JP3444854B2 - Nickel powder, method for producing the same, and conductive paste - Google Patents

Nickel powder, method for producing the same, and conductive paste

Info

Publication number
JP3444854B2
JP3444854B2 JP2000341460A JP2000341460A JP3444854B2 JP 3444854 B2 JP3444854 B2 JP 3444854B2 JP 2000341460 A JP2000341460 A JP 2000341460A JP 2000341460 A JP2000341460 A JP 2000341460A JP 3444854 B2 JP3444854 B2 JP 3444854B2
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
particle size
nickel powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000341460A
Other languages
Japanese (ja)
Other versions
JP2001203121A (en
Inventor
隆 向野
隆之 荒木
義治 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2000341460A priority Critical patent/JP3444854B2/en
Publication of JP2001203121A publication Critical patent/JP2001203121A/en
Application granted granted Critical
Publication of JP3444854B2 publication Critical patent/JP3444854B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はニッケル粉、その製
造方法及び積層セラミックコンデンサ用導電ペーストに
関し、より詳しくは、狭い粒度分布を有し、アルカリ金
属、アルカリ土類金属、元素周期律表第4周期の遷移金
属(但しニッケルを除く)、硫黄及び塩素からなる不純
物の総量が少なく、特に積層セラミックコンデンサの薄
くて突起のない内部電極の形成に用いる導電ペーストに
適しているニッケル粉、その製造方法及び該ニッケル粉
を含有する積層セラミックコンデンサ用導電ペーストに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel powder, a method for producing the same, and a conductive paste for a monolithic ceramic capacitor. More specifically, it has a narrow particle size distribution, and is composed of an alkali metal, an alkaline earth metal, an element periodic table No. 4 Nickel powder with a small total amount of impurities consisting of transition metals (excluding nickel), sulfur and chlorine of the period, especially suitable for conductive paste used for forming thin and protrusion-free internal electrodes of multilayer ceramic capacitors, and method for producing the same And a conductive paste for a multilayer ceramic capacitor containing the nickel powder.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは交互に積層
された複数のセラミック誘電体層と内部電極層とが一体
化したものであり、このような積層セラミックコンデン
サを形成する際には、内部電極材料である金属微粉末を
ペースト化して導電ペーストを調製し、該導電ペースト
を用いてセラミック誘電体グリーンシート上に印刷し、
セラミック誘電体グリーンシートと導体ペースト層とが
交互に層状になるように複数層積層し、加熱圧着して一
体化した後、還元性雰囲気中、高温で焼成してセラミッ
ク誘電体層と内部電極層とを一体化させることが一般的
である。
2. Description of the Related Art A monolithic ceramic capacitor is one in which a plurality of alternately laminated ceramic dielectric layers and an internal electrode layer are integrated, and when forming such a monolithic ceramic capacitor, an internal electrode material is used. A metal fine powder is made into a paste to prepare a conductive paste, and the conductive paste is used to print on a ceramic dielectric green sheet,
A plurality of layers of ceramic dielectric green sheets and conductor paste layers are alternately laminated to form a ceramic dielectric layer and internal electrode layers which are fired at a high temperature in a reducing atmosphere to be integrated. It is common to integrate and.

【0003】この内部電極材料として、従来は白金、パ
ラジウム、銀−パラジウム等が使用されていたが、コス
ト低減のために、近時にはこれらの白金、パラジウム、
銀−パラジウム等の貴金属の代わりにニッケル等の卑金
属を用いる技術が開発され、進歩してきている。
Conventionally, platinum, palladium, silver-palladium, etc. have been used as the material of the internal electrodes. However, in order to reduce the cost, these platinum, palladium, and
Techniques using a base metal such as nickel instead of a noble metal such as silver-palladium have been developed and advanced.

【0004】また、導電ペーストを用いて製造される電
子部品、例えば積層セラミックコンデンサ等は近年ます
ます小型化しており、それに伴い、セラミック誘電体層
及び内部電極層の薄膜化、多層化が進み、現在積層部
品、特に積層セラミックコンデンサでは誘電体層2μm
以下、内部電極膜厚1.5μm以下、積層数100層以
上の部品が作られている。
In addition, electronic parts manufactured using conductive paste, such as multilayer ceramic capacitors, have become smaller and smaller in recent years, and along with this, the ceramic dielectric layers and internal electrode layers have become thinner and multilayered, Currently, for laminated parts, especially for laminated ceramic capacitors, the dielectric layer is 2 μm.
Hereinafter, a component having an internal electrode film thickness of 1.5 μm or less and a laminated number of 100 or more is manufactured.

【0005】薄い内部電極層を得るにはそれに見合った
平均粒子径の小さい金属微粉を用いればよいと考えられ
るが、平均粒子径が所定の範囲内にあったとしても粗粒
が混入していると、そのような金属微粉を含む導電ペー
ストを用いて内部電極層を形成すると、そのような粗粒
が内部電極層上に突起を形成し、その突起が薄いセラミ
ック誘電体層を突き破って内部電極間の短絡を引き起こ
すことがある。このような内部電極間の短絡を防止する
ためには、薄い内部電極層を得るのに見合った平均粒子
径の金属微粉よりもかなり小さい平均粒子径の金属微粉
を用いる必要がある。
In order to obtain a thin internal electrode layer, it is considered to use fine metal powder having a small average particle diameter corresponding to it, but coarse particles are mixed even if the average particle diameter is within a predetermined range. When an internal electrode layer is formed using a conductive paste containing such fine metal powder, such coarse particles form protrusions on the internal electrode layer, and the protrusions penetrate through the thin ceramic dielectric layer to form internal electrodes. May cause a short circuit between them. In order to prevent such a short circuit between the internal electrodes, it is necessary to use metal fine powder having an average particle size considerably smaller than the metal fine powder having an average particle size suitable for obtaining a thin internal electrode layer.

【0006】例えば、特開平11−189801号公報
には、平均粒径が0.2〜0.6μmであり、かつ平均
粒径の2.5倍以上の粒径を持つ粗粒子の存在率が個数
基準で0.1%以下であるニッケル超微粉が記載されて
おり、その第4欄21〜24行には「例えば粗粒子の粒
径を1.5μm以上程度に限定すれば、本発明のニッケ
ル超微粉の平均粒径は、0.6μmに限定する必要があ
る訳である。」と記載されており、薄い内部電極層を得
るためにかなり小さい平均粒径の金属微粉を用いる必要
がある。しかし、微粉になればなるほど、そのような微
粉を含むペーストの粘度が上昇するという問題があり、
また焼成の際に熱収縮や酸化が促進されるという問題が
ある。
For example, in JP-A-11-189801, the abundance ratio of coarse particles having an average particle diameter of 0.2 to 0.6 μm and having a particle diameter of 2.5 times or more the average particle diameter is found. Nickel ultrafine powder, which is 0.1% or less on the number basis, is described, and the fourth column, lines 21 to 24 states, "For example, if the grain size of coarse particles is limited to about 1.5 μm or more, It is necessary to limit the average particle size of nickel ultrafine powder to 0.6 μm. ”, And it is necessary to use metal fine powder having a considerably small average particle size in order to obtain a thin internal electrode layer. . However, there is a problem that the finer the powder, the higher the viscosity of the paste containing such fine powder,
There is also a problem that heat shrinkage and oxidation are promoted during firing.

【0007】[0007]

【発明が解決しようとする課題】本発明は、狭い粒度分
布を有し、アルカリ金属、アルカリ土類金属、元素周期
律表第4周期の遷移金属(但しニッケルを除く)、硫黄
及び塩素からなる不純物の総量が少なく、ニッケル粉の
粒子径を無用に小さくすることなしで積層セラミックコ
ンデンサの薄くて突起のない内部電極層の形成に用いる
導電ペーストに適しているニッケル粉、そのようなニッ
ケル粉の製造方法、並びにそのようなニッケル粉を含有
する積層セラミックコンデンサ用導電ペーストを提供す
ることを課題としている。
DISCLOSURE OF THE INVENTION The present invention has a narrow particle size distribution and comprises an alkali metal, an alkaline earth metal, a transition metal of the 4th period of the periodic table of elements (excluding nickel), sulfur and chlorine. Nickel powder, which has a small total amount of impurities and is suitable for a conductive paste used for forming a thin and projection-free internal electrode layer of a multilayer ceramic capacitor without unnecessarily reducing the particle size of the nickel powder, An object of the present invention is to provide a manufacturing method and a conductive paste for a laminated ceramic capacitor containing such nickel powder.

