JP2003089532A - Method for molding optical element - Google Patents

Method for molding optical element

Info

Publication number
JP2003089532A
JP2003089532A JP2001275155A JP2001275155A JP2003089532A JP 2003089532 A JP2003089532 A JP 2003089532A JP 2001275155 A JP2001275155 A JP 2001275155A JP 2001275155 A JP2001275155 A JP 2001275155A JP 2003089532 A JP2003089532 A JP 2003089532A
Authority
JP
Japan
Prior art keywords
temperature
molding
mold
strain
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001275155A
Other languages
Japanese (ja)
Inventor
Shigeo Urai
茂雄 浦井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001275155A priority Critical patent/JP2003089532A/en
Publication of JP2003089532A publication Critical patent/JP2003089532A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/125Cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/68Means for parting the die from the pressed glass other than by cooling or use of a take-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for molding an optical element by which a desired molded article can be obtained from a molding die having the same dimension as that of the article. SOLUTION: The difference between the thermal shrinkage of the molded article and the thermal shrinkage of a die material is controlled to substantially zero or within the allowance for design so that the dimension of the pressed faces of the molded article at room temperature is made consistent with the dimension of the pressing faces of the die with high accuracy. Further, relaxation in the inner strain of the article is suppressed by releasing the article from the die immediately after pressing or by increasing the cooling rate. The release temperature is controlled by fixing the upper and lower dies with a releasing member 6 attached to the inner circumference of a barrel 3 in the axial direction of pressing and by using the heat shrinking of a perform material during cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、レンズやプリズム
などの高精度の光学素子を成形型によって熱間で加圧し
て成形する光学素子の成形方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of molding an optical element such as a lens or a prism by pressurizing the optical element with a molding die while hot.

【0002】[0002]

【従来の技術】レンズやプリズムなどの高精度の光学素
子を成形型により熱間で加圧して成形する光学素子の成
形方法では、従来から、成形品の離型は、一般に型と成
形品の熱収縮率の差を利用して行っている。したがっ
て、なるべく成形型と成形品の熱収縮率の差が大きい材
料を選択して、離型を促進させる場合が多い。
2. Description of the Related Art In a molding method of an optical element in which a high-precision optical element such as a lens or a prism is hot pressed by a molding die, conventionally, a molded product is separated from the mold in general. This is done by utilizing the difference in heat shrinkage. Therefore, in many cases, a material having a large difference in heat shrinkage between the molding die and the molded product is selected to accelerate the mold release.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな光学素子の成形方法では、室温時における成形型の
寸法と成形品の寸法は、少なくとも熱収縮率の差だけは
異なってくる。したがって、たとえ、所望の成形品の寸
法の成形型で成形しても、熱収縮率が大きい成形品の寸
法は、熱収縮率の差分だけ小さくなる。
However, in such a method of molding an optical element, the size of the mold at room temperature and the size of the molded product differ by at least a difference in heat shrinkage. Therefore, even if molding is performed with a mold having a desired size of the molded product, the size of the molded product having a large heat shrinkage is reduced by the difference in the heat shrinkage.

【0004】そのため、成形型の寸法を予め補正して、
所望の寸法の成形品を得る技術が例えば、特登録029
72482号および特開平06−048750号公報並
びに特開平10−236838号公報で開示されてい
る。しかしながら、この技術は、いずれも、成形型の寸
法を補正して所望の寸法の成形品を得る技術であって、
室温時の型の寸法と同一の成形品を得る方法ではない。
Therefore, the dimensions of the molding die are corrected in advance,
A technique for obtaining a molded product of a desired size is, for example, Japanese Patent Registration No.
No. 72482, Japanese Patent Application Laid-Open No. 06-048750, and Japanese Patent Application Laid-Open No. 10-236838. However, this technique is a technique for correcting the size of the mold to obtain a molded product of a desired size.
It is not a method of obtaining a molded product having the same size as the mold at room temperature.

【0005】このように、たとえ、所望の寸法の成形品
と同一寸法の成形型を製作しても、成形品の寸法は、型
と成形品の熱収縮率の差によって所望の寸法にはならな
い。
As described above, even if a mold having the same size as a molded product having a desired size is manufactured, the size of the molded product does not reach the desired size due to the difference in heat shrinkage between the mold and the molded product. .

【0006】そこで、本発明の目的は、成形品の寸法と
同一寸法の成形型で、所望の成形品を得ることが可能な
光学素子の成形方法を得ることである。
Therefore, an object of the present invention is to obtain a molding method of an optical element capable of obtaining a desired molded product with a molding die having the same size as that of the molded product.

【0007】[0007]

【課題を解決するための手段】前述の課題を解決するた
め、本発明では以下の成形方法を提供する。
In order to solve the above-mentioned problems, the present invention provides the following molding method.

【0008】請求項1に記載の光学素子の成形方法は、
成形品の熱収縮率と型材の熱収縮率との差を実質的に零
もしくは設計許容誤差の範囲内とし、室温での成形品の
被プレス面の寸法と成形型のプレス面の寸法とをほぼ一
致させたことを特徴とする。
A method for molding an optical element according to claim 1 is
The difference between the heat shrinkage ratio of the molded product and the heat shrinkage ratio of the mold material is set to be substantially zero or within the design tolerance, and the dimension of the pressed surface of the molded product and the dimension of the pressed surface of the mold at room temperature are The feature is that they are almost the same.

【0009】請求項2に記載の光学素子の成形方法は、
成形品の熱収縮率を熱膨張係数又は成形品の内部ひずみ
の緩和もしくは離型のタイミングのうちの少なくとも一
つの手段によって制御し、前記成形品の熱収縮率と型材
の熱収縮率との差を、実質的に零もしくは設計許容誤差
の範囲内とし、室温での成形品の被プレス面の寸法と成
形型のプレス面の寸法とをほぼ一致させたことを特徴と
する。
A method of molding an optical element according to a second aspect is
The thermal shrinkage of the molded article is controlled by at least one of the coefficient of thermal expansion or the timing of relaxation of internal strain of the molded article or the timing of mold release, and the difference between the thermal shrinkage rate of the molded article and the thermal shrinkage rate of the mold material. Is substantially zero or within the range of design tolerance, and the dimension of the pressed surface of the molded product and the dimension of the pressed surface of the molding die at room temperature are substantially matched.

