JP2003089806A - Method for manufacturing nickel powder - Google Patents

Method for manufacturing nickel powder

Info

Publication number
JP2003089806A
JP2003089806A JP2001284603A JP2001284603A JP2003089806A JP 2003089806 A JP2003089806 A JP 2003089806A JP 2001284603 A JP2001284603 A JP 2001284603A JP 2001284603 A JP2001284603 A JP 2001284603A JP 2003089806 A JP2003089806 A JP 2003089806A
Authority
JP
Japan
Prior art keywords
nickel powder
particles
jet mill
nickel
classifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001284603A
Other languages
Japanese (ja)
Other versions
JP4831518B2 (en
Inventor
Hirotaka Takahashi
洋孝 高橋
Shingo Murakami
慎悟 村上
Kazunori Furukawa
和則 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001284603A priority Critical patent/JP4831518B2/en
Publication of JP2003089806A publication Critical patent/JP2003089806A/en
Application granted granted Critical
Publication of JP4831518B2 publication Critical patent/JP4831518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing nickel powder by which particles of >=3 μm particle size can be further decreased in a process where Ni(OH)2 is reduced by H2 gas to obtain nickel powder of superior crystallinity. SOLUTION: In the method for manufacturing the nickel powder free from coarse particles, NiCl2 solution is neutralized with NaOH and the resultant Ni(OH)2 is subjected to dry-type reduction at 420-480 deg.C using H2 gas into the nickel powder. In this method, equipment combining a jet mill with a classifier is used, and agglomerated particles are deagglomerated using the jet mill and classification is carried out using the high-speed rotor type classifier in a non- reagglomerated state directly after the deagglomeration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサーの内部電極材料として有用なニッケル粉末の
製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing nickel powder which is useful as an internal electrode material of a laminated ceramic capacitor.

【0002】[0002]

【従来の技術】現在、電子機器の小型化に伴い電子部品
の小型化が急速に進行している。このような状況におい
て、積層セラミックコンデンサーが小型、高容量のコン
デンサーとして大量に使用されている。従来、積層セラ
ミックコンデンサーの内部電極材料には、パラジウム、
白金などの貴金属粉末が主として使用されていた。しか
し、コンデンサーの高容量化のために積層数が増加し、
前述のような貴金属粉末を使用したのでは、コストが高
くなるという問題があり、最近では、コスト低減のため
に内部電極材料としてニッケル粉末が多用されている。
2. Description of the Related Art At present, with the miniaturization of electronic equipment, miniaturization of electronic parts is rapidly progressing. Under these circumstances, a large amount of monolithic ceramic capacitors are used as small-sized, high-capacity capacitors. Conventionally, the internal electrode material of monolithic ceramic capacitors is palladium,
Precious metal powders such as platinum were mainly used. However, the number of layers has increased due to the higher capacity of capacitors,
The use of the noble metal powder as described above causes a problem of high cost, and recently nickel powder is widely used as an internal electrode material for cost reduction.

【0003】内部電極材料として使用されるニッケル粉
末は、バインダー中に分散させてペーストとする。この
ペーストを基板上に印刷塗布し、多層積み重ねて圧着切
断し、還元雰囲気中で約1300°Cで焼成して、電極
を形成させ、コンデンサーとしての特性を発揮させる。
この原料粉末に求められる重要な粉末特性に粒度分布が
シャープであることが挙げられる。
Nickel powder used as an internal electrode material is dispersed in a binder to form a paste. This paste is applied by printing onto a substrate, stacked in multiple layers, pressure-bonded and cut, and fired at about 1300 ° C. in a reducing atmosphere to form electrodes, thereby exhibiting characteristics as a capacitor.
An important powder property required for this raw material powder is that the particle size distribution is sharp.