【0008】[0008]

【課題を解決するための手段】本発明者等は上記の課題
を達成するために鋭意検討した結果、ニッケル粉におい
て、粗粒の含有割合を比較的小さくし、且つ大部分のニ
ッケル粉の粒子径を所定の範囲内に入るようにすれば、
ニッケル粉を無用に微細にすることなしで表面に突起の
ない内部電極層を形成して内部電極間の短絡が起こりに
くくでき、しかも微細粒が少ないために酸化が抑制され
ると共に、熱収縮が抑制できること、またそのようなニ
ッケル粉は、ニッケル水酸化物の生成時及び還元時に所
定の条件を満たすことによって得られること、またその
ようなニッケル粉を含有する導電ペーストは積層セラミ
ックコンデンサ用に特に適していることを見いだし、発
明を完成した。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to achieve the above-mentioned object, and as a result, in the nickel powder, the content ratio of coarse particles was made relatively small, and most of the nickel powder particles were By keeping the diameter within the specified range,
Without unnecessarily making nickel powder fine, an internal electrode layer without protrusions can be formed on the surface to prevent short-circuiting between internal electrodes, and since there are few fine particles, oxidation is suppressed and heat shrinkage occurs. That the nickel powder can be suppressed, and that such nickel powder can be obtained by satisfying a predetermined condition at the time of generation and reduction of nickel hydroxide, and a conductive paste containing such nickel powder is particularly suitable for a laminated ceramic capacitor. They found it suitable and completed the invention.

【0009】即ち、本発明のニッケル粉は、SEM(走
査型電子顕微鏡)観察による平均粒子径の1.2倍以上
の粒子径を持つ粒子個数が全粒子個数の5%以下であ
り、該平均粒子径の0.8倍以下の粒子径を持つ粒子個
数が全粒子個数の5%以下であることを特徴とする。ま
た、本発明の積層セラミックコンデンサ用導電ペースト
は、上記の本発明のニッケル粉を含有することを特徴と
する。
That is, in the nickel powder of the present invention, the number of particles having a particle size 1.2 times or more of the average particle size by SEM (scanning electron microscope) observation is 5% or less of the total number of particles, The number of particles having a particle diameter of 0.8 times or less of the particle diameter is 5% or less of the total number of particles. The conductive paste for a monolithic ceramic capacitor of the present invention is characterized by containing the above-mentioned nickel powder of the present invention.

【0010】更に、本発明のニッケル粉の製造方法は、
ニッケル塩水溶液をアルカリ金属水酸化物水溶液に添加
することにより得られるニッケル水酸化物を含有するス
ラリーを、55℃以上の温度条件下でヒドラジン系還元
剤と接触させて、ニッケル水酸化物を還元することを特
徴とする。
Further, the method for producing nickel powder of the present invention is
The nickel hydroxide-containing slurry obtained by adding the nickel salt aqueous solution to the alkali metal hydroxide aqueous solution is contacted with a hydrazine-based reducing agent under a temperature condition of 55 ° C. or higher to reduce the nickel hydroxide. It is characterized by doing.

【0011】[0011]

【発明の実施の形態】本発明のニッケル粉においては、
便宜的には1万倍程度のSEM観察による平均粒子径の
1.2倍以上の粒子径を持つ粒子個数が全粒子個数の5
%以下、好ましくは4%以下であり、該平均粒子径の
0.8倍以下の粒子径を持つ粒子個数が全粒子個数の5
%以下、好ましくは4%以下であるので、即ち、粗粒の
含有割合が比較的小さく、ニッケル粉中の各ニッケル粒
子の粒子径が相当に均一であるので、そのようなニッケ
ル粉を含む導電ペーストを用いて得られる例えば積層セ
ラミックコンデンサにおいてはニッケル粉の平均粒子径
に比較してかなり薄い内部電極層を形成することがで
き、しかも内部電極層の表面に突起が形成されることは
なく、従って内部電極間の短絡が起こることがない。更
に、微細粒の含有割合も比較的小さいので、そのような
ニッケル粉を含むペーストは粘度が上昇するという問題
が発生せず、また焼成の際に熱収縮や酸化が促進される
こともない。
BEST MODE FOR CARRYING OUT THE INVENTION In the nickel powder of the present invention,
For convenience, the number of particles having a particle size 1.2 times or more the average particle size by SEM observation of about 10,000 times is 5 times the total number of particles.
% Or less, preferably 4% or less, and the number of particles having a particle size of 0.8 times or less of the average particle size is 5% of the total number of particles.
% Or less, preferably 4% or less, that is, the content ratio of coarse particles is relatively small, and the particle diameter of each nickel particle in the nickel powder is considerably uniform. For example, in a multilayer ceramic capacitor obtained by using a paste, it is possible to form an internal electrode layer that is considerably thinner than the average particle size of nickel powder, and no protrusion is formed on the surface of the internal electrode layer. Therefore, a short circuit between the internal electrodes does not occur. Further, since the content ratio of the fine particles is relatively small, such a paste containing nickel powder does not cause a problem of increasing viscosity, and neither heat shrinkage nor oxidation is promoted during firing.

【0012】本発明のニッケル粉においては、液中に分
散させてレーザー回折散乱法により体積分布を測定して
求めた粒度分布の篩下積算分布50%に相当する粒子径
(D 50)及び最大粒子径(Dmax )を算出して、(D
max /D50)の値が4以下であること、即ち、D50に対
するDmax の比が4倍以下であることが好ましく、3倍
以下であることが一層好ましく、2.5倍以下であるこ
とが最も好ましい。ここで上記の粒度分布の測定におい
ては、適当なレーザー回折散乱式粒度分布測定装置を用
い、ニッケル粉を所定のディスパーサント水溶液中に充
分に分散させ、超音波分散器で攪拌した後に測定するこ
とが望まれる。
In the nickel powder of the present invention, the nickel powder
Scatter and measure the volume distribution by laser diffraction scattering method
Particle size corresponding to 50% of cumulative distribution under the sieve of the obtained particle size distribution
(D 50) And maximum particle size (Dmax) Is calculated and (D
max/ D50) Is 4 or less, that is, D50Against
Do DmaxRatio is preferably 4 times or less, and 3 times
It is more preferable that it is less than or equal to 2.5 times, and less than or equal to 2.5 times.
And are most preferred. Here is the measurement of the above particle size distribution
Use an appropriate laser diffraction / scattering particle size distribution analyzer
Fill the prescribed dispersant solution with nickel powder.
Disperse in 1 minute, stir with an ultrasonic disperser, and then measure.
And is desired.

【0013】本発明のニッケル粉において、SEM観察
による平均粒子径の1.2倍以上の粒子径を持つ粒子個
数が全粒子個数の5%以下であり、該平均粒子径の0.
8倍以下の粒子径を持つ粒子個数が全粒子個数の5%以
下であり、且つD50に対するDmax の比が4倍以下であ
る場合には、そのようなニッケル粉を含む導電ペースト
を用いて得られる例えば積層セラミックコンデンサにお
いては、内部電極層の表面に突起が形成されることは一
層充分に防止され、極めて均質かつ緻密で薄い膜を形成
することが可能となり、従って内部電極間の短絡は一層
充分に防止される。
In the nickel powder of the present invention, the number of particles having a particle size of 1.2 times or more of the average particle size by SEM observation is 5% or less of the total number of particles, and the average particle size of 0.
When the number of particles having a particle size of 8 times or less is 5% or less of the total number of particles and the ratio of D max to D 50 is 4 times or less, a conductive paste containing such nickel powder is used. In a multilayer ceramic capacitor obtained as a result, for example, the formation of protrusions on the surface of the internal electrode layer is more sufficiently prevented, and it becomes possible to form a very uniform, dense and thin film, and therefore a short circuit between internal electrodes occurs. Are more fully prevented.

【0014】本発明のニッケル粉においては、そのよう
なニッケル粉を含むペーストを用いて積層セラミックコ
ンデンサを製造する場合には、SEM観察による平均粒
子径が0.1〜1μmであることが好ましく、0.2〜
0.6μmであることが一層好ましい。
In the nickel powder of the present invention, when a multilayer ceramic capacitor is manufactured using a paste containing such nickel powder, it is preferable that the average particle diameter by SEM observation is 0.1 to 1 μm, 0.2 ~
More preferably, it is 0.6 μm.

【0015】また、本発明のニッケル粉においては、そ
の製造に高純度試薬を用い、ニッケル水酸化物の生成時
及び還元時に後記の所定の条件を満たすことにより、ニ
ッケル粉中のアルカリ金属、アルカリ土類金属、元素周
期律表第4周期の遷移金属(チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、銅及び亜鉛、但しニッケ
ルを除く)、硫黄及び塩素からなる不純物の総量を60
0ppm以下にすることができる。これらの不純物は積
層セラミックコンデンサの製造の際に焼結を抑制した
り、加速したりする傾向が有り、また、得られる積層セ
ラミックコンデンサの絶縁破壊電圧を低下させる傾向が
あり、従って得られる積層セラミックコンデンサの電気
特性に悪影響を及ぼす傾向があるので、これらの不純物
の総量を600ppm以下にできることは有意義であ
る。
Further, in the nickel powder of the present invention, a high-purity reagent is used for the production thereof, and the following predetermined conditions are satisfied at the time of producing and reducing nickel hydroxide, whereby the alkali metal and alkali metal in the nickel powder can be obtained. The total amount of impurities including earth metals, transition metals of the 4th period of the periodic table (titanium, vanadium, chromium, manganese, iron, cobalt, copper and zinc, but not nickel), sulfur and chlorine is 60.
It can be 0 ppm or less. These impurities tend to suppress or accelerate sintering during the production of a monolithic ceramic capacitor, and also tend to reduce the dielectric breakdown voltage of the resulting monolithic ceramic capacitor, and thus the monolithic ceramic obtained. Since the electric characteristics of the capacitor tend to be adversely affected, it is significant that the total amount of these impurities can be 600 ppm or less.