【0010】請求項3に記載の光学素子の成形方法は、
プレスから離型直後までの温度範囲におけるプリフォー
ム材の熱収縮率と型の熱収縮率をそれぞれΔlp(p
d),Δld(pd)とし、室温から成形品の離型温度
までの温度範囲でのプリフォーム材の熱収縮率と型材の
熱収縮率をそれぞれΔlpとΔldとした場合、Δlp
(pd)+Δlp−Δld(pd)−Δldが零もしく
は設計許容寸法の誤差範囲内となる型材および冷却速度
で成形することを特徴とする。
A method for molding an optical element according to a third aspect is
The heat shrinkage rate of the preform material and the heat shrinkage rate of the mold in the temperature range from pressing to immediately after the release are respectively Δlp (p
d) and Δld (pd), where Δlp is the heat shrinkage rate of the preform material and Δlp is the heat shrinkage rate of the mold material in the temperature range from room temperature to the mold release temperature, respectively,
It is characterized in that the molding is performed at a mold material and a cooling rate such that (pd) + Δlp−Δld (pd) −Δld is zero or within an error range of design allowable dimensions.

【0011】本成形方法において、プレス温度から離型
温度までの温度範囲と、離型温度から室温までの温度範
囲のように、離型温度を区切りとして温度範囲を二つに
分けて熱収縮率を考慮した理由は以下のとおりである。
In the present molding method, the thermal contraction rate is divided into two parts such as the temperature range from the press temperature to the mold release temperature and the temperature range from the mold release temperature to the room temperature, with the mold release temperature as a delimiter. The reason for considering is as follows.

【0012】熱収縮率は、材料の熱膨張係数とひずみの
緩和量により決定される。このうち、熱膨張係数は材料
に固有の値であるので温度依存性はあるが、自重変形等
が生じない温度範囲では時間や離型温度には全く影響を
受けない。一方、ひずみの緩和量は、時間と温度とひず
みの大きさの影響を受けて変化する。高温で且つ時間が
長いほど、ひずみの緩和量は大きくなる。
The coefficient of thermal shrinkage is determined by the coefficient of thermal expansion of the material and the amount of strain relaxation. Of these, the coefficient of thermal expansion is a value specific to the material and therefore has temperature dependence, but is not affected by time or mold release temperature in the temperature range where self-weight deformation or the like does not occur. On the other hand, the relaxation amount of strain changes under the influence of time, temperature, and the magnitude of strain. The higher the temperature and the longer the time, the greater the amount of strain relaxation.

【0013】但し、当然ひずみが発生していないと、た
とえ高温(但し、自重変形が起こる温度より低い温度)
で長時間保持しても、ひずみは緩和されない。故に、離
型さえすれば、成形品と型とが分離するのであるから、
成形品の内部ひずみが除かれ、ひずみの緩和は実質的に
発生しなくなる。
However, of course, if no strain is generated, the temperature is high (however, the temperature is lower than the temperature at which self-weight deformation occurs).
Even if it is kept for a long time, the strain will not be relieved. Therefore, as long as the mold is released, the molded product and the mold are separated,
Internal strain of the molded product is removed, and strain relaxation is substantially eliminated.

【0014】すなわち、離型前の熱収縮率は、熱膨張係
数と時間と温度およびひずみの大小に影響を受けて大き
く変化するが、離型後の熱収縮率は、熱膨張係数だけで
ほぼ決定される。このように、離型温度を区切りとし
て、熱収縮率が影響を受ける要因が大きく変わってく
る。
That is, the coefficient of thermal contraction before releasing greatly changes depending on the coefficient of thermal expansion, time, temperature, and strain, but the coefficient of thermal contraction after releasing is almost the same as the coefficient of thermal expansion alone. It is determined. In this way, the factors that affect the thermal contraction rate change greatly with the release temperature as the delimiter.

【0015】これを考慮して、離型温度を境にして熱収
縮率を管理しておけば、冷却速度(温度と時間)や離型
温度が変わり、プレス温度から離型温度に至るまでのひ
ずみの緩和量が大きく変動しても、成形品と成形型の寸
法を高精度に近づけることができる。以上の理由によ
り、離型温度を区切りとして温度範囲を二つに分けて熱
収縮率を考慮する必要がある。
In consideration of this, if the heat shrinkage rate is controlled with the mold release temperature as a boundary, the cooling rate (temperature and time) and the mold release temperature change, and the temperature from the press temperature to the mold release temperature is changed. Even if the amount of strain relaxation varies greatly, the dimensions of the molded product and the molding die can be made highly accurate. For the above reason, it is necessary to consider the heat shrinkage rate by dividing the temperature range into two with the mold release temperature as a delimiter.

【0016】請求項4に記載の光学素子の成形方法は、
プリフォーム材のプレス温度をTp、歪点温度をTs、
離型温度をTdとした場合、Tp≧Tz≧TsおよびT
z>Tdの関係を同時に満たす除歪温度Tzで、少なく
とも一度は成形品の内部ひずみを実質的に零とし、か
つ、室温から除歪温度Tzまでのプリフォーム材と型材
の熱収縮率との差が零もしくは設計許容寸法の誤差範囲
内となる型材で成形することを特徴とする。
A method of molding an optical element according to a fourth aspect is
The pressing temperature of the preform material is Tp, the strain point temperature is Ts,
When the mold release temperature is Td, Tp ≧ Tz ≧ Ts and T
With the strain relief temperature Tz satisfying the relation of z> Td at the same time, the internal strain of the molded product is made substantially zero at least once, and the heat shrinkage rate of the preform material and the mold material from room temperature to the strain relief temperature Tz It is characterized by molding with a mold material having a difference of zero or within an error range of design allowable dimensions.