【0004】内部電極の電極膜は、通常数μm(1〜3
μm)にするため、電極膜の材料として用いられるニッ
ケル粉末中に、電極の厚さを越える粒径の粒子が混在し
た場合、電極面に突起が生じその結果突起部の電極間距
離が短くなるため、絶縁破壊やショートなどの信頼性低
下の原因となる不良を生じやすくなる。よって、粒径が
3μm以上の粒子を含まないニッケル粉末が求められて
いる。
The electrode film of the internal electrode is usually several μm (1 to 3 μm).
In the case where particles having a particle size exceeding the thickness of the electrode are mixed in the nickel powder used as the material of the electrode film, a protrusion is generated on the electrode surface, and as a result, the distance between the electrodes of the protrusion becomes short. Therefore, it becomes easy to cause defects such as insulation breakdown and short-circuiting, which cause a decrease in reliability. Therefore, there is a demand for a nickel powder that does not contain particles having a particle size of 3 μm or more.

【0005】[0005]

【発明が解決しようとする課題】このような積層セラミ
ックコンデンサー用のニッケル粉末の製造方法として
は、特開平5ー51610号公報記載の方法が提案され
ている。該公報記載の方法では、水溶性Ni(II)塩の
水溶液に強アルカリを加えてNi(OH)2を生成させ、粒度
分布のシャープなニッケル粉末を得るという方法であ
る。しかし、この方法は、得られるニッケル粉末の結晶
性が悪いため耐熱性が劣り、焼成時に構造欠陥を生じ易
く、さらに充填性も低いため容量が不足するという問題
があった。
As a method for producing nickel powder for such a monolithic ceramic capacitor, a method described in JP-A-5-51610 has been proposed. The method described in the publication is a method in which a strong alkali is added to an aqueous solution of a water-soluble Ni (II) salt to generate Ni (OH) 2 to obtain a nickel powder having a sharp particle size distribution. However, this method has a problem that the resulting nickel powder has poor crystallinity and thus has poor heat resistance, is prone to structural defects during firing, and has a low filling property, resulting in insufficient capacity.

【0006】一方、耐熱性の良いニッケル粉末の製造方
法としては、特開平4ー365806号公報記載の方法
が提案されている。この方法は、塩化ニッケル蒸気と水
素ガスとの化学反応によりニッケル微粉末を製造する方
法である。この方法は、高耐熱性と高充填性を有し、コ
ンデンサー内部電極用ニッケル粉末として好適なニッケ
ル粉末を得ることができる。しかし、この方法でニッケ
ル粉末を製造するためには、1004〜1453°Cと
いう高温での反応が必要で、さらに、HClなどの副生
成物の処理費、プロセスの生産性の低さがコスト高の要
因となり安価な製造方法とはいえない。
On the other hand, a method described in Japanese Patent Application Laid-Open No. 4-365806 has been proposed as a method for producing nickel powder having good heat resistance. This method is a method for producing fine nickel powder by a chemical reaction between nickel chloride vapor and hydrogen gas. According to this method, nickel powder having high heat resistance and high filling property and suitable as a nickel powder for a capacitor internal electrode can be obtained. However, in order to produce nickel powder by this method, a reaction at a high temperature of 1004-1453 ° C. is required, and further, the cost of processing by-products such as HCl and the low productivity of the process are high. This is not a cheap manufacturing method.

【0007】安価な製造方法として、NiCl2溶液をNaOH
で中和しNi(OH)2を得、これをH2ガスで還元する方法が
ある。この方法によると得られるニッケル粉末は、比較
的高温(400〜600°C)で水素還元しているため
結晶性が良く耐熱性の高いニッケル粉末が得られる。
As a low-cost manufacturing method, a NiCl 2 solution was added to NaOH.
There is a method of neutralizing with to obtain Ni (OH) 2 and reducing this with H 2 gas. Since the nickel powder obtained by this method is hydrogen-reduced at a relatively high temperature (400 to 600 ° C.), nickel powder having good crystallinity and high heat resistance can be obtained.

