JP2003094006A - Treating method for asbestos and the product thereof - Google Patents

Treating method for asbestos and the product thereof

Info

Publication number
JP2003094006A
JP2003094006A JP2001294550A JP2001294550A JP2003094006A JP 2003094006 A JP2003094006 A JP 2003094006A JP 2001294550 A JP2001294550 A JP 2001294550A JP 2001294550 A JP2001294550 A JP 2001294550A JP 2003094006 A JP2003094006 A JP 2003094006A
Authority
JP
Japan
Prior art keywords
asbestos
treated
substance
product
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001294550A
Other languages
Japanese (ja)
Other versions
JP4694065B2 (en
Inventor
Takayuki Maejima
貴幸 前島
Yukinori Yamazaki
之典 山崎
Kohei Ota
耕平 太田
Mitsuharu Osawa
光春 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Kenzai Gijutsu Kenkyusho KK
Original Assignee
A&A Material Corp
Kenzai Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp, Kenzai Gijutsu Kenkyusho KK filed Critical A&A Material Corp
Priority to JP2001294550A priority Critical patent/JP4694065B2/en
Publication of JP2003094006A publication Critical patent/JP2003094006A/en
Application granted granted Critical
Publication of JP4694065B2 publication Critical patent/JP4694065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a treating method for asbestos which makes the treated product recylable stably without dumping the treated material, consuming a great quantity of energy or producing the material which is easy to react with water such as forsterite having a posibility of recrystallization to chrysotile. SOLUTION: The material containing Si, Ca and/or Al is added to and mixed with a material to be treated containing asbestos conforming to the following condition, and the obtained mixture is heat-treated at 400 deg.C to 1,200 deg.C. Addition conditions: The mol ratio of Mg to Si in the material to be treated is adjusted to Mg/Si<=0.5, and the mole ratio of Ca to Si is adjusted to 0.5<=Ca/Si<=2.0. When the mole ratio is Ca/Si>=1.3, the material containing Al is added so as to make Al2 O3 mass percentage >= ((Ca/Si)×0.357-0.464)×100.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石綿の処理方法に
関するものであり、さらに詳しくは、被処理物質を廃棄
することなく、大量のエネルギーを消費することなく、
クリソタイルへ再結晶化の可能性のあるフォルステライ
トなど水と反応し易い物質を生成することがなく、かつ
処理された生成物が安定で再利用可能となる石綿の処理
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating asbestos, and more specifically, it does not waste a substance to be treated and consumes a large amount of energy,
The present invention relates to a method for treating asbestos that does not generate a substance that easily reacts with water, such as forsterite that may be recrystallized into chrysotile, and that the treated product is stable and can be reused.

【0002】[0002]

【従来の技術】近年、産業廃棄物の処理、中でも多量に
発生する建設廃材の処分方法が問題となっている。その
中には石綿を含む廃材も含まれている。石綿は健康に対
する影響が指摘されて以来、使用量は減少しつつあるも
のの現存する建築物にはなお大量に使用されており、そ
の廃棄処理に関する問題は今後ますます大きくなってい
くものと予想される。
2. Description of the Related Art In recent years, there has been a problem in the treatment of industrial waste, especially in the method of disposing of a large amount of construction waste. It also includes waste materials containing asbestos. Although the use of asbestos has been decreasing since its health effects were pointed out, it is still being used in large quantities in existing buildings, and it is expected that the problems related to its disposal will become even greater in the future. It

【0003】従来の石綿の処理方法として、石綿スレー
トなどの石綿セメント製品はそのまま土中に埋設する方
法がとられ、吹き付け石綿や含石綿保温材については石
綿が飛散しないようセメントで固化したのち埋め立てる
方法あるいは1500℃以上の高温で溶融しガラス化した後
廃棄される方法が採用されている。しかし地域環境の問
題上、埋立地の不足から、これらの方法は今後困難にな
っていくと予想される。従って、石綿廃棄物を非石綿化
して人体に対して無害な物質へと変換させ、処理生成物
を有効利用する方法が求められている。
As a conventional method for treating asbestos, asbestos cement products such as asbestos slate are buried in the soil as they are. For sprayed asbestos and heat-insulating asbestos-containing materials, the asbestos is solidified with cement so that it does not scatter and then it is filled up. A method is adopted in which it is melted at a high temperature of 1500 ° C or higher, vitrified, and then discarded. However, these methods are expected to become difficult in the future due to the shortage of landfill due to the problems of the local environment. Therefore, there is a demand for a method of converting asbestos waste into non-asbestos and converting it into a substance harmless to the human body and effectively utilizing the treated product.