【0016】また、本発明の積層セラミックコンデンサ
用導電ペーストは、以上に説明した諸条件を満足する本
発明のニッケル粉を含有するものであり、本発明の積層
セラミックコンデンサ用導電ペーストは上記の優れた特
性を有するニッケル粉を含有していることにより、特に
薄くて均質な内部電極を形成するのに好適であり、ま
た、誘電体に悪影響を及ぼす特定の不純物の濃度が低い
ため、製作された積層セラミックコンデンサの電気的特
性の悪化や性能のバラツキを低減させることができる。
The conductive paste for a monolithic ceramic capacitor of the present invention contains the nickel powder of the present invention satisfying the conditions described above, and the conductive paste for a monolithic ceramic capacitor of the present invention is excellent as described above. It is suitable for forming a particularly thin and uniform internal electrode because it contains nickel powder with excellent characteristics, and the concentration of certain impurities that adversely affect the dielectric is low. It is possible to reduce the deterioration of electrical characteristics and the variation in performance of the monolithic ceramic capacitor.

【0017】次に、本発明の積層セラミックコンデンサ
用導電ペーストの好ましい製造方法について述べる。本
発明の積層セラミックコンデンサ用導電ペーストは、上
記した本発明のニッケル粉、樹脂、溶剤等で構成され、
更に必要により分散剤、焼結抑制剤等を含有することが
できる。具体的には、樹脂としてエチルセルロース等の
セルロース誘導体、アクリル樹脂、ポリビニルブチラー
ル樹脂、ポリビニルアルコール等のビニル系の非硬化型
樹脂、エポキシ、アクリル等の好ましくは過酸化物を併
用した熱硬化性樹脂等を用いることができる。また、溶
剤として、テルピネオール、テトラリン、ブチルカルビ
トール、カルビトールアセテート等を単独で又は混合し
て用いることができる。また、このペーストには必要に
応じてガラスフリットを加えてもよい。本発明の積層セ
ラミックコンデンサ用導電ペーストは以上の原料をボー
ルミル、三本ロール等の混合用機械を用いて混合攪拌す
ることにより得られる。
Next, a preferred method for producing the conductive paste for laminated ceramic capacitors of the present invention will be described. The conductive paste for a monolithic ceramic capacitor of the present invention is composed of the above-mentioned nickel powder of the present invention, a resin, a solvent, and the like,
Further, if necessary, a dispersant, a sintering inhibitor, etc. may be contained. Specifically, as the resin, a cellulose derivative such as ethyl cellulose, an acrylic resin, a polyvinyl butyral resin, a vinyl-based non-curable resin such as polyvinyl alcohol, an epoxy resin, a thermosetting resin such as an acrylic resin, which preferably contains a peroxide, is used. Can be used. As the solvent, terpineol, tetralin, butyl carbitol, carbitol acetate, etc. can be used alone or in combination. Further, a glass frit may be added to this paste, if necessary. The conductive paste for a monolithic ceramic capacitor of the present invention is obtained by mixing and stirring the above raw materials using a mixing machine such as a ball mill or a triple roll.

【0018】本発明のニッケル粉の製造方法は、ニッケ
ル塩水溶液をアルカリ金属水酸化物水溶液に添加するこ
とにより得られるニッケル水酸化物を含有するスラリー
を、55℃以上の温度条件下でヒドラジン系還元剤と接
触させて、ニッケル水酸化物を還元することを特徴とし
ており、この際に用いるニッケル塩としては硫酸ニッケ
ル、硝酸ニッケル、塩化ニッケル等のハロゲン化ニッケ
ル等を挙げることができ、アルカリ金属水酸化物として
は水酸化ナトリウム、水酸化カリウム等を挙げることが
でき、またヒドラジン系還元剤としてはヒドラジン、水
加ヒドラジン、硫酸ヒドラジン、炭酸ヒドラジン、塩酸
ヒドラジン等を挙げることができる。
In the method for producing nickel powder of the present invention, a slurry containing nickel hydroxide obtained by adding an aqueous solution of a nickel salt to an aqueous solution of an alkali metal hydroxide is added to a hydrazine-based slurry under a temperature condition of 55 ° C. or higher. It is characterized by contacting with a reducing agent to reduce nickel hydroxide, and examples of the nickel salt used at this time include nickel halides such as nickel sulfate, nickel nitrate, and nickel chloride. Examples of hydroxides include sodium hydroxide and potassium hydroxide, and examples of hydrazine-based reducing agents include hydrazine, hydrazine hydrate, hydrazine sulfate, hydrazine carbonate, and hydrazine hydrochloride.

【0019】本発明の製造方法においては、ニッケル塩
水溶液をアルカリ金属水酸化物水溶液に添加することに
より得られるニッケル水酸化物を含有するスラリーを用
いることが重要である。この理由は、ニッケル塩水溶液
をアルカリ金属水酸化物水溶液に添加した場合には、ニ
ッケル水酸化物析出時のスラリー粘度が低いことに起因
して、粒子径が揃ったニッケル粉を得ることができる
が、逆にアルカリ金属水酸化物水溶液をニッケル塩水溶
液に添加した場合には、ニッケル水酸化物析出時のスラ
リー粘度が上昇し、粒子径が揃ったニッケル粉を得るこ
とが極めて困難になるからである。
In the production method of the present invention, it is important to use a slurry containing nickel hydroxide obtained by adding the nickel salt aqueous solution to the alkali metal hydroxide aqueous solution. The reason for this is that when an aqueous solution of a nickel salt is added to an aqueous solution of an alkali metal hydroxide, nickel powder having a uniform particle size can be obtained due to the low slurry viscosity at the time of nickel hydroxide precipitation. However, on the contrary, when the alkali metal hydroxide aqueous solution is added to the nickel salt aqueous solution, the slurry viscosity at the time of precipitation of nickel hydroxide increases, and it becomes extremely difficult to obtain nickel powder having a uniform particle size. Is.

【0020】本発明の製造方法においては、ニッケル塩
水溶液をアルカリ金属水酸化物水溶液に好ましくは徐々
に添加してニッケル水酸化物含有スラリーを生成させ、
直ちにそのスラリーをヒドラジン系還元剤と接触させる
ことが好ましい。しかし、ニッケル塩水溶液をアルカリ
金属水酸化物水溶液に好ましくは徐々に添加してニッケ
ル水酸化物含有スラリーを生成させた後、そのまま放置
又は保存することによってニッケル水酸化物の少なくと
も一部が沈殿した後であっても充分に攪拌してスラリー
状態に戻してヒドラジン系還元剤と接触させてもよく、
或いはニッケル塩水溶液をアルカリ金属水酸化物水溶液
に好ましくは徐々に添加してニッケル水酸化物含有スラ
リーを生成させ、そのスラリーからアルカリ金属水酸化
物を湿潤状態又は乾燥状態で回収し、保存したものに水
及びアルカリ金属水酸化物を加え、充分に攪拌して強ア
ルカリ性のスラリー状態に戻してヒドラジン系還元剤と
接触させてもよい。
In the production method of the present invention, the nickel salt aqueous solution is preferably gradually added to the alkali metal hydroxide aqueous solution to form a nickel hydroxide-containing slurry,
It is preferable to immediately contact the slurry with a hydrazine-based reducing agent. However, the nickel salt aqueous solution is preferably gradually added to the alkali metal hydroxide aqueous solution to form a nickel hydroxide-containing slurry, and then at least a part of the nickel hydroxide is precipitated by leaving it as it is or storing it. Even afterwards, the mixture may be sufficiently stirred to return to a slurry state and brought into contact with a hydrazine-based reducing agent,
Alternatively, the nickel salt aqueous solution is preferably gradually added to the alkali metal hydroxide aqueous solution to form a nickel hydroxide-containing slurry, and the alkali metal hydroxide is recovered from the slurry in a wet state or a dry state and stored. Water and alkali metal hydroxide may be added to the mixture, and the mixture may be sufficiently stirred to return to a strongly alkaline slurry state and brought into contact with a hydrazine-based reducing agent.

【0021】上記のニッケル水酸化物含有スラリーの製
造で用いるニッケル塩水溶液の濃度は、ニッケルイオン
濃度として10〜150g/Lであることが好ましく、
50〜150g/Lであることが一層好ましい。このよ
うな濃度のニッケル塩水溶液を用いることにより本発明
のニッケル粉の特徴である狭い粒度分布が達成されと同
時に、生産効率性の面でも好ましい結果が得られる。
The concentration of the nickel salt aqueous solution used in the production of the above nickel hydroxide-containing slurry is preferably 10 to 150 g / L as the nickel ion concentration,
It is more preferably 50 to 150 g / L. By using the nickel salt aqueous solution having such a concentration, a narrow particle size distribution, which is a feature of the nickel powder of the present invention, can be achieved, and at the same time, favorable results can be obtained in terms of production efficiency.