【0008】しかし、この方法により製造されたニッケ
ル粉末は、焼結により成長した3μm以上の粗大粒子や
0.1μm以下の超微粒子を含む、広い粒度範囲のニッ
ケル粉末であり、粗大粒子や超微粒子を除去する必要が
あった。今後は、さらに、MLCCの小型・高容量化に
ともなう電極厚の薄層化が一段と進行することが予想さ
れ、より一層の改良・高品質化が求められている。
However, the nickel powder produced by this method is a nickel powder having a wide particle size range, including coarse particles of 3 μm or more and ultrafine particles of 0.1 μm or less grown by sintering. Had to be removed. In the future, it is expected that the thickness of the electrode will be further reduced with the miniaturization and high capacity of the MLCC, and further improvement and high quality are required.

【0009】このような粗大粒子の除去手段としては、
一般的には、風力分級が考えられるが、平均粒径が1μ
mを下回る微細なニッケル粉の場合は、表面活性が強く
速やかに凝集体を形成するため分級点を3μm程度まで
下げ、このような粗大粒子を除去することは困難であっ
た。
As means for removing such coarse particles,
Generally, wind classification can be considered, but the average particle size is 1μ.
In the case of a fine nickel powder having a particle size of less than m, since the surface activity is strong and an aggregate is quickly formed, it is difficult to lower the classification point to about 3 μm and remove such coarse particles.

【0010】本発明の目的は、Ni(OH)2をH2ガスで還元
し、結晶性の良好なニッケル粉末を得る前述のプロセス
において、粒径が3μm以上の粒子をさらに低減するニ
ッケル粉末の製造方法を提供することである。
The object of the present invention is to produce nickel powder which further reduces particles having a particle size of 3 μm or more in the above-mentioned process for obtaining nickel powder having good crystallinity by reducing Ni (OH) 2 with H 2 gas. Is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成する手段として、ニッケル粉末を得る方法において、
ジェットミルと分級機を組み合わせた装置を用い、ジェ
ットミルにより凝集粒子を解砕し、解砕直後の再凝集し
ていない状態で高速回転ローター型の分級機により分級
を行うことを特徴とする粗大粒子を含まないニッケル粉
末の製造方法である。上記方法に適用するニッケル粒子
を得る方法として、例えば、NiCl2溶液をNaOHで中和
し、Ni(OH)2を得、得られたNi(OH)2をH2ガスによって4
20〜480°Cの温度で乾式還元する方法がある。
As a means for achieving the above object, the present invention provides a method for obtaining a nickel powder,
Coarse particles characterized by crushing agglomerated particles with a jet mill using a device that combines a jet mill and a classifier and performing classification with a high-speed rotating rotor type classifier immediately after crushing and without re-agglomeration. This is a method for producing nickel powder containing no particles. As a method for obtaining nickel particles applied to the above method, for example, a NiCl 2 solution is neutralized with NaOH to obtain Ni (OH) 2, and the obtained Ni (OH) 2 is mixed with H 2 gas to obtain 4
There is a method of dry reduction at a temperature of 20 to 480 ° C.

【0012】[0012]

【発明の実施の形態】本発明者らは、ニッケル粉末中の
粗大粒子を除去するために、サイクロン式分級機による
分級を試みた。この方法では、粒径が10μm程度の粗
大粒子は除去できるものの、3μm粒子は殆ど除去する
ことができなかった。処理風量等の条件を厳しくするこ
とで理論上は、分級点を下げられるはずではあるが、粗
大粒子のみを分級除去することは困難であり、しかも製
品収率をも著しく悪化してしまうという問題がある。ま
た、そのようにして処理・回収したニッケル粉であって
も、3μm以上の粗大粒子は、少なからず残存している
ことが電子顕微鏡観察によって、容易に確認できた。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors attempted classification by a cyclone classifier in order to remove coarse particles in nickel powder. By this method, coarse particles having a particle size of about 10 μm can be removed, but 3 μm particles can hardly be removed. Theoretically, it should be possible to lower the classification point by tightening the conditions such as the amount of treated air, but it is difficult to classify and remove only coarse particles, and the product yield will also be significantly reduced. There is. Moreover, even with the nickel powder thus treated and recovered, it was easily confirmed by electron microscope observation that a large amount of coarse particles of 3 μm or more remained.