【0004】これまでにも石綿の処理方法および処理生
成物の再利用法はいくつか提案されている。例えば特開
平3-60789号公報には、天然アスベストに対して、SiO2
よりもCaOの含有量が多い水処理汚泥を塩基度調整剤と
して混合し、その混合物を成型処理し、その成型混合物
を炭素系可燃物質で成型した高温炉床に供給して加熱溶
融するアスベストの溶融処理法が開示されている。これ
は石綿を他の廃棄物と共に溶融処理し廃棄する方法であ
る。特開平3-4980号公報には、石綿と炭素系固形燃料と
を主体とし、必要によりこれらの結合剤および/または
酸化剤を添加すると共に、所望によりさらに石綿を低融
点化させる塩基性無機固体を添加して混合し、得られた
混合物を造粒し、空気を送り込みながらこの混合物を燃
焼させて針状石綿を溶融し焼結化することを特徴とする
石綿溶融固結化処理方法が開示されている。また、特開
平3-21387号公報には石綿をリン酸で処理するとともに
焼成し、更に、これに炭酸カルシウムまたは水酸化カル
シウム等のアルカリ剤を加えて、焼成することを特徴と
する廃棄石綿の無害化処理方法が開示されている。この
方法によれば、石綿製パッキン等の石綿廃棄物を無害化
して肥料等として使用することができる旨開示されてい
る。焼成法として特開平5-293457号公報には石綿セメン
ト製品を600〜1450℃で15分〜2時間程度加熱処理し、石
綿をフォルステライト等に分解させ無害化するとととも
に、水硬性粉体を得る石綿処理方法が開示されている。
また特開平6-134438号公報には廃アスベスト材にアルミ
ニウム精錬時の副生精錬灰をMgO・2CaO・5SiO2・5/3Al
2O3の組成に近似するよう添加し、800℃以上で焼成する
ことを特徴とする廃アスベスト材の処理方法が開示され
ている。さらにその処理生成物にシャモットを添加して
成形物を成形し、乾燥した後、1230℃以上で焼成して窯
業製品を製造することができる旨開示されている。さら
に特開平9-206726号公報にはアスベスト含有物と都市ゴ
ミ焼却灰の混合物を600℃から1700℃の温度範囲で加熱
し、クリソタイルをゲーレナイトおよび/またはアケル
マナイト、フォルステライト、クリストバライトを含む
固溶体へと変化させることによってアスベストの無害化
を行なうことを特徴とする廃棄石綿の無害化処理方法が
開示されている。この方法によれば、得られた反応焼結
体は吸着剤または、タイル、レンガ、セメント充填材等
の建築材料として使用することができる旨開示されてい
る。
Until now, several methods for treating asbestos and recycling of treated products have been proposed. For example, in Japanese Patent Laid-Open No. 3-60789, SiO 2 is added to natural asbestos.
A mixture of water treatment sludge with a higher CaO content than the basicity modifier, the mixture is molded, and the mixture is heated and melted by supplying it to a high-temperature hearth molded with a carbon-based combustible substance. Melt processing methods are disclosed. This is a method in which asbestos is melt-processed and discarded together with other wastes. JP-A-3-4980 discloses a basic inorganic solid mainly composed of asbestos and carbon-based solid fuel, and if necessary, these binders and / or oxidizers are added and, if desired, the asbestos is further lowered in melting point. Is added and mixed, the resulting mixture is granulated, the mixture is burned while feeding air to melt and sinter the needle-shaped asbestos, and a method for assembling and consolidating asbestos is disclosed. Has been done. Further, in Japanese Patent Laid-Open No. 3-21387, asbestos is treated with phosphoric acid and fired, and an alkaline agent such as calcium carbonate or calcium hydroxide is added to the asbestos to fire the waste asbestos. A detoxification treatment method is disclosed. According to this method, it is disclosed that asbestos waste such as asbestos packing can be made harmless and used as fertilizer or the like. As a firing method, in Japanese Patent Laid-Open No. 5-293457, asbestos cement products are heat-treated at 600 to 1450 ° C. for about 15 minutes to 2 hours to decompose asbestos into forsterite and detoxify it and obtain a hydraulic powder. An asbestos treatment method is disclosed.
Also JP The 6-134438 discloses MgO · 2CaO ·-product refining ash during aluminum refining waste asbestos material 5SiO 2 · 5 / 3Al
Disclosed is a method for treating a waste asbestos material, which is characterized in that it is added so as to have a composition close to that of 2 O 3 and is baked at 800 ° C. or higher. Further, it is disclosed that chamotte can be added to the treated product to form a molded product, which can be dried and then baked at 1230 ° C. or higher to produce a ceramic product. Further, in JP-A-9-206726, a mixture of asbestos-containing material and municipal waste incineration ash is heated in a temperature range of 600 ° C. to 1700 ° C. to convert chrysotile into a solid solution containing gehrenite and / or akermanite, forsterite and cristobalite. A method for detoxifying waste asbestos characterized by detoxifying asbestos by changing it is disclosed. According to this method, it is disclosed that the obtained reaction-sintered body can be used as an adsorbent or a building material such as tile, brick, and cement filler.

【0005】[0005]

【発明が解決しようとする課題】このように石綿処理に
はいくつかの方法が実施あるいは提案されているが、従
来の埋め立てによる方法は地域環境の問題上、埋立地の
不足が顕在化しており今後ますます困難になっていくと
予想される。また、石綿含有物を溶融して処理する方法
は一般的に1500℃程度の高温での処理が必要であり、大
量のエネルギーを消費する。従って省エネルギーの観点
から適切とは言い難い。一方、再利用を目的とした比較
的低温での焼成法による石綿処理方法では、フォルステ
ライト(Mg2SiO4)の混入が示されている。フォルステラ
イト自体は地球上で最も一般的に存在する鉱物のひとつ
であり、人体に対し無害である。しかしフォルステライ
ト等、自然界で一般に高温で生成する鉱物はその結晶構
造から水に対する抵抗力が弱く、水と反応し易いことが
知られている。元来石綿の大部分を占めるクリソタイル
(Mg3Si2O5(OH)4)は、フォルステライトを主体とするか
んらん岩などが地下深部から固体状態で上昇する際に、
途中で周りの地下水などの水と反応し、蛇紋岩化した岩
体中に脈状に生成すると言われている。さらにMgO―SiO
2―H2O系の合成実験の結果から(N. L. Bowen and O. F.
Tuttle, Bull. Geol. Soc. Am., Vol.60, 439-460, (1
949)、J. J. Hemley, J. W. Montoya, D. R. Shaw, R.
W. Luce,Amer. J. Sci., Vol. 277, 358-383, (1977)参
照)、クリソタイルは500℃以下で生成することが明らか
にされており、フォルステライトと水の反応では400℃
以下で生成する。また、クリソタイルの合成は200℃で
も可能であるとの報告もある(E. T. Carlson, R. B. P
eppler and L. S. Well, J. Res. Natl. Bur. Stand.,
Vol.51, 179-184, (1953))。従って、フォルステライ
トを含む石綿処理生成物を、水を使用して製造するセメ
ント系あるいはケイ酸カルシウム系建築材料に再利用す
る場合、特に硬化促進のためオートクレーブ処理をおこ
なうとフォルステライトがクリソタイルに再結晶化する
おそれがある。
As described above, several methods have been implemented or proposed for asbestos treatment, but the conventional method of landfill has revealed a shortage of landfill sites due to the problem of the local environment. It is expected to become more difficult in the future. Further, the method of melting asbestos-containing material for processing generally requires processing at a high temperature of about 1500 ° C., which consumes a large amount of energy. Therefore, it is hard to say that it is appropriate from the viewpoint of energy saving. On the other hand, in the asbestos treatment method by the firing method at a relatively low temperature for the purpose of reuse, the inclusion of forsterite (Mg 2 SiO 4 ) is shown. Forsterite itself is one of the most commonly occurring minerals on earth and is harmless to the human body. However, it is known that forsterite and other minerals that are generally formed in nature at high temperature have a weak resistance to water due to their crystal structure and easily react with water. Chrysotile originally occupies most of asbestos
(Mg 3 Si 2 O 5 (OH) 4 ) is a forsterite-based peridotite that rises in the solid state from deep underground,
It is said that it reacts with surrounding water such as groundwater on the way and forms veins in the serpentinized rock body. Further MgO-SiO
From the results of the synthesis experiment of the 2- H 2 O system (NL Bowen and OF
Tuttle, Bull. Geol. Soc. Am., Vol.60, 439-460, (1
949), JJ Hemley, JW Montoya, DR Shaw, R.
W. Luce, Amer. J. Sci., Vol. 277, 358-383, (1977)), chrysotile was found to be formed at 500 ° C or lower, and 400 ° C in the reaction of forsterite and water.
Generate below. It has also been reported that chrysotile can be synthesized at 200 ° C (ET Carlson, RB P
eppler and LS Well, J. Res. Natl. Bur. Stand.,
Vol.51, 179-184, (1953)). Therefore, when the asbestos-treated product containing forsterite is reused in cement-based or calcium silicate-based building materials produced using water, forsterite is re-converted into chrysotile when autoclaving is performed to accelerate hardening. May crystallize.