【0022】上記のニッケル水酸化物含有スラリーの製
造で用いるアルカリ金属水酸化物水溶液の濃度は20〜
300g/Lであることが好ましく、60〜250g/
Lであることが一層好ましい。また、ニッケル塩水溶液
とアルカリ金属水酸化物水溶液との相対量は、ニッケル
塩水溶液中のニッケル塩に対しアルカリ金属水酸化物水
溶液中のアルカリ金属水酸化物が1.1〜2当量となる
ことが好ましく、1.3〜1.8当量となることが一層
好ましい。このような相対量で用いることによりニッケ
ル水酸化物の生成状態が安定すると同時に、コスト的に
もバランスが取れているので好ましい。
The concentration of the alkali metal hydroxide aqueous solution used in the production of the above nickel hydroxide-containing slurry is 20 to
It is preferably 300 g / L, and 60 to 250 g / L.
More preferably, it is L. Moreover, the relative amount of the nickel salt aqueous solution and the alkali metal hydroxide aqueous solution is such that the alkali metal hydroxide in the alkali metal hydroxide aqueous solution is 1.1 to 2 equivalents relative to the nickel salt in the nickel salt aqueous solution. Is preferable, and 1.3 to 1.8 equivalents is more preferable. By using such relative amounts, the production state of nickel hydroxide is stabilized, and at the same time cost is balanced, which is preferable.

【0023】本発明の製造方法においては、ニッケル水
酸化物含有スラリーを55℃以上の温度条件下でヒドラ
ジン系還元剤と接触させてニッケル水酸化物を還元する
ことが重要である。この還元の際の温度が55℃未満の
場合には粒子径の揃ったニッケル粉を得ることが困難で
あり、一層粗大なニッケル粉が混ざって生成する。ま
た、不純物であるアルカリ金属の混入率が高くなる。従
って、本発明の製造方法においてはニッケル水酸化物を
還元する際の反応温度は55℃以上、好ましくは60℃
以上とする。
In the production method of the present invention, it is important to bring the nickel hydroxide-containing slurry into contact with a hydrazine-based reducing agent under a temperature condition of 55 ° C. or higher to reduce the nickel hydroxide. When the temperature at the time of this reduction is less than 55 ° C., it is difficult to obtain nickel powder with a uniform particle size, and a larger amount of coarser nickel powder is mixed and generated. In addition, the mixing ratio of the alkali metal which is an impurity is increased. Therefore, in the production method of the present invention, the reaction temperature for reducing nickel hydroxide is 55 ° C. or higher, preferably 60 ° C.
That is all.

【0024】特に、55℃以上、好ましくは60℃以上
のヒドラジン水溶液と接触させて上記のニッケル水酸化
物を還元することにより得られるニッケル粉は、SEM
観察で粒子径を測定すると均一なものであり、反応原料
由来のアルカリ金属、アルカリ土類金属、元素周期律表
第4周期の遷移金属(但しニッケルを除く)、硫黄及び
塩素からなる不純物の総量が600ppm以下に低減し
ている。
In particular, the nickel powder obtained by contacting with an aqueous hydrazine solution at 55 ° C. or higher, preferably 60 ° C. or higher, to reduce the above nickel hydroxide is SEM.
The particle size measured by observation is uniform, and the total amount of impurities consisting of alkali metals, alkaline earth metals, transition metals of the 4th period of the Periodic Table of Elements (excluding nickel), sulfur and chlorine derived from the reaction raw materials Is reduced to 600 ppm or less.

【0025】本発明の製造方法においては、ニッケル塩
水溶液をアルカリ金属水酸化物水溶液に添加することに
より得られるニッケル水酸化物を含有するスラリーを用
いるのであるが、ニッケル粉の粒度分布を一層狭くする
ためには、そのニッケル塩水溶液がニッケル錯体を含有
していることが好ましい。このニッケル錯体は別途に生
成させた後にニッケル塩水溶液に添加しても良いが、ニ
ッケル塩水溶液中で生成させることが好ましい。ニッケ
ル塩水溶液中でニッケル錯体を生成させる場合には、カ
ルボキシル基及び/又はアミノ基を持つ水溶性化合物を
用いることが好ましい。このような化合物はニッケルと
錯体を形成し易く且つニッケル粒子径を一層均一にでき
る。
In the production method of the present invention, a slurry containing nickel hydroxide obtained by adding an aqueous solution of nickel salt to an aqueous solution of alkali metal hydroxide is used, but the particle size distribution of nickel powder is narrower. In order to do so, it is preferable that the nickel salt aqueous solution contains a nickel complex. The nickel complex may be separately formed and then added to the nickel salt aqueous solution, but it is preferable to generate the nickel complex in the nickel salt aqueous solution. When forming a nickel complex in an aqueous solution of nickel salt, it is preferable to use a water-soluble compound having a carboxyl group and / or an amino group. Such a compound easily forms a complex with nickel and can make the nickel particle diameter more uniform.

【0026】ニッケル塩水溶液中でニッケル錯体を生成
させる方法としては、ニッケル塩とカルボキシル基及び
/又はアミノ基を持つ水溶性化合物とを任意の順序で水
に溶解させても、ニッケル塩水溶液にカルボキシル基及
び/又はアミノ基を持つ水溶性化合物を溶解させても、
或いはカルボキシル基及び/又はアミノ基を持つ水溶性
化合物の水溶液にニッケル塩を溶解させても良い。要す
るに、ニッケル塩と、カルボキシル基及び/又はアミノ
基を持つ水溶性化合物とを含有する水溶液を生成させれ
ば良い。
As a method of forming a nickel complex in a nickel salt aqueous solution, even if a nickel salt and a water-soluble compound having a carboxyl group and / or an amino group are dissolved in water in any order, the nickel salt aqueous solution is treated with a carboxyl group. Even if a water-soluble compound having a group and / or an amino group is dissolved,
Alternatively, the nickel salt may be dissolved in an aqueous solution of a water-soluble compound having a carboxyl group and / or an amino group. In short, it suffices to generate an aqueous solution containing a nickel salt and a water-soluble compound having a carboxyl group and / or an amino group.

【0027】上記のカルボキシル基及び/又はアミノ基
を持つ水溶性化合物の具体例としては、エチレンジアミ
ン四酢酸、酢酸、シュウ酸、マロン酸、サリチル酸、チ
オグリコール酸、グリシン、エチレンジアミン、アラニ
ン、クエン酸、グルタミン酸、乳酸、リンゴ酸、酒石
酸、トリエタノールアミン等を挙げることができる。
Specific examples of the above water-soluble compounds having a carboxyl group and / or an amino group include ethylenediaminetetraacetic acid, acetic acid, oxalic acid, malonic acid, salicylic acid, thioglycolic acid, glycine, ethylenediamine, alanine and citric acid. Examples thereof include glutamic acid, lactic acid, malic acid, tartaric acid and triethanolamine.

【0028】ニッケル塩水溶液中でニッケル錯体を生成
させる場合のこのカルボキシル基及び/又はアミノ基を
持つ水溶性化合物の添加量は、ニッケル塩水溶液中のニ
ッケル塩に対してモル比で0.005〜0.5であるこ
とが好ましく、0.01〜0.1であることが一層好ま
しい。このような添加量であれば、ニッケル粉の粒度分
布を一層狭くすることができ、同時にコスト的にもバラ
ンスが取れているので好ましい。
When a nickel complex is formed in an aqueous nickel salt solution, the amount of the water-soluble compound having a carboxyl group and / or an amino group added is 0.005 to a molar ratio with respect to the nickel salt in the aqueous nickel salt solution. It is preferably 0.5, and more preferably 0.01 to 0.1. Such an addition amount is preferable because the particle size distribution of the nickel powder can be further narrowed and at the same time the cost can be balanced.

【0029】本発明の製造方法においては、還元反応を
実施した後に、その得られたニッケル粉を解粒処理して
単分散粉を得ることもでき、このような解粒処理を実施
することが一層好ましい。この解粒処理としては、ニッ
ケル粉を高速で回転している回転部に衝突させて粉砕さ
せる高速回転式衝突粉砕処理、ニッケル粉をビーズ等と
共に攪拌して粉砕させるメディア攪拌式粉砕処理、ニッ
ケル粒子のスラリーを高水圧で2方向から衝突させて粉
砕させる高水圧式解砕処理、噴流衝合処理等を挙げるこ
とができる。
In the production method of the present invention, after the reduction reaction is carried out, the obtained nickel powder may be pulverized to obtain a monodisperse powder, and such pulverization treatment may be carried out. More preferable. As the disintegration treatment, a high-speed rotary collision pulverization treatment in which nickel powder is collided with a rotating portion rotating at high speed to pulverize, a media agitation pulverization treatment in which nickel powder is agitated together with beads or the like, nickel particles Examples of the method include high-pressure hydraulic disintegration treatment in which the slurry of (1) is collided with high water pressure from two directions to be pulverized, and jet abutment treatment.