【0013】サイクロン式分級によって、上述のような
所望の結果が得られなかったことに対して、発明者ら
は、以下の2点に原因があると結論した。第1は、ニッ
ケル粒子がサイクロン投入前の時点で既に凝集している
ことであり、第2は、ニッケル粒子がその強い表面活性
によりサイクロンの機内で衝突し再凝集してしまうこと
である。
The inventors have concluded that the following two points are responsible for the fact that the desired result as described above was not obtained by the cyclone type classification. The first is that the nickel particles have already aggregated before the cyclone was charged, and the second is that the nickel particles collide and re-aggregate inside the cyclone due to their strong surface activity.

【0014】第1の問題は、ジェットミルやボールミル
などによって、凝集を解くだけでは解決できない。その
理由は、完全に凝集を解かれたニッケル微粒子は、表面
活性が高く、粉末として回収した時点で既に再凝集して
いるからである。
The first problem cannot be solved only by solving the agglomeration with a jet mill or a ball mill. The reason is that the nickel fine particles that have been completely deaggregated have high surface activity and have already reaggregated when recovered as powder.

【0015】ニッケル粉末を水に分散し、得られたスラ
リーをサイクロンにより処理し分級する方法も考えられ
るが、この場合、分級後のスラリーから粉末を得るため
の乾燥工程において再び乾燥凝集による粗大粒子が発生
するため十分とはいえない。
A method in which nickel powder is dispersed in water and the resulting slurry is treated with a cyclone and classified is also conceivable. In this case, however, coarse particles by dry agglomeration are again used in the drying step for obtaining powder from the classified slurry. It is not enough because it occurs.

【0016】そこで発明者らは、鋭意検討の結果、ジェ
ットミルに高速回転ローター型の分級機を直接接続した
構造の装置を用い、解砕直後のニッケル粒子を瞬時に分
級することによって、問題となる3μm以上の粒子のみ
を確実に除去できることを見いだし本発明を完成させ
た。
Therefore, as a result of earnest studies, the inventors have found that a problem is caused by instantaneously classifying nickel particles immediately after crushing by using an apparatus having a structure in which a high speed rotating rotor type classifier is directly connected to a jet mill. It was found that only particles having a particle size of 3 μm or more can be reliably removed, and the present invention has been completed.

【0017】本発明で用いるジェットミルは、旋回流
式、カウンター式のいずれでも良いが解砕された粒子
が、可能な限り速やかに分級機に到達することが望まし
い。したがって、前述の点で粉砕室内に分級機を設置す
ることが構造的に可能な流動層式カウンタージェットミ
ルがより好ましい。粉砕室内に分級機を設置することで
解砕が十分でない粒子を粉砕ゾーンに戻すことが容易と
なり、その結果製品の実収率が著しく高まるという利点
もある。
The jet mill used in the present invention may be either a swirling type or a counter type, but it is desirable that the crushed particles reach the classifier as quickly as possible. Therefore, from the above-mentioned point, it is more preferable to use the fluidized bed type counter jet mill which is structurally capable of installing the classifier in the crushing chamber. By installing a classifier in the crushing chamber, it becomes easy to return particles that have not been sufficiently crushed to the crushing zone, and as a result, the actual yield of the product is significantly increased.