【0006】したがって本発明の目的は、被処理物質を
廃棄することなく、大量のエネルギーを消費することな
く、クリソタイルへ再結晶化の可能性のあるフォルステ
ライトなど水と反応し易い物質を生成することがなく、
かつ処理された生成物が安定で再利用可能となる石綿の
処理方法の提供にある。
[0006] Therefore, an object of the present invention is to produce a substance which easily reacts with water, such as forsterite, which may be recrystallized into chrysotile without discarding the substance to be treated and consuming a large amount of energy. Without
Another object of the present invention is to provide a method for treating asbestos in which the treated product is stable and can be reused.

【0007】[0007]

【課題を解決するための手段】本発明は、石綿および/
または石綿含有物からなる被処理物質を加熱処理するこ
とにより、前記被処理物質中の石綿を非石綿物質に変換
する処理方法であって、前記被処理物質に、Siを含む
物質、Caを含む物質およびAlを含む物質からなる群
から選択される1種以上の物質を、下記条件を満たすよ
うに添加し混合し、得られた混合物を400℃〜1200℃で
加熱処理することを特徴とする石綿の処理方法を提供す
るものである。 添加条件:前記被処理物質におけるMgとSiのモル比をMg
/Si≦0.5に、かつCaとSiのモル比を0.5≦Ca/Si≦2.0
に調整する。ただしこのときモル比においてCa/Si≧1.
3であればAl2O3質量%≧((Ca/Si)×0.357-0.464)
×100となるように前記Alを含む物質を添加する。ま
た本発明は、前記の処理方法により処理された生成物で
あって、前記生成物中にMgO−SiO2系化合物、MgOおよび
Ca2SiO4を含まないことを特徴とする前記生成物を提供
するものである。また本発明は、前記の生成物からな
る、建築材料のための充填材を提供するものである。
The present invention is directed to asbestos and / or
Alternatively, a treatment method for converting asbestos in the substance to be treated into a non-asbestos substance by heat-treating the substance to be treated containing asbestos-containing substance, wherein the substance to be treated contains a substance containing Si and Ca One or more substances selected from the group consisting of substances and substances containing Al are added and mixed so as to satisfy the following conditions, and the resulting mixture is heat-treated at 400 ° C to 1200 ° C. A method for treating asbestos is provided. Addition condition: The molar ratio of Mg and Si in the substance to be treated is Mg
/Si≦0.5 and the molar ratio of Ca and Si is 0.5 ≦ Ca / Si ≦ 2.0
Adjust to. However, at this time, the molar ratio is Ca / Si ≧ 1.
If 3, Al 2 O 3 mass% ≧ ((Ca / Si) × 0.357-0.464)
The substance containing Al is added so that the amount becomes × 100. The present invention provides the process product which has been treated by the method, MgO-SiO 2 compound in the product, MgO and
There is provided the above-mentioned product, which is characterized by not containing Ca 2 SiO 4 . The present invention also provides a filler for building materials, which comprises the above products.

【0008】[0008]

【発明の実施の形態】以下、本発明をさらに説明する。
本発明の処理方法は、石綿および/または石綿含有物か
らなる被処理物質を、特定範囲の化学組成になるように
調整し、特定条件でもって加熱処理し、石綿を非石綿物
質、例えばCaO−MgO−SiO2系化合物、CaO−MgO−Al2O3
−SiO2系化合物等に非石綿化することを特徴としてい
る。前記の特定範囲の化学組成は、被処理物質に、Si
を含む物質、Caを含む物質およびAlを含む物質から
なる群から選択される1種以上の物質を、下記添加条件
でもって添加することにより調整される。すなわち、前
記添加条件は、被処理物質におけるMgとSiのモル比(Mg
/Siモル比)をMg/Si≦0.5に、かつCaとSiのモル比(C
a/Siモル比)を0.5≦Ca/Si≦2.0に調整するというも
のである。ただしこのときモル比においてCa/Si≧1.3
であればAl2O3質量%≧((Ca/Si)×0.357-0.464)×
100となるように前記Alを含む物質を添加する必要が
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be further described below.
In the treatment method of the present invention, a substance to be treated composed of asbestos and / or an asbestos-containing substance is adjusted to have a chemical composition in a specific range and heat-treated under specific conditions to convert asbestos to a non-asbestos substance such as CaO- MgO-SiO 2 compound, CaO-MgO-Al 2 O 3
It is characterized by non-asbestos conversion to —SiO 2 compounds. The chemical composition of the above specific range depends on the substance to be treated,
It is adjusted by adding one or more substances selected from the group consisting of a substance containing a, a substance containing Ca and a substance containing Al under the following addition conditions. That is, the addition condition is that the molar ratio of Mg and Si (Mg
/ Si molar ratio) to Mg / Si ≤ 0.5, and the molar ratio of Ca and Si (C
The a / Si molar ratio) is adjusted to 0.5 ≦ Ca / Si ≦ 2.0. However, at this time, the molar ratio of Ca / Si ≧ 1.3
If so, Al 2 O 3 mass% ≧ ((Ca / Si) × 0.357-0.464) ×
It is necessary to add the above-mentioned substance containing Al to 100.

【0009】本発明の処理方法における石綿および/ま
たは石綿含有物からなる被処理物質としては、例えば吹
き付け石綿、含石綿保温材、石綿スレート、含石綿パル
プセメント板、石綿パイプ等の石綿セメント製品、ジョ
イントシート石綿布、石綿ロープ、摩擦材などの石綿製
品あるいはビニールアスベストタイルのような石綿―有
機物複合体の廃棄物等が挙げられる。なお、これらの被
処理物質の化学組成は石綿ロープなどの石綿製品ならば
Ca分はほとんど含まれず、Mg/Siモル比が0.5超である
ため加熱処理すると石綿はフォルステライトへと変化す
る。吹き付け石綿のような石綿セメント製品も石綿含有
量が多いため通常Mg/Siモル比が0.5超であり、加熱処
理すると石綿はフォルステライトへと変化する。また、
石綿スレートなどの石綿セメント製品は通常Mg/Siモル
比が0.5超であるか、あるいはCa/Siモル比が2.0超であ
る。
Examples of the asbestos and / or asbestos-containing substance to be treated in the treatment method of the present invention include sprayed asbestos, asbestos-containing heat insulating material, asbestos slate, asbestos-containing pulp cement board, asbestos-cement products such as asbestos pipe, Joint sheet Asbestos cloth, asbestos rope, asbestos products such as friction materials, asbestos-organic composite waste such as vinyl asbestos tile, and the like. The chemical composition of these substances to be treated is asbestos products such as asbestos rope.
Since it contains almost no Ca and the Mg / Si molar ratio exceeds 0.5, asbestos changes to forsterite when heat-treated. Asbestos-cement products such as sprayed asbestos usually have an Mg / Si molar ratio of more than 0.5 due to the high content of asbestos, and when heat-treated, asbestos changes to forsterite. Also,
Asbestos cement products such as asbestos slate typically have a Mg / Si molar ratio of greater than 0.5 or a Ca / Si molar ratio of greater than 2.0.

