JP2003083726A - Measuring device and method for non-spherical surface shape - Google Patents

Measuring device and method for non-spherical surface shape

Info

Publication number
JP2003083726A
JP2003083726A JP2001277411A JP2001277411A JP2003083726A JP 2003083726 A JP2003083726 A JP 2003083726A JP 2001277411 A JP2001277411 A JP 2001277411A JP 2001277411 A JP2001277411 A JP 2001277411A JP 2003083726 A JP2003083726 A JP 2003083726A
Authority
JP
Japan
Prior art keywords
shape
aspherical surface
inspected
interference fringes
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001277411A
Other languages
Japanese (ja)
Inventor
Shikyo Ryu
志強 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2001277411A priority Critical patent/JP2003083726A/en
Publication of JP2003083726A publication Critical patent/JP2003083726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring device and a method for non-spherical surface shape capable of efficiently measuring many kinds of different shapes of inspected non- spherical surface. SOLUTION: The device is constituted of an interference optical system forming an interference fringe by overlapping measuring light reflected on an inspected non- spherical surface 10 on reference light reflected on a Fizeau surface as a reference surface, an arithmetic unit 18 calculating the shape of the inspected non-spherical surface based on the phase distribution of the interference fringe obtained with the interference optical system, and a pattern variable diffraction grating. The measuring light prior to introducing in the inspected non-spherical surface 10 is diffracted in the pattern diffraction grating 15, and its wave front shape is nearly agreed with the shape of the inspected non-spherical surface 10. Also, by using the relation between the grating pattern of the pattern variable diffraction grating 15 and the variation of wave front shape of the measuring light in front and back of the diffraction, the phase distribution of the interference fringe is corrected. Based on the phase distribution of the interference fringe obtained after the correction, the shape of inspected non-spherical surface 10 is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非球面レンズ等の
非球面形状を測定するための非球面形状測定装置及び非
球面形状測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aspherical surface shape measuring apparatus and an aspherical surface shape measuring method for measuring an aspherical surface shape such as an aspherical lens.

【0002】[0002]

【従来の技術】従来、非球面レンズに代表される非球面
形状の測定としては、例えばヌル素子を用いたフィゾー
型のものが知られている。このような従来の装置では、
光源より射出された可干渉光を被検非球面に近接して設
置されたフィゾーレンズの基準参照面を透過する測定光
と、この基準参照面において反射する参照光とに分割
し、被検非球面において反射若しくは被検非球面を透過
した測定光と基準参照面において反射した参照光とを干
渉させて所定の観察面上に干渉縞を形成させる。そし
て、このようにして得られた干渉縞を解析して測定光の
参照光に対する変位量を算出し、この変位量を基準参照
面の形状に付加することにより被検非球面の形状を求め
るようになっている。ここで測定光は被検非球面に至る
前に、ヌル素子と呼ばれる光学素子(或いは光学系)を
介してその波面形状が被検非球面とほぼ同じ形状になる
ように、すなわち基準参照面を垂直に透過するように調
整される。
2. Description of the Related Art Conventionally, as a measurement of an aspherical shape represented by an aspherical lens, for example, a Fizeau type using a null element is known. In such a conventional device,
The coherent light emitted from the light source is split into the measurement light that passes through the reference reference surface of the Fizeau lens installed close to the aspherical surface to be inspected and the reference light reflected by this reference surface, The measurement light reflected on the spherical surface or transmitted through the aspherical surface to be tested is interfered with the reference light reflected on the standard reference surface to form an interference fringe on a predetermined observation surface. Then, the interference fringes thus obtained are analyzed to calculate the displacement amount of the measurement light with respect to the reference light, and the displacement amount is added to the shape of the reference reference surface to obtain the shape of the aspheric surface to be tested. It has become. Before the measurement light reaches the aspherical surface to be inspected, the wavefront shape is made almost the same as that of the aspherical surface to be inspected through an optical element (or an optical system) called a null element, that is, the reference reference surface is changed. Adjusted for vertical transmission.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うなヌル素子は被検対象となっている被検非球面の形状
に対応した1種類の波面しか生成することができないた
め、被検非球面の形状が変わるとこれに対応したヌル素
子を新たに作製する必要があった。このヌル素子の設計
・製造には一般に多大な時間がかかるため、幾種類もの
非球面形状測定を行う場合の作業効率は大変悪いもので
あった。
However, since such a null element can generate only one type of wavefront corresponding to the shape of the aspherical surface to be inspected, the null element of the aspherical surface to be inspected. When the shape changed, it was necessary to newly prepare a null element corresponding to this. Since it takes a lot of time to design and manufacture this null element, the work efficiency is very poor when several kinds of aspherical surface shapes are measured.

【0004】本発明はこのような問題に鑑みてなされた
ものであり、被検非球面の形状に応じた波面を容易に生
成することができ、相異なる幾種類もの被検非球面の形
状を効率よく測定することが可能な非球面形状測定装置
及び非球面形状測定方法を提供することを目的としてい
る。
The present invention has been made in view of the above problems, and it is possible to easily generate a wavefront corresponding to the shape of an aspherical surface to be inspected, and to obtain various different shapes of the aspherical surface to be inspected. It is an object of the present invention to provide an aspherical surface shape measuring device and an aspherical surface shape measuring method that enable efficient measurement.

【0005】[0005]

【課題を解決するための手段】第1の本発明に係る非球
面形状測定装置は、被検非球面において反射若しくは被
検非球面を透過した測定光を参照光と干渉させて干渉縞
を形成させる干渉光学系と、この干渉光学系において得
られた干渉縞の位相分布に基づいて被検非球面の形状を
算出する演算手段とを有して構成される非球面形状測定
装置であって、被検非球面に入射する前の測定光、及び
測定光と干渉する前の参照光の少なくとも一方を回折さ
せてその波面形状を被検非球面の形状にほぼ一致させる
パターン可変回折格子を備え、演算手段は、予め記憶さ
れたパターン可変回折格子の格子パターンと回折の前後
における光の波面形状の変化量との関係を用いて干渉縞
の位相分布を補正し、これにより得られた補正後の干渉
縞の位相分布に基づいて被検非球面の形状を求める。
An aspherical surface shape measuring apparatus according to a first aspect of the present invention forms an interference fringe by interfering with a reference light the measuring light reflected on the aspherical surface to be inspected or transmitted through the aspherical surface to be inspected. An aspherical surface shape measuring device configured to have an interference optical system to be operated, and a calculation means for calculating the shape of an aspherical surface to be tested based on the phase distribution of interference fringes obtained in the interference optical system, The measurement light before entering the test aspherical surface, and a pattern variable diffraction grating that diffracts at least one of the reference light before interfering with the measurement light and substantially matches its wavefront shape with the shape of the test aspherical surface, The calculation means corrects the phase distribution of the interference fringes by using the relationship between the previously stored grating pattern of the variable pattern diffraction grating and the amount of change in the wavefront shape of light before and after diffraction, and the corrected correction Based on the phase distribution of interference fringes There are determined a test aspherical surface.

【0006】また、第1の本発明に係る非球面形状測定
方法は、被検非球面において反射若しくは被検非球面を
透過した測定光を参照光と干渉させて得られる干渉縞の
位相分布に基づいて被検非球面の形状を求める非球面形
状測定方法であって、被検非球面に入射する前の測定
光、及び測定光と干渉する前の参照光の少なくとも一方
をパターン可変回折格子により回折させてその波面形状
を被検非球面の形状にほぼ一致させるとともに、予め記
憶されたパターン可変回折格子の格子パターンと回折の
前後における光の波面形状の変化量との関係を用いて干
渉縞の位相分布を補正し、これにより得られた補正後の
干渉縞の位相分布に基づいて被検非球面の形状を求め
る。
Further, the aspherical surface shape measuring method according to the first aspect of the present invention determines the phase distribution of the interference fringes obtained by interfering the reference light with the measuring light reflected on the aspherical surface to be measured or transmitted through the aspherical surface to be measured. An aspherical surface shape measuring method for obtaining the shape of an aspherical surface to be tested based on a measuring light before entering the aspherical surface to be measured, and at least one of reference light before interfering with the measuring light by a variable pattern diffraction grating. The diffracted wavefront shape is made to substantially match the shape of the aspherical surface to be measured, and the interference fringes are obtained by using the relationship between the previously stored grating pattern of the variable pattern diffraction grating and the change amount of the wavefront shape of light before and after diffraction. Is corrected, and the shape of the aspherical surface to be inspected is obtained based on the corrected phase distribution of the interference fringes.

【0007】このように第1の本発明に係る非球面形状
測定装置及び非球面形状測定方法においては、被検非球
面に入射する前の測定光、及び測定光と干渉する前の参
照光の少なくとも一方をパターン回折格子により回折さ
せてその波面形状を被検非球面の形状にほぼ一致させる
とともに、予め記憶されたパターン可変回折格子の格子
パターンと回折の前後における光の波面形状の変化量と
の関係を用いて干渉縞の位相分布を補正し、これにより
得られた補正後の干渉縞の位相分布に基づいて被検非球
面の形状を求めるようになっており、従来用いられてい
たヌル素子を必要とすることなく被検非球面の形状測定
を行うことが可能である。このパターン回折格子により
被検非球面の形状に近い波面形状を生成することは、ヌ
ル素子を被検非球面の形状に応じて設計・製造すること
よりも遙かに容易であり、幾種類もの被検非球面形状を
測定する場合でもその測定を効率よく行うことができ
る。ここで、被検非球面の形状が未知である場合には、
干渉縞の本数が最も少なくなるようにパターン可変回折
格子の格子パターンを設定すればよい。
As described above, in the aspherical surface shape measuring apparatus and the aspherical surface shape measuring method according to the first aspect of the present invention, the measuring light before entering the aspherical surface to be measured and the reference light before interfering with the measuring light are measured. At least one of them is diffracted by a pattern diffraction grating to make its wavefront shape substantially match the shape of the aspherical surface to be measured, and the amount of change in the wavefront shape of the light before and after diffraction with the grating pattern of the pattern variable diffraction grating stored in advance. The phase distribution of the interference fringes is corrected by using the relationship of, and the shape of the aspherical surface to be inspected is calculated based on the corrected phase distribution of the interference fringes. It is possible to measure the shape of the aspheric surface to be tested without the need for an element. Generating a wavefront shape close to the shape of the aspheric surface to be inspected by this pattern diffraction grating is much easier than designing and manufacturing the null element according to the shape of the aspheric surface to be inspected. Even when measuring a test aspherical surface shape, the measurement can be performed efficiently. Here, when the shape of the aspheric surface to be tested is unknown,
The grating pattern of the variable pattern diffraction grating may be set so that the number of interference fringes is minimized.