【0018】分級機としては、粉砕室内に設置するた
め、コンパクトであり分級機内で粒子の再凝集が生じに
くい分級機が良く、前述の点で高速回転ローター型分級
機が望ましい。
As the classifier, since it is installed in the crushing chamber, a classifier which is compact and in which reaggregation of particles does not easily occur in the classifier is preferable. From the above-mentioned point, the high-speed rotating rotor type classifier is preferable.

【0019】ジェットミルによる解砕・分散の条件とし
ては圧力を0.2〜1.0Mpaとすることが好ましい。圧力を
0.2Mpa以下にするとニッケル粉が充分分散されず、充分
な流動層を作ることができず、その結果、ジェットミル
の効果が著しく減衰する。また、圧力を1.0Mpa以上で使
用すると、充分な硬度を有さないニッケル粉では、被粉
砕物が変形を起す為使用に耐えない。
As a condition for crushing / dispersing with a jet mill, the pressure is preferably 0.2 to 1.0 MPa. Pressure
If it is less than 0.2 MPa, the nickel powder is not sufficiently dispersed, and a sufficient fluidized bed cannot be formed, and as a result, the effect of the jet mill is significantly reduced. If the pressure is 1.0 Mpa or more, nickel powder that does not have sufficient hardness cannot be used because the pulverized object will be deformed.

【0020】ジェットミルによる解砕・分散の条件とし
ては風量による生産速度を0.02〜0.20kg/m3とするこ
とが好ましい。風量と生産の関係は正の相関関係にある
が、0.02kg/m3以下で使用すると、圧力を0.2Mpa以下と
したときと同様に充分な流動層を作ることができず、解
砕―分級の効果が著しく減衰する。
As a condition for crushing / dispersing with a jet mill, it is preferable to set the production rate depending on the air volume to 0.02 to 0.20 kg / m 3 . There is a positive correlation between air volume and production, but when used at 0.02 kg / m 3 or less, a sufficient fluidized bed cannot be created as when the pressure was 0.2 Mpa or less, so crushing-classification The effect of is significantly reduced.

【0021】また、0.20kg/m3以上で使用すると、逆に
流動層が拡大するため、解砕分散効率が落ちる他、粗粉
が以後の工程に混入する可能性が著しく大きくなる。粗
大粒子の混入割合は高速分級ローターの周速によっても
制御される。この周速が大きいほど粗大粒子の除去は効
果的に行われるものの、生産性との兼ね合いで適切な範
囲が設定される。周速の適切な範囲は処理されるニッケ
ル粉により変動するが、おおむね、2000〜3500m/sの間
が好ましい。
On the other hand, if it is used at a rate of 0.20 kg / m 3 or more, the fluidized bed will be expanded, and the efficiency of crushing and dispersion will be reduced and the possibility that coarse powder will be mixed in the subsequent steps will be significantly increased. The mixing ratio of coarse particles is also controlled by the peripheral speed of the high-speed classification rotor. The larger the peripheral speed, the more effectively the coarse particles are removed, but an appropriate range is set in consideration of productivity. The appropriate range of the peripheral speed varies depending on the nickel powder to be treated, but it is preferably about 2000 to 3500 m / s.

【0022】また、本方法による粗大粒子除去方法は、
例えばニッケル塩を水溶液中でヒト゛ラシ゛ンなどの還元剤に
より湿式合成して得られるニッケル粉や、これを熱処理
して得られるニッケル粉に対しても効果を示すものであ
る。
Further, the method for removing coarse particles according to the present method is as follows.
For example, the present invention is also effective against nickel powder obtained by wet synthesis of a nickel salt in an aqueous solution with a reducing agent such as human duracine, or nickel powder obtained by heat-treating this.

【0023】[0023]

【実施例】次に、本発明の実施例を説明する。EXAMPLES Next, examples of the present invention will be described.

