課題と手段との関連において、本発
明の内容を更に詳細に説明する。第1の課題である炭酸
カルシウム分の分解抑制は請求項1に示す様に木粉やモ
ミガラ等に埋没させてもCaCO3→CaO+CO2の反
応抑止は900℃を越えるとあまり効果がなかったが、
800℃焼成物は分解がなく、水中での崩解はなかった
がpHは10.0であり、O.R.Pは−150mVと
する効果があった。更に900℃焼成物はpH11.0
〜11.8となり1日で水中崩解したが、O.R.Pは
−250mVの効果があった。また、請求項2について
作用理論を補充説明する。この手段は、炭酸カルシウム
から分解されるCaOを何らかの形で水中崩解抑止をし
pHの上昇を防ぐためのものであり、貝殻を小粒状とし
たものを希硫酸と反応させてCaCO3+H2SO4→C
aSO4+H2O+CO2とし、加熱過程でCaSO4+4
C→CaS+4COとなり、水に難溶性の硫化カルシウ
ムとするもので、水中では微量溶出してCa(HS)2
とCa(OH)2となり殺菌効果が期待されるが、硫化
カルシウムの生成反応は800℃以上の温度が必要であ
る。次に、請求項3についての作用理論は、貝殻を焼成
直後に希硫酸又はリン酸液と反応させて分解されたCa
OをCaSO4又はCa3(PO4)2とするものである。
CaSO4はpHの安定に役立ちCa3(PO42はアパ
タイトの特性であるイオン交換物質であり塩素、フッ素
などを吸着固定する。
The contents of the present invention will be described in more detail in relation to the above problems and means. The first problem, the suppression of the decomposition of the calcium carbonate component, as shown in claim 1, was not very effective at suppressing the reaction of CaCO 3 → CaO + CO 2 above 900 ° C even if it was buried in wood flour or husk. ,
The 800 ° C. calcined product did not decompose and did not disintegrate in water, but the pH was 10.0, R. P had the effect of setting -150 mV. Furthermore, the pH of the baked product at 900 ° C is 11.0.
It became ~ 11.8 and dissolved in water in one day, but O.I. R. P had an effect of -250 mV. The theory of action will be supplementarily described with respect to claim 2. This means is to prevent the decomposition of CaO decomposed from calcium carbonate in water in some form to prevent an increase in pH, and to react the small granular shells with dilute sulfuric acid to react CaCO 3 + H 2 SO 4 → C
aSO 4 + H 2 O + CO 2 and CaSO 4 +4 in the heating process
It becomes C → CaS + 4CO, which is made into calcium sulfide that is sparingly soluble in water. It elutes in trace amounts in water and Ca (HS) 2
And Ca (OH) 2 is obtained , and a bactericidal effect is expected, but a temperature of 800 ° C. or higher is required for the calcium sulfide formation reaction. Next, the theory of action of claim 3 is that Ca decomposed by reacting a shell with dilute sulfuric acid or phosphoric acid solution immediately after firing is decomposed.
O is CaSO 4 or Ca 3 (PO 4 ) 2.
CaSO 4 helps stabilize the pH, and Ca 3 (PO 4 ) 2 is an ion-exchange substance which is a characteristic of apatite and adsorbs and fixes chlorine, fluorine and the like.

【0011】かつまた、第2の課題は、硬蛋白質コンキ
オリン層の炭化物が大気電界から電磁波を吸着する導電
性のガラス状カーボンとなる条件である。コンキオリン
層は硬質の蛋白質であり、分解は400℃と高いが、木
粉やモミガラなどはセルローズの分解が350℃から起
こるため、先に還元雰囲気が造られた後で分解が始まる
ので、好条件となる。電磁吸収効果は、焼成物を2.4
GHzの電子レンジの中での発熱状態をみた。800℃
以下の場合は吸収加熱されるが発熱は少なく800℃を
越えると900℃では赤熱状態となった。
The second problem is the condition that the carbide of the hard protein conchiolin layer becomes conductive glassy carbon that adsorbs electromagnetic waves from the atmospheric electric field. The conchiolin layer is a hard protein, and its decomposition is high at 400 ° C, but since the decomposition of cellulose such as wood flour and chaffs begins at 350 ° C, the decomposition begins after the reducing atmosphere is created. Becomes The electromagnetic absorption effect is 2.4
The state of heat generation in a microwave oven of GHz was observed. 800 ° C
In the following cases, absorption heating was performed, but the heat generation was small, and when it exceeded 800 ° C, it became a red hot state at 900 ° C.