【0008】また、第2の本発明に係る非球面形状測定
装置は、被検非球面において反射若しくは被検非球面を
透過した測定光を参照光と干渉させて干渉縞を形成させ
る干渉光学系と、この干渉光学系において得られた干渉
縞の位相分布に基づいて被検非球面の形状を算出する演
算手段とを有して構成される非球面形状測定装置であっ
て、被検非球面に入射する前の測定光、及び測定光と干
渉する前の参照光の少なくとも一方を反射させてその波
面形状を被検非球面の形状にほぼ一致させる能動型ミラ
ーを備え、演算手段は、予め記憶された能動型ミラーの
形状パターンと反射の前後における光の波面形状の変化
量との関係を用いて干渉縞の位相分布を補正し、これに
より得られた補正後の干渉縞の位相分布に基づいて被検
非球面の形状を求める。
Further, the aspherical surface shape measuring apparatus according to the second aspect of the present invention is an interference optical system for forming interference fringes by interfering with the reference light the measuring light reflected on the aspherical surface to be inspected or transmitted through the aspherical surface to be inspected. And an arithmetic means for calculating the shape of the aspherical surface to be inspected based on the phase distribution of the interference fringes obtained in this interference optical system. The measuring means is provided with an active mirror that reflects at least one of the measurement light before entering the measurement light and the reference light before interfering with the measurement light and substantially matches the wavefront shape thereof with the shape of the aspherical surface under test. The phase distribution of the interference fringes is corrected using the relationship between the stored active mirror shape pattern and the amount of change in the wavefront shape of the light before and after reflection, and the phase distribution of the corrected interference fringes is obtained by this. Obtain the shape of the aspheric surface to be inspected based on That.

【0009】また、第2の本発明に係る非球面形状測定
方法は、被検非球面において反射若しくは被検非球面を
透過した測定光を参照光と干渉させて得られる干渉縞の
位相分布に基づいて被検非球面の形状を求める非球面形
状測定方法であって、被検非球面に入射する前の測定
光、及び測定光と干渉する前の参照光の少なくとも一方
を能動型ミラーにより反射させてその波面形状を被検非
球面の形状にほぼ一致させるとともに、予め記憶された
能動型ミラーの形状パターンと反射の前後における光の
波面形状の変化量との関係を用いて干渉縞の位相分布を
補正し、これにより得られた補正後の干渉縞の位相分布
に基づいて被検非球面の形状を求める。
Further, the aspherical surface shape measuring method according to the second aspect of the present invention provides the phase distribution of the interference fringes obtained by interfering with the reference light the measuring light reflected or transmitted through the aspherical surface to be inspected. An aspherical surface shape measuring method for obtaining the shape of an aspherical surface to be inspected based on an active mirror that reflects at least one of the measurement light before entering the aspherical surface to be inspected and the reference light before interfering with the measurement light. Then, the wavefront shape is made to approximately match the shape of the aspheric surface to be tested, and the phase of the interference fringes is calculated using the relationship between the shape pattern of the active mirror stored in advance and the change amount of the wavefront shape of light before and after reflection. The distribution is corrected, and the shape of the aspherical surface to be inspected is obtained based on the phase distribution of the corrected interference fringes thus obtained.

【0010】このように第2の本発明に係る非球面形状
測定装置及び非球面形状測定方法においては、被検非球
面に入射する前の測定光、及び測定光と干渉する前の参
照光の少なくとも一方を能動型ミラーにより反射させて
その波面形状を被検非球面の形状にほぼ一致させるとと
もに、予め記憶された能動型ミラーの形状パターンと反
射の前後における光の波面形状の変化量との関係を用い
て干渉縞の位相分布を補正し、これにより得られた補正
後の干渉縞の位相分布に基づいて被検非球面の形状を求
めるようになっており、従来用いられていたヌル素子を
必要とすることなく被検非球面の形状測定を行うことが
可能である。この能動型ミラーにより被検非球面の形状
に近い波面形状を生成することは、ヌル素子を被検非球
面の形状に応じて設計・製造することよりも遙かに容易
であり、幾種類もの被検非球面形状を測定する場合でも
その測定を効率よく行うことができる。ここで、被検非
球面の形状が未知である場合には、干渉縞の本数が最も
少なくなるように能動型ミラーの全体形を設定すればよ
い。
As described above, in the aspherical surface shape measuring apparatus and the aspherical surface shape measuring method according to the second aspect of the present invention, the measuring light before entering the aspherical surface to be measured and the reference light before interfering with the measuring light are measured. At least one of them is reflected by an active mirror to make its wavefront shape substantially match the shape of the aspheric surface to be tested, and the shape pattern of the active mirror stored in advance and the amount of change in the wavefront shape of light before and after reflection The phase distribution of the interference fringes is corrected using the relationship, and the shape of the aspherical surface to be inspected is obtained based on the corrected phase distribution of the interference fringes. It is possible to measure the shape of the aspherical surface to be inspected without requiring. Generating a wavefront shape close to the shape of the aspherical surface to be inspected by this active mirror is much easier than designing and manufacturing a null element according to the shape of the aspherical surface to be inspected. Even when measuring a test aspherical surface shape, the measurement can be performed efficiently. Here, when the shape of the aspherical surface to be tested is unknown, the overall shape of the active mirror may be set so that the number of interference fringes is minimized.

【0011】[0011]

【発明の実施の形態】以下、図面を参照して本発明の好
ましい実施形態について説明する。図1は第1の本発明
に係る非球面形状測定装置の構成例であり、フィゾー型
干渉系をベースにして構成したものである。この測定装
置において光源(例えばレーザ光源)11からは可干渉
光が射出され、そのP偏光成分は偏光ビームスプリッタ
(PBS)12の半透膜12a及び1/4波長板13を
図の上方に透過して円偏光になった後、フィゾーレンズ
14を図の上方に透過して測定光となる。フィゾーレン
ズ14を透過した測定光はパターン可変回折格子15に
入射して図の右方に反射回折し、図の左方より被検非球
面10に入射する。被検非球面10に入射した測定光の
一部(一次回折光)は被検非球面10の表面において図
の左方に反射した後、パターン可変回折格子15に戻っ
て図の下方に反射回折し、フィゾーレンズ14及び1/
4波長板13を図の下方に透過してS偏光になった後、
偏光ビームスプリッタ12の半透膜12aにおいて図の
左方に反射する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the configuration of an aspherical surface shape measuring apparatus according to the first aspect of the present invention, which is constructed based on a Fizeau interferometer. In this measuring apparatus, a coherent light is emitted from a light source (for example, a laser light source) 11, and its P-polarized component is transmitted through the semitransparent film 12a of the polarization beam splitter (PBS) 12 and the quarter wavelength plate 13 to the upper part of the figure. After becoming circularly polarized light, it passes through the Fizeau lens 14 in the upper part of the drawing to become measurement light. The measurement light transmitted through the Fizeau lens 14 enters the variable pattern diffraction grating 15, is reflected and diffracted to the right in the figure, and enters the aspheric surface 10 to be inspected from the left in the figure. A part of the measurement light (first-order diffracted light) incident on the aspherical surface 10 to be inspected is reflected on the surface of the aspherical surface 10 to be inspected to the left in the figure, and then returns to the variable pattern diffraction grating 15 to be reflected and diffracted downward in the figure. Fizeau lens 14 and 1 /
After passing through the four-wave plate 13 in the lower part of the figure to become S-polarized light,
The light is reflected to the left side of the figure at the semi-permeable film 12a of the polarization beam splitter 12.

【0012】また、光源11から射出されて偏光ビーム
スプリッタ12の半透膜12a及び1/4波長板13を
図の上方に透過した光の一部はフィゾーレンズ14のフ
ィゾー面14aを基準参照面として図の下方に反射して
参照光となり、1/4波長板13を図の下方に透過した
後、偏光ビームスプリッタ12の半透膜12aにおいて
図の左方に反射する。
A part of the light emitted from the light source 11 and transmitted through the semitransparent film 12a of the polarization beam splitter 12 and the quarter-wave plate 13 in the upper part of the drawing uses the Fizeau surface 14a of the Fizeau lens 14 as a reference reference surface. Then, the light is reflected downward in the drawing to become reference light, which is transmitted through the quarter-wave plate 13 downward in the drawing, and is then reflected leftward in the drawing by the semitransparent film 12a of the polarization beam splitter 12.

【0013】被検非球面10において反射した測定光と
基準参照面であるフィゾー面14aにおいて反射した参
照光とは偏光ビームスプリッタ12の半透膜12aにお
いて重ね合わされた状態で図の左方に進み、イメージン
グレンズ16により集光されてイメージセンサ17上に
干渉縞を形成する。イメージセンサ17には演算装置1
8が接続されており、イメージセンサ17上に形成され
た干渉縞の位相分布の情報はこの演算装置18に送られ
る。演算装置18はイメージセンサ17より送られてき
た干渉縞の位相分布の情報に基づいて被検非球面10の
形状を算出し、図示しないディスプレイ上に被検非球面
10の立体形状図などを出力する。ここで、演算装置1
8の記憶部にはパターン可変回折格子15の格子パター
ンとこのパターン可変回折格子15における回折の前後
における光の波面形状の変化量との関係を示すデータが
予め記憶されており、演算装置18はこのデータを用い
て干渉縞の位相分布を補正し、これにより得られた補正
後の干渉縞の位相分布に基づいて被検非球面10の形状
を求める。
The measurement light reflected on the aspherical surface 10 to be tested and the reference light reflected on the Fizeau surface 14a, which is the reference surface, are superposed on the semi-permeable film 12a of the polarization beam splitter 12 and proceed to the left in the figure. The light is condensed by the imaging lens 16 and forms an interference fringe on the image sensor 17. The image sensor 17 includes the arithmetic unit 1
8 is connected, and the information on the phase distribution of the interference fringes formed on the image sensor 17 is sent to the arithmetic unit 18. The arithmetic unit 18 calculates the shape of the aspheric surface 10 to be inspected based on the information on the phase distribution of the interference fringes sent from the image sensor 17, and outputs a three-dimensional shape diagram of the aspheric surface 10 to be inspected or the like on a display not shown. To do. Here, the arithmetic unit 1
Data indicating the relationship between the grating pattern of the variable pattern diffraction grating 15 and the amount of change in the wavefront shape of light before and after diffraction in the variable pattern diffraction grating 15 is stored in advance in the storage section 8 of the arithmetic unit 18. The phase distribution of the interference fringes is corrected using this data, and the shape of the aspherical surface 10 to be inspected is obtained based on the corrected phase distribution of the interference fringes.

【0014】本非球面形状測定装置を用いて被検非球面
10の形状を測定するには、先ず、演算装置18よりパ
ターン可変回折格子15の各格子要素15a(マイクロ
ミラーや液晶など。図2参照)の駆動素子を動作させて
パターン可変回折格子15を所定の格子パターンに設定
する。ここで、被検非球面10の形状が既知であるか、
若しくは被検非球面10の形状が或る程度分かっていて
その形状が予測できる場合には、パターン可変回折格子
15において回折させて得られる測定光の波面形状がそ
の既知形状若しくは予測形状とほぼ一致するようにその
格子パターンを設定する。
In order to measure the shape of the aspherical surface 10 to be inspected using this aspherical surface shape measuring apparatus, first, each grating element 15a (micromirror, liquid crystal, etc. of the pattern variable diffraction grating 15 is calculated by the arithmetic unit 18. FIG. The drive element of the reference) is operated to set the variable pattern diffraction grating 15 to a predetermined grating pattern. Here, whether the shape of the aspherical surface 10 to be tested is known,
Alternatively, when the shape of the aspherical surface 10 to be inspected is known to some extent and the shape can be predicted, the wavefront shape of the measurement light obtained by diffracting the variable pattern diffraction grating 15 substantially matches the known shape or the predicted shape. To set the grid pattern.