【0010】本発明の処理方法で使用されるSiを含む
物質は、例えば非晶質沈降性シリカ珪石、珪藻土、廃ガ
ラス、シリカヒューム等が挙げられる。また、Caを含
む物質は、生石灰、消石灰、石灰石、廃貝殻焼却灰等が
挙げられる。また、Alを含む物質は、酸化アルミニウ
ム、水酸化アルミニウム、ボーキサイト等が挙げられ
る。さらに、ゴミ焼却灰、下水汚泥焼却灰、凝灰岩、シ
ラス、コンクリート廃材、生コンスラッジ、フライアッ
シュ、廃土、廃タイル、粘土、ケイ酸カルシウム製品廃
材等、Si、CaおよびAlのうち2種類以上含む物質
も同様に使用できる。但し、被処理物質と混合して加熱
しても、1200℃以下の温度で安定して存在する物質は、
その成分中にSi、CaおよびAlのうち少なくとも1
種類を含んでいたとしても、本発明におけるSiを含む
物質、Caを含む物質およびAlを含む物質のいずれに
も該当しない。
Examples of the substance containing Si used in the treatment method of the present invention include amorphous precipitated silica silica stone, diatomaceous earth, waste glass, silica fume and the like. Examples of the substance containing Ca include quick lime, slaked lime, limestone, waste shell incineration ash and the like. Examples of the substance containing Al include aluminum oxide, aluminum hydroxide, bauxite and the like. In addition, waste incineration ash, sewage sludge incineration ash, tuff, shirasu, concrete waste material, raw consludge, fly ash, waste soil, waste tile, clay, calcium silicate product waste material, etc., including two or more of Si, Ca and Al Materials can be used as well. However, even if mixed and heated with the substance to be treated, the substance that exists stably at a temperature of 1200 ° C or lower is
At least one of Si, Ca and Al in its component
Even if the type is included, it does not correspond to any of the substance containing Si, the substance containing Ca, and the substance containing Al in the present invention.

【0011】加熱処理における加熱温度は前述のように
400℃〜1200℃であるが、好ましくは600℃〜1200℃、よ
り好ましくは600℃〜1000℃である。加熱温度が400℃よ
り低い場合、石綿は長時間の処理でも完全には脱水分解
することなく残存してしまう。また1200℃より高い場合
は、高温処理となるばかりでなく、部分的に溶融するた
め非晶質物質が生成するおそれがある。さらにこれを再
利用するためには再粉砕の必要が生じるため、省エネル
ギーの観点から好ましくない。なお、加熱処理は、X線
回折にて石綿の回折ピークが消失し、Ca−Mgケイ酸塩の
回折ピークが認められるようになるまで行なう必要があ
る。すなわち処理温度が高ければ処理時間は短くて済む
し、処理温度が低ければ処理時間を長くしなければなら
ない。例えば加熱処理温度900℃または1000℃、加熱処
理時間が1時間の場合、石綿のX線回折ピークは消失しC
a−Mgケイ酸塩の回折ピークが出現するが、加熱処理温
度が600℃の場合、加熱処理時間が1時間であると、石
綿の回折ピークは認められなくなるもののCa−Mgケイ酸
塩の回折ピークが認められないため、さらに加熱処理を
継続する必要がある。なお、加熱処理前には、混合物を
ボールミル、振動ミル、ジェットミル等で微粉砕し、易
反応性としておくのが好ましい。
The heating temperature in the heat treatment is as described above.
The temperature is 400 ° C to 1200 ° C, preferably 600 ° C to 1200 ° C, more preferably 600 ° C to 1000 ° C. When the heating temperature is lower than 400 ° C, asbestos remains without being completely dehydrated and decomposed even after long-term treatment. On the other hand, if the temperature is higher than 1200 ° C., not only the high temperature treatment but also the partial melting may cause the formation of an amorphous substance. Further, in order to reuse this, re-grinding is required, which is not preferable from the viewpoint of energy saving. The heat treatment must be carried out until the asbestos diffraction peak disappears by X-ray diffraction and the Ca-Mg silicate diffraction peak is observed. That is, if the processing temperature is high, the processing time is short, and if the processing temperature is low, the processing time must be long. For example, when the heat treatment temperature is 900 ℃ or 1000 ℃, and the heat treatment time is 1 hour, the X-ray diffraction peak of asbestos disappears.
The diffraction peak of a-Mg silicate appears, but when the heat treatment temperature is 600 ° C and the heat treatment time is 1 hour, the asbestos diffraction peak is not observed, but the diffraction peak of Ca-Mg silicate Since no peak is observed, it is necessary to continue the heat treatment. Before the heat treatment, it is preferable that the mixture be finely pulverized with a ball mill, a vibration mill, a jet mill, or the like so as to be easily reactive.

【0012】このような本発明の処理方法によれば、石
綿は水に対して不安定なフォルステライトやエンスタタ
イト(MgSiO3)などのMgO−SiO2系化合物、MgO、Ca2SiO
4および非晶質物質ではなく、安定なCa―Mgケイ酸塩の
非石綿物質へと変換される。なお、安定なCa―Mgケイ酸
塩とは、CaO−MgO−SiO2系化合物、CaO−MgO−Al2O3−S
iO2系化合物等であり、具体的にはディオプサイド(CaMg
Si2O6)、ワラストナイト(CaSiO3)、ゲーレナイト(Ca2A
l2SiO7)―オケルマナイト(Ca2MgSi2O7)固溶体、メルウ
ィナイト(Ca3MgSi2O8)が挙げられる。なお、前記のうち
どの化合物に変換されるかは、被処理物質のMg/Siモル
比およびCa/Siモル比に依存する。なお、Ca/Siのモル
比が1.3以上であると処理生成物中に遊離MgOおよびCa2S
iO 4など水との易反応性物質が存在する場合がある。そ
のときはAl2O3質量%≧((Ca/Si)×0.357-0.464)×
100となるようにAlを含む物質を添加し処理し、ゲー
レナイト―オケルマナイト固溶体とすると安定化が可能
である。
According to such a treatment method of the present invention, stones
Cotton is a water-unstable forsterite or enstata
Ito (MgSiO3) Such as MgO-SiO2Compounds, MgO, Ca2SiO
FourAnd stable amorphous Ca-Mg silicate
Converted to non-asbestos material. Note that stable Ca-Mg silicic acid
Salt is CaO-MgO-SiO.2Compounds, CaO-MgO-Al2O3-S
iO2Compounds such as diopside (CaMg
Si2O6), Wollastonite (CaSiO3), Gehrenite (Ca2A
l2SiO7) ― Akermanite (Ca2MgSi2O7) Solid solution, Meru
Night (Ca3MgSi2O8) Is mentioned. Of the above,
Which compound is converted depends on the Mg / Si mol of the substance to be treated.
Ratio and Ca / Si molar ratio. The molar ratio of Ca / Si
Free MgO and Ca in the treated product with a ratio of 1.3 or higher.2S
iO FourThere may be substances that easily react with water. So
When is Al2O3Mass% ≥ ((Ca / Si) x 0.357-0.464) x
Add a substance containing Al to 100 to treat,
Renite-Okermanite solid solution can be stabilized
Is.