【0012】更に、第3の課題は、請求項4に示すよう
に貝殻を微粉砕したものを粘土によって焼結させたもの
である。成形条件、焼結条件から貝殻の含有率は10%
以上30%以下であった。また、焼成直後における反応
は原料組成中のモミガラ、そばがら、木片等に含まれる
バイオミネラル成分であるカリウム、リン及び活性のシ
リカは粘土の結晶水脱水した600℃から反応が起こ
り、低温度で焼結反応が起こる。モミガラ、そばがら等
は生の状態では微粉砕が困難であり、予め300℃位で
燃焼したものが使いやすいし、本来は埋没材料として焼
成されたとき「炭」として発生するものを使用する。ま
た、10%〜30%含まれる貝殻から分解生成されるC
aOは粘土質と反応して安定化するものである。特に、
粘土の効果は、酸化鉄成分を5%以上含む貢岩、泥岩粘
土の鉄成分は炭化雰囲気中では還元されてFeO、Fe
34のフェライトとなり、磁性体を形成し、電磁波吸収
性を高めるものであった。
Further, the third problem is that the shell is finely pulverized and sintered with clay as described in claim 4. The shell content is 10% due to molding and sintering conditions
It was above 30%. In addition, the reaction immediately after firing is that the biomineral components potassium, phosphorus, and active silica contained in rice husks, buckwheat, wood chips, etc. in the raw material composition react at 600 ° C. after dehydration of the crystallization water of clay, and at low temperature. A sintering reaction occurs. It is difficult to finely pulverize rice husks, buckwheat noodles, etc. in the raw state, and it is easy to use those that have been burned at about 300 ° C in advance, and those that are originally generated as "charcoal" when burned as a buried material are used. In addition, C that is decomposed and produced from the shell containing 10% to 30%
aO reacts with clay and stabilizes. In particular,
The effect of clay is that the iron component of the slag rock and mudstone clay containing iron oxide components of 5% or more is reduced in the carbonization atmosphere to FeO, Fe.
It became a ferrite of 3 O 4 and formed a magnetic substance to enhance electromagnetic wave absorption.

【0013】[0013]

【発明の実施の形態】本発明に使用する資源である貝殻
は貝として生産性の高い蠣、帆立、真珠貝等を対象とす
る。還元水は使用目的により、pHやO.R.Pの許容
限界があり、また、使用する際の商品の形状が使用方法
などにより請求項1〜3の新規物並に請求項4の製造方
法が選択されるが、すべての加熱処理は金属缶内にモミ
ガラ、木粉等の中へ埋没させて400℃〜1100℃の
間で行われる。また、焼成後缶内に生成されたモミガラ
等の炭材は、請求項4の組成原料の一部として使用する
ものである。而して、該貝殻類が還元雰囲気中で焼成さ
れることにより、該貝殻類中の炭酸カルシウムが分解さ
れることなく、かつ該貝殻類中の硬蛋白質コンキオリン
が無定形の炭素になっていることが最大の特徴である。
BEST MODE FOR CARRYING OUT THE INVENTION The shells which are the resources used in the present invention are oysters, scallops, pearl oysters and the like, which have high productivity as shells. Depending on the purpose of use, the reduced water may have a pH or O. R. There is a permissible limit of P, and the shape of the product when used is selected according to the method of use such as the novel product of claims 1 to 3 and the manufacturing method of claim 4, but all the heat treatments are metal cans. It is carried out at a temperature of 400 ° C to 1100 ° C by being buried in rice husks, wood flour, etc. Further, the carbonaceous material such as rice husk produced in the can after firing is used as a part of the composition raw material of claim 4. By calcining the shells in a reducing atmosphere, calcium carbonate in the shells is not decomposed and the hard protein conchiolin in the shells becomes amorphous carbon. That is the biggest feature.