【0017】ここで、除歪温度Tzの下限を歪点温度T
sとした理由は、歪点温度Tsより低い領域では、内部
ひずみが実質的に零となるまでに短くとも4時間を要
し、産業上採用し難いからである。また、除歪温度Tz
で成形品の内部ひずみを実質的に零とした理由は、室温
から除歪温度Tzまでのプリフォーム材と型材の熱収縮
率との差が、零もしくは設計許容寸法の誤差範囲内とな
る型材の選択肢を広げるためである。
Here, the lower limit of the strain removal temperature Tz is the strain point temperature T
The reason why s is set is that in a region lower than the strain point temperature Ts, it takes at least 4 hours until the internal strain becomes substantially zero, which is difficult to industrially adopt. In addition, the strain removal temperature Tz
The reason why the internal strain of the molded product is substantially zero is that the difference between the heat shrinkage ratio of the preform material and the mold material from room temperature to the strain removal temperature Tz is zero or within the error range of the design allowable dimension. This is to expand the choices of.

【0018】一般のガラス材料は、ガラス転移点温度
(Tg)を持ち、それ以上の温度域では体積が急激に増
加する。すなわち、冷却時にはガラス転移点温度Tg以
上の熱収縮率が比較的大きくなる。この熱収縮率と同等
の値の型材を探すとなれば、選択肢が限られてくる。
A general glass material has a glass transition temperature (Tg), and the volume thereof rapidly increases in a temperature range higher than that. That is, the thermal contraction rate at the glass transition temperature Tg or higher becomes relatively large during cooling. When looking for a mold material having a value equivalent to this heat shrinkage rate, the options are limited.

【0019】除歪温度Tzで成形品の内部ひずみを実質
的に零とすれば、除歪温度Tzから室温までの熱収縮率
と同等の型材を選択すればよいので、除歪温度Tzをよ
りガラス転移点温度Tgに近づけていくことで、型材と
して利用できる材料の選択肢が増える。また、本成形方
法は、プレス温度から除歪温度Tzに至るまでの温度履
歴が成形品の寸法に影響を与えることがなくなり、成形
品の寸法が安定し、型との寸法がより高精度に近づく。
If the internal strain of the molded product is made substantially zero at the strain relief temperature Tz, a mold material having a heat shrinkage ratio from the strain relief temperature Tz to room temperature may be selected, so that the strain strain temperature Tz can be set to a higher value. By approaching the glass transition temperature Tg, the choice of materials that can be used as the mold material increases. Further, in the present molding method, the temperature history from the pressing temperature to the strain removal temperature Tz does not affect the dimensions of the molded product, the dimensions of the molded product are stable, and the dimensions with the mold are more accurate. Get closer.

【0020】また、除歪温度Tzを歪点温度Tsに近づ
けるほど、成形の所要時間は長くなるが、除歪温度Tz
から歪点温度Tsに至るまでの温度範囲における内部ひ
ずみの緩和量が少なくなるので、成形品と成形型との寸
法は室温で最終的により高精度に一致する。
Further, the closer the de-straining temperature Tz is to the strain point temperature Ts, the longer the time required for molding, but the de-straining temperature Tz.
Since the relaxation amount of the internal strain in the temperature range from to the strain point temperature Ts is small, the dimensions of the molded product and the molding die finally match with high accuracy at room temperature.

【0021】請求項5に記載の光学素子の成形方法は、
プリフォーム材のプレス温度をTp、歪点温度をTs、
離型温度をTdとした場合、Tp≧Tz≧TsおよびT
z>Tdの関係を同時に満たす除歪温度Tzで、少なく
とも一度は成形品の内部ひずみを実質的に零とし、か
つ、除歪温度Tzから歪点温度Tsに至る温度範囲で急
冷を行うか、あるいは、なるべく除歪温度Tzに近い温
度で離型させることで、成形品の内部ひずみの緩和量を
実質的に零とし、さらに、室温から除歪温度Tzまでの
プリフォーム材と型材の熱収縮率との差が、零もしくは
設計許容寸法の誤差範囲内となる型材で成形することを
特徴とする。
A method of molding an optical element according to claim 5 is
The pressing temperature of the preform material is Tp, the strain point temperature is Ts,
When the mold release temperature is Td, Tp ≧ Tz ≧ Ts and T
At the strain removal temperature Tz that simultaneously satisfies the relationship of z> Td, the internal strain of the molded product is made substantially zero at least once, and the rapid cooling is performed in the temperature range from the strain removal temperature Tz to the strain point temperature Ts. Alternatively, by releasing the mold at a temperature as close as possible to the strain removal temperature Tz, the relaxation amount of the internal strain of the molded product is made substantially zero, and further, the heat shrinkage of the preform material and the mold material from room temperature to the strain removal temperature Tz. It is characterized by molding with a mold material whose difference from the ratio is zero or within the error range of the design allowable dimension.

【0022】ここで、除歪温度Tzから歪点温度Tsに
至る温度範囲で急冷を行うか、あるいは、なるべく除歪
温度Tzに近い温度で離型させる理由は、除歪温度Tz
から離型温度に至る温度範囲で生じる成形品の内部ひず
みの緩和量を極力少なくするためである。このひずみの
緩和量が少なくならなければ、室温から除歪温度Tzに
至る温度範囲の熱収縮率を成形品と成形型で一致させて
も、温度条件等が不測に変化した場合には、室温での双
方の寸法に若干の差とその差にバラツキが生じてくる。
The reason why the quenching is performed in the temperature range from the strain removal temperature Tz to the strain point temperature Ts or the mold is released at a temperature as close to the strain removal temperature Tz as possible is the strain removal temperature Tz.
This is to minimize the amount of relaxation of internal strain of the molded product that occurs in the temperature range from the mold release temperature to the mold release temperature. If the relaxation amount of this strain does not decrease, even if the thermal contraction rate in the temperature range from room temperature to the strain removal temperature Tz is matched between the molded product and the mold, if the temperature conditions change unexpectedly, the room temperature There will be a slight difference between the two dimensions and the difference will occur.