【0013】なお、石綿としてFe2O3成分を含有するア
モサイトが含まれている場合、処理生成物中には上記Ca
―Mgケイ酸塩の他にディオプサイド―ヘデンバージャイ
ト(CaFeSi2O6)固溶体およびオケルマナイト−Feオケル
マナイト(Ca2FeSi2O7)固溶体が生成する。これらも安定
化された非石綿物質である。
When asbestos contains amosite containing a Fe 2 O 3 component, the above-mentioned Ca is contained in the treated product.
Besides diopside the -Mg silicate - F Denver Jai Doo (CaFeSi 2 O 6) solid solution and akermanite -Fe akermanite (Ca 2 FeSi 2 O 7) solid solution is produced. These are also stabilized non-asbestos materials.

【0014】[0014]

【作用】本発明の処理方法は、クリソタイル石綿、およ
びアモサイトやクロシドライト等の角閃石系石綿のいず
れの石綿に対しても有効であるが、とくにクリソタイル
に有効である。これら石綿は繊維状を呈する含水ケイ酸
塩鉱物であり、加熱処理による脱水にともない結晶構造
が破壊され他の物質へと変化する。例えば石綿廃棄物中
の石綿の大部分を占めるクリソタイルは含水Mgケイ酸塩
であり、加熱処理すると400〜600℃で脱水分解をはじ
め、さらに高温では非晶質相を経てフォルステライトと
エンスタタイトのMgO−SiO2系化合物へと分解すること
がよく知られている。しかし、前述したように石綿廃棄
物の加熱処理物中にフォルステライト等のMgO−SiO2
化合物が含まれていると、例えばセメント製品の充填材
として再利用する場合、特に硬化促進のためオートクレ
ーブ養生したとき、水との反応により、再クリソタイル
化する恐れがある。そこで本発明者らは、鋭意検討を行
った結果、石綿および/または石綿含有物からなる被処
理物質に、Siを含む物質、Caを含む物質およびAl
を含む物質から選択される1種以上の物質を、前記条件
を満たすように添加し混合し、得られた混合物を400℃
〜1200℃で加熱処理することにより、本発明の目的が達
成されることを見出した。本発明の処理方法により処理
された生成物は、石綿および/または石綿含有物からな
る被処理物質が非石綿物質に変換されたものであり、Mg
O−SiO2系化合物、MgOおよびCa2SiO4を含まず、例えば
建築材料、具体的には繊維強化セメント板の充填材とし
て利用することができる。
The method of the present invention is effective for chrysotile asbestos and asbestos of amphibole type asbestos such as amosite and crocidolite, but is particularly effective for chrysotile. These asbestos are hydrous silicate minerals that have a fibrous shape, and their crystal structure is destroyed by heat treatment to change to other substances. For example, chrysotile, which accounts for the majority of asbestos in asbestos waste, is a hydrous Mg silicate, which starts dehydration decomposition at 400-600 ° C when it is heated, and at higher temperatures, it undergoes an amorphous phase to form forsterite and enstatite. It is well known that it decomposes into MgO-SiO 2 compounds. However, as described above, when the MgO-SiO 2 compound such as forsterite is contained in the heat-treated asbestos waste, when it is reused, for example, as a filler for cement products, it is autoclaved to accelerate curing. When cured, it may become rechrysotile due to reaction with water. Therefore, as a result of intensive studies, the present inventors have found that a substance to be treated composed of asbestos and / or an asbestos-containing substance contains Si, Ca, and Al.
One or more substances selected from the substances containing is added and mixed so as to meet the above conditions, and the resulting mixture is heated to 400 ° C.
It was found that the object of the present invention can be achieved by heat treatment at ~ 1200 ° C. The product treated by the treatment method of the present invention is a product obtained by converting a substance to be treated composed of asbestos and / or an asbestos-containing substance into a non-asbestos substance.
It does not contain O-SiO 2 based compounds, MgO and Ca 2 SiO 4, and can be used as a filler for building materials, specifically fiber reinforced cement boards.

【0015】[0015]

【実施例】以下、実施例および比較例により本発明をさ
らに説明する。 (実施例1)約20質量%のクリソタイルを含む石綿セメ
ント板を鉄製乳鉢にて粗粉砕し、非晶質沈降性シリカを
Mg/Siモル比が0.23、 Ca/Siモル比が0.51となるよう
乾式混合した。このとき、Al2O3の含有量は7.7質量%で
あった。その混合物をさらに遊星回転ボールミルにて30
分間混合および微粉砕した後、1000℃で1時間加熱処理
した。処理生成物の構成相をX線回折により同定したと
ころ、クリソタイルの回折ピークは認められず、非石綿
化されていた。主構成相は水との反応性がないディオプ
サイドとワラストナイトであり、これらは例えば繊維強
化セメント板の骨材として再利用可能である。
The present invention will be further described below with reference to Examples and Comparative Examples. (Example 1) An asbestos-cement board containing about 20% by mass of chrysotile was roughly crushed in an iron mortar to remove amorphous precipitated silica.
Dry mixing was performed so that the Mg / Si molar ratio was 0.23 and the Ca / Si molar ratio was 0.51. At this time, the content of Al 2 O 3 was 7.7% by mass. The mixture is further mixed with a planetary ball mill for 30
After mixing for 1 minute and pulverizing, the mixture was heat-treated at 1000 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. The main constituent phases are diopside and wollastonite, which have no reactivity with water, and these can be reused as aggregates of fiber-reinforced cement boards, for example.

【0016】(実施例2)実施例1と同様の石綿セメン
ト板を鉄製乳鉢にて粗粉砕し、非晶質沈降性シリカをMg
/Siモル比を0.48, Ca/Siモル比を1.09となるよう乾式
混合した。その混合物をさらに遊星回転ボールミルにて
30分間混合および微粉砕した後、1000℃で1時間加熱処
理した。処理生成物の構成相をX線回折により同定した
ところ、クリソタイルの回折ピークは認められず、非石
綿化されていた。主構成相は水と反応しないオケルマナ
イトであり、これらは例えば繊維強化セメント板の骨材
として再利用可能である。
(Example 2) The same asbestos cement board as in Example 1 was coarsely crushed in an iron mortar and the amorphous precipitated silica was replaced with Mg.
Dry mixing was performed so that the / Si molar ratio was 0.48 and the Ca / Si molar ratio was 1.09. The mixture is further mixed with a planetary rotary ball mill.
After mixing and pulverizing for 30 minutes, heat treatment was performed at 1000 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. The main constituent phase is aquermanite, which does not react with water, and these can be reused, for example, as an aggregate of fiber-reinforced cement board.