【0014】(実施例)使用した貝殻は、以下の科学成
分のカキ殻を粉砕したものを用いた。CaCO 3
4.5%、コンキオリン層5.0%を含み、Sr800
ppm、Mg1050ppm、Na6100ppm、F
e,Mn 18ppmとSO32200ppmのもので
ある。 (実施例−1)貝殻を5mm〜10mmの片状に粉砕し
たものを2リットルのステンレス缶内にモミガラの中へ
埋没させて800℃で1時間焼成した。pH7.2、
O.R.P+470mVの水道水を1リットルの容器に
入れ、焼成物を1g入れた後、20分経過後のO.R.
Pは−147mV〜150mVであり、pHは10.0
から10.5であった。なお、3日経過後はpH11.
5、O.R.P−200mVとなった。 (実施例−2)貝殻を5mm〜10mmの片状に粉砕し
たものを、3%のH2SO4水溶液に24時間浸漬反応さ
せた後、取り出し、水を切って2リットルステンレス缶
内にモミガラ中へ埋没させて800℃で1時間焼成し
た。pH6.7、O.R.P+560mVの水道水を1
リットルの容器に入れ、焼成物を1g入れて20分経過
後のO.R.Pは−170mVであり、pHは9.6〜
9.8であり、三日経過後はpH10.5、O.R.P
−220mVとなった。 (実施例−3)貝殻5mm〜10mmの片状に粉砕した
ものを2リットルステンレス缶内にもみがら中に埋没さ
せて900℃で1時間焼成したものを3%のH2SO4
溶液中へ投入し、3時間反応処理したものを取り出して
水洗いし、乾燥した。pH6.7、O.R.P+560
mVの水道水を1リットルの容器に入れ、1gのサンプ
ルを入れて20分後のO.R.Pは−150mV、pH
は、8.6〜8.7であり、3日経過後はO.R.P−
210mV、pH9.0から9.5であった。 (実施例−4)貝殻を150ミクロン以下の微粉末とし
て20%、モミガラ炭化物を500ミクロン以下に粉砕
したものを7%と、乾燥された貢岩粘土73%を重量比
で混合し、水20%を加えて約10mmの球状に造粒し
たものを2リットルのステンレス缶内に埋没させて97
0℃〜1000℃の温度で1時間焼成した。pH6.
5、O.R.P+520mVの水道水1リットルに対し
て1gの試料を入れ、20分経過後のO.R.Pは−1
20mv、pHは8.2であったが、1日経過後はO.
R.P−370mV、pHは9.5〜9.6となり、1
週間経過後もO.R.P−280mV〜350mV、p
H9.5〜9.6と高い還元性を持続した。なお、前記
処理を1回処理した後、試料を取り出して水のみの持続
性を測定したところ、7日間経過後で±0となった。以
上のように、本発明の目的であるpH8.0〜11.
0、O.R.P−100mv以下のアルカリ還元水を造
ることができた。
(Example) The shells used were as follows.
A crushed oyster shell was used. CaCO 3  9
Sr800 containing 4.5% and 5.0% conchiolin layer
ppm, Mg1050 ppm, Na6100 ppm, F
e, Mn 18ppm and SO3With 2200 ppm
is there. (Example-1) A shell was crushed into pieces of 5 mm to 10 mm.
Put the fish in a 2 liter stainless steel can into the chaff.