【0023】そこで、成形品を急冷させることにより、
内部ひずみの緩和に必要な時間と温度を与えないように
するか、もしくは離型させることで、内部ひずみを除去
し、ひずみの緩和自体を起こらないようにした。また、
除歪温度Tzから歪点温度Tsに至るまでの温度範囲に
おいて、内部ひずみの十分な除去に必要な時間が長い場
合に、より高い温度と短い時間で内部ひずみを実質的に
零としても、この成形方法によればより安定した形状の
成形品を得ることができ、結果的に室温での成形品と成
形型との寸法が高精度に近づく。
Then, by rapidly cooling the molded product,
The internal strain was removed by eliminating the time and temperature required for relaxing the internal strain, or by releasing the mold so that the relaxation of the strain itself would not occur. Also,
In the temperature range from the strain removal temperature Tz to the strain point temperature Ts, when the time required for sufficient removal of the internal strain is long, even if the internal strain is made substantially zero at a higher temperature and a shorter time, According to the molding method, a molded product having a more stable shape can be obtained, and as a result, the dimensions of the molded product and the molding die at room temperature come close to high precision.

【0024】請求項6に記載の成形方法は、請求項1か
ら請求項5に記載の発明において、離型をプレス軸方向
のプリフォーム材の熱収縮により行うことを特徴とす
る。請求項1ないし請求項5の成形方法は、成形型と成
形品との離型が難しい材料構成になる、すなわち成形品
と成形型の熱膨張係数が同等になる場合があるが、この
場合でも、プレス軸方向のプリフォーム材の熱収縮を利
用すれば簡単に離型させることができる。
The molding method described in claim 6 is characterized in that, in the invention described in any one of claims 1 to 5, the mold release is performed by thermal contraction of the preform material in the axial direction of the press. According to the molding method of claims 1 to 5, there are cases where the mold and the molded product are difficult to release from each other, that is, the molded product and the molded mold have the same coefficient of thermal expansion. By utilizing the heat shrinkage of the preform material in the press axis direction, the mold can be easily released.

【0025】以上の成形方法によると、室温での成形品
の被プレス面の寸法と成形型のプレス面の寸法とを高精
度に一致させることができる。
According to the above-mentioned molding method, the dimension of the surface to be pressed of the molded product at room temperature and the dimension of the pressing surface of the molding die can be matched with high accuracy.

【0026】[0026]

【発明の実施の形態】図1(a),(b)は、プリフォ
ーム材および型材の温度と熱膨張係数の関係を示すグラ
フである。この図1(a),(b)において、温度Th
のときの成形型と成形品の寸法が等しく、かつ、温度T
hから室温となる温度Trまでの温度範囲ΔTにおける
成形品の熱収縮率が等しければ、たとえ、その間の成形
型と成形品の熱膨張係数が異なっていても、最終的に
は、温度Tr(室温)において成形型のプレス面と成形
品の非プレス面との寸法はほぼ等しくなる。
1 (a) and 1 (b) are graphs showing the relationship between the temperature and the coefficient of thermal expansion of a preform material and a mold material. In FIGS. 1A and 1B, the temperature Th
And the size of the mold is the same and the temperature T
If the thermal contraction rate of the molded product in the temperature range ΔT from h to room temperature Tr is equal, even if the coefficient of thermal expansion of the molding die and the molded product during that time is different, the temperature Tr ( At room temperature), the dimensions of the pressing surface of the mold and the non-pressing surface of the molded product are almost equal.

【0027】すなわち、図1(a)で示した斜線部分の
面積Spと図1(b)の斜線部分の面積Sdが接近する
ほど、室温において成形品の寸法は成形型の寸法に近づ
くと考えてよい。但し、成形品の熱収縮率は、熱膨張係
数以外に内部ひずみの緩和量にも影響を受ける。この内
部ひずみの緩和量は、温度と時間と内部ひずみの大きさ
とに相関関係があり、そのため、離型のタイミング(温
度)や冷却プロセス等によってもその値が変化する。
That is, the closer the area Sp of the shaded portion shown in FIG. 1A and the area Sd of the shaded portion of FIG. 1B are, the closer the dimension of the molded article at room temperature is to the dimension of the mold. You may However, the thermal contraction rate of the molded product is affected by the relaxation amount of the internal strain in addition to the thermal expansion coefficient. The relaxation amount of the internal strain has a correlation between the temperature, the time, and the magnitude of the internal strain. Therefore, the value changes depending on the timing (temperature) of the mold release, the cooling process, or the like.

【0028】離型のタイミング(温度)によって内部ひ
ずみの緩和量が違ってくることを、以下、具体的に説明
する。まず、内部ひずみであるが、熱膨張係数の異なる
二つの材料(型と成形品)があって、ある時間の間にあ
る温度の変化を与えられたときに、それらがすべること
なく密着していることで発生する。
The fact that the relaxation amount of the internal strain varies depending on the release timing (temperature) will be specifically described below. First, regarding internal strain, there are two materials (molds and molded products) with different coefficients of thermal expansion, and when given a change in temperature for a certain period of time, they adhere closely without slipping. It is caused by being present.