【0024】(実施例1)水酸化ニッケルを460°C
で水素還元して得られたニッケル粉を水洗後乾燥した
後、100meshの篩いを通過させ、原料ニッケル粉を得
た。この原料ニッケル粉の粒度分布を図1aに示す。
Example 1 Nickel hydroxide was added at 460 ° C.
The nickel powder obtained by reduction with hydrogen was washed with water, dried and then passed through a 100 mesh sieve to obtain a raw material nickel powder. The particle size distribution of this raw nickel powder is shown in FIG. 1a.

【0025】このニッケル粉を粉砕室内に高速回転ロー
ター型分級機を備えた流動層型カウンター式ジェットミ
ル(ホソカワミクロン(株)マルチプロセッシングシス
テム100AFG)を用いて、分級ローターの回転数を
14000rpmとして解砕―分級を行い、得られたニッケル粉
の粒度分布をマイクロトラックFRA MODEL9220(日機
装(株))製で測定した。結果を図1bに示す。分級後
は、D90=1.55μmSEM観察によっても3μm以上の
粗大粒子は、全く見られなかった。なお、粉末の回収率
は、98%であった。
The rotation speed of the classification rotor was measured by using a fluidized bed counter type jet mill (Hosokawa Micron Co., Ltd. Multi Processing System 100AFG) equipped with a high-speed rotating rotor type classifier in the grinding chamber.
Crushing-classification was performed at 14000 rpm, and the particle size distribution of the obtained nickel powder was measured by Microtrac FRA MODEL 9220 (manufactured by Nikkiso Co., Ltd.). The results are shown in Figure 1b. After classification, D90 = 1.55 μm No coarse particles of 3 μm or more were observed by SEM observation. The powder recovery rate was 98%.

【0026】(比較例)実施例と同様の原料粉を用い、
サイクロン型の分級機による分級を行い、次に旋回流型
のジェットミル((株)パウレック 100AS)で解砕処
理を施した。粒度分布測定結果を図1cに示す。実施例
に比較してD90=1.93μmとなり、SEM観察によって
も3μm以上の粗大粒子が多く見られた。なお、粉末の
回収率は、78%であった。
(Comparative Example) Using the same raw material powder as in Example,
The particles were classified by a cyclone classifier, and then crushed by a swirling flow type jet mill (Pawrec 100AS Co., Ltd.). The particle size distribution measurement result is shown in FIG. 1c. Compared with the examples, D90 = 1.93 μm, and many coarse particles of 3 μm or more were observed by SEM observation. The recovery rate of the powder was 78%.

【0027】(実施例2〜6)実施例1と同様に、分級
ローター周速、粉砕圧力、風量あたりの生産速度を変化
させ分級を行った。これらの結果を合わせて表1に示
す。 実施例1〜4においては、粗大粒子は確認できな
かったが、粉砕圧力、生産速度が比較的高い実施例5,
6においては、少量の粗大粒子が残存した。
(Examples 2 to 6) In the same manner as in Example 1, classification was performed by changing the peripheral speed of the classifying rotor, the crushing pressure, and the production rate per air volume. The results are shown together in Table 1. In Examples 1 to 4, coarse particles could not be confirmed, but the crushing pressure and the production rate were relatively high.
In No. 6, a small amount of coarse particles remained.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例7)実施例1と同様の試料を用
い、同様の条件で、風量(生産速度)を変化させ、風量
と粗粒の関係を調査した結果を図2に示す。本実施例で
の粗粒とは、レーザー回折型の粒度分布測定機(日機
装:マイクロトラックFRA9220)で測定した場合の3ミク
ロン以上の粒子の割合であり、風量が0.2kg/m3以上
では、粗粒が多くなることがわかる。
Example 7 FIG. 2 shows the results of investigating the relationship between the air volume and the coarse particles by using the same sample as in Example 1 and changing the air volume (production rate) under the same conditions. The coarse particles in this example are the proportions of particles of 3 microns or more when measured by a laser diffraction type particle size distribution measuring device (Nikkiso: Microtrack FRA9220), and when the air volume is 0.2 kg / m 3 or more. It turns out that the number of coarse particles increases.