It was buried and baked at 800 ° C. for 1 hour. pH 7.2,
O. R. Tap water of P + 470 mV in a 1 liter container
After adding 1 g of the burned material, the O.I. R.
P is -147 mV to 150 mV, pH is 10.0
To 10.5. After 3 days, the pH was 11.
5, O.I. R. It became P-200 mV. (Example-2) Shells were crushed into pieces of 5 mm to 10 mm.
3% H2SOFourSoaked in aqueous solution for 24 hours
After letting it out, take out the water and drain it to a 2 liter stainless steel can.
It is buried in chaff and burned at 800 ℃ for 1 hour.
It was pH 6.7, O. R. 1 tap water of P + 560mV
Put it in a liter container and put 1g of burned material for 20 minutes.
Later O. R. P is -170 mV, pH is 9.6 ~
9.8, pH 30.5, O. R. P
It became -220 mV. (Example-3) Shells were crushed into pieces of 5 mm to 10 mm.
Things are buried in chaff in a 2 liter stainless steel can
And burned at 900 ° C for 1 hour to obtain 3% H2SOFourwater
Put it in the solution and take out the reaction-treated product for 3 hours.
It was washed with water and dried. pH 6.7, O. R. P + 560
Put mV of tap water into a 1 liter container and add 1g of sump.
20 minutes after putting the R. P is -150 mV, pH
Is 8.6 to 8.7, and after 3 days, O.I. R. P-
It was 210 mV and pH 9.0-9.5. (Example-4) The shell was made into a fine powder of 150 microns or less.
20%, crushed charcoal carbide to less than 500 microns
7% of the dried ones and 73% of the dried Kouiwa clay 73% by weight
Mix with, add 20% of water and granulate to a sphere of about 10 mm.
It is buried in a 2-liter stainless steel can for 97
Firing was performed at a temperature of 0 ° C to 1000 ° C for 1 hour. pH 6.
5, O.I. R. For 1 liter of P + 520 mV tap water
1 g of the sample was added, and after 20 minutes, the O. R. P is -1
The pH was 20 mv and the pH was 8.2.
R. P-370 mV, pH becomes 9.5-9.6, and 1
O. even after a week. R. P-280 mV to 350 mV, p
High reducibility of H9.5 to 9.6 was maintained. In addition, the above
After processing once, remove the sample and continue with water only
When the sex was measured, it was ± 0 after 7 days. Since
As above, the pH of the present invention is 8.0 to 11.
0, O. R. Produces alkaline reduced water of P-100mv or less
I was able to

【0015】[0015]

【発明の効果】1)従来のアルカリ還元水は、弱アルカ
リ性のものが殆どであるから、防錆効果も弱く持続性が
短いが、本発明によるアルカリ還元水は、高い還元性を
長く持続するので、金属類の防錆効果、洗滌殺菌力も強
いという顕著な効果が得られる。従来品は、特に効果の
長期持続性は、電気分解水や磁気処理水は数時間で再び
クラスターが大きくなり効果を失うが、本発明品は少な
くとも数日間に渡り効果が持続されることが特徴であ
る。 2)アルカリイオン水や還元水は、健康飲料や農業用あ
るいは金属製品の防錆など、近時大きく期待されている
が、現在使用されている電解水は装置の投資やエネルギ
ーの消費など処理コストは水1000kg当り500円
程度の高いコストを要し且つ持続性のないものである
が、本発明はまず、貝殻のリサイクルという環境面、経
済面での大きな効果と共に、極めて低コストで供給でき
るという大きな効果を奏する。
1) Most of the conventional alkali-reduced water is weakly alkaline, so that it has a weak rust preventive effect and a short duration, but the alkali-reduced water according to the present invention maintains a high reducibility for a long time. Therefore, a remarkable effect that the anticorrosive effect of metals and the washing and sterilizing power are strong can be obtained. The conventional product has a particularly long-term sustainability of the effect that electrolyzed