【0029】この内部ひずみは、成形材料が粘性体から
粘弾性体の挙動を示す温度範囲(粘度では、logη=
14.5(dPa・s)以上の範囲)にあると、時間の
経過とともに徐々に緩和されていくが、離型によって密
着がなくなれば、徐々に緩和していく内部ひずみ自体が
ほぼ零に近くなり、たとえ温度や時間が変化しても、内
部ひずみは緩和しなくなる。よって、離型のタイミング
が変わると、内部ひずみの緩和が起こり得る時間も変化
することになり、結果的に、内部ひずみの緩和量が違っ
てくる。以上の理由で、離型のタイミングによって内部
ひずみの緩和量が違ってくる。
This internal strain is the temperature range in which the molding material behaves from a viscous body to a viscoelastic body (in viscosity, log η =
If it is in the range of 14.5 (dPa · s) or more), it will be gradually relaxed with the passage of time, but if there is no close contact due to mold release, the internal strain itself that is gradually relaxed will be close to zero. Even if the temperature or time changes, the internal strain will not relax. Therefore, when the release timing changes, the time during which internal strain relaxation can occur also changes, and as a result, the amount of internal strain relaxation changes. For the above reasons, the amount of relaxation of internal strain varies depending on the timing of mold release.

【0030】同様の理由で、冷却プロセスが異なれば、
型と密着している成形品がある温度になるまでの時間が
変化するので、当然、内部ひずみの緩和量が違ってく
る。例えば、冷却速度が速くなればなるほど、成形材料
が粘性体から粘弾性体の挙動を示す温度範囲における内
部ひずみの緩和量は少なくなる。
For the same reason, if the cooling process is different,
Since the time it takes for the molded product that is in close contact with the mold to reach a certain temperature changes, naturally the amount of relaxation of internal strain also differs. For example, the higher the cooling rate, the smaller the relaxation amount of the internal strain in the temperature range in which the molding material behaves as a viscous body to a viscoelastic body.

【0031】成形材料が粘性体から粘弾性体の挙動を示
す温度範囲においては、離型のタイミング(温度)や冷
却プロセス等によって、成形品の内部ひずみの緩和量が
変化することに注意する必要がある。しかしながら、そ
れを考慮して成形品と成形型の熱収縮率を一致させる
と、室温において成形型のプレス面と成形品の非プレス
面との寸法をより高精度に一致させることができる。
In the temperature range in which the molding material behaves from a viscous body to a viscoelastic body, it is necessary to note that the relaxation amount of the internal strain of the molded product changes depending on the release timing (temperature) and the cooling process. There is. However, if the heat shrinkage rates of the molded product and the molding die are matched in consideration of this, the dimensions of the pressed surface of the molding die and the non-pressed surface of the molded product can be matched more accurately at room temperature.

【0032】図2は、本実施の形態で採用したプレス成
形装置の型構造を概略縦断面図として示したものであ
る。図中、符号1は上成形型、符号2は下成形型であ
る。本実施の形態では、成形型と成形品の離型性をよく
するために、上下の成形型1,2のプレス面に硬質炭素
膜を成膜している。なお、これらの成形型1,2の材質
は、耐熱性に優れ、かつ、プレス温度から室温に至るま
での温度範囲における熱収縮率がプリフォーム材の熱収
縮率と等しければ、特に限定はない。
FIG. 2 is a schematic vertical sectional view showing the mold structure of the press molding apparatus adopted in this embodiment. In the figure, reference numeral 1 is an upper molding die, and reference numeral 2 is a lower molding die. In this embodiment, hard carbon films are formed on the pressing surfaces of the upper and lower molds 1 and 2 in order to improve the mold releasability between the mold and the molded product. The materials of these molds 1 and 2 are not particularly limited as long as they have excellent heat resistance and the heat shrinkage ratio in the temperature range from the press temperature to room temperature is equal to the heat shrinkage ratio of the preform material. .

【0033】符号3は、上下の成形型1,2を案内する
ための胴型であり、また、符号4はプリフォーム材であ
って、このプリフォーム材の材質は、ガラスおよび金属
やアモルファス又はプラスチック等、高温で粘性流動を
示すものなら特に限定はないが、本実施の形態では、燐
酸系極低軟化性ガラス(Tg=350℃)を用いた。な
お、符号5A,5Bは、上下型の温度を制御するための
温度測定点であり、符号6は離型温度を制御するための
リング形状の部材である。
Reference numeral 3 is a barrel die for guiding the upper and lower molding dies 1, 2, and reference numeral 4 is a preform material. The material of the preform material is glass, metal, amorphous or There is no particular limitation as long as it exhibits viscous flow at a high temperature, such as plastic, but in this embodiment, a phosphoric acid-based extremely low softening glass (Tg = 350 ° C.) was used. Reference numerals 5A and 5B are temperature measurement points for controlling the temperatures of the upper and lower molds, and reference numeral 6 is a ring-shaped member for controlling the mold release temperature.

【0034】図3は、プリフォーム材として採用した燐
酸系極低軟化性ガラスの熱膨張係数と温度の関係を示す
グラフであり、図4は、型材として採用したアルミニウ
ム合金の熱膨張係数と温度の関係を示すグラフである。
図3および図4に示すように、プレス温度から室温まで
の温度範囲で、温度の関数である熱膨張係数を温度で積
分した値、すなわち、図1の斜線部分の面積Sp,Sd
にあたる値は、プリフォーム材が0.0078、型材が
0.0079であって、ほぼ一致している。
FIG. 3 is a graph showing the relationship between the thermal expansion coefficient and the temperature of the phosphoric acid-based extremely low softening glass used as the preform material, and FIG. 4 is the thermal expansion coefficient and the temperature of the aluminum alloy used as the mold material. It is a graph which shows the relationship of.
As shown in FIGS. 3 and 4, the value obtained by integrating the coefficient of thermal expansion, which is a function of temperature, with temperature in the temperature range from the press temperature to room temperature, that is, the areas Sp and Sd of the shaded portions in FIG.
The corresponding values are 0.0078 for the preform material and 0.0079 for the mold material, which are almost the same.

【0035】一方、熱収縮率(=室温時の寸法/プレス
温度時の寸法)は、室温からプレス温度の範囲では、プ
リフォーム材が99.2261%、型材が99.216
2%となっている。これらのプリフォーム材と型材の組
み合わせで成形すれば、熱収縮での1mm当たりの成形
品の型の形状の差(=成形品の寸法−型の寸法)は、プ
レス時に成形品の形状が型形状と一致したとして、70
nmとなる。
On the other hand, the heat shrinkage ratio (= dimension at room temperature / dimension at press temperature) is 99.2261% for preform material and 99.216 for mold material in the range of room temperature to pressing temperature.
It is 2%. If molding is performed with a combination of these preform materials and mold materials, the difference in the shape of the molded product per mm due to heat shrinkage (= dimension of molded product-dimension of mold) is 70 if it matches the shape
nm.