【0030】そのような処理を実施するための装置の分
類として、高速動体衝突式気流型粉砕機、衝撃式粉砕
機、ケージミル、媒体攪拌形ミル、軸流ミル、噴流衝合
装置等がある。具体的には、スーパーハイブリッドミル
(石川島播磨重工製)、ジェットミル(荏原製作所
製)、スーパーマスコロイダー(増幸産業製)、ビーズ
ミル(入江商会製)、アルティマイザー(スギノマシン
製)、NCミル(石井粉砕機械製作所製)、ディスイン
テグレータ(大塚鉄工製)、ACMパルベライザ(ホソ
カワミクロン製)、ターボミル(マツボー製)、スーパ
ーミクロン(ホソカワミクロン製)、マイクロス(奈良
機械製)、ニューコスモマイザー(奈良機械製)、ファ
インビクトルミル(ホソカワミクロン製)、エコプレッ
クス(ホソカワミクロン製)、CFミル(宇部興産
製)、ハイブリタイザ(奈良機械製)、ピンミル(アル
ピネー製)、圧力ホモジナイザ(日本精機製作所製)、
ハレルホモジナイザ(国産精工製)、メカノフュージョ
ンシステム(ホソカワミクロン製)、サンドミル(ヨド
キャスティング製)等がある。
As a classification of the apparatus for carrying out such a treatment, there are a high-speed moving body collision type air flow type pulverizer, an impact type pulverizer, a cage mill, a medium stirring type mill, an axial flow mill, a jet abutment device and the like. Specifically, super hybrid mill (made by Ishikawajima Harima Heavy Industries), jet mill (made by Ebara Corporation), supermass colloider (made by Masuyuki Sangyo), beads mill (made by Irie Shokai), ultimizer (made by Sugino Machine), NC mill (made by Ishii Grinding Machinery Co., Ltd., Disintegrator (Otsuka Iron Works), ACM Pulverizer (Hosokawa Micron), Turbo Mill (Matsubo), Super Micron (Hosokawa Micron), Micros (Nara Machinery), New Cosmomizer (Nara Machinery) ), Fine Victor Mill (made by Hosokawa Micron), Ecoplex (made by Hosokawa Micron), CF Mill (made by Ube Industries), Hybridizer (made by Nara Machinery), Pin Mill (made by Alpine), Pressure Homogenizer (made by Nippon Seiki Seisakusho),
There are Harrel homogenizer (made in Japan), mechanofusion system (made by Hosokawa Micron), sand mill (made by Yodocasting), etc.

【0031】[0031]

【実施例】以下に実施例及び比較例に基づいて本発明を
具体的に説明する。 実施例1 硫酸ニッケル・6水和物44.8kg(品位22.2質
量%)及びクエン酸・1水和物1.8kgを純水80L
に溶解して得た水溶液を、水酸化ナトリウム濃度200
g/Lの水溶液100Lに液温を60℃に維持しながら
ゆっくりと滴下して、ニッケル水酸化物を析出させた。
このスラリーに液温を60℃に維持しながら、ヒドラジ
ン・1水和物30kgを30分間にわたって添加してニ
ッケル水酸化物をニッケルに還元し、得られたニッケル
粉を純水で、洗浄液のpHが9以下になるまで洗浄し、
濾過し、乾燥した後、ナイフ型ハンマを装備したパルベ
ライザAP−1SH型(ホソカワミクロン製)に投入し
て回転速度2500rpmにて解粒処理し、ニッケル粉
を得た。
EXAMPLES The present invention will be specifically described below based on Examples and Comparative Examples. Example 1 Nickel sulfate hexahydrate 44.8 kg (quality 22.2% by mass) and citric acid monohydrate 1.8 kg were purified water 80 L.
Aqueous solution obtained by dissolving in
While maintaining the liquid temperature at 60 ° C, 100 g of a g / L aqueous solution was slowly added dropwise to deposit nickel hydroxide.
While maintaining the liquid temperature at 60 ° C., 30 kg of hydrazine monohydrate was added to this slurry over 30 minutes to reduce nickel hydroxide to nickel, and the resulting nickel powder was purified with pure water to adjust the pH of the cleaning liquid. Washed until 9 or less,
After filtering and drying, it was put into a Parverizer AP-1SH type (manufactured by Hosokawa Micron) equipped with a knife-type hammer, and pulverized at a rotation speed of 2500 rpm to obtain nickel powder.

【0032】このニッケル粉を1万倍のSEMによって
観察し、無作為に選んだ5視野の合計で1500個の粒
子の粒子径をそれぞれ測定した。その結果、平均粒子径
は0.58μmであり、0.69μm(0.58×1.
2=0.696)を越える粒子径を有する粒子個数は5
3個であり、0.47μm(0.58×0.8=0.4
64)を下回る粒子径を有する粒子個数は44個であっ
た。
The nickel powder was observed with a SEM of 10,000 times, and the particle diameters of 1500 particles in a total of 5 fields randomly selected were measured. As a result, the average particle diameter was 0.58 μm, which was 0.69 μm (0.58 × 1.
The number of particles having a particle size exceeding 2 = 0.696) is 5
3 and 0.47 μm (0.58 × 0.8 = 0.4
The number of particles having a particle size smaller than 64) was 44.

【0033】また、このニッケル粉0.1gを0.1%
SNディスパーサント5468水溶液(サンノプコ社
製)と混合し、超音波ホモジナイザ(日本精機製作所
製、US−300T)で5分間分散させた後に、レーザ
ー回折散乱式粒度分布測定装置Micro Trac HRA 9320-X1
00型(Leeds + Northrup製)を用いて体積分布を測定し
て求めた粒度分布の篩下積算分布50%に相当する粒子
径(D50)及び最大粒子径(Dmax )を求めた結果、D
50は0.66μmであり、Dmax は1.46μmであ
り、従ってDmax /D50は2.2であった。
Further, 0.1 g of this nickel powder is added to 0.1%.
After mixing with an SN Dispersant 5468 aqueous solution (manufactured by San Nopco) and dispersing with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 5 minutes, a laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320-X1
As a result of determining the particle size (D 50 ) and the maximum particle size (D max ) corresponding to 50% of the under-sieve cumulative distribution of the particle size distribution obtained by measuring the volume distribution using a 00 type (manufactured by Leeds + Northrup), D
50 was 0.66 μm and D max was 1.46 μm, so D max / D 50 was 2.2.

【0034】更に、ナトリウムとカリウムとの合計濃度
は262ppmであり、マグネシウムとカルシウムとの
合計濃度は51ppmであり、硫黄濃度は80ppmで
あり、塩素濃度は8ppmであり、ニッケルを除く元素
周期律表第4周期の遷移金属(チタン、バナジウム、ク
ロム、マンガン、鉄、コバルト、銅、亜鉛)濃度の合計
は89ppmであり、これらの不純物の合計量は490
ppmであった。
Further, the total concentration of sodium and potassium is 262 ppm, the total concentration of magnesium and calcium is 51 ppm, the sulfur concentration is 80 ppm, the chlorine concentration is 8 ppm, and the periodic table of elements other than nickel is shown. The total concentration of transition metals (titanium, vanadium, chromium, manganese, iron, cobalt, copper, zinc) in the fourth period was 89 ppm, and the total amount of these impurities was 490
It was ppm.

【0035】このニッケル粉50質量部に、エチルセル
ロース5質量部、ミネラルスピリット60質量部及びブ
チルカルビトール35質量部を加えて3本ロールで混練
してペースト化し、この導電ペーストを用いて誘電体層
厚2μm、内部電極層厚1.5μm、積層数350層で
2.0×1.25×1.25mmのコンデンサを焼成し
た。得られたセラミックコンデンサ200個について不
良の有無を調べた。その結果、絶縁不良や誘電特性不良
等の電気特性の不良品数は2個であり、不良率は1%で
あった。
To 50 parts by mass of this nickel powder, 5 parts by mass of ethyl cellulose, 60 parts by mass of mineral spirit and 35 parts by mass of butyl carbitol were added and kneaded with a three-roll to form a paste, and this conductive paste was used to form a dielectric layer. A capacitor having a thickness of 2 μm, an internal electrode layer thickness of 1.5 μm, and a stacking number of 350 layers and a size of 2.0 × 1.25 × 1.25 mm was fired. The 200 ceramic capacitors obtained were examined for defects. As a result, the number of defective products having electrical characteristics such as poor insulation and poor dielectric properties was 2, and the defective rate was 1%.

【0036】実施例2 硫酸ニッケル・6水和物44.8kg(品位22.2質
量%)及びエチレンジアミン四酢酸ナトリウム2.8k
gを純水80Lに溶解して得た水溶液を、水酸化ナトリ
ウム濃度200g/Lの水溶液100Lに液温を60℃
に維持しながらゆっくりと滴下して、ニッケル水酸化物
を析出させた。このスラリーに液温を60℃に維持しな
がら、ヒドラジン・1水和物42kgを20分間にわた
って添加してニッケル水酸化物をニッケルに還元し、得
られたニッケル粉を純水で、洗浄液のpHが9以下にな
るまで洗浄し、濾過し、乾燥した後、ハイブリタイザN
HS−3型(奈良機械製)を用いて回転速度4000r
pmで5分間解粒処理し、ニッケル粉を得た。
Example 2 Nickel sulfate hexahydrate 44.8 kg (quality 22.2% by mass) and sodium ethylenediaminetetraacetate 2.8 k
An aqueous solution obtained by dissolving 80 g of pure water in 80 L of pure water is added to 100 L of an aqueous solution having a sodium hydroxide concentration of 200 g / L at a liquid temperature of 60 ° C.
While maintaining the above temperature, the solution was slowly added dropwise to precipitate nickel hydroxide. While maintaining the liquid temperature at 60 ° C., 42 kg of hydrazine monohydrate was added to this slurry over 20 minutes to reduce nickel hydroxide to nickel, and the obtained nickel powder was purified with pure water to adjust the pH of the cleaning liquid. To 9 or less, filtered, dried, and then hybridized N
Rotation speed 4000r using HS-3 type (manufactured by Nara Machinery)
Pelletization was performed for 5 minutes at pm to obtain nickel powder.