water or magnetically treated water loses its effect due to cluster formation again in several hours, but the product of the present invention is characterized in that the effect is sustained for at least several days. Is. 2) Alkaline ionized water and reduced water are expected to be great for health drinks, agricultural use, and rust prevention of metal products in recent years, but currently used electrolyzed water requires processing costs such as equipment investment and energy consumption. Is expensive and is not sustainable, costing about 500 yen per 1000 kg of water, but the present invention can be supplied at a very low cost along with a great environmental and economic effect of recycling shells. Great effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 居上 穰 栃木県塩谷郡高根澤町光陽台2丁目14番地 14 (72)発明者 渋谷 良二 栃木県塩谷郡高根澤町宝石台3−11−7 (72)発明者 渋谷 常義 山形県山形市大字平清水143番地6 Fターム(参考) 4D024 AA02 AB11 BA11 BB01 DA04   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Jou Ijo             2-14 Koyodai, Takanezawa-machi, Shioya-gun, Tochigi Prefecture             14 (72) Inventor Ryoji Shibuya             3-11-7 Gemdai, Takanezawa-machi, Shioya-gun, Tochigi Prefecture (72) Inventor Tsuneyoshi Shibuya             Yamagata City Yamagata Prefecture Hira Shimizu 143 6 F-term (reference) 4D024 AA02 AB11 BA11 BB01 DA04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 蠣、アコヤ貝、帆立貝の1以上を含む貝
殻類を、木片粉、モミ殻、藁の1以上を含む植物繊維及
び/又は粉末の中に埋没させ、還元雰囲気中において、
400℃以上〜1100℃以下の温度で焼成され、該貝
殻類中の炭酸カルシウムが分解されることなく、かつ該
貝殻中の硬蛋白質コンキオリンが無定形の炭素になって
いることを特徴とする水質改良剤。
1. A shell containing at least one of oysters, pearl oysters and scallops is embedded in a plant fiber and / or powder containing at least one of wood chip flour, fir shell, and straw, and in a reducing atmosphere,
Water quality that is calcined at a temperature of 400 ° C. or more and 1100 ° C. or less, without decomposition of calcium carbonate in the shells, and the hard protein conchiolin in the shells is amorphous carbon Improver.
【請求項2】 蠣、アコヤ貝、帆立貝の1以上を含む貝
殻類を小片状として、pH1以下の希硫酸液に浸漬反応
させたものを、木片粉、モミ殻、藁の1以上を含む植物
繊維及び/又は粉末の中に埋没させて、400℃以上〜
1100℃以下の温度で焼成されていることを特徴とす
る水質改良剤。
2. A shell containing at least one of oysters, pearl oysters and scallops is made into a small piece, which is soaked in a dilute sulfuric acid solution having a pH of 1 or less to contain one or more pieces of wood chips, fir shells and straw. Immersed in plant fiber and / or powder, 400 ℃ or more ~
A water quality improver characterized by being fired at a temperature of 1100 ° C. or lower.
【請求項3】 蠣、アコヤ貝、帆立貝の1以上を含む貝
殻類を小片状とし木片粉、モミ殻、藁の1以上を含む植
物繊維及び/又は粉末の中に埋没させて400℃以上〜
1100℃以下の温度で焼成されたものを、希硫酸液に
浸漬反応させ、水洗してあることを特徴とする水質改良
剤。
3. A shell containing at least one of oysters, pearl oysters and scallops is made into small pieces, and embedded in a plant fiber and / or powder containing at least one of wood chip flour, fir shell, and straw, and the temperature is 400 ° C. or higher. ~
A water quality improving agent, characterized in that a product calcined at a temperature of 1100 ° C. or lower is immersed in a dilute sulfuric acid solution for reaction, and washed with water.