【0015】パターン可変回折格子15の格子パターン
が設定されたら上述のように光源11より光を射出させ
てイメージセンサ17上に干渉縞を形成させる。干渉縞
が形成されたら、演算装置18は、上記記憶されたパタ
ーン可変回折格子15の格子パターンと回折の前後にお
ける光の波面形状の変化量との関係データから測定光の
回折前後における波面形状の変化量を見積もり、この見
積もった波面形状の変化量に基づいて干渉縞の位相分布
を補正する。そして、このようにして得られた補正後の
干渉縞の位相分布に基づいて解析を行い、求める被検非
球面10の形状を算出する。図2にパターン可変回折格
子15の格子パターンの一例を示す。
When the grating pattern of the variable pattern diffraction grating 15 is set, light is emitted from the light source 11 to form interference fringes on the image sensor 17 as described above. When the interference fringes are formed, the arithmetic unit 18 determines the wavefront shape before and after the diffraction of the measurement light from the relational data of the stored grating pattern of the variable pattern diffraction grating 15 and the change amount of the wavefront shape of the light before and after the diffraction. The amount of change is estimated, and the phase distribution of the interference fringes is corrected based on the estimated amount of change in the wavefront shape. Then, analysis is performed on the basis of the phase distribution of the corrected interference fringes thus obtained, and the shape of the aspherical surface 10 to be inspected is calculated. FIG. 2 shows an example of the grating pattern of the variable pattern diffraction grating 15.

【0016】ここで、被検非球面10の形状が全く未知
である場合には、イメージセンサ17上に現れる干渉縞
の本数が最も少なくなるようにパターン可変回折格子1
5の格子パターンを設定してから被検非球面10の形状
測定を行うようにする。これは、イメージセンサ17上
に現れる干渉縞の本数が少ないときほどパターン可変回
折格子15において回折させて得られる測定光の波面形
状は、測定しようとしている被検非球面10の形状に近
づいたものとなるからである。
Here, when the shape of the aspherical surface 10 to be tested is completely unknown, the variable pattern diffraction grating 1 is designed so that the number of interference fringes appearing on the image sensor 17 is minimized.
After setting the lattice pattern of No. 5, the shape of the aspherical surface 10 to be measured is measured. This is because the smaller the number of interference fringes appearing on the image sensor 17, the closer the wavefront shape of the measurement light obtained by diffracting in the variable pattern diffraction grating 15 to the shape of the aspherical surface 10 to be measured. It is because

【0017】本測定装置を用いた非球面形状測定はこの
ような手順により行うが、フィゾーレンズ14を光軸方
向にシフトして(フィゾー面14aと被検非球面10と
の間の距離を変化させて)フリンジスキャンを行い、こ
れにより得られる干渉縞の位相分布の変化に基づいて被
検非球面10の形状を求める方法も効果的である。この
ような方法によれば、ノイズの影響を除いた最良の位相
データを得ることができるので精度良い測定結果を得る
ことができる。
The aspherical surface shape measurement using this measuring apparatus is performed by such a procedure, but the Fizeau lens 14 is shifted in the optical axis direction (the distance between the Fizeau surface 14a and the aspherical surface 10 to be tested is changed. It is also effective to perform a fringe scan and obtain the shape of the aspherical surface 10 to be inspected based on the change in the phase distribution of the interference fringes obtained thereby. According to such a method, the best phase data excluding the influence of noise can be obtained, so that an accurate measurement result can be obtained.

【0018】また、パターン可変回折格子15の各格子
要素は各個に与えられる駆動信号(具体的には主に電
場)を受けて動作するが、各格子要素の駆動信号と実際
の動作量とのデータを予め取得しておき、このデータに
基づいたキャリブレーションを計測結果に反映させるよ
うにすれば、より高精度な測定結果を得ることができ
る。
Further, each grating element of the variable pattern diffraction grating 15 operates by receiving a drive signal (specifically mainly an electric field) given to each element, and the drive signal of each grating element and the actual operation amount are If data is acquired in advance and calibration based on this data is reflected in the measurement result, a more accurate measurement result can be obtained.

【0019】また、測定対象である被検非球面10と基
準になる非球面レフ原器(形状が既知である基準の非球
面)との両方について同一の格子パターンに設定したパ
ターン可変回折格子15を用いて形状測定を行い、これ
ら両測定結果の差分から被検非球面10の形状を求める
ようにしてもよい。このような方法によれば、測定装置
固有の誤差が除去された精密な測定結果を得ることがで
きる。また、上記パターン可変回折格子15を収差が既
知であるレンズ系と組み合わせれば従来のヌル素子のよ
うに取り扱うこともできる。
Further, the variable pattern diffraction grating 15 having the same grating pattern for both the aspherical surface 10 to be measured and the reference aspherical refractor (reference aspherical surface whose shape is known). The shape of the aspherical surface 10 to be inspected may be obtained from the difference between these two measurement results. According to such a method, it is possible to obtain a precise measurement result from which an error peculiar to the measuring device is removed. If the variable pattern diffraction grating 15 is combined with a lens system having known aberrations, it can be treated like a conventional null element.

【0020】このように本非球面形状測定装置において
は、被検非球面10に入射する前の測定光をパターン回
折格子15により回折させてその波面形状を被検非球面
10の形状にほぼ一致させるとともに、予め記憶された
パターン可変回折格子15の格子パターンと回折の前後
における光の波面形状の変化量との関係を用いて干渉縞
の位相分布を補正し、これにより得られた補正後の干渉
縞の位相分布に基づいて被検非球面の形状を求めるよう
になっており、従来用いられていたヌル素子を必要とす
ることなく被検非球面10の形状測定を行うことが可能
である。このパターン回折格子15により被検非球面1
0の形状に近い波面形状を生成することは、ヌル素子を
被検非球面10の形状に応じて設計・製造することより
も遙かに容易であり、幾種類もの被検非球面形状を測定
する場合でもその測定を効率よく行うことができる。
As described above, in the present aspherical surface shape measuring apparatus, the measurement light before entering the aspherical surface 10 to be measured is diffracted by the pattern diffraction grating 15 so that the wavefront shape thereof substantially matches the shape of the aspherical surface 10 to be tested. At the same time, the phase distribution of the interference fringes is corrected using the relationship between the previously stored grating pattern of the variable pattern diffraction grating 15 and the amount of change in the wavefront shape of light before and after diffraction, and the corrected after-correction phase distribution is obtained. The shape of the aspherical surface to be inspected is obtained based on the phase distribution of the interference fringes, and the shape of the aspherical surface 10 to be inspected can be measured without using the conventionally used null element. . The pattern diffraction grating 15 allows the aspherical surface 1 to be tested.
Generating a wavefront shape close to that of 0 is much easier than designing and manufacturing a null element according to the shape of the aspherical surface 10 to be measured, and measuring many kinds of aspherical surface shapes to be measured. Even if it does, the measurement can be performed efficiently.

【0021】図3は第1の本発明に係る非球面形状の測
定装置の変形例を示している。この変形例に係る非球面
形状測定装置はトワイマングリーン型干渉系をベースに
して構成したものである。この装置において光源111
より射出された可干渉光はビーム拡大器112を介して
平行光にされた後、偏光ビームスプリッタ113におい
てその半透膜113aを図の右方に透過する測定光(P
偏光成分)と同半透膜113aにおいて図の上方に反射
する参照光(S偏光成分)とに分割される。偏光ビーム
スプリッタ113の半透膜113aを図の右方に透過し
た測定光は1/4波長板114を図の右方に透過した後
集光レンズ115により集光され、被検非球面110に
至って図の左方に反射する。被検非球面110において
反射した測定光は集光レンズ115及び1/4波長板1
14を図の左方に透過して偏光ビームスプリッタ113
に至る。偏光ビームスプリッタ113の半透膜113a
を図の右方に透過してから再び偏光ビームスプリッタ1
13に戻ってきた測定光はその間に1/4波長板114
を2回透過しているのでS偏光になっており、したがっ
て測定光が偏光ビームスプリッタ113に戻ってきた際
にはその半透膜113aにおいて図の下方に反射する。
FIG. 3 shows a modification of the aspherical surface measuring device according to the first aspect of the present invention. The aspherical surface shape measuring apparatus according to this modification is constructed based on a Twyman-Green type interference system. In this device, the light source 111
The coherent light emitted further is collimated by the beam expander 112, and then transmitted through the semitransparent film 113a of the polarization beam splitter 113 to the right in the figure (P).
It is split into a polarized light component) and a reference light (S polarized light component) reflected upward in the drawing at the semi-transparent film 113a. The measurement light transmitted through the semi-transparent film 113a of the polarization beam splitter 113 to the right in the figure is transmitted through the quarter-wave plate 114 to the right in the figure, and then is condensed by the condenser lens 115 to be aspherical surface 110 to be inspected. It will be reflected to the left of the figure. The measurement light reflected by the aspherical surface 110 to be measured is condensed by the condenser lens 115 and the quarter wavelength plate 1.
14 is transmitted to the left side of the drawing and the polarization beam splitter 113
Leading to. Semi-permeable film 113a of the polarization beam splitter 113
To the right of the figure, and then again the polarization beam splitter 1
The measurement light returning to 13 is a quarter wavelength plate 114 in the meantime.
Is S-polarized because it is transmitted twice, and therefore when the measurement light returns to the polarization beam splitter 113, it is reflected downward in the figure by the semi-transmissive film 113a.

【0022】一方、偏光ビームスプリッタ113の半透
膜113aにおいて図の上方に反射した参照光は1/4
波長板116を図の上方に透過した後パターン可変回折
格子117に至り、ここで反射回折した後1/4波長板
116を図の下方に透過して偏光ビームスプリッタ11
3に至る。偏光ビームスプリッタ113の半透膜113
aにおいて図の上方に反射し、再び偏光ビームスプリッ
タ113に戻ってきた参照光はその間に1/4波長板1
16を2回透過しているのでP偏光になっており、した
がって参照光が偏光ビームスプリッタ113に戻ってき
た際にはその半透膜113aを図の下方に透過する。
On the other hand, the reference light reflected upward in the drawing by the semi-transmissive film 113a of the polarization beam splitter 113 is 1/4.
After passing through the wave plate 116 in the upper part of the figure, it reaches the pattern variable diffraction grating 117, where it is reflected and diffracted, and then passes through the quarter wave plate 116 in the lower part of the figure, and the polarization beam splitter 11
Up to 3. Semi-permeable film 113 of the polarization beam splitter 113
The reference light reflected in the upper part of the figure at a and returning to the polarization beam splitter 113 again has the quarter wave plate 1 in between.
Since it is transmitted twice through 16, it is P-polarized, and therefore, when the reference light returns to the polarization beam splitter 113, the semi-transmissive film 113a is transmitted downward in the figure.