【0037】このニッケル粉を1万倍のSEMによって
観察し、無作為に選んだ5視野の合計で1500個の粒
子の粒子径をそれぞれ測定した。その結果、平均粒子径
は0.52μmであり、0.62μm(0.52×1.
2=0.624)を越える粒子径を有する粒子個数は5
5個であり、0.42μm(0.52×0.8=0.4
16)を下回る粒子径を有する粒子個数は28個に過ぎ
なかった。
The nickel powder was observed with a SEM of 10,000 times, and the particle diameters of 1500 particles in a total of 5 fields selected at random were measured. As a result, the average particle diameter was 0.52 μm, which was 0.62 μm (0.52 × 1.
The number of particles having a particle size exceeding 2 = 0.624) is 5
5 and 0.42 μm (0.52 × 0.8 = 0.4
The number of particles having a particle size smaller than 16) was only 28.

【0038】また、このニッケル粉0.1gを0.1%
SNディスパーサント5468水溶液(サンノプコ社
製)と混合し、超音波ホモジナイザ(日本精機製作所
製、US−300T)で5分間分散させた後に、レーザ
ー回折散乱式粒度分布測定装置Micro Trac HRA 9320-X1
00型(Leeds + Northrup製)を用いて体積分布を測定し
て求めた粒度分布の篩下積算分布50%に相当する粒子
径(D50)及び最大粒子径(Dmax )を求めた結果、D
50は0.57μmであり、Dmax は1.31μmであ
り、従ってDmax /D50は2.3であった。
0.1 g of this nickel powder was added to 0.1%.
After mixing with an SN Dispersant 5468 aqueous solution (manufactured by San Nopco) and dispersing with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 5 minutes, a laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320-X1
As a result of determining the particle size (D 50 ) and the maximum particle size (D max ) corresponding to 50% of the under-sieve cumulative distribution of the particle size distribution obtained by measuring the volume distribution using a 00 type (manufactured by Leeds + Northrup), D
50 was 0.57 μm and D max was 1.31 μm, so D max / D 50 was 2.3.

【0039】更に、ナトリウムとカリウムとの合計濃度
は248ppmであり、マグネシウムとカルシウムとの
合計濃度は55ppmであり、硫黄濃度は94ppmで
あり、塩素濃度は10ppmであり、ニッケルを除く元
素周期律表第4周期の遷移金属濃度の合計は58ppm
であり、これらの不純物の合計量は565ppmであっ
た。
Further, the total concentration of sodium and potassium is 248 ppm, the total concentration of magnesium and calcium is 55 ppm, the sulfur concentration is 94 ppm, the chlorine concentration is 10 ppm, and the periodic table of elements other than nickel is shown. The total transition metal concentration in the 4th period is 58 ppm
And the total amount of these impurities was 565 ppm.

【0040】このニッケル粉50質量部に、エチルセル
ロース5質量部、ミネラルスピリット60質量部及びブ
チルカルビトール35質量部を加えて3本ロールで混練
してペースト化し、この導電ペーストを用いて誘電体層
厚2μm、内部電極層厚1.5μm、積層数350層で
2.0×1.25×1.25mmのコンデンサを焼成し
た。得られたセラミックコンデンサ200個について不
良の有無を調べた。その結果、絶縁不良や誘電特性不良
等の電気特性の不良品数は2個であり、不良率は1%で
あった。
To 50 parts by mass of this nickel powder, 5 parts by mass of ethyl cellulose, 60 parts by mass of mineral spirit and 35 parts by mass of butyl carbitol were added and kneaded with a three-roll to form a paste, and this conductive paste was used to form a dielectric layer. A capacitor having a thickness of 2 μm, an internal electrode layer thickness of 1.5 μm, and a stacking number of 350 layers and a size of 2.0 × 1.25 × 1.25 mm was fired. The 200 ceramic capacitors obtained were examined for defects. As a result, the number of defective products having electrical characteristics such as poor insulation and poor dielectric properties was 2, and the defective rate was 1%.

【0041】実施例3 硫酸ニッケル・6水和物44.8kg(品位22.2質
量%)及びグリシン0.65kgを純水80Lに溶解し
て得た水溶液を、水酸化ナトリウム濃度200g/Lの
水溶液100Lに液温を70℃に維持しながらゆっくり
と滴下して、ニッケル水酸化物を析出させた。このスラ
リーに液温を70℃に維持しながら、ヒドラジン・1水
和物42kgを30分間にわたって添加してニッケル水
酸化物をニッケルに還元し、得られたニッケル粉を純水
で、洗浄液のpHが9以下になるまで洗浄し、濾過し、
乾燥した後、ジェットミルであるエバラトリアードジェ
ットPM100型(荏原製作所製)を用いて、空気圧力
6kg/cm2 、2kg/時間で解粒処理し、ニッケル
粉を得た。
Example 3 An aqueous solution obtained by dissolving 44.8 kg of nickel sulfate hexahydrate (quality 22.2% by mass) and 0.65 kg of glycine in 80 L of pure water was prepared, and the concentration of sodium hydroxide was 200 g / L. While maintaining the liquid temperature at 70 ° C., the solution was slowly added dropwise to 100 L of the aqueous solution to precipitate nickel hydroxide. While maintaining the liquid temperature at 70 ° C., 42 kg of hydrazine monohydrate was added to this slurry over 30 minutes to reduce nickel hydroxide to nickel, and the obtained nickel powder was purified with pure water to adjust the pH of the cleaning liquid. Washed to 9 or less, filtered,
After drying, using an Ebara Triad Jet PM100 type (manufactured by EBARA CORPORATION), which is a jet mill, pulverization treatment was performed at an air pressure of 6 kg / cm 2 and 2 kg / hour to obtain nickel powder.

【0042】このニッケル粉を1万倍のSEMによって
観察し、無作為に選んだ5視野の合計で1500個の粒
子の粒子径をそれぞれ測定した。その結果、平均粒子径
は0.54μmであり、0.64μm(0.54×1.
2=0.648)を越える粒子径を有する粒子個数は3
6個であり、0.44μm(0.54×0.8=0.4
32)を下回る粒子径を有する粒子個数は51個に過ぎ
なかった。
The nickel powder was observed with a SEM of 10,000 times, and the particle diameters of 1500 particles in total of 5 fields randomly selected were measured. As a result, the average particle diameter was 0.54 μm, which was 0.64 μm (0.54 × 1.
The number of particles having a particle size exceeding 2 = 0.648) is 3
6 pieces, 0.44 μm (0.54 × 0.8 = 0.4
The number of particles having a particle size smaller than 32) was only 51.

【0043】また、このニッケル粉0.1gを0.1%
SNディスパーサント5468水溶液(サンノプコ社
製)と混合し、超音波ホモジナイザ(日本精機製作所
製、US−300T)で5分間分散させた後に、レーザ
ー回折散乱式粒度分布測定装置Micro Trac HRA 9320-X1
00型(Leeds + Northrup製)を用いて体積分布を測定し
て求めた粒度分布の篩下積算分布50%に相当する粒子
径(D50)及び最大粒子径(Dmax )を求めた結果、D
50は0.66μmであり、Dmax は1.36μmであ
り、従ってDmax /D50は2.1であった。
0.1 g of this nickel powder was added to 0.1%.
After mixing with an SN Dispersant 5468 aqueous solution (manufactured by San Nopco) and dispersing with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 5 minutes, a laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320-X1
As a result of determining the particle size (D 50 ) and the maximum particle size (D max ) corresponding to 50% of the under-sieve cumulative distribution of the particle size distribution obtained by measuring the volume distribution using a 00 type (manufactured by Leeds + Northrup), D
50 was 0.66 μm and D max was 1.36 μm, so D max / D 50 was 2.1.

【0044】更に、ナトリウムとカリウムとの合計濃度
は40ppmであり、マグネシウムとカルシウムとの合
計濃度は46ppmであり、硫黄濃度は45ppmであ
り、塩素濃度は7ppmであり、ニッケルを除く元素周
期律表第4周期の遷移金属濃度の合計は47ppmであ
り、これらの不純物の合計量は185ppmであった。
Furthermore, the total concentration of sodium and potassium is 40 ppm, the total concentration of magnesium and calcium is 46 ppm, the sulfur concentration is 45 ppm, the chlorine concentration is 7 ppm, and the periodic table of elements other than nickel is shown. The total transition metal concentration in the fourth cycle was 47 ppm, and the total amount of these impurities was 185 ppm.