【0036】一般的な型材であるWC基の超硬合金で
は、上記の1mm当たりの成形品と型の形状の差(=成
形品の寸法−型の寸法)が6μmであるので、本発明の
成形方法によると、成形品と型の形状の差が約1/86
となる。
In a WC-based cemented carbide, which is a general mold material, the difference between the shape of the molded product and the mold per 1 mm (= the size of the molded product-the size of the mold) is 6 μm. According to the molding method, the difference in shape between the molded product and the mold is about 1/86
Becomes

【0037】但し、実際には、プレス温度から離型温度
までの温度範囲では、成形品の内部ひずみが緩和される
ため、1mm当たりの成形品と型の形状の差を最高値の
70nmとするには、上述の成形方法に対して次の対策
の何れかを必要とする。
However, in practice, since the internal strain of the molded product is relaxed in the temperature range from the press temperature to the mold release temperature, the difference between the shape of the molded product and the mold per 1 mm is set to the maximum value of 70 nm. Requires any of the following measures for the above-mentioned molding method.

【0038】(1)プレス直後に離型させるか、冷却速
度をなるべく早くし、成形品の内部ひずみの緩和量を極
力少なくする。
(1) Release the mold immediately after pressing or increase the cooling rate as much as possible to reduce the relaxation amount of the internal strain of the molded product as much as possible.

【0039】(2)成形品の内部ひずみの緩和分を考慮
した成形品の熱収縮率と、成形型の熱収縮率とが同程度
の型材もしくはプリフォーム材を選択し成形を行う。こ
のとき、プリフォーム材が粘性から粘弾性を示す温度範
囲では、成形品の内部ひずみの緩和量が離型温度や冷却
プロセスにより変化し、その影響で成形品の熱収縮率が
異なってくるので、プリフォーム材と型材の熱収縮率を
どの値で一致させるかには注意が必要である。
(2) Molding is performed by selecting a mold material or a preform material in which the heat shrinkage of the molded product considering the relaxation of the internal strain of the molded product and the heat shrinkage of the molding die are approximately the same. At this time, in the temperature range in which the preform material exhibits viscosity to viscoelasticity, the relaxation amount of the internal strain of the molded product changes depending on the mold release temperature and the cooling process, and the thermal contraction rate of the molded product varies due to the influence. Attention must be paid to which value the heat shrinkage ratio of the preform material and the mold material should be matched.

【0040】(3)プレス温度よりも低く歪点温度およ
び離型温度よりも高い除歪温度において、内部ひずみを
実質的に零とし、除歪温度から室温までの成形品と成形
型の熱収縮率とを同等にする。このとき、内部ひずみが
実質的に零となるまでに要する時間は長くなるが、除歪
温度は歪点温度に近づければ近づけるほど成形品の内部
ひずみの緩和量が少なくなるので効果的である。
(3) At a strain-reducing temperature lower than the pressing temperature and higher than the mold-releasing temperature, the internal strain is made substantially zero, and the heat-shrinkage of the molded product and the mold from the strain-relieving temperature to the room temperature. Equal to the rate. At this time, the time required for the internal strain to become substantially zero becomes longer, but the closer the strain relief temperature is to the strain point temperature, the closer the strain is, so that the amount of relaxation of the internal strain of the molded product decreases, which is effective. .

【0041】(4)プレス温度よりも低くて歪点温度よ
りも高い除歪温度で内部ひずみを実質的に零とし、除歪
温度から歪点温度までの成形品の内部ひずみの緩和量
を、除歪温度で離型させるか、もしくは、除歪温度から
歪点に至るまでの温度範囲でなるべく急冷することで極
力減らし、除歪温度から室温に至るまでの温度範囲にお
ける成形品と成形型の熱収縮率とを同等にする。
(4) The internal strain is made substantially zero at a strain-removing temperature lower than the pressing temperature and higher than the strain-point temperature, and the relaxation amount of the internal strain of the molded product from the strain-relieving temperature to the strain-point temperature is Release as much as possible at the strain relief temperature, or by quenching as much as possible in the temperature range from the strain relief temperature to the strain point, reduce as much as possible, and between the molded product and the mold in the temperature range from the strain relief temperature to room temperature. Equivalent to heat shrinkage.

【0042】上記(1)から(4)の方法を採用する場
合の離型温度の制御を、図2で示したリング形状の離型
用部材6等で上下型をプレス軸方向に固定し、冷却中の
プリフォーム材の熱収縮を利用して行うとよい。もしく
は、プレス直後にプリフォーム材の型界面に対して機械
的な引張力を与えて離型させてもよい。これによって、
成形品の離型温度が安定し、成形品の形状バラツキが少
なくなり、結果的に室温での成形品の成形型の寸法が高
精度に一致する。
When the methods (1) to (4) are adopted, the mold release temperature is controlled by fixing the upper and lower molds in the axial direction of the press with the ring-shaped mold releasing member 6 shown in FIG. It is preferable to use the heat shrinkage of the preform material during cooling. Alternatively, immediately after pressing, a mechanical tensile force may be applied to the mold interface of the preform material to release the preform material. by this,
The mold release temperature of the molded product is stable, the shape variation of the molded product is reduced, and as a result, the dimensions of the mold of the molded product at room temperature match with high accuracy.

【0043】上記(1)から(4)で述べた成形方法
は、その効果がそれぞれ異なるため、要求される成形品
と成形型の許容寸法誤差によって使い分けるとよい。
Since the molding methods described in the above (1) to (4) have different effects, it is preferable to use them properly according to the required dimensional error between the molded product and the molding die required.