【0030】[0030]

【発明の効果】以上説明したように、本発明による、ニ
ッケル粉末の製造方法によれば、安価なプロセスで製造
したニッケル粉の粗大粒子を効果的に除去することが可
能で、積層セラミックコンデンサーの内部電極材料に適
したニッケル粉末を収率良く経済的に得ることができ
る。
As described above, according to the method for producing nickel powder according to the present invention, it is possible to effectively remove coarse particles of nickel powder produced by an inexpensive process, and The nickel powder suitable for the internal electrode material can be obtained economically with good yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例、比較例に用いた原料粉
と、実施例と比較例で回収されたニッケル粉末の粒度分
布を示す図である。
FIG. 1 is a diagram showing a particle size distribution of raw material powders used in Examples and Comparative Examples of the present invention and nickel powders recovered in Examples and Comparative Examples.

【図2】図2は風量と粗粒量の関係を調査した図であ
る。
FIG. 2 is a diagram in which the relationship between the air volume and the coarse particle volume is investigated.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 和則 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4K001 AA19 BA08 CA08 DA10 HA09 4K017 AA03 BA03 CA01 CA07 DA08 EA03 EH01 EH16 FB03 FB06   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazunori Furukawa             3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kin             Besshi Works, Inc. F-term (reference) 4K001 AA19 BA08 CA08 DA10 HA09                 4K017 AA03 BA03 CA01 CA07 DA08                       EA03 EH01 EH16 FB03 FB06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル粉末を製造する方法におい
て、生成したニッケル粒子を高速分級ローターを備えた
ジェットミルにより解砕し、再凝集前に粗大粒子を除去
することを特徴とするニッケル粉末の製造方法。
1. A method for producing nickel powder, characterized in that the produced nickel particles are crushed by a jet mill equipped with a high-speed classification rotor, and coarse particles are removed before re-agglomeration. .
【請求項2】 ジェットミルの圧力を0.2〜1.0Mpaで使
用することを特徴とする請求項1記載のニッケル粉末の
製造方法。
2. The method for producing nickel powder according to claim 1, wherein the pressure of the jet mill is 0.2 to 1.0 MPa.
【請求項3】 ジェットミルの風量による生産速度を0.
02〜0.20kg/m3で製造することを特徴とする請求項1
記載のニッケル粉末の製造方法。
3. The production speed according to the air flow of the jet mill is set to 0.
Claim, characterized in that to produce at 02~0.20kg / m 3 1
A method for producing the nickel powder described.
【請求項4】 ジェットミルの分級ローター回転を周
速換算で2000〜3500m/Sとすることを特徴とする請求
項1記載のニッケル粉末の製造方法。
4. The method for producing nickel powder according to claim 1, wherein the classification rotor rotation of the jet mill is 2000 to 3500 m / S in terms of peripheral speed.
【請求項5】 ニッケル粒子がNiCl2溶液をNaOHで中和
しNi(OH)2を得、得られたNi(OH)2を420〜480°C
の温度でH2ガスによって乾式還元して得られたニッケル
粒子である請求項1記載のニッケル粉末の製造方法。
5. Nickel particles are obtained by neutralizing a NiCl 2 solution with NaOH to obtain Ni (OH) 2. The obtained Ni (OH) 2 is 420 to 480 ° C.
The method for producing a nickel powder according to claim 1, which is nickel particles obtained by dry reduction with H 2 gas at the temperature of.
JP2001284603A 2001-09-19 2001-09-19 Method for producing nickel powder Expired - Lifetime JP4831518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001284603A JP4831518B2 (en) 2001-09-19 2001-09-19 Method for producing nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001284603A JP4831518B2 (en) 2001-09-19 2001-09-19 Method for producing nickel powder

Publications (2)