【0023】被検非球面110において反射した測定光
とパターン可変回折格子117において回折した参照光
とは偏光ビームスプリッタ113の半透膜113aにお
いて重ね合わされた状態で図の下方に進み、イメージン
グレンズ118により集光されてイメージセンサ119
上に干渉縞を形成する。イメージセンサ119には演算
装置120が接続されており、この演算装置120は、
イメージセンサ119上に形成された干渉縞の位相分布
に基づいて被検非球面10の形状を算出する。なお、こ
の形状算出の詳細過程は上述の構成に係る装置の場合と
同様である。
The measurement light reflected by the aspherical surface 110 to be inspected and the reference light diffracted by the variable pattern diffraction grating 117 are superposed on the semi-transmissive film 113a of the polarization beam splitter 113, and proceed to the lower part of the drawing to image the imaging lens 118. Image sensor 119
Form interference fringes on top. An arithmetic unit 120 is connected to the image sensor 119, and the arithmetic unit 120 is
The shape of the aspherical surface 10 to be tested is calculated based on the phase distribution of the interference fringes formed on the image sensor 119. The detailed process of this shape calculation is the same as in the case of the device having the above-described configuration.

【0024】本変形例に係る装置のように、測定光と干
渉する前の参照光をパターン可変回折格子117により
回折させてその波面形状を被検非球面110の形状にほ
ぼ一致させる構成でも、上述の非球面形状測定装置(す
なわち、被検非球面に入射する前の測定光をパターン可
変回折格子により回折させてその波面形状を被検非球面
の形状にほぼ一致させるようにした構成)と同様の効果
を得ることができる。また、ここに詳しくは示さない
が、測定光と参照光の両方を同一の若しくは別々のパタ
ーン可変回折格子によりそれぞれ回折させて各々の波面
形状を被検非球面110の形状にほぼ一致させるように
してもよい。また、本変形例はトワイマングリーン型干
渉系をベースにした構成であったが、これはフィゾー側
干渉系をベースにした構成に替えることもできる。
As in the apparatus according to the present modification, the reference light before it interferes with the measurement light is diffracted by the variable pattern diffraction grating 117 so that the wavefront shape thereof substantially matches the shape of the aspherical surface 110 to be tested. The above-mentioned aspherical surface shape measuring device (that is, a configuration in which the measurement light before entering the aspherical surface to be inspected is diffracted by the variable pattern diffraction grating so that its wavefront shape is substantially matched with the shape of the aspherical surface to be inspected). The same effect can be obtained. Although not shown in detail here, both the measurement light and the reference light are diffracted by the same or different pattern variable diffraction gratings so that the respective wavefront shapes substantially match the shapes of the aspherical surface 110 to be tested. May be. Further, this modification has a configuration based on the Twyman-Green type interference system, but this can be replaced with a configuration based on the Fizeau side interference system.

【0025】図4は第2の本発明に係る非球面形状の測
定装置の構成例であり、フィゾー型干渉系をベースにし
て構成したものである。この測定装置において光源(例
えばレーザ光源)211からは可干渉光が射出され、そ
のP偏光成分は偏光ビームスプリッタ212の半透膜2
12a及び1/4波長板213を図の上方に透過して円
偏光になった後、フィゾーレンズ214を図の上方に透
過して測定光となる。フィゾーレンズ214を透過した
測定光は能動型ミラー215に入射して図の右方に反射
し、図の左方より被検非球面210に入射する。被検非
球面210に入射した測定光は被検非球面210の表面
において図の左方に反射した後、能動型ミラー215に
戻って図の下方に反射し、フィゾーレンズ214及び1
/4波長板213を図の下方に透過してS偏光になった
後、偏光ビームスプリッタ212の半透膜212aにお
いて図の左方に反射する。
FIG. 4 shows an example of the construction of an aspherical measuring device according to the second aspect of the present invention, which is constructed on the basis of a Fizeau type interference system. In this measuring device, a coherent light is emitted from a light source (for example, a laser light source) 211, and its P-polarized component is the semitransparent film 2 of the polarization beam splitter 212.
After passing through the 12a and the quarter-wave plate 213 upward in the drawing to become circularly polarized light, the light is passed through the Fizeau lens 214 upward in the drawing to become measurement light. The measurement light transmitted through the Fizeau lens 214 enters the active mirror 215, is reflected to the right in the figure, and is incident on the aspherical surface 210 to be inspected from the left in the figure. The measurement light incident on the aspherical surface 210 to be inspected is reflected to the left side of the drawing on the surface of the aspherical surface 210 to be inspected, then returns to the active mirror 215 and is reflected downward in the figure, and the Fizeau lenses 214 and 1
After passing through the / 4 wavelength plate 213 downward in the drawing to become S-polarized light, it is reflected to the left in the drawing at the semi-transmissive film 212a of the polarization beam splitter 212.

【0026】また、光源211から射出されて偏光ビー
ムスプリッタ212の半透膜212a及び1/4波長板
213を図の上方に透過した光の一部はフィゾーレンズ
214のフィゾー面214aを基準参照面として図の下
方に反射して参照光となり、1/4波長板213を図の
下方に透過した後、偏光ビームスプリッタ212の半透
膜212aにおいて図の左方に反射する。
A part of the light emitted from the light source 211 and transmitted through the semi-transmissive film 212a of the polarization beam splitter 212 and the quarter wavelength plate 213 in the upper part of the drawing uses the Fizeau surface 214a of the Fizeau lens 214 as a reference reference surface. Then, the light is reflected downward in the drawing to become reference light, which is transmitted through the quarter-wave plate 213 downward in the drawing and then reflected leftward in the drawing by the semi-transmissive film 212a of the polarization beam splitter 212.

【0027】被検非球面210において反射した測定光
と基準参照面であるフィゾー面214aにおいて反射し
た参照光とは偏光ビームスプリッタ212の半透膜21
2aにおいて重ね合わされた状態で図の左方に進み、イ
メージングレンズ216により集光されてイメージセン
サ217上に干渉縞を形成する。イメージセンサ217
には演算装置218が接続されており、イメージセンサ
217上に形成された干渉縞の位相分布の情報はこの演
算装置218に送られる。演算装置218はイメージセ
ンサ217より送られてきた干渉縞の位相分布の情報に
基づいて被検非球面210の形状を算出し、図示しない
ディスプレイ上に被検非球面210の立体形状図などを
出力する。ここで、演算装置218の記憶部には能動型
ミラー215の形状パターンとこの能動型ミラー215
における反射の前後における光の波面形状の変化量との
関係を示すデータが予め記憶されており、演算装置21
8はこのデータを用いて干渉縞の位相分布を補正し、こ
れにより得られた補正後の干渉縞の位相分布に基づいて
被検非球面210の形状を求める。
The measurement light reflected on the aspherical surface 210 to be measured and the reference light reflected on the Fizeau surface 214a which is the reference surface are the semi-transparent film 21 of the polarization beam splitter 212.
In the state where they are superposed on each other at 2a, they proceed to the left in the drawing, and are condensed by the imaging lens 216 to form interference fringes on the image sensor 217. Image sensor 217
An arithmetic unit 218 is connected to the arithmetic unit 218, and information on the phase distribution of the interference fringes formed on the image sensor 217 is sent to the arithmetic unit 218. The arithmetic unit 218 calculates the shape of the aspherical surface 210 to be inspected based on the information on the phase distribution of the interference fringes sent from the image sensor 217, and outputs a three-dimensional shape diagram or the like of the aspherical surface 210 to be inspected on a display not shown. To do. Here, the shape pattern of the active mirror 215 and the active mirror 215 are stored in the storage unit of the arithmetic unit 218.
The data indicating the relationship with the amount of change in the wavefront shape of light before and after the reflection is stored in advance.
Reference numeral 8 corrects the phase distribution of the interference fringes using this data, and obtains the shape of the aspherical surface 210 to be inspected based on the corrected phase distribution of the interference fringes.

【0028】本非球面形状測定装置を用いて被検非球面
210の形状を測定するには、先ず、演算装置218よ
り能動型ミラー215の各ミラー要素の駆動素子を動作
させて能動型ミラー215を所定の形状パターンに設定
する。ここで、被検非球面210の形状が既知である
か、若しくは被検非球面210の形状が或る程度分かっ
ていてその形状が予測できる場合には、能動型ミラー2
15において反射させて得られる測定光の波面形状がそ
の既知形状若しくは予測形状とほぼ一致するようにその
形状パターンを設定する。
In order to measure the shape of the aspherical surface 210 to be tested using this aspherical surface shape measuring apparatus, first, the driving element of each mirror element of the active mirror 215 is operated by the arithmetic unit 218 to activate the active mirror 215. Is set to a predetermined shape pattern. Here, if the shape of the aspherical surface 210 to be tested is known, or if the shape of the aspherical surface 210 to be tested is known to some extent and the shape can be predicted, the active mirror 2
The shape pattern is set so that the wavefront shape of the measurement light obtained by reflection at 15 substantially matches the known shape or predicted shape.

【0029】能動型ミラー215の形状パターンが設定
されたら上述のように光源211より光を射出させてイ
メージセンサ217上に干渉縞を形成させる。干渉縞が
形成されたら、演算装置218は、上記記憶された能動
型ミラー215の形状パターンと反射の前後における光
の波面形状の変化量との関係データから測定光の反射前
後における波面形状の変化量を見積もり、この見積もっ
た波面形状の変化量に基づいて干渉縞の位相分布を補正
する。そして、このようにして得られた補正後の干渉縞
の位相分布に基づいて解析を行い、求める被検非球面2
10の形状を算出する。
When the shape pattern of the active mirror 215 is set, light is emitted from the light source 211 to form interference fringes on the image sensor 217 as described above. When the interference fringes are formed, the arithmetic unit 218 determines from the relationship data between the stored shape pattern of the active mirror 215 and the amount of change in the wavefront shape of light before and after reflection, the change in the wavefront shape before and after reflection of the measurement light. The amount is estimated, and the phase distribution of the interference fringes is corrected based on the estimated amount of change in the wavefront shape. Then, analysis is performed based on the phase distribution of the corrected interference fringes obtained in this way, and the aspherical surface 2 to be measured to be obtained is obtained.
10 shapes are calculated.