【0044】[0044]

【発明の効果】以上詳述したように、本発明の光学素子
の成形方法によれば、成形型の寸法と成形品の寸法の差
を容易に減らすことのできる光学素子の成形方法を得る
ことができる。
As described in detail above, according to the optical element molding method of the present invention, an optical element molding method capable of easily reducing the difference between the size of the molding die and the size of the molded product can be obtained. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光学素子の成形方法を説明するための
プリフォーム材および型材の温度と熱膨張係数との関係
を示すグラフで、(a)はプリフォーム材の場合を、
(b)は型材の場合を示す。
FIG. 1 is a graph showing the relationship between the temperature and the coefficient of thermal expansion of a preform material and a mold material for explaining the method for molding an optical element of the present invention, (a) shows the case of the preform material,
(B) shows the case of a mold material.

【図2】本発明の光学素子の成形方法で採用した成形装
置の構造を示す概略縦断面図。
FIG. 2 is a schematic vertical sectional view showing the structure of a molding apparatus used in the method for molding an optical element of the present invention.

【図3】本発明の光学素子の成形方法で採用した燐酸系
極低軟化ガラスの熱膨張係数と温度の関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between the coefficient of thermal expansion and the temperature of a phosphoric acid-based extremely low-softening glass employed in the method for molding an optical element of the present invention.

【図4】本発明の光学素子の成形方法で採用したアルミ
ニウム合金の熱膨張係数と温度の関係を示すグラフ。
FIG. 4 is a graph showing the relationship between the thermal expansion coefficient and the temperature of the aluminum alloy used in the method for molding an optical element of the present invention.

【符号の説明】[Explanation of symbols]

1 上成形型 2 下成形型 3 胴型 4 プリフォーム材 5A,5B 温度測定点 6 離型用部材 1 Upper mold 2 Lower mold 3 body type 4 Preform material 5A, 5B Temperature measurement point 6 Release material

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軟化したガラスもしくはアモルファス合
金等のプリフォーム材を上下一対の成形型によって加圧
成形する光学素子の成形方法において、成形品の熱収縮
率と型材の熱収縮率との差を実質的に零もしくは設計許
容誤差の範囲内とし、室温での成形品の被プレス面の寸
法と成形型のプレス面の寸法とをほぼ一致させたことを
特徴とする光学素子の成形方法。
1. In a method of molding an optical element in which a preformed material such as softened glass or an amorphous alloy is pressure-molded by a pair of upper and lower molding dies, a difference between a heat shrinkage ratio of a molded product and a heat shrinkage ratio of a mold material is calculated. A method of molding an optical element, wherein the size of the surface to be pressed of the molded product and the size of the pressing surface of the molding die at room temperature are made substantially equal to each other within a range of zero or a design tolerance.
【請求項2】 軟化したガラスもしくはアモルファス合
金等のプリフォーム材を上下一対の成形型によって加圧
成形する光学素子の成形方法において、成形品の熱収縮
率又は熱膨張係数或いは成形品の内部ひずみの緩和量も
しくは離型のタイミング(温度)のうちの少なくとも一
つの手段により制御して、前記成形品の熱収縮率と型材
の熱収縮率との差を実質的に零もしくは設計許容誤差の
範囲内とし、室温での成形品の被プレス面の寸法と成形
型のプレス面の寸法とをほぼ一致させたことを特徴とす
る光学素子の成形方法。
2. A method of molding an optical element in which a preform material such as softened glass or an amorphous alloy is pressure-molded by a pair of upper and lower molding dies, and the thermal shrinkage rate or the thermal expansion coefficient of the molded article or the internal strain of the molded article. Control by at least one of the relaxation amount or the timing (temperature) of mold release, and the difference between the heat shrinkage rate of the molded product and the heat shrinkage rate of the mold material is substantially zero or within the design tolerance range. The method for molding an optical element is characterized in that the dimensions of the surface to be pressed of the molded product at room temperature and the dimensions of the pressing surface of the molding die are substantially the same.
【請求項3】 軟化したガラスもしくはアモルファス合
金等のプリフォーム材を上下一対の成形型によって加圧
成形する光学素子の成形方法において、プレスから離型
直後までの温度範囲におけるプリフォーム材の熱収縮率
と成形型の熱収縮率をそれぞれΔlp(pd),Δld
(pd)とし、室温から成形品の離型温度までの温度範
囲でのプリフォーム材の熱収縮率と型材の熱収縮率をそ
れぞれΔlpとΔldとした場合、Δlp(pd)+Δ
lp−Δld(pd)−Δldが零もしくは設計許容寸
法の誤差範囲内となる型材と冷却速度で成形することを
特徴とする光学素子の成形方法。
3. A method of molding an optical element in which a preformed material such as softened glass or amorphous alloy is pressure-molded by a pair of upper and lower molding dies, and the heat shrinkage of the preform material in a temperature range from pressing to immediately after release. Rate and the heat shrinkage rate of the mold are Δlp (pd) and Δld, respectively.
(Pd) and Δlp and Δld are the heat shrinkage rate of the preform material and the heat shrinkage rate of the mold material in the temperature range from room temperature to the mold release temperature, respectively, Δlp (pd) + Δ
A molding method of an optical element, characterized in that molding is performed with a mold material and a cooling rate in which lp-Δld (pd) -Δld is zero or within an error range of a design allowable dimension.
【請求項4】 軟化したガラスもしくはアモルファス合
金等のプリフォーム材を上下一対の成形型によって加圧
成形する光学素子の成形方法において、プリフォーム材
のプレス温度をTp、歪点温度をTs、離型温度をTd
とした場合、Tp≧Tz≧TsおよびTz>Tdの関係
を同時に満たす除歪温度Tzで、少なくとも一度は成形
品の内部ひずみを実質的に零とし、かつ、室温から除歪
温度Tzまでのプリフォーム材と型材の熱収縮率の差が
零もしくは設計許容寸法の誤差範囲内となる型材で成形
することを特徴とする光学素子の成形方法。
4. In a method of molding an optical element in which a preform material such as softened glass or an amorphous alloy is pressure-molded by a pair of upper and lower molding dies, the press temperature of the preform material is Tp, the strain point temperature is Ts, and the separation temperature is Ts. Mold temperature is Td
In such a case, the internal strain of the molded product is substantially zero at least once at the strain removal temperature Tz that satisfies the relations of Tp ≧ Tz ≧ Ts and Tz> Td at the same time, and the temperature from the room temperature to the strain removal temperature Tz is increased. A method for molding an optical element, which comprises molding with a mold material in which a difference in heat shrinkage between the reform material and the mold material is zero or within an error range of a design allowable dimension.
【請求項5】 軟化したガラスもしくはアモルファス合
金等のプリフォーム材を上下一対の成形型によって加圧
成形する光学素子の成形方法において、プリフォーム材
のプレス温度をTp、歪点温度をTs、離型温度をTd
とした場合、Tp≧Tz≧TsおよびTz>Tdの関係
を同時に満たす除歪温度Tzで、少なくとも一度は成形
品の内部ひずみを実質的に零とし、かつ、除歪温度Tz
から歪点温度Tsに至る温度範囲で急冷を行うか、ある
いは、なるべく除歪温度Tzに近い温度で離型させて成
形品の内部ひずみの緩和量を実質的に零とし、さらに、
室温から除歪温度Tzまでのプリフォーム材と型材の熱
収縮率の差が零もしくは設計許容寸法の誤差範囲内とな
る型材で成形することを特徴とする光学素子の成形方
法。
5. A method of molding an optical element in which a preform material such as softened glass or an amorphous alloy is pressure-molded by a pair of upper and lower molding dies, the pressing temperature of the preform material is Tp, the strain point temperature is Ts, and the separation temperature is Ts. Mold temperature is Td
, The internal strain of the molded product is substantially zero at least once at the strain removal temperature Tz that satisfies the relations of Tp ≧ Tz ≧ Ts and Tz> Td at the same time, and the strain removal temperature Tz
To the strain point temperature Ts, or the mold is released at a temperature as close to the strain removal temperature Tz as possible to make the relaxation amount of the internal strain of the molded product substantially zero, and
A molding method of an optical element, characterized in that molding is performed with a mold material in which a difference in heat shrinkage between the preform material and the mold material from room temperature to the strain removal temperature Tz is zero or within an error range of a design allowable dimension.
【請求項6】 成形品の離型をプレス軸方向のプリフォ
ーム材の熱収縮により行うことを特徴とする請求項1な
いし請求項5の何れかに記載の光学素子の成形方法。
6. The method for molding an optical element according to claim 1, wherein the molded product is released from the mold by thermal contraction of the preform material in the axial direction of the press.
JP2001275155A 2001-09-11 2001-09-11 Method for molding optical element Pending JP2003089532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001275155A JP2003089532A (en) 2001-09-11 2001-09-11 Method for molding optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001275155A JP2003089532A (en) 2001-09-11 2001-09-11 Method for molding optical element