Publication Number Publication Date
JP2003089806A true JP2003089806A (en) 2003-03-28
JP4831518B2 JP4831518B2 (en) 2011-12-07

Family

ID=19107894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001284603A Expired - Lifetime JP4831518B2 (en) 2001-09-19 2001-09-19 Method for producing nickel powder

Country Status (1)

Country Link
JP (1) JP4831518B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501862A (en) * 2004-06-10 2008-01-24 シーブイアールディ、インコ、リミテッド Method and composition for dispersing ultrafine nickel powder
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder
JP2015040329A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Nickel power and method for producing the same, and nickel paste using the same
CN113492211A (en) * 2020-04-08 2021-10-12 安泰科技股份有限公司 Preparation method of high-uniformity metal powder with controllable particle size

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243701A (en) * 1989-03-17 1990-09-27 Daido Steel Co Ltd Treatment of metal powder
JP2001200301A (en) * 1999-11-12 2001-07-24 Mitsui Mining & Smelting Co Ltd Nickel powder and electrically conductive paste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243701A (en) * 1989-03-17 1990-09-27 Daido Steel Co Ltd Treatment of metal powder
JP2001200301A (en) * 1999-11-12 2001-07-24 Mitsui Mining & Smelting Co Ltd Nickel powder and electrically conductive paste

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008501862A (en) * 2004-06-10 2008-01-24 シーブイアールディ、インコ、リミテッド Method and composition for dispersing ultrafine nickel powder
JP2008520824A (en) * 2004-11-19 2008-06-19 ファルコンブリッジ リミテッド Method for producing fine, low bulk density metallic nickel powder
JP2015040329A (en) * 2013-08-22 2015-03-02 住友金属鉱山株式会社 Nickel power and method for producing the same, and nickel paste using the same
CN113492211A (en) * 2020-04-08 2021-10-12 安泰科技股份有限公司 Preparation method of high-uniformity metal powder with controllable particle size
CN113492211B (en) * 2020-04-08 2023-11-14 安泰科技股份有限公司 Preparation method of high-uniformity granularity-controllable metal powder

Also Published As

Publication number Publication date
JP4831518B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR101236245B1 (en) Metal powder for electrically conductive paste and electrically conductive paste
JP2006336060A (en) Nickel particle powder and production method therefor
JP4661726B2 (en) Fine nickel powder and method for producing the same
WO2004048017A1 (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
JP4978785B2 (en) Method for producing nickel powder
EP1151815B1 (en) Method for preparation of nickel powder
US6494931B1 (en) Nickel powder and conductive paste
JP6577160B2 (en) Method for producing aluminum hydroxide-coated silicon carbide particle powder, and method for producing dispersion containing the powder and dispersion medium
WO2014077043A1 (en) Silver powder
EP1468766B1 (en) Method for producing metal powder
JP2004332055A (en) Nickel powder and its producing method
JP4227373B2 (en) Flake copper powder and copper paste using the flake copper powder
JP4831518B2 (en) Method for producing nickel powder
JP6975527B2 (en) Spherical silver powder and its manufacturing method, and conductive paste
JP5046044B2 (en) Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles
JP3841607B2 (en) Nickel powder and conductive paste
TW477724B (en) Nickel powder and conductive paste
JP4356323B2 (en) Surface-treated nickel metal powder and method for producing the same
JP2004060002A (en) Method of producing metal powder for electrically conductive paste, metal powder for electrically conductive paste, electrically conductive paste and multilayer ceramic electronic part
JP2002115001A (en) Fine copper powder for forming circuit
JP3444854B2 (en) Nickel powder, method for producing the same, and conductive paste
JP2003123537A (en) Mixed copper powder, method of manufacturing the mixed copper powder, copper paste using the mixed copper powder and printed circuit board using the copper paste
JP3280372B2 (en) Nickel powder and conductive paste
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
JP2001107103A (en) Spherical nickel powder and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4831518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

EXPY Cancellation because of completion of term