【0045】このニッケル粉50質量部に、エチルセル
ロース5質量部、ミネラルスピリット60質量部及びブ
チルカルビトール35質量部を加えて3本ロールで混練
してペースト化し、この導電ペーストを用いて誘電体層
厚2μm、内部電極層厚1.5μm、積層数350層で
2.0×1.25×1.25mmのコンデンサを焼成し
た。得られたセラミックコンデンサ200個について不
良の有無を調べた。その結果、絶縁不良や誘電特性不良
等の電気特性の不良品数は2個であり、不良率は1%で
あった。
To 50 parts by mass of this nickel powder, 5 parts by mass of ethyl cellulose, 60 parts by mass of mineral spirits and 35 parts by mass of butyl carbitol were added and kneaded with a three-roll to form a paste, and this conductive paste was used to form a dielectric layer. A capacitor having a thickness of 2 μm, an internal electrode layer thickness of 1.5 μm, and a stacking number of 350 layers and a size of 2.0 × 1.25 × 1.25 mm was fired. The 200 ceramic capacitors obtained were examined for defects. As a result, the number of defective products having electrical characteristics such as poor insulation and poor dielectric properties was 2, and the defective rate was 1%.

【0046】比較例1 水酸化ナトリウム濃度200g/Lの水溶液100L
を、硫酸ニッケル・6水和物44.8kg(品位22.
2質量%)を純水80Lに溶解して得た水溶液に液温を
50℃に維持しながらゆっくりと滴下して、ニッケル水
酸化物を析出させた。このスラリーに液温を50℃に維
持しながら、ヒドラジン・1水和物42kgを20分間
にわたって添加してニッケル水酸化物をニッケルに還元
し、得られたニッケル粉を純水で、洗浄液のpHが9以
下になるまで洗浄した後、濾過し、乾燥してニッケル粉
を得た。
Comparative Example 1 100 L of an aqueous solution having a sodium hydroxide concentration of 200 g / L
44.8 kg of nickel sulfate hexahydrate (grade 22.
(2% by mass) was dissolved in 80 L of pure water, and the solution was slowly added dropwise while maintaining the liquid temperature at 50 ° C. to precipitate nickel hydroxide. While maintaining the liquid temperature at 50 ° C., 42 kg of hydrazine monohydrate was added to this slurry over 20 minutes to reduce nickel hydroxide to nickel, and the resulting nickel powder was purified with pure water to adjust the pH of the cleaning liquid. Was washed to 9 or less, filtered, and dried to obtain nickel powder.

【0047】このニッケル粉を1万倍のSEMによって
観察し、無作為に選んだ5視野の合計で1500個の粒
子の粒子径をそれぞれ測定した。その結果、平均粒子径
は0.61μmであり、0.73μm(0.61×1.
2=0.732)を越える粒子径を有する粒子個数は1
33個であり、0.49μm(0.61×0.8=0.
488)を下回る粒子径を有する粒子個数は85個であ
った。
This nickel powder was observed with a SEM of 10,000 times, and the particle diameters of 1500 particles in a total of 5 fields randomly selected were measured. As a result, the average particle diameter was 0.61 μm and 0.73 μm (0.61 × 1.
The number of particles having a particle size exceeding 2 = 0.732) is 1
33, 0.49 μm (0.61 × 0.8 = 0.
The number of particles having a particle size of less than 488) was 85.

【0048】また、このニッケル粉0.1gを0.1%
SNディスパーサント5468水溶液(サンノプコ社
製)と混合し、超音波ホモジナイザ(日本精機製作所
製、US−300T)で5分間分散させた後に、レーザ
ー回折散乱式粒度分布測定装置Micro Trac HRA 9320-X1
00型(Leeds + Northrup製)を用いて体積分布を測定し
て求めた粒度分布の篩下積算分布50%に相当する粒子
径(D50)及び最大粒子径(Dmax )を求めた結果、D
50は1.10μmであり、Dmax は6.27μmであ
り、従ってDmax /D50は5.7であった。
Further, 0.1 g of this nickel powder was added to 0.1%.
After mixing with an SN Dispersant 5468 aqueous solution (manufactured by San Nopco) and dispersing with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 5 minutes, a laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320-X1
As a result of determining the particle size (D 50 ) and the maximum particle size (D max ) corresponding to 50% of the under-sieve cumulative distribution of the particle size distribution obtained by measuring the volume distribution using a 00 type (manufactured by Leeds + Northrup), D
50 was 1.10 μm and D max was 6.27 μm, so D max / D 50 was 5.7.

【0049】更に、ナトリウムとカリウムとの合計濃度
は380ppmであり、マグネシウムとカルシウムとの
合計濃度は168ppmであり、硫黄濃度は79ppm
であり、塩素濃度は8ppmであり、ニッケルを除く元
素周期律表第4周期の遷移金属濃度の合計は101pp
mであり、これらの不純物の合計量は736ppmであ
った。
Further, the total concentration of sodium and potassium is 380 ppm, the total concentration of magnesium and calcium is 168 ppm, and the sulfur concentration is 79 ppm.
The chlorine concentration is 8 ppm, and the total transition metal concentration in the 4th period of the periodic table of elements excluding nickel is 101 pp.
m, and the total amount of these impurities was 736 ppm.

【0050】このニッケル粉50質量部に、エチルセル
ロース5質量部、ミネラルスピリット60質量部及びブ
チルカルビトール35質量部を加えて3本ロールで混練
してペースト化し、この導電ペーストを用いて誘電体層
厚2μm、内部電極層厚1.5μm、積層数350層で
2.0×1.25×1.25mmのコンデンサを焼成し
た。得られたセラミックコンデンサ200個について不
良の有無を調べた。その結果、絶縁不良や誘電特性不良
等の電気特性の不良品数は12個であり、不良率は6%
であった。
To 50 parts by mass of this nickel powder, 5 parts by mass of ethyl cellulose, 60 parts by mass of mineral spirit and 35 parts by mass of butyl carbitol were added and kneaded with a three-roll to form a paste. Using this conductive paste, a dielectric layer was formed. A capacitor having a thickness of 2 μm, an internal electrode layer thickness of 1.5 μm, and a stacking number of 350 layers and a size of 2.0 × 1.25 × 1.25 mm was fired. The 200 ceramic capacitors obtained were examined for defects. As a result, the number of defective products having electrical characteristics such as poor insulation and poor dielectric properties is 12, and the defective rate is 6%.
Met.

【0051】比較例2 硫酸ニッケル・6水和物44.8kg(品位22.2質
量%)を純水80Lに溶解して得た水溶液を、水酸化ナ
トリウム濃度200g/Lの水溶液100Lに液温を5
0℃に維持しながらゆっくりと滴下して、ニッケル水酸
化物を析出させた。このスラリーに液温を50℃に維持
しながら、ヒドラジン・1水和物42kgを20分間に
わたって添加してニッケル水酸化物をニッケルに還元
し、得られたニッケル粉を純水で、洗浄液のpHが9以
下になるまで洗浄し、濾過し、乾燥した後、ナイフ型ハ
ンマを装備したパルベライザAP−1SH型(ホソカワ
ミクロン製)に投入して回転速度2500rpmにて解
粒処理し、ニッケル粉を得た。
Comparative Example 2 An aqueous solution obtained by dissolving 44.8 kg of nickel sulfate hexahydrate (quality 22.2% by mass) in 80 L of pure water was added to 100 L of an aqueous solution having a sodium hydroxide concentration of 200 g / L to obtain a liquid temperature. 5
While maintaining the temperature at 0 ° C, the solution was slowly added dropwise to precipitate nickel hydroxide. While maintaining the liquid temperature at 50 ° C., 42 kg of hydrazine monohydrate was added to this slurry over 20 minutes to reduce nickel hydroxide to nickel, and the resulting nickel powder was purified with pure water to adjust the pH of the cleaning liquid. Was washed to 9 or less, filtered, and dried, and then put into a Parverizer AP-1SH type (manufactured by Hosokawa Micron) equipped with a knife-type hammer, and pulverized at a rotation speed of 2500 rpm to obtain nickel powder. .

【0052】このニッケル粉を1万倍のSEMによって
観察し、無作為に選んだ5視野の合計で1500個の粒
子の粒子径をそれぞれ測定した。その結果、平均粒子径
は0.59μmであり、0.70μm(0.59×1.
2=0.708)を越える粒子径を有する粒子個数は9
9個であり、0.48μm(0.59×0.8=0.4
72)を下回る粒子径を有する粒子個数は78個であっ
た。
This nickel powder was observed with a SEM of 10,000 times, and the particle diameters of 1500 particles in a total of 5 fields randomly selected were measured. As a result, the average particle diameter was 0.59 μm and 0.70 μm (0.59 × 1.
The number of particles having a particle size exceeding 2 = 0.708) is 9
9 pieces, 0.48 μm (0.59 × 0.8 = 0.4
The number of particles having a particle size smaller than 72) was 78.

【0053】また、このニッケル粉0.1gを0.1%
SNディスパーサント5468水溶液(サンノプコ社
製)と混合し、超音波ホモジナイザ(日本精機製作所
製、US−300T)で5分間分散させた後に、レーザ
ー回折散乱式粒度分布測定装置Micro Trac HRA 9320-X1
00型(Leeds + Northrup製)を用いて体積分布を測定し
て求めた粒度分布の篩下積算分布50%に相当する粒子
径(D50)及び最大粒子径(Dmax )を求めた結果、D
50は0.88μmであり、Dmax は2.75μmであ
り、従ってDmax /D50は3.1であった。
0.1 g of this nickel powder was added to 0.1%.
After mixing with an SN Dispersant 5468 aqueous solution (manufactured by San Nopco) and dispersing with an ultrasonic homogenizer (manufactured by Nippon Seiki Seisakusho, US-300T) for 5 minutes, a laser diffraction scattering particle size distribution analyzer Micro Trac HRA 9320-X1
As a result of determining the particle size (D 50 ) and the maximum particle size (D max ) corresponding to 50% of the under-sieve cumulative distribution of the particle size distribution obtained by measuring the volume distribution using a 00 type (manufactured by Leeds + Northrup), D
50 was 0.88 μm and D max was 2.75 μm, so D max / D 50 was 3.1.