【0030】ここで、被検非球面210の形状が全く未
知である場合には、イメージセンサ217上に現れる干
渉縞の本数が最も少なくなるように能動型ミラー215
の形状パターンを設定してから被検非球面210の形状
測定を行うようにする。これは、イメージセンサ217
上に現れる干渉縞の本数が少ないときほど能動型ミラー
215において反射させて得られる測定光の波面形状
は、測定しようとしている被検非球面210の形状に近
づいたものとなるからである。
Here, when the shape of the aspherical surface 210 to be tested is completely unknown, the active mirror 215 is arranged so that the number of interference fringes appearing on the image sensor 217 is minimized.
After the shape pattern is set, the shape of the aspherical surface 210 to be measured is measured. This is the image sensor 217
This is because the wavefront shape of the measurement light obtained by being reflected by the active mirror 215 becomes closer to the shape of the aspherical surface 210 to be measured, as the number of interference fringes appearing above is smaller.

【0031】本測定装置を用いた非球面形状測定はこの
ような手順により行うが、フィゾーレンズ214を光軸
方向にシフトして(フィゾー面214aと被検非球面2
10との間の距離を変化させて)フリンジスキャンを行
い、これにより得られる干渉縞の位相分布の変化に基づ
いて被検非球面210の形状を求める方法も効果的であ
る。このような方法によれば、ノイズの影響を除いた最
良の位相データを得ることができるので精度良い測定結
果を得ることができる。
The aspherical surface shape measurement using this measuring apparatus is performed by such a procedure, but the Fizeau lens 214 is shifted in the optical axis direction (the Fizeau surface 214a and the aspherical surface 2 to be inspected 2).
It is also effective to perform a fringe scan (changing the distance from 10) and obtain the shape of the aspherical surface 210 to be inspected based on the change in the phase distribution of the interference fringes obtained thereby. According to such a method, the best phase data excluding the influence of noise can be obtained, so that an accurate measurement result can be obtained.

【0032】また、能動型ミラー215の各ミラー要素
は各個に与えられる駆動信号(具体的には主に電場)を
受けて動作するが、各ミラー要素の駆動信号と実際の動
作量とのデータを予め取得しておき、このデータに基づ
いたキャリブレーションを計測結果に反映させるように
すれば、より高精度な測定結果を得ることができる。
Further, each mirror element of the active mirror 215 operates by receiving a drive signal (specifically, mainly an electric field) given to each of them, but the data of the drive signal of each mirror element and the actual operation amount are given. Is acquired in advance and the calibration based on this data is reflected in the measurement result, a more accurate measurement result can be obtained.

【0033】また、測定対象である被検非球面210と
基準になる非球面レフ原器との両方について同一の形状
パターンに設定した能動型ミラー215を用いて形状測
定を行い、これら両測定結果の差分から被検非球面21
0の形状を求めるようにしてもよい。このような方法に
よれば、測定装置固有の誤差が除去された精密な測定結
果を得ることができる。また、上記能動型ミラー215
を収差が既知であるレンズ系と組み合わせれば従来のヌ
ル素子のように取り扱うこともできる。
Further, both the measurement target aspherical surface 210 and the reference aspherical surface reflex standard are subjected to shape measurement using the active mirror 215 set to the same shape pattern, and both measurement results are obtained. From the difference of
The shape of 0 may be obtained. According to such a method, it is possible to obtain a precise measurement result from which an error peculiar to the measuring device is removed. In addition, the active mirror 215
Can be handled like a conventional null element by combining with a lens system with known aberration.

【0034】このように本非球面形状測定装置において
は、被検非球面210に入射する前の測定光を能動型ミ
ラー215により反射させてその波面形状を被検非球面
210の形状にほぼ一致させるようにするとともに、予
め記憶された能動型ミラー215の形状パターンと反射
の前後における光の波面形状の変化量との関係を用いて
干渉縞の位相分布を補正し、これにより得られた補正後
の干渉縞の位相分布に基づいて被検非球面210の形状
を求めるようになっており、従来用いられていたヌル素
子を必要とすることなく被検非球面210の形状測定を
行うことが可能である。この能動型ミラー215により
被検非球面210の形状に近い波面形状を生成すること
は、ヌル素子を被検非球面210の形状に応じて設計・
製造することよりも遙かに容易であり、幾種類もの被検
非球面形状を測定する場合でもその測定を効率よく行う
ことができる。
As described above, in the present aspherical surface shape measuring apparatus, the measurement light before entering the aspherical surface 210 to be measured is reflected by the active mirror 215 so that its wavefront shape is substantially the same as the shape of the aspherical surface 210 to be tested. In addition, the phase distribution of the interference fringes is corrected by using the relationship between the shape pattern of the active mirror 215 stored in advance and the amount of change in the wavefront shape of light before and after reflection, and the correction thus obtained is obtained. The shape of the aspherical surface 210 to be inspected is obtained based on the phase distribution of the interference fringes later, and the shape of the aspherical surface 210 to be inspected can be measured without using the conventionally used null element. It is possible. In order to generate a wavefront shape close to the shape of the aspherical surface 210 to be tested by this active mirror 215, the null element is designed according to the shape of the aspherical surface 210 to be tested.
It is much easier than manufacturing, and the measurement can be efficiently performed even when measuring many kinds of aspherical shapes to be tested.

【0035】図5は第2の本発明に係る非球面形状の測
定装置の第1変形例を示している。この変形例に係る非
球面形状測定装置はトワイマングリーン型干渉系をベー
スにして構成したものである。この装置において光源3
11より射出された可干渉光はビーム拡大器312を介
して平行光にされされた後、偏光ビームスプリッタ31
3においてその半透膜313aを図の右方に透過する測
定光(P偏光成分)と同半透膜313aにおいて図の上
方に反射する参照光(S偏光成分)とに分割される。偏
光ビームスプリッタ313の半透膜313aを図の右方
に透過した測定光は1/4波長板314を図の右方に透
過した後集光レンズ315により集光され、被検非球面
20に至って図の左方に反射する。被検非球面310に
おいて反射した測定光は集光レンズ315及び1/4波
長板314を図の左方に透過して偏光ビームスプリッタ
313に至る。偏光ビームスプリッタ313の半透膜3
13aを図の右方に透過してから再び偏光ビームスプリ
ッタ313に戻ってきた測定光はその間に1/4波長板
314を2回透過しているのでS偏光になっており、し
たがって測定光が偏光ビームスプリッタ313に戻って
きた際にはその半透膜313aにおいて図の下方に反射
する。
FIG. 5 shows a first modification of the aspherical surface shape measuring apparatus according to the second invention. The aspherical surface shape measuring apparatus according to this modification is constructed based on a Twyman-Green type interference system. In this device, the light source 3
The coherent light beam emitted from the beam splitter 11 is collimated by the beam expander 312, and then the polarized beam splitter 31
In FIG. 3, the semi-transparent film 313a is split into measurement light (P-polarized light component) that is transmitted to the right in the figure and reference light (S-polarized light component) that is reflected upward in the semi-permeable film 313a. The measurement light transmitted through the semitransparent film 313a of the polarization beam splitter 313 to the right in the figure is transmitted through the quarter-wave plate 314 to the right in the figure, and then is condensed by the condenser lens 315, and then is aspherical surface 20 to be inspected. It will be reflected to the left of the figure. The measurement light reflected by the aspherical surface 310 to be measured passes through the condenser lens 315 and the quarter-wave plate 314 to the left in the drawing and reaches the polarization beam splitter 313. Semi-permeable film 3 of polarization beam splitter 313
13a is transmitted to the right side of the drawing and then returned to the polarization beam splitter 313 again, it is S-polarized because it is transmitted through the quarter wavelength plate 314 twice during that time, and therefore the measurement light is When it returns to the polarization beam splitter 313, it is reflected by the semi-permeable film 313a downward in the figure.

【0036】一方、偏光ビームスプリッタ313の半透
膜313aにおいて図の上方に反射した参照光は1/4
波長板316を図の上方に透過した後能動型ミラー31
7に至り、ここで反射した後1/4波長板316を図の
下方に透過して偏光ビームスプリッタ313に至る。偏
光ビームスプリッタ313の半透膜313aにおいて図
の上方に反射し、再び偏光ビームスプリッタ313に戻
ってきた参照光はその間に1/4波長板316を2回透
過しているのでP偏光になっており、したがって参照光
が偏光ビームスプリッタ313に戻ってきた際にはその
半透膜313aを図の下方に透過する。
On the other hand, the reference light reflected upward in the figure at the semi-transparent film 313a of the polarization beam splitter 313 is 1/4.
After passing through the wave plate 316 in the upper part of the figure, the active mirror 31
7, and after being reflected here, the light passes through the quarter-wave plate 316 downward in the figure and reaches the polarization beam splitter 313. The reference light reflected upward in the drawing by the semitransparent film 313a of the polarization beam splitter 313 and returning to the polarization beam splitter 313 again passes through the quarter-wave plate 316 twice during that time, and is therefore P-polarized. Therefore, when the reference light returns to the polarization beam splitter 313, it passes through the semipermeable membrane 313a downward in the figure.

【0037】被検非球面310において反射した測定光
と能動型ミラー317において反射した参照光とは偏光
ビームスプリッタ313の半透膜313aにおいて重ね
合わされた状態で図の下方に進み、イメージングレンズ
318により集光されてイメージセンサ319上に干渉
縞を形成する。イメージセンサ319には演算装置32
0が接続されており、この演算装置320は、イメージ
センサ319上に形成された干渉縞の位相分布に基づい
て被検非球面310の形状を算出する。なお、この形状
算出の詳細過程は上述の構成に係る装置の場合と同様で
ある。
The measurement light reflected by the aspherical surface 310 to be measured and the reference light reflected by the active mirror 317 are superposed on the semi-transparent film 313a of the polarization beam splitter 313, and proceed to the lower part of the drawing. The light is condensed to form interference fringes on the image sensor 319. The image sensor 319 has an arithmetic unit 32.
0 is connected, and the arithmetic unit 320 calculates the shape of the aspherical surface 310 to be tested based on the phase distribution of the interference fringes formed on the image sensor 319. The detailed process of this shape calculation is the same as in the case of the device having the above-described configuration.

【0038】本変形例に係る装置のように、測定光と干
渉する前の参照光を能動型ミラー25により反射させて
その波面形状を被検非球面310の形状にほぼ一致させ
る構成でも、上述の非球面形状測定装置(すなわち、被
検非球面に入射する前の測定光を能動型ミラーにより反
射させてその波面形状を被検非球面の形状にほぼ一致さ
せるようにした構成)と同様の効果を得ることができ
る。また、ここに詳しくは示さないが、測定光と参照光
の両方を同一の若しくは別々の能動型ミラーによりそれ
ぞれ反射させて各々の波面形状を被検非球面310の形
状にほぼ一致させるようにしてもよい。また、この変形
例はトワイマングリーン型干渉系をベースにした構成で
あったが、これはフィゾー側干渉系をベースにした構成
に替えることもできる。
Even in the configuration of the apparatus according to the present modification, the reference light before it interferes with the measurement light is reflected by the active mirror 25 so that its wavefront shape is substantially the same as the shape of the aspherical surface 310 to be tested. Aspherical surface shape measuring device (that is, the measurement light before entering the aspherical surface to be measured is reflected by an active mirror so that its wavefront shape is almost matched with the shape of the aspherical surface to be measured) The effect can be obtained. Although not shown in detail here, both the measurement light and the reference light are reflected by the same or different active mirrors so that the wavefront shapes of the respective measurement light beams and the reference light beams are substantially matched with the shape of the aspherical surface 310 to be measured. Good. Further, this modification has a configuration based on the Twyman-Green type interference system, but it can be replaced with a configuration based on the Fizeau side interference system.