【請求項4】 蠣、アコヤ貝、帆立貝の1以上を含む貝
殻類を150μm以下に微粉砕した粉末を10〜30重
量%と、モミ殻、そば殻、木片粉の1以上を還元雰囲気
で燻焼又は炭化した炭材を5〜10重量%と、粘土(無
水物換算)60〜85重量%とを均質に混合したものを
造粒成形し、次いで、木片粉、モミ殻、藁の1以上を含
む植物繊維及び/又は粉末の中に埋没させて600℃以
上〜1100℃以下の温度で焼成することを特徴とする
水質改良剤の製造方法。
4. 10 to 30% by weight of powder obtained by finely pulverizing shells containing at least one of oysters, pearl oysters and scallops to 150 μm or less, and one or more of fir shells, buckwheat husks, and wood chips powder in a reducing atmosphere. A homogeneous mixture of 5 to 10% by weight of burned or carbonized carbonaceous material and 60 to 85% by weight of clay (anhydrous basis) is granulated, and then one or more of wood chip powder, fir shell and straw. A method for producing a water quality improving agent, which comprises immersing in a plant fiber and / or a powder containing the above and firing at a temperature of 600 ° C. or higher to 1100 ° C. or lower.
JP2001288557A 2001-09-21 2001-09-21 Water quality improving agent and manufacturing method therefor Pending JP2003094072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288557A JP2003094072A (en) 2001-09-21 2001-09-21 Water quality improving agent and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288557A JP2003094072A (en) 2001-09-21 2001-09-21 Water quality improving agent and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003094072A true JP2003094072A (en) 2003-04-02

Family

ID=19111184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288557A Pending JP2003094072A (en) 2001-09-21 2001-09-21 Water quality improving agent and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003094072A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032630A1 (en) * 2002-10-08 2004-04-22 Kazuyuki Aso Agent for controlling protist and/or harmful substance comprising fired product of shell powder
JP2005298519A (en) * 2002-10-08 2005-10-27 Kazuyuki Aso Use of protist suppressor containing calcination product of clam shell powder in hot water storage tank or filtering machine
JP2006122026A (en) * 2004-10-25 2006-05-18 Nos:Kk Plant raising method using combined active functional water
JP2007063080A (en) * 2005-08-31 2007-03-15 Nippon Tennen Sozai Kk Highly dispersive calcium carbonate powder using shell as raw material and method for producing the same
JP2008126159A (en) * 2006-11-22 2008-06-05 Takeso Shigekazu Method for manufacturing water quality improving agent and liquid water quality improving agent, and liquid detergent
JP2008207146A (en) * 2007-02-28 2008-09-11 Michihisa Sasaki Manufacturing method for drinking water
JP2014005195A (en) * 2012-05-28 2014-01-16 Pharma Foods International Co Ltd Calcium-containing composition
CN104671432A (en) * 2015-01-27 2015-06-03 河海大学 Aquaculture water body cleaning agent and preparation method thereof
JP2019209247A (en) * 2018-06-04 2019-12-12 株式会社サンアール Chlorine removing material and chlorine-removed water filtrated thereby
CN114225753A (en) * 2021-12-14 2022-03-25 众合发(北京)生物科技发展有限公司 Preparation method, device and application of water body detoxification, water transfer and water stabilization modifier
WO2022244148A1 (en) * 2021-05-19 2022-11-24 株式会社カント Carbon-containing material fired body and production method for same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032630A1 (en) * 2002-10-08 2004-04-22 Kazuyuki Aso Agent for controlling protist and/or harmful substance comprising fired product of shell powder
JP2005298519A (en) * 2002-10-08 2005-10-27 Kazuyuki Aso Use of protist suppressor containing calcination product of clam shell powder in hot water storage tank or filtering machine
JPWO2004032630A1 (en) * 2002-10-08 2006-02-02 和幸 阿曽 Protozoan and / or harmful substance inhibitor made of fired shell powder
JP2006122026A (en) * 2004-10-25 2006-05-18 Nos:Kk Plant raising method using combined active functional water
JP2007063080A (en) * 2005-08-31 2007-03-15 Nippon Tennen Sozai Kk Highly dispersive calcium carbonate powder using shell as raw material and method for producing the same