Publications (1)

Publication Number Publication Date
JP2003089532A true JP2003089532A (en) 2003-03-28

Family

ID=19100070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001275155A Pending JP2003089532A (en) 2001-09-11 2001-09-11 Method for molding optical element

Country Status (1)

Country Link
JP (1) JP2003089532A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010760A (en) * 2005-06-28 2007-01-18 Sumitomo Electric Ind Ltd Method of forming resin body, method of forming structure for optical waveguide, and method of forming optical component
CN114751632A (en) * 2021-01-08 2022-07-15 Hoya株式会社 Method for manufacturing glass forming mold and method for manufacturing optical element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010760A (en) * 2005-06-28 2007-01-18 Sumitomo Electric Ind Ltd Method of forming resin body, method of forming structure for optical waveguide, and method of forming optical component
US8241535B2 (en) 2005-06-28 2012-08-14 Sumitomo Electric Industries, Ltd. Method for transcribing patterns on resin body, method for manufacturing planar waveguide, and method for manufacturing micro-lens
CN114751632A (en) * 2021-01-08 2022-07-15 Hoya株式会社 Method for manufacturing glass forming mold and method for manufacturing optical element
CN114751632B (en) * 2021-01-08 2024-04-02 Hoya株式会社 Method for manufacturing glass molding die and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
JPS60145919A (en) Press-molding of high-precision formed glass article
JPH1128745A (en) Method and mold for molding plastic molded product
JP4815897B2 (en) Injection mold and injection molding method
JP2003089532A (en) Method for molding optical element
JP2007283752A (en) Method and apparatus for manufacturing resin molding, and resin molding
JP4057385B2 (en) Molding method of plastic molded product and injection mold
JP2008213266A (en) Manufacturing method and device of plastic molded object
JP2502718B2 (en) Optical element molding die, optical element molding method, and optical element
JP2010143129A (en) Method for molding resin lens
US10077202B2 (en) Method for manufacturing optical element
JP2504817B2 (en) Optical element molding method
JP2651260B2 (en) Manufacturing method of glass optical parts
JP2533889B2 (en) Optical element manufacturing method
JP4751818B2 (en) Mold for forming and manufacturing method thereof
JPH0547488B2 (en)
JP2006206394A (en) Optical device forming mold, method of manufacturing the same and method of manufacturing optical device using the same
JP2004307330A (en) Method of manufacturing lens
JP3155395B2 (en) Method and apparatus for molding optical glass element
JPH0455134B2 (en)
JP2579036B2 (en) Manufacturing method of glass optical parts
JP2005162547A (en) Optical element shaping die, optical element manufacturing apparatus and method for manufacturing optical element
JP2579016B2 (en) Manufacturing method of glass optical parts
JP4813305B2 (en) Optical element manufacturing method
JPH10109312A (en) Production of glass mold for glasses
JP2954427B2 (en) Glass forming method