【0054】更に、ナトリウムとカリウムとの合計濃度
は350ppmであり、マグネシウムとカルシウムとの
合計濃度は150ppmであり、硫黄濃度は72ppm
であり、塩素濃度は11ppmであり、ニッケルを除く
元素周期律表第4周期の遷移金属濃度の合計は66pp
mであり、これらの不純物の合計量は649ppmであ
った。
Further, the total concentration of sodium and potassium is 350 ppm, the total concentration of magnesium and calcium is 150 ppm, and the sulfur concentration is 72 ppm.
The chlorine concentration is 11 ppm, and the total transition metal concentration in the 4th period of the periodic table of elements excluding nickel is 66 pp.
m, and the total amount of these impurities was 649 ppm.

【0055】このニッケル粉50質量部に、エチルセル
ロース5質量部、ミネラルスピリット60質量部及びブ
チルカルビトール35質量部を加えて3本ロールで混練
してペースト化し、この導電ペーストを用いて誘電体層
厚2μm、内部電極層厚1.5μm、積層数350層で
2.0×1.25×1.25mmのコンデンサを焼成し
た。得られたセラミックコンデンサ200個について不
良の有無を調べた。その結果、絶縁不良や誘電特性不良
等の電気特性の不良品数は7個であり、不良率は3.5
%であった。
To 50 parts by mass of this nickel powder, 5 parts by mass of ethyl cellulose, 60 parts by mass of mineral spirit and 35 parts by mass of butyl carbitol were added and kneaded with a three-roll to form a paste, and this conductive paste was used to form a dielectric layer. A capacitor having a thickness of 2 μm, an internal electrode layer thickness of 1.5 μm, and a stacking number of 350 layers and a size of 2.0 × 1.25 × 1.25 mm was fired. The 200 ceramic capacitors obtained were examined for defects. As a result, the number of defective products having electrical characteristics such as poor insulation and poor dielectric properties is 7, and the defective rate is 3.5.
%Met.

【0056】[0056]

【発明の効果】本発明のニッケル粉は狭い粒度分布を有
し、アルカリ金属、アルカリ土類金属、元素周期律表第
4周期の遷移金属(但しニッケルを除く)、硫黄及び塩
素からなる不純物の総量の少ないニッケル粉であり、各
種の用途に用いることができ、特に積層セラミックコン
デンサの内部電極の形成に用いる場合でも、ニッケル粉
の粒子径を無用に小さくすることなしで薄層化、高容量
化ができ、不良品の発生を低下させることができるとい
う顕著な効果を奏する。
INDUSTRIAL APPLICABILITY The nickel powder of the present invention has a narrow particle size distribution and contains impurities such as alkali metals, alkaline earth metals, transition metals of the 4th period of the periodic table of elements (excluding nickel), sulfur and chlorine. Since it is a small amount of nickel powder, it can be used for various purposes, especially when it is used to form the internal electrodes of a monolithic ceramic capacitor, it can be made thin and have high capacity without unnecessarily reducing the particle size of the nickel powder. It is possible to reduce the generation of defective products.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊島 義治 山口県下関市彦島西山町1−1−1 三 井金属鉱業株式会社 ケミカル事業部内 (56)参考文献 特開 平11−152507(JP,A) 特開 平11−302709(JP,A) 特開 昭63−274706(JP,A) 特開 昭60−238406(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 9/24,1/00 H01B 5/00,1/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiharu Toyoshima 1-1-1 Hikoshima Nishiyamamachi, Shimonoseki City, Yamaguchi Prefecture Mitsui Mining & Smelting Co., Ltd. (56) Reference JP-A-11-152507 (JP, A) ) JP-A-11-302709 (JP, A) JP-A-63-274706 (JP, A) JP-A-60-238406 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 9 / 24,1 / 00 H01B 5 / 00,1 / 00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケル錯体を含有しているニッケル塩水
溶液をアルカリ金属水酸化物水溶液に添加し、生成した
ニッケル水酸化物を含有するスラリーを、55℃以上の
温度条件下でヒドラジン系還元剤と接触させて、ニッケ
ル水酸化物を還元することを特徴とするニッケル粉の製
造方法。
1. A hydrazine-based reducing agent is prepared by adding an aqueous solution of a nickel salt containing a nickel complex to an aqueous solution of an alkali metal hydroxide, and producing a slurry containing the nickel hydroxide produced at a temperature of 55 ° C. or higher. And a method for producing nickel powder, which comprises reducing the nickel hydroxide by contacting with nickel.
【請求項2】ニッケル錯体を含有しているニッケル塩水
溶液が、ニッケル塩と、カルボキシル基及び/又はアミ
ノ基を持つ水溶性化合物とを含有する水溶液を生成させ
ることによって得られることを特徴とする請求項1記載
の製造方法。
2. A nickel salt aqueous solution containing a nickel complex is obtained by producing an aqueous solution containing a nickel salt and a water-soluble compound having a carboxyl group and / or an amino group. The manufacturing method according to claim 1.
【請求項3】還元反応を実施した後に、その得られたニ
ッケル粉を解粒処理して単分散粉を得ることを特徴とす
る請求項1又は2記載の製造方法。
3. The production method according to claim 1, wherein the nickel powder obtained after the reduction reaction is pulverized to obtain a monodisperse powder.
JP2000341460A 1999-11-10 2000-11-09 Nickel powder, method for producing the same, and conductive paste Expired - Lifetime JP3444854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000341460A JP3444854B2 (en) 1999-11-10 2000-11-09 Nickel powder, method for producing the same, and conductive paste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-320163 1999-11-10
JP32016399 1999-11-10
JP2000341460A JP3444854B2 (en) 1999-11-10 2000-11-09 Nickel powder, method for producing the same, and conductive paste

Publications (2)

Publication Number Publication Date
JP2001203121A JP2001203121A (en) 2001-07-27
JP3444854B2 true JP3444854B2 (en) 2003-09-08

Family

ID=26569981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000341460A Expired - Lifetime JP3444854B2 (en) 1999-11-10 2000-11-09 Nickel powder, method for producing the same, and conductive paste

Country Status (1)

Country Link
JP (1) JP3444854B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088458B2 (en) * 2001-09-03 2012-12-05 住友金属鉱山株式会社 Nickel powder for multilayer ceramic capacitor external electrode and method for producing the same
JP2009037974A (en) * 2007-08-03 2009-02-19 Noritake Co Ltd Nickel paste
JP5369864B2 (en) * 2009-04-24 2013-12-18 住友金属鉱山株式会社 Nickel powder and method for producing the same
JP6573563B2 (en) * 2016-03-18 2019-09-11 住友金属鉱山株式会社 Nickel powder, nickel powder manufacturing method, internal electrode paste using nickel powder, and electronic component
JP2021063254A (en) * 2019-10-11 2021-04-22 三井金属鉱業株式会社 Nickel particle and method for producing the same

Also Published As

Publication number Publication date
JP2001203121A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP5519938B2 (en) Method for producing copper powder for conductive paste
US6494931B1 (en) Nickel powder and conductive paste
WO2012043267A1 (en) Copper powder for conductive paste and method for manufacturing same
JP2009079239A (en) Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
JP4100244B2 (en) Nickel powder and method for producing the same
EP1468766B1 (en) Method for producing metal powder
JP3444854B2 (en) Nickel powder, method for producing the same, and conductive paste
JP2011052300A (en) Flaky silver powder, method for producing the same, and conductive paste
JP2007197836A (en) Nickel powder
JP3474170B2 (en) Nickel powder and conductive paste
JP2001247903A (en) Nickel powder, electrically conductive paste and method for producing nickel powder
JP2004060002A (en) Method of producing metal powder for electrically conductive paste, metal powder for electrically conductive paste, electrically conductive paste and multilayer ceramic electronic part
JP3280372B2 (en) Nickel powder and conductive paste
JP3945740B2 (en) Nickel powder
JP2007224422A (en) Silver powder and paste using the same
JP2005146386A (en) Method of producing metal powder slurry, and nickel powder slurry obtained by the production method
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP6031571B2 (en) Copper powder for conductive paste and method for producing the same
TWI544977B (en) Copper powder for conductive paste and method for producing same
JP3542079B2 (en) Nickel powder and conductive paste
JP4059035B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP6985219B2 (en) Manufacturing method of spherical silver powder
JP2001316701A (en) Nickel powder and conductive paste
JP2022087950A (en) Nickel-particle surface treatment method and nickel-powder producing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205

R150 Certificate of patent or registration of utility model

Ref document number: 3444854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100627

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 10

EXPY Cancellation because of completion of term