JP2008126159A (en) * 2006-11-22 2008-06-05 Takeso Shigekazu Method for manufacturing water quality improving agent and liquid water quality improving agent, and liquid detergent
JP2008207146A (en) * 2007-02-28 2008-09-11 Michihisa Sasaki Manufacturing method for drinking water
JP2014005195A (en) * 2012-05-28 2014-01-16 Pharma Foods International Co Ltd Calcium-containing composition
CN104671432A (en) * 2015-01-27 2015-06-03 河海大学 Aquaculture water body cleaning agent and preparation method thereof
CN104671432B (en) * 2015-01-27 2016-08-31 河海大学 A kind of water body purification of aquaculture agent and preparation method thereof
JP2019209247A (en) * 2018-06-04 2019-12-12 株式会社サンアール Chlorine removing material and chlorine-removed water filtrated thereby
JP7126092B2 (en) 2018-06-04 2022-08-26 株式会社サンアール Chlorine removal material and chlorine removal water filtered by this
WO2022244148A1 (en) * 2021-05-19 2022-11-24 株式会社カント Carbon-containing material fired body and production method for same
CN114225753A (en) * 2021-12-14 2022-03-25 众合发(北京)生物科技发展有限公司 Preparation method, device and application of water body detoxification, water transfer and water stabilization modifier
CN114225753B (en) * 2021-12-14 2022-07-12 众合发(北京)生物科技发展有限公司 Preparation method, device and application of water body detoxification, water transfer and water stabilization modifier

Similar Documents

Publication Publication Date Title
KR101873931B1 (en) Manufacturing method for functional mineral water of ionized calcium using natural material
US20030126898A1 (en) Weak alkaline organic fertilizer from organic waste including food waste and its manufacturing method
JP2003094072A (en) Water quality improving agent and manufacturing method therefor
EP1918266A2 (en) Novel phosphatic/potash compound fertilizer and method of production thereof
US6264875B1 (en) Preparation of multi-purpose magnetized and sintered ceramics
KR100483075B1 (en) Method for producing functional calcium oxide
KR100922719B1 (en) Method of manufacturing of mineral functional water, and mineral functional water made thereby
JP3327542B2 (en) Water quality improving agent, method for producing the same, and treated water treated with the water quality improving agent
JP2004261693A (en) Water quality improving agent and its manufacturing method
WO2000072685A1 (en) Method for producing bactericide
KR100430815B1 (en) Method for fabricating organic fertilizer of alkaline stabilization processes of shell waste
KR100764462B1 (en) An organism apply variety mineral contain silicate a method of manufacture
KR100270228B1 (en) Process for producing calcium oxide
Sairan et al. Removal of Pb (II), Fe (II) and Zn (II) using activated carbon produced from foxtail palm fruit chemically activated by KOH and H3PO4.
KR100720764B1 (en) Manufacturing method for lime fertilizer
KR20150073326A (en) Loessal water including mineral elements
JP2001252558A (en) Carbonized material of agricultural and marine resources and manufacturing method therefor
KR20030017800A (en) Manufacturing method for soil conditioner by using activated humic substances and clay minerals
KR101872347B1 (en) Pellet composition for eco-friendly green tide and red tide removal and method for producing the same
JPS62235282A (en) Deodorization for bad smell matter such as chicken excresionor other organic matters
Radulescu et al. Effect of an industrial chemical waste on the uptake of cations by green oat
JP2007167012A (en) Chicken feed mixing agent, method for producing the same, and chicken feed containing chicken feed mixing agent
JP3727329B2 (en) Protozoa and / or harmful substance inhibitor consisting of fired shell powder
CN106669631A (en) Heavy metal ion treating agent and preparation method thereof
KR20100131266A (en) Method for stabilization of heavy metals in soils using heat-treated livestock and fisheries wastes