【0017】(実施例3)石綿含有量が不明な市販の石
綿セメント板をジョークラシャーで大割りし、ハンマー
ミルおよび奈良式自由粉砕機で粗粉砕し、非晶質沈降性
シリカをMg/Siモル比を0.1、 Ca/Siモル比を1.06とな
るよう乾式混合した。このとき、Al2O3の含有量は6.7質
量%であった。その混合物をさらに振動ミルにて30分間
混合および微粉砕した後、900℃で1時間加熱処理し
た。処理生成物の構成相をX線回折により同定したとこ
ろ、クリソタイルの回折ピークは認められず、非石綿化
されていた。主構成相は水と反応しないオケルマナイト
とワラストナイトであった。次に上記処理粉体に対し、
5質量%のパルプを添加し、水を水/粉体重量比が8と
なるよう加え、混合、撹拌したのち半径80mm×高さ5mm
の寸法に12.1MPaのプレス圧で成型した。成型されたグ
リーンシートを相対湿度100%の湿気箱中(80℃)で20時
間養生し、次に60℃で24時間乾燥した。得られた試験体
を40×130×5mmの寸法に切断し物性を求めたところ、嵩
密度は1.10g/cm3であり、曲げ強度は0.9N/mm2であっ
た。このように本発明の生成物は養生後の強度発現が認
められないことから、水硬性を有さず安定な化合物であ
ることが確認された。上記処理粉体の代わりに普通ポル
トランドセメントを使用して、同様な方法で作製した試
験体の嵩密度は1.77g/cm3であり、曲げ強度は24.6N/m
m2であった。また、上記処理粉体を15質量%、普通ポル
トランドセメントを85質量%の割合で混合し、同様な方
法で作製した試験体の嵩密度は1.61g/cm3であり、曲げ
強度は20.8N/mm2であった。また、嵩密度を1.77g/cm3
に換算した密度換算曲げ強度(換算式:密度換算曲げ強
度=20.8N/mm2×(1.77g/cm32/(1.61g/cm32
は25.1N/mm2であり、普通ポルトランドセメントのみを
使用した場合とほぼ同等であった。このことは処理粉体
の嵩密度が低く、試験体の嵩密度を低減できることを示
している。したがって、本発明の処理方法より得られた
生成物は、繊維強化セメント板の嵩密度低減のための充
填材として使用できる。
(Example 3) A commercially available asbestos cement plate of which asbestos content is unknown is roughly crushed with a jaw crusher, coarsely crushed with a hammer mill and a Nara type free crusher, and amorphous precipitated silica is Mg / Dry mixing was performed so that the Si molar ratio was 0.1 and the Ca / Si molar ratio was 1.06. At this time, the content of Al 2 O 3 was 6.7% by mass. The mixture was further mixed with a vibration mill for 30 minutes and pulverized, and then heat-treated at 900 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. The main constituent phases were akermanite and wollastonite, which did not react with water. Next, for the above treated powder,
Add 5% by weight pulp, add water so that the water / powder weight ratio is 8, mix and stir, then radiate 80 mm x height 5 mm
It was molded with the press pressure of 12.1 MPa to the dimension of. The molded green sheet was aged in a humidity box (80 ° C) with a relative humidity of 100% for 20 hours, and then dried at 60 ° C for 24 hours. The obtained test piece was cut into a size of 40 × 130 × 5 mm and its physical properties were determined. The bulk density was 1.10 g / cm 3 and the bending strength was 0.9 N / mm 2 . As described above, since the product of the present invention did not show strength development after curing, it was confirmed that the product has no hydraulic property and is a stable compound. The test piece prepared by the same method using ordinary Portland cement instead of the above treated powder has a bulk density of 1.77 g / cm 3 and a bending strength of 24.6 N / m.
It was m 2 . Also, the treated powder was mixed at a ratio of 15% by mass and ordinary Portland cement at a ratio of 85% by mass, and a test body prepared by the same method had a bulk density of 1.61 g / cm 3 and a bending strength of 20.8 N / It was mm 2 . In addition, the bulk density is 1.77 g / cm 3
Bending strength converted to density (conversion formula: Bending strength converted to density = 20.8 N / mm 2 × (1.77 g / cm 3 ) 2 /(1.61 g / cm 3 ) 2 )
Was 25.1 N / mm 2 , which was almost the same as when only ordinary Portland cement was used. This indicates that the bulk density of the treated powder is low and the bulk density of the test body can be reduced. Therefore, the product obtained by the treatment method of the present invention can be used as a filler for reducing the bulk density of a fiber-reinforced cement board.

【0018】(実施例4)実施例3と同様の石綿セメン
ト板粗粉砕物と非晶質沈降性シリカを乾式混合し、系全
体の組成をMg/Siモル比=0.28、 Ca/Siモル比=1.77
とした。ただしこのとき、Al2O3含有量が3.9質量%であ
ったので、さらに水酸化アルミニウムを乾式混合し、Al
2O3含有量を27.8質量%とした。その混合物をさらに振
動ミルにて30分間混合および微粉砕した後、1000℃で1
時間加熱処理した。処理生成物の構成相をX線回折によ
り同定したところ、クリソタイルの回折ピークは認めら
れず、非石綿化されていた。主構成相は水と反応しない
ゲーレナイトであった。
(Example 4) A coarse asbestos-cement board crushed product similar to that in Example 3 and an amorphous precipitable silica were dry-mixed, and the composition of the whole system was Mg / Si molar ratio = 0.28, Ca / Si molar ratio. = 1.77
And However, at this time, since the Al 2 O 3 content was 3.9% by mass, aluminum hydroxide was further dry mixed to obtain Al 2.
The 2 O 3 content was set to 27.8% by mass. The mixture was further mixed in a vibrating mill for 30 minutes and pulverized, and then 1
Heat treated for hours. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. The main constituent phase was gehlenite, which did not react with water.

【0019】(実施例5)アモサイトを含む石綿吹き付
け製品と非晶質沈降性シリカを乾式混合し、系全体の組
成をMg/Siモル比=0.13、 Ca/Siモル比=0.63とし
た。このとき、Al2O3の含有量は2.5質量%であった。そ
の混合物をさらに振動ミルにて30分間混合および微粉砕
した後、1000℃で1時間加熱処理した。処理生成物の構
成相をX線回折により同定したところ、アモサイトの回
折ピークは認められず、非石綿化されていた。主構成相
は水と反応しないワラストナイト、ディオプサイド−ヘ
デンバージャイト固溶体であった。
(Example 5) An asbestos spraying product containing amosite and amorphous precipitable silica were dry-mixed, and the composition of the whole system was Mg / Si molar ratio = 0.13 and Ca / Si molar ratio = 0.63. At this time, the content of Al 2 O 3 was 2.5% by mass. The mixture was further mixed with a vibration mill for 30 minutes and pulverized, and then heat-treated at 1000 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no diffraction peak of amosite was observed and it was non-asbestos. The main constituent phases were wollastonite, which did not react with water, and diopside-hedenbergite solid solution.