【0039】図6は上記第2の本発明に係る非球面形状
測定装置の第2変形例であり、フィゾー型干渉系をベー
スにして構成したものである。この装置において、光源
(例えばレーザ光源)411から射出された可干渉光の
P偏光成分は偏光ビームスプリッタ412の半透膜41
2a及び1/4波長板413を図の上方に透過して円偏
光になった後、能動型ミラー414に至って図の右方に
反射する。この能動型ミラー414において反射した光
はフィゾーレンズ415を図の右方に透過して測定光と
なり、被検非球面410に入射する。被検非球面410
に入射した測定光は被検非球面410の表面において図
の左方に反射した後、フィゾーレンズ415を図の左方
に透過して能動型ミラー414に戻る。能動型ミラー4
14に戻った測定光は図の下方に反射し、1/4波長板
413を図の下方に透過してS偏光になり、偏光ビーム
スプリッタ412の半透膜412aにおいて図の左方に
反射する。ここで、フィゾーレンズ415の最終面であ
るフィゾー面415aの形状は、被検非球面410の近
軸曲率中心を基準にした被検非球面410と相似の非球
面形状である。なお、このフィゾー面415aは被検非
球面410に非常に近接した位置に設置される。
FIG. 6 shows a second modification of the aspherical surface shape measuring apparatus according to the second aspect of the present invention, which is constructed on the basis of a Fizeau type interference system. In this device, the P-polarized component of the coherent light emitted from the light source (for example, laser light source) 411 is the semi-transparent film 41 of the polarization beam splitter 412.
After passing through the 2a and 1/4 wave plate 413 upward in the figure to become circularly polarized light, it reaches the active mirror 414 and is reflected to the right in the figure. The light reflected by the active mirror 414 passes through the Fizeau lens 415 to the right in the figure to become measurement light, which is incident on the aspherical surface 410 to be tested. Aspheric surface to be tested 410
The measurement light incident on is reflected to the left in the figure on the surface of the aspherical surface 410 to be tested, then passes through the Fizeau lens 415 to the left in the figure and returns to the active mirror 414. Active mirror 4
The measurement light returned to 14 is reflected downward in the figure, transmitted through the quarter-wave plate 413 downward in the figure to be S-polarized, and reflected to the left side in the figure at the semitransparent film 412a of the polarization beam splitter 412. . Here, the shape of the Fizeau surface 415a, which is the final surface of the Fizeau lens 415, is an aspherical shape similar to the aspherical surface 410 to be tested with the paraxial curvature center of the aspherical surface 410 to be the reference. The Fizeau surface 415a is installed at a position very close to the aspherical surface 410 to be tested.

【0040】また、光源411から射出されて偏光ビー
ムスプリッタ412の半透膜412a及び1/4波長板
413を図の上方に透過し、能動型ミラー414におい
て図の右方に反射した光の一部はフィゾーレンズ415
の最終面であるフィゾー面415aを基準参照面として
図の左方に反射して参照光となり、能動型ミラー414
に戻る。能動型ミラー414に戻った参照光は図の下方
に反射し、1/4波長板413を図の下方に透過した後
偏光ビームスプリッタ412に入射し、その半透膜41
2aにおいて図の左方に反射する。
Also, one of the light emitted from the light source 411, transmitted through the semitransparent film 412a of the polarization beam splitter 412 and the quarter wavelength plate 413 in the upper part of the figure, and reflected by the active mirror 414 to the right side of the figure. Fizeau lens 415
Of the Fizeau surface 415a, which is the final surface of the mirror, is reflected to the left in the drawing to become reference light, and the active mirror 414
Return to. The reference light returning to the active mirror 414 is reflected downward in the figure, passes through the quarter wavelength plate 413 downward in the figure, and then enters the polarization beam splitter 412, and the semitransparent film 41 thereof is formed.
At 2a, it reflects to the left in the figure.

【0041】被検非球面410において反射した測定光
と基準参照面であるフィゾー面415aにおいて反射し
た参照光とは偏光ビームスプリッタ412の半透膜41
2aにおいて重ね合わされた状態で図の左方に進みし、
イメージングレンズ416により集光されてイメージセ
ンサ417上に干渉縞を形成する。イメージセンサ41
7には演算装置418が接続されており、この演算装置
418はイメージセンサ417上に形成された干渉縞の
位相分布に基づいて被検非球面410の形状を算出す
る。
The measurement light reflected on the aspherical surface 410 to be measured and the reference light reflected on the Fizeau surface 415a which is the reference surface are the semi-transparent film 41 of the polarization beam splitter 412.
Proceed to the left in the figure in the state of overlapping in 2a,
It is condensed by the imaging lens 416 to form an interference fringe on the image sensor 417. Image sensor 41
An arithmetic unit 418 is connected to 7 and the arithmetic unit 418 calculates the shape of the aspherical surface 410 to be inspected based on the phase distribution of the interference fringes formed on the image sensor 417.

【0042】本非球面形状測定装置を用いて被検非球面
410の形状を測定するには、先ず、能動型ミラー41
4において反射した光の一部(測定光)がフィゾー面4
15aを垂直に透過するようにする。これには演算装置
418より能動型ミラー414の各ミラー要素の駆動素
子を動作させて能動型ミラー414において反射した光
の波面形状がフィゾー面415aの形状と一致するよう
に能動型ミラー414の形状パターンを設定するととも
に、併せてフィゾーレンズ415を構成する各レンズ間
隔の調整を行う。
In order to measure the shape of the aspherical surface 410 to be tested using this aspherical surface shape measuring apparatus, first, the active mirror 41 is used.
Part of the light reflected at 4 (measurement light) is the Fizeau surface 4
15a is transmitted vertically. For this, the driving device of each mirror element of the active mirror 414 is operated by the arithmetic unit 418 so that the wavefront shape of the light reflected by the active mirror 414 matches the shape of the Fizeau surface 415a. The pattern is set, and at the same time, the distance between the lenses forming the Fizeau lens 415 is adjusted.

【0043】このように能動型ミラー414において反
射した光の波面形状がフィゾー面415aの形状と一致
するようにするには、先ずフィゾー面415aと被検非
球面410との間に光を遮断する光遮断部材を挿入して
被検非球面410に光が当たらないようにする(被検非
球面410を本測定装置上より取り外してもよい)。そ
して、光源411より射出した光の偏光状態を調整して
その光の一部(S偏光成分)が偏光ビームスプリッタ4
12の半透膜412aにおいて図の右方に反射するよう
にする。偏光ビームスプリッタ412の半透膜412a
において反射した光は1/4波長板419を図の右方に
透過した後基準ミラー420に至り、ここで図の左方に
反射した後1/4波長板419及び偏光ビームスプリッ
タ412の半透膜412aを図の左方に透過する。
In order for the wavefront shape of the light reflected by the active mirror 414 to match the shape of the Fizeau surface 415a, the light is first blocked between the Fizeau surface 415a and the aspherical surface 410 to be tested. A light blocking member is inserted so that light does not strike the aspherical surface 410 to be tested (the aspherical surface 410 to be tested may be removed from the measurement device). Then, the polarization state of the light emitted from the light source 411 is adjusted so that part of the light (S-polarized component) is polarized by the polarization beam splitter 4.
Twelve semi-permeable membranes 412a are reflected to the right in the figure. Semi-permeable film 412a of the polarization beam splitter 412
The light reflected at is transmitted through the quarter-wave plate 419 to the right in the figure, and then reaches the reference mirror 420, where it is reflected to the left in the figure, and then is transmitted through the quarter-wave plate 419 and the polarization beam splitter 412. The membrane 412a penetrates to the left in the figure.

【0044】また、光源411から射出された光の他の
一部(P偏光成分)は偏光ビームスプリッタ412の半
透膜412a及び1/4波長板413を図の上方に透過
する。この光は能動型ミラー414において図の右方に
反射してフィゾーレンズ415のフィゾー面415aに
至り、ここで図の左方に反射した後能動型ミラー415
において図の下方に反射する。そして1/4波長板41
3を図の下方に透過して偏光ビームスプリッタ412の
半透膜412aにおいて図の左方に反射する。これら両
光は重ね合わせられた状態で、偏光ビームスプリッタ4
12の左方に挿入設置した検光子421を図の左方に透
過し、イメージングレンズ416により集光されてイメ
ージセンサ417上に干渉縞を形成させる。
The other part of the light emitted from the light source 411 (P-polarized component) passes through the semitransparent film 412a of the polarization beam splitter 412 and the quarter wavelength plate 413 upward in the figure. This light is reflected by the active mirror 414 to the right in the figure and reaches the Fizeau surface 415a of the Fizeau lens 415, where it is reflected to the left in the figure and then the active mirror 415.
At the bottom of FIG. And a quarter wave plate 41
3 is transmitted to the lower side of the figure and is reflected to the left side of the figure at the semi-permeable film 412a of the polarization beam splitter 412. Both of these lights are superposed on each other, and the polarization beam splitter 4
The analyzer 421 inserted and installed on the left side of 12 is transmitted to the left side of the drawing and is condensed by the imaging lens 416 to form an interference fringe on the image sensor 417.

【0045】イメージセンサ417上に干渉縞が形成さ
れたらこの干渉縞の本数が最も少なくなるように能動型
ミラー414の形状パターンを調整する。これにより能
動型ミラー414を介して得られる光の波面形状はフィ
ゾー面415aの形状とほぼ一致した状態となり、フィ
ゾー面415aを垂直に透過するようになる。
When interference fringes are formed on the image sensor 417, the shape pattern of the active mirror 414 is adjusted so that the number of interference fringes is minimized. As a result, the wavefront shape of the light obtained through the active mirror 414 is in a state substantially matching the shape of the Fizeau surface 415a, and is transmitted vertically through the Fizeau surface 415a.

【0046】このような準備が終わったら本測定に入
る。上述のように能動型ミラー414の形状パターンが
設定されたら光源411より光を射出させてイメージセ
ンサ417上に干渉縞を形成させる。なお、この本測定
ではフィゾー面415aと被検非球面410との間に挿
入されていた光遮断部材を取り除いて(或いは被検非球
面410を本装置上に載せて)被検非球面30に光が当
たるようにするとともに、1/4波長板419と基準ミ
ラー420との間に光を遮断する光遮断部材を挿入する
(或いは1/4波長板419及び基準ミラー420を取
り除く)。更には偏光ビームスプリッタ412の左方に
挿入設置された前述の検光子421を取り除いておくこ
とが好ましい(これにより光量が増大する)。
When such preparations are completed, the actual measurement is started. When the shape pattern of the active mirror 414 is set as described above, light is emitted from the light source 411 to form interference fringes on the image sensor 417. In this main measurement, the light blocking member inserted between the Fizeau surface 415a and the aspherical surface 410 to be inspected is removed (or the aspherical surface to be inspected 410 is placed on the apparatus) and the aspherical surface 30 to be inspected is removed. A light blocking member that blocks light is inserted between the quarter wavelength plate 419 and the reference mirror 420 while the light is shined on (or the quarter wavelength plate 419 and the reference mirror 420 are removed). Further, it is preferable to remove the aforementioned analyzer 421 inserted and installed on the left side of the polarization beam splitter 412 (this increases the light amount).