【0020】(比較例1)含石綿波板廃棄物を組成分析
したところ、Mg/Siモル比=0.34、 Ca/Siモル比=1.8
9であった。このとき、Al2O3の含有量は5.2質量%であ
った。その混合物をさらに振動ミルにて30分間混合およ
び微粉砕した後、1000℃で1時間加熱処理した。処理生
成物の構成相をX線回折により同定したところ、クリソ
タイルの回折ピークは認められず、非石綿化されてい
た。主構成相としてはメルウィナイトの他、水と反応す
るMgOおよびβ−Ca2SiO4が生成していた。これらの化合
物は、オートクレーブ養生によりクリソタイルとして再
結晶化する。
(Comparative Example 1) Composition analysis of asbestos-containing corrugated sheet waste revealed that Mg / Si molar ratio = 0.34 and Ca / Si molar ratio = 1.8.
It was 9. At this time, the content of Al 2 O 3 was 5.2% by mass. The mixture was further mixed with a vibration mill for 30 minutes and pulverized, and then heat-treated at 1000 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. In addition to melwinite, MgO and β-Ca 2 SiO 4 that react with water were formed as the main constituent phase. These compounds recrystallize as chrysotile by autoclave curing.

【0021】(比較例2)クリソタイルを含む石綿吹き
付け製品に非晶質沈降性シリカを乾式混合し、系全体の
組成をMg/Siモル比=0.65、 Ca/Siモル比=0.58とし
た。このとき、Al2O3の含有量は3.5質量%であった。そ
の混合物をさらに振動ミルにて30分間混合および微粉砕
した後、1000℃で1時間加熱処理した。処理生成物の構
成相をX線回折により同定したところ、クリソタイルの
回折ピークは認められず、非石綿化されていた。ただし
主構成相としてはオケルマナイトとディオプサイドの
他、水と反応するフォルステライトが生成していた。こ
れを繊維補強ケイ酸カルシウム板の添加材として使用
し、200℃で24時間オートクレーブ養生した後、X線回折
により生成物を同定したところ、クリソタイルの生成が
認められた。
Comparative Example 2 Amorphous precipitable silica was dry-mixed with an asbestos sprayed product containing chrysotile, and the composition of the entire system was set to a Mg / Si molar ratio = 0.65 and a Ca / Si molar ratio = 0.58. At this time, the content of Al 2 O 3 was 3.5% by mass. The mixture was further mixed with a vibration mill for 30 minutes and pulverized, and then heat-treated at 1000 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. However, in addition to akermanite and diopside, forsterite that reacts with water was generated as the main constituent phase. When this product was used as an additive for a fiber-reinforced calcium silicate board and cured by autoclave at 200 ° C for 24 hours, the product was identified by X-ray diffraction, and formation of chrysotile was confirmed.

【0022】(比較例3)実施例3と同様の石綿セメン
ト板粗粉砕物と非晶質沈降性シリカを乾式混合し、系全
体の組成をMg/Siモル比=0.34、 Ca/Siモル比=2.12
とした。また、水酸化アルミニウムを乾式混合し、Al2O
3含有量を27.2質量%とした。その混合物をさらに振動
ミルにて30分間混合および微粉砕した後、900℃で1時
間加熱処理した。処理生成物の構成相をX線回折により
同定したところ、クリソタイルの回折ピークは認められ
ず、非石綿化されていた。主構成相としてはゲーレナイ
トの他、水と反応するMgOおよびβ−Ca2SiO4が生成して
いた。これらの化合物は、オートクレーブ養生によりク
リソタイルとして再結晶化する。
(Comparative Example 3) A coarse asbestos-cement board crushed product similar to that of Example 3 and amorphous precipitable silica were dry-mixed, and the composition of the entire system was Mg / Si molar ratio = 0.34, Ca / Si molar ratio. = 2.12
And Also, dry mix aluminum hydroxide to obtain Al 2 O
3 Content was 27.2 mass%. The mixture was further mixed with a vibration mill for 30 minutes and pulverized, and then heat-treated at 900 ° C. for 1 hour. When the constituent phase of the treated product was identified by X-ray diffraction, no chrysotile diffraction peak was observed and it was non-asbestos converted. As main constituent phases, MgO and β-Ca 2 SiO 4 , which react with water, were formed in addition to gehlenite. These compounds recrystallize as chrysotile by autoclave curing.

【0023】[0023]

【発明の効果】本発明によれば、被処理物質を廃棄する
ことなく、大量のエネルギーを消費することなく、クリ
ソタイルへ再結晶化の可能性のあるフォルステライトな
ど水と反応し易い物質を生成することがなく、かつ処理
された生成物が安定で再利用可能となる石綿の処理方法
が提供される。
EFFECTS OF THE INVENTION According to the present invention, a substance that easily reacts with water, such as forsterite that may be recrystallized into chrysotile, is produced without discarding the substance to be treated and consuming a large amount of energy. A process for treating asbestos is provided that does not require and that the treated product is stable and reusable.

フロントページの続き (72)発明者 山崎 之典 東京都港区芝大門2丁目12番10号 株式会 社エーアンドエーマテリアル内 (72)発明者 太田 耕平 東京都港区芝大門2丁目12番10号 株式会 社エーアンドエーマテリアル内 (72)発明者 大澤 光春 東京都港区芝大門2丁目12番10号 株式会 社エーアンドエーマテリアル内 Fターム(参考) 4D004 AA17 BA02 CA30 CA45 CC11 CC12 CC13 DA03 DA06 DA10Continued front page    (72) Inventor Noriyuki Yamazaki             2-12-10 Shiba Daimon, Minato-ku, Tokyo Stock market             Company A & A Material (72) Inventor Kohei Ota             2-12-10 Shiba Daimon, Minato-ku, Tokyo Stock market             Company A & A Material (72) Inventor Mitsuharu Osawa             2-12-10 Shiba Daimon, Minato-ku, Tokyo Stock market             Company A & A Material F-term (reference) 4D004 AA17 BA02 CA30 CA45 CC11                       CC12 CC13 DA03 DA06 DA10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 石綿および/または石綿含有物からなる
被処理物質を加熱処理することにより、前記被処理物質
中の石綿を非石綿物質に変換する処理方法であって、前
記被処理物質に、Siを含む物質、Caを含む物質およ
びAlを含む物質からなる群から選択される1種以上の
物質を、下記条件を満たすように添加し混合し、得られ
た混合物を400℃〜1200℃で加熱処理することを特徴と
する石綿の処理方法。 添加条件:前記被処理物質におけるMgとSiのモル比をMg
/Si≦0.5に、かつCaとSiのモル比を0.5≦Ca/Si≦2.0
に調整する。ただしこのときモル比においてCa/Si≧1.
3であればAl2O3質量%≧((Ca/Si)×0.357-0.464)
×100となるように前記Alを含む物質を添加する。
1. A treatment method for converting asbestos in a substance to be treated into a non-asbestos substance by subjecting a substance to be treated composed of asbestos and / or an asbestos-containing material to heat treatment, wherein the substance to be treated comprises: At least one substance selected from the group consisting of a substance containing Si, a substance containing Ca and a substance containing Al is added and mixed so as to satisfy the following conditions, and the obtained mixture is heated at 400 ° C to 1200 ° C. A method for treating asbestos, which comprises heat treatment. Addition condition: The molar ratio of Mg and Si in the substance to be treated is Mg
/Si≦0.5 and the molar ratio of Ca and Si is 0.5 ≦ Ca / Si ≦ 2.0
Adjust to. However, at this time, the molar ratio is Ca / Si ≧ 1.
If 3, Al 2 O 3 mass% ≧ ((Ca / Si) × 0.357-0.464)
The substance containing Al is added so that the amount becomes × 100.
【請求項2】 請求項1に記載の処理方法により処理さ
れた生成物であって、前記生成物中にMgO−SiO2系化合
物、MgOおよびCa2SiO4を含まないことを特徴とする前記
生成物。
2. A product treated by the treatment method according to claim 1, wherein the product does not contain a MgO—SiO 2 compound, MgO and Ca 2 SiO 4. Product.
【請求項3】 請求項2に記載の生成物からなる、建築
材料のための充填材。
3. Filling material for building materials, which comprises the product according to claim 2.
JP2001294550A 2001-09-26 2001-09-26 Asbestos processing method Expired - Lifetime JP4694065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294550A JP4694065B2 (en) 2001-09-26 2001-09-26 Asbestos processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294550A JP4694065B2 (en) 2001-09-26 2001-09-26 Asbestos processing method