【0047】イメージセンサ417上に干渉縞が形成さ
れたら、演算装置418はこの干渉縞より得られる情報
に基づいて被検非球面410の形状を求める。ここでは
干渉縞は基準参照面、すなわちフィゾー面415aと被
検非球面410との差を示す情報として得られているた
め、この差の情報を求めて既知であるフィゾー面415
aの形状データに付加することにより目的とする被検非
球面410の形状を得ることができる。
When the interference fringes are formed on the image sensor 417, the arithmetic unit 418 determines the shape of the aspherical surface 410 to be tested based on the information obtained from the interference fringes. Here, the interference fringes are obtained as information indicating the difference between the reference reference surface, that is, the Fizeau surface 415a and the aspherical surface 410 to be inspected. Therefore, information on this difference is obtained and the known Fizeau surface 415 is obtained.
The target shape of the aspherical surface 410 to be tested can be obtained by adding it to the shape data of a.

【0048】本第2変形例に係る非球面形状測定装置を
用いた非球面形状の測定はこのような手順により行う
が、フィゾーレンズ415を光軸方向にシフトして(フ
ィゾー面415aと被検非球面410との間の距離を変
化させて)フリンジスキャンを行い、干渉縞の位相分布
の変化に基づいて被検非球面410の形状を求める方法
も効果的である。このような方法によれば、ノイズの影
響が除かれた最良の位相データが得られるので精度良い
形状測定をすることができる。なお、本測定装置を用い
て異なる非球面形状を測定するときには、フィゾー面4
15aを有しているフィゾーレンズ415の最終レンズ
を被検非球面410の形状とほぼ同じ形状のフィゾー面
を有するレンズに交換するようにする。
The measurement of the aspherical surface shape using the aspherical surface shape measuring apparatus according to the second modification is performed by such a procedure, but the Fizeau lens 415 is shifted in the optical axis direction (the Fizeau surface 415a and the inspection target). It is also effective to perform a fringe scan (changing the distance from the aspherical surface 410) and obtain the shape of the aspherical surface 410 to be tested based on the change in the phase distribution of the interference fringes. According to such a method, the best phase data in which the influence of noise is removed can be obtained, so that the shape can be accurately measured. When measuring different aspherical shapes using this measuring device, the Fizeau surface 4
The final lens of the Fizeau lens 415 having 15a is replaced with a lens having a Fizeau surface having substantially the same shape as the shape of the aspherical surface 410 to be tested.

【0049】第2の本発明に係る非球面形状測定装置の
第2変形例についての説明は以上であるが、同様の構成
を前述の第1の本発明に係る非球面形状装置にも適用す
ることができる。この場合、上記変形例における能動型
ミラーをパターン可変回折格子に替え、パターン可変回
折格子において回折させた光の一部(測定光)がフィゾ
ー面415aを垂直に透過するようにすればよい。
The second modification of the aspherical surface shape measuring apparatus according to the second aspect of the present invention has been described above, but the same configuration is applied to the aspherical surface shape measuring apparatus according to the first aspect of the present invention. be able to. In this case, the active mirror in the above modification may be replaced with a variable pattern diffraction grating so that part of the light (measurement light) diffracted by the variable pattern diffraction grating passes vertically through the Fizeau surface 415a.

【0050】これまで本発明の好ましい実施形態につい
て説明してきたが、本発明の範囲は上述の実施形態に示
したものに限定されない。例えば、上述の実施形態にお
いて用いられた偏光ビームスプリッタは全てハーフミラ
ーに替えることができる。また、上述の実施形態におい
て示した本発明に係る非球面形状測定装置(及び非球面
形状測定方法)は全てフィゾーレンズを用いたフィゾー
型干渉計或いはトワイマングリーン型干渉系に応用した
ものであったが、これらは一例に過ぎず、他の構成の干
渉計、例えばマイケルソン型干渉計やマハツェンダー型
干渉系等にも応用することができる。
Although the preferred embodiments of the present invention have been described above, the scope of the present invention is not limited to those shown in the above embodiments. For example, all the polarization beam splitters used in the above-described embodiments can be replaced with half mirrors. Further, the aspherical surface shape measuring apparatus (and the aspherical surface shape measuring method) according to the present invention shown in the above embodiments are all applied to the Fizeau interferometer using the Fizeau lens or the Twyman-Green interferometer. However, these are merely examples, and the present invention can be applied to interferometers having other configurations, such as Michelson type interferometers and Maha-Zehnder type interferometers.

【0051】[0051]

【発明の効果】以上説明したように、第1の本発明に係
る非球面形状の測定装置及び方法においては、被検非球
面に入射する前の測定光、及び測定光と干渉する前の参
照光の少なくとも一方をパターン回折格子により回折さ
せてその波面形状を被検非球面の形状にほぼ一致させる
とともに、予め記憶されたパターン可変回折格子の格子
パターンと回折の前後における光の波面形状の変化量と
の関係を用いて干渉縞の位相分布を補正し、これにより
得られた補正後の干渉縞の位相分布に基づいて被検非球
面の形状を求めるようになっており、従来用いられてい
たヌル素子を必要とすることなく被検非球面の形状測定
を行うことが可能である。このパターン回折格子により
被検非球面の形状に近い波面形状を生成することは、ヌ
ル素子を被検非球面の形状に応じて設計・製造すること
よりも遙かに容易であり、幾種類もの被検非球面形状を
測定する場合でもその測定を効率よく行うことができ
る。ここで、被検非球面の形状が未知である場合には、
干渉縞の本数が最も少なくなるようにパターン可変回折
格子の格子パターンを設定すればよい。
As described above, in the aspherical surface shape measuring apparatus and method according to the first aspect of the present invention, the measuring light before entering the aspherical surface to be inspected and the reference before interfering with the measuring light. At least one of the light is diffracted by the pattern diffraction grating to make its wavefront shape substantially match the shape of the aspheric surface to be measured, and the pre-stored grating pattern of the variable pattern diffraction grating and the change in the wavefront shape of the light before and after the diffraction. The phase distribution of the interference fringes is corrected using the relationship with the amount, and the shape of the aspherical surface to be inspected is obtained based on the corrected phase distribution of the interference fringes, which is conventionally used. It is possible to measure the shape of the aspheric surface to be tested without requiring a null element. Generating a wavefront shape close to the shape of the aspheric surface to be inspected by this pattern diffraction grating is much easier than designing and manufacturing the null element according to the shape of the aspheric surface to be inspected. Even when measuring a test aspherical surface shape, the measurement can be performed efficiently. Here, when the shape of the aspheric surface to be tested is unknown,
The grating pattern of the variable pattern diffraction grating may be set so that the number of interference fringes is minimized.

【0052】また、第2の本発明に係る非球面形状の測
定装置及び方法においては、被検非球面に入射する前の
測定光、及び測定光と干渉する前の参照光の少なくとも
一方を能動型ミラーにより反射させてその波面形状を被
検非球面の形状にほぼ一致させるとともに、予め記憶さ
れた能動型ミラーの形状パターンと反射の前後における
光の波面形状の変化量との関係を用いて干渉縞の位相分
布を補正し、これにより得られた補正後の干渉縞の位相
分布に基づいて被検非球面の形状を求めるようになって
おり、従来用いられていたヌル素子を必要とすることな
く被検非球面の形状測定を行うことが可能である。この
能動型ミラーにより被検非球面の形状に近い波面形状を
生成することは、ヌル素子を被検非球面の形状に応じて
設計・製造することよりも遙かに容易であり、幾種類も
の被検非球面形状を測定する場合でもその測定を効率よ
く行うことができる。ここで、被検非球面の形状が未知
である場合には、干渉縞の本数が最も少なくなるように
能動型ミラーの全体形を設定すればよい。
Further, in the aspherical surface shape measuring apparatus and method according to the second aspect of the present invention, at least one of the measuring light before entering the aspherical surface to be inspected and the reference light before interfering with the measuring light is activated. By using a relationship between the shape pattern of the active mirror stored in advance and the amount of change in the wavefront shape of the light before and after reflection, while reflecting the wavefront shape by the mirror The phase distribution of the interference fringes is corrected, and the shape of the aspherical surface under test is obtained based on the corrected phase distribution of the interference fringes, which requires the conventionally used null element. It is possible to measure the shape of the aspheric surface to be inspected without the need. Generating a wavefront shape close to the shape of the aspherical surface to be inspected by this active mirror is much easier than designing and manufacturing a null element according to the shape of the aspherical surface to be inspected. Even when measuring a test aspherical surface shape, the measurement can be performed efficiently. Here, when the shape of the aspherical surface to be tested is unknown, the overall shape of the active mirror may be set so that the number of interference fringes is minimized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の本発明に係る非球面形状の測定装置の構
成例を示す図である。
FIG. 1 is a diagram showing a configuration example of an aspherical surface shape measuring apparatus according to a first aspect of the present invention.

【図2】パターン可変回折格子におけるパターンの一例
を示す図である。
FIG. 2 is a diagram showing an example of a pattern in a variable pattern diffraction grating.

【図3】上記第1の本発明に係る非球面形状の測定装置
の変形例を示す図である。
FIG. 3 is a diagram showing a modification of the aspherical surface shape measuring apparatus according to the first aspect of the present invention.

【図4】第2の本発明に係る非球面形状の測定装置の構
成例を示す図である。
FIG. 4 is a diagram showing a configuration example of an aspherical surface shape measuring device according to a second aspect of the present invention.

【図5】上記第2の本発明に係る非球面形状の測定装置
の第1変形例を示す図である。
FIG. 5 is a diagram showing a first modification of the aspherical surface shape measuring apparatus according to the second invention.

【図6】上記第2の本発明に係る非球面形状の測定装置
の第2変形例を示す図である。
FIG. 6 is a diagram showing a second modification of the aspherical surface shape measuring apparatus according to the second invention.

【符号の説明】[Explanation of symbols]

10 被検非球面 11 光源 12 偏光ビームスプリッタ 12a 半透膜 13 1/4波長板 14 フィゾーレンズ 14a フィゾー面 15 パターン可変回折格子 16 イメージングレンズ 17 イメージセンサ 18 演算装置 10 Inspected aspherical surface 11 light source 12 Polarizing beam splitter 12a semipermeable membrane 13 1/4 wave plate 14 Fizeau lens 14a Fizeau surface 15 variable pattern diffraction grating 16 Imaging lens 17 Image sensor 18 arithmetic unit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F064 AA09 BB04 EE02 EE05 FF01 GG14 GG23 GG44 HH03 JJ01 2F065 AA54 BB05 BB22 CC22 DD03 DD06 FF51 GG04 JJ03 JJ26 LL10 LL12 LL19 LL36 LL37 LL42 QQ28 2G086 FF01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 2F064 AA09 BB04 EE02 EE05 FF01                       GG14 GG23 GG44 HH03 JJ01                 2F065 AA54 BB05 BB22 CC22 DD03                       DD06 FF51 GG04 JJ03 JJ26                       LL10 LL12 LL19 LL36 LL37                       LL42 QQ28                 2G086 FF01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 被検非球面において反射若しくは前記被
検非球面を透過した測定光を参照光と干渉させて干渉縞
を形成させる干渉光学系と、前記干渉光学系において得
られた前記干渉縞の位相分布に基づいて前記被検非球面
の形状を算出する演算手段とを有して構成される非球面
形状測定装置であって、 前記被検非球面に入射する前の前記測定光及び前記測定
光と干渉する前の前記参照光の少なくとも一方を回折さ
せてその波面形状を前記被検非球面の形状にほぼ一致さ
せるパターン可変回折格子を備え、 前記演算手段は、予め記憶された前記パターン可変回折
格子の格子パターンと前記回折の前後における光の波面
形状の変化量との関係を用いて前記干渉縞の位相分布を
補正し、これにより得られた補正後の干渉縞の位相分布
に基づいて前記被検非球面の形状を求めることを特徴と
する非球面形状測定装置。
1. An interference optical system for forming interference fringes by causing measurement light reflected by an aspherical surface to be inspected or transmitted through the aspherical surface to be inspected to interfere with reference light, and the interference fringes obtained in the interference optical system. An aspherical surface shape measuring device configured to include a calculation unit that calculates the shape of the aspherical surface to be inspected based on the phase distribution of the measurement light and the measurement light before entering the aspherical surface to be inspected. A pattern variable diffraction grating that diffracts at least one of the reference light before interfering with the measurement light and substantially matches the wavefront shape thereof with the shape of the aspherical surface to be inspected is provided, and the arithmetic means is the previously stored pattern. The phase distribution of the interference fringes is corrected using the relationship between the grating pattern of the variable diffraction grating and the amount of change in the wavefront shape of light before and after the diffraction, and based on the phase distribution of the corrected interference fringes thus obtained. Before Aspheric surface measuring apparatus and obtaining a test aspherical surface.
【請求項2】 被検非球面において反射若しくは前記被
検非球面を透過した測定光を参照光と干渉させて得られ
る干渉縞の位相分布に基づいて前記被検非球面の形状を
求める非球面形状測定方法であって、 前記被検非球面に入射する前の前記測定光及び前記測定
光と干渉する前の前記参照光の少なくとも一方をパター
ン可変回折格子により回折させてその波面形状を前記被
検非球面の形状にほぼ一致させるとともに、予め記憶さ
れた前記パターン可変回折格子の格子パターンと前記回
折の前後における光の波面形状の変化量との関係を用い
て前記干渉縞の位相分布を補正し、これにより得られた
補正後の干渉縞の位相分布に基づいて前記被検非球面の
形状を求めることを特徴とする非球面形状測定方法。
2. An aspherical surface for obtaining the shape of the aspherical surface to be inspected, based on a phase distribution of interference fringes obtained by interfering the measurement light reflected on the aspherical surface to be inspected or transmitted through the aspherical surface to be inspected with reference light. A shape measuring method, wherein at least one of the measuring light before entering the aspherical surface to be tested and the reference light before interfering with the measuring light is diffracted by a pattern variable diffraction grating to obtain the wavefront shape thereof. The phase distribution of the interference fringes is corrected using the relationship between the previously stored grating pattern of the variable pattern diffraction grating and the amount of change in the wavefront shape of light before and after the diffraction, while substantially matching the shape of the inspection aspherical surface. Then, the aspherical surface shape measuring method is characterized in that the shape of the aspherical surface under test is obtained based on the phase distribution of the corrected interference fringes thus obtained.
【請求項3】 前記干渉縞の本数が最も少なくなるよう
に前記パターン可変回折格子の格子パターンが設定され
ることを特徴とする請求項2記載の非球面形状測定方
法。
3. The aspherical surface shape measuring method according to claim 2, wherein the grating pattern of the variable pattern diffraction grating is set so that the number of the interference fringes is minimized.
【請求項4】 被検非球面において反射若しくは前記被
検非球面を透過した測定光を参照光と干渉させて干渉縞
を形成させる干渉光学系と、前記干渉光学系において得
られた前記干渉縞の位相分布に基づいて前記被検非球面
の形状を算出する演算手段とを有して構成される非球面
形状測定装置であって、 前記被検非球面に入射する前の前記測定光及び前記測定
光と干渉する前の前記参照光の少なくとも一方を反射さ
せてその波面形状を前記被検非球面の形状にほぼ一致さ
せる能動型ミラーを備え、 前記演算手段は、予め記憶された前記能動型ミラーの形
状パターンと前記反射の前後における光の波面形状の変
化量との関係を用いて前記干渉縞の位相分布を補正し、
これにより得られた補正後の干渉縞の位相分布に基づい
て前記被検非球面の形状を求めることを特徴とする非球
面形状測定装置。
4. An interference optical system that forms interference fringes by interfering measurement light reflected by the aspherical surface to be measured or transmitted through the aspherical surface to be tested with reference light, and the interference fringes obtained in the interference optical system. An aspherical surface shape measuring device configured to include a calculation unit that calculates the shape of the aspherical surface to be inspected based on the phase distribution of the measurement light and the measurement light before entering the aspherical surface to be inspected. An active-type mirror that reflects at least one of the reference light before it interferes with the measurement light and substantially matches the wavefront shape thereof with the shape of the aspherical surface under test is provided, and the arithmetic means is the previously stored active-type mirror. Correct the phase distribution of the interference fringes using the relationship between the shape pattern of the mirror and the amount of change in the wavefront shape of the light before and after the reflection,
An aspherical surface shape measuring device, characterized in that the shape of the aspherical surface under test is obtained based on the phase distribution of the corrected interference fringes thus obtained.
【請求項5】 被検非球面において反射若しくは前記被
検非球面を透過した測定光を参照光と干渉させて得られ
る干渉縞の位相分布に基づいて前記被検非球面の形状を
求める非球面形状測定方法であって、 前記被検非球面に入射する前の前記測定光及び前記測定
光と干渉する前の前記参照光の少なくとも一方を能動型
ミラーにより反射させてその波面形状を前記被検非球面
の形状にほぼ一致させるとともに、予め記憶された前記
能動型ミラーの形状パターンと前記反射の前後における
光の波面形状の変化量との関係を用いて前記干渉縞の位
相分布を補正し、これにより得られた補正後の干渉縞の
位相分布に基づいて前記被検非球面の形状を求めること
を特徴とする非球面形状測定方法。
5. An aspherical surface for obtaining the shape of the aspherical surface to be inspected, based on a phase distribution of interference fringes obtained by interfering the measuring light reflected on the aspherical surface to be inspected or transmitted through the aspherical surface to be inspected with reference light. A shape measuring method, wherein at least one of the measuring light before entering the aspherical surface to be measured and the reference light before interfering with the measuring light is reflected by an active mirror to measure the wavefront shape thereof. While substantially matching the shape of the aspherical surface, the phase distribution of the interference fringes is corrected using the relationship between the shape pattern of the active mirror stored in advance and the amount of change in the wavefront shape of light before and after the reflection, An aspherical surface shape measuring method characterized in that the shape of the aspherical surface under test is obtained based on the phase distribution of the corrected interference fringes obtained in this way.
【請求項6】 前記干渉縞の本数が最も少なくなるよう
に前記能動型ミラーの形状パターンが設定されることを
特徴とする請求項5記載の非球面形状測定方法。
6. The aspherical surface shape measuring method according to claim 5, wherein the shape pattern of the active mirror is set so as to minimize the number of the interference fringes.
JP2001277411A 2001-09-13 2001-09-13 Measuring device and method for non-spherical surface shape Pending JP2003083726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001277411A JP2003083726A (en) 2001-09-13 2001-09-13 Measuring device and method for non-spherical surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001277411A JP2003083726A (en) 2001-09-13 2001-09-13 Measuring device and method for non-spherical surface shape

Publications (1)

Publication Number Publication Date
JP2003083726A true JP2003083726A (en) 2003-03-19

Family

ID=19101939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001277411A Pending JP2003083726A (en) 2001-09-13 2001-09-13 Measuring device and method for non-spherical surface shape

Country Status (1)

Country Link
JP (1) JP2003083726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145419A (en) * 2006-10-02 2008-06-26 Asml Holding Nv Diffractive null corrector using spatial light modulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145419A (en) * 2006-10-02 2008-06-26 Asml Holding Nv Diffractive null corrector using spatial light modulator
JP4700037B2 (en) * 2006-10-02 2011-06-15 エーエスエムエル ホールディング エヌ.ブイ. System and method for testing optical surfaces using a spatial light modulator

Similar Documents

Publication Publication Date Title
EP1682851B1 (en) Reconfigureable interferometer system
JP5882674B2 (en) Multi-wavelength interferometer, measuring apparatus and measuring method
JP3237309B2 (en) System error measuring method and shape measuring device using the same
JPH0712535A (en) Interferometer
KR102426103B1 (en) An Improved Holographic Reconstruction Apparatus and Method
JP2000097616A (en) Interferometer
JP5483993B2 (en) Interferometer
US20050179911A1 (en) Aspheric diffractive reference for interferometric lens metrology
KR20080114581A (en) Measurement apparatus, exposure apparatus, and device manufacturing method
JP2003042731A (en) Apparatus and method for measurement of shape
JPH1163946A (en) Methods for measuring shape and manufacturing high-precision lens
JP4265404B2 (en) Point diffraction type interference measurement method and point diffraction type interference measurement apparatus
JP2022553926A (en) METHOD AND APPARATUS FOR EVALUATING SURFACE PROFILE OF OPTICAL ELEMENT
EP2743634A1 (en) Interference measuring apparatus and interference measuring method
JP2007298281A (en) Measuring method and device of surface shape of specimen
JPH08313207A (en) Transmission type interferometer
JPH10160582A (en) Interferometer for measuring transmitted wave front
JP2003083726A (en) Measuring device and method for non-spherical surface shape
US20110134429A1 (en) Birefringence measuring device and birefringence measuring method
KR101078197B1 (en) Polarized point-diffraction interferometer for aligning optical system
JP5448494B2 (en) Polarization measuring apparatus, exposure apparatus, and device manufacturing method
JP3327998B2 (en) Shape measuring method and device
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
JP2001174233A (en) Interferometer for measuring surface shape, etc., and measuring method
JPH116784A (en) Device and method for measuring shape of aspherical surface