Publications (2)

Publication Number Publication Date
JP2003094006A true JP2003094006A (en) 2003-04-02
JP4694065B2 JP4694065B2 (en) 2011-06-01

Family

ID=19116130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294550A Expired - Lifetime JP4694065B2 (en) 2001-09-26 2001-09-26 Asbestos processing method

Country Status (1)

Country Link
JP (1) JP4694065B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097124A1 (en) * 2006-02-22 2007-08-30 Zeria Ecotech Co., Ltd. Treatment method for converting waste asbestos into harmless products, process for production of zeolite, and intermediates for the production
JP2008272586A (en) * 2007-02-16 2008-11-13 Rabotekku Kk Detoxification method of asbestos-containing matter
WO2008139635A1 (en) * 2007-05-14 2008-11-20 Toshinori Morizane Modifier for silicate-containing fibrous substance, method of modifying the same and modified material
WO2008146876A1 (en) * 2007-05-30 2008-12-04 Sty. Labo Asbestos-treating agent, method of treating asbestos, and method of utilizing asbestos
WO2009005081A1 (en) * 2007-07-02 2009-01-08 Nihon Yamamura Glass Co., Ltd. Method of asbestos vitrification
JP2009297659A (en) * 2008-06-13 2009-12-24 Sutai Rabo:Kk Method for utilizing asbestos
JP2011031183A (en) * 2009-08-03 2011-02-17 Toru Kubota Method of manufacturing refractory brick from detoxified substance of asbestos as raw material
KR101215067B1 (en) 2009-12-11 2012-12-24 이세린 Method for Manufacturing Lightweight Construction Material Using Waste from Asbestos
JP5194297B2 (en) * 2005-09-20 2013-05-08 大学共同利用機関法人自然科学研究機構 Asbestos modification method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138147A (en) * 1991-11-12 1993-06-01 Kanagawa Pref Gov Treatment of waste asbestos material and production of ceramic product using the material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05138147A (en) * 1991-11-12 1993-06-01 Kanagawa Pref Gov Treatment of waste asbestos material and production of ceramic product using the material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5194297B2 (en) * 2005-09-20 2013-05-08 大学共同利用機関法人自然科学研究機構 Asbestos modification method
WO2007097124A1 (en) * 2006-02-22 2007-08-30 Zeria Ecotech Co., Ltd. Treatment method for converting waste asbestos into harmless products, process for production of zeolite, and intermediates for the production
JP5272156B2 (en) * 2006-02-22 2013-08-28 株式会社ゼリアエコテック Method for detoxifying waste asbestos, method for producing zeolite and production intermediate thereof
JP2008272586A (en) * 2007-02-16 2008-11-13 Rabotekku Kk Detoxification method of asbestos-containing matter
WO2008139635A1 (en) * 2007-05-14 2008-11-20 Toshinori Morizane Modifier for silicate-containing fibrous substance, method of modifying the same and modified material
WO2008146876A1 (en) * 2007-05-30 2008-12-04 Sty. Labo Asbestos-treating agent, method of treating asbestos, and method of utilizing asbestos
WO2009005081A1 (en) * 2007-07-02 2009-01-08 Nihon Yamamura Glass Co., Ltd. Method of asbestos vitrification
JPWO2009005081A1 (en) * 2007-07-02 2010-08-26 日本山村硝子株式会社 Vitrification method of asbestos
JP2009297659A (en) * 2008-06-13 2009-12-24 Sutai Rabo:Kk Method for utilizing asbestos
JP2011031183A (en) * 2009-08-03 2011-02-17 Toru Kubota Method of manufacturing refractory brick from detoxified substance of asbestos as raw material
KR101215067B1 (en) 2009-12-11 2012-12-24 이세린 Method for Manufacturing Lightweight Construction Material Using Waste from Asbestos

Also Published As

Publication number Publication date
JP4694065B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
Moghadam et al. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review
AU2020100278A4 (en) All-Solid Waste Filler for Stabilizing Dioxin-containing Incineration Fly Ash and Method for Preparing the Same
Zhou et al. Recycling incinerated sewage sludge ash (ISSA) as a cementitious binder by lime activation
CN103387411B (en) Method for producing aerated concrete with refuse incinerator slag
CZ292875B6 (en) Geopolymeric binding agent based on fly ashes
CA2451657A1 (en) Fly ash composition for use in concrete mix
KR101459990B1 (en) block composition using the sludge Ash and manufacturing method block
CN104803655A (en) Method for producing cement-based composite material for injection reinforcement from waste incineration fly ash
KR20180109377A (en) Surface solidification and soil pavement method
JP4694065B2 (en) Asbestos processing method
KR101416005B1 (en) Nature-friendly block using non-sintering inorgarnic binder and manufacturing method thereof
Baloochi et al. Waste paper ash as a hydraulic road binder: Hydration, mechanical and leaching considerations
JP2006342037A (en) Method of recycling asbestos-containing building material
JP4189730B2 (en) Non-asbestos processing method of asbestos slate
US5569153A (en) Method of immobilizing toxic waste materials and resultant products
Sai et al. The cementitious properties of alkali-activated municipal solid waste incineration fly ash-phosphorus slag-secondary aluminum dross matrix composites and the mechanism of solidification of heavy metals
JP2008272566A (en) Detoxifying heat treatment method of asbestos-containing resource, detoxifying heat treatment method of asbestos-containing formed material resource, and hydraulic composition using asbest detoxification heat treated material
JP2001353479A (en) Sintered body by safening reaction of building waste material containing asbestos
US20210053876A1 (en) Advanced multi-functional asbestos free thermal insulating material and the process for preparation thereof
JP3198148B2 (en) Hydraulic powder composition
JP2004082061A (en) Treatment and recycling method of calcium silicate-based waste
JP4794731B2 (en) Permeable block using asbestos-containing building material waste and sewage sludge incineration ash
CN109987904A (en) A kind of fabricating technology of brick setting material
KR102649017B1 (en) Covering material using mixture of solid refuse fuel and coal ash for stabilizing ground
JPH06134438A (en) Method for treating waste asbestos material and manufacture of ceramic product using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250