JP2003082491A - Fine electroforming die, and manufacturing method thereof - Google Patents

Fine electroforming die, and manufacturing method thereof

Info

Publication number
JP2003082491A
JP2003082491A JP2001329407A JP2001329407A JP2003082491A JP 2003082491 A JP2003082491 A JP 2003082491A JP 2001329407 A JP2001329407 A JP 2001329407A JP 2001329407 A JP2001329407 A JP 2001329407A JP 2003082491 A JP2003082491 A JP 2003082491A
Authority
JP
Japan
Prior art keywords
fine
insulating layer
electroforming
resin composition
microelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001329407A
Other languages
Japanese (ja)
Inventor
Koji Nitta
耕司 新田
Shinji Inasawa
信二 稲澤
Akihisa Hosoe
晃久 細江
Isao Okuyama
勲 奥山
Masashi Okamoto
雅至 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2001329407A priority Critical patent/JP2003082491A/en
Publication of JP2003082491A publication Critical patent/JP2003082491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fine electroforming die which can be used in an excellent manner without degradation for a long time because very fine metal products can be manufactured by using an electroforming method with excellent reproducibility of the dimension and the shape and with good accuracy, and the manufactured metal products can be easily peeled, and an efficiency manufacturing method of the fine electroforming die. SOLUTION: In the very fine electroforming die, 1 the protrusion D1 of a tip surface 11a of a very small electrode part 11 having the flat shape corresponding to the shape of the metal product manufactured by electroforming from the surface 12a of an insulating layer 12 constituting the surface of the die is set to be in a range of 0.1 to 2 μm. In the manufacturing method of the die 1, a resin composition with a flowability forming a basis of an insulating layer is fed to the surface of the base body with the very small electrode part disposed thereon, and the resin composition is applied spread to the surface of the base while filling the resin composition in a filling space between small electrodes by moving a blade in an abutted manner on a tip surface part of the fine electrode part, and the resin composition is hardened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電鋳により、所定
の微細形状を有する微小電極部の先端面に金属薄膜を形
成したのちはく離することで、上記先端面の形状に対応
した微細形状を有する金属製品を製造するための微細電
鋳用金型と、当該金型の製造方法とに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms a fine shape corresponding to the shape of the above-mentioned tip surface by forming a thin metal film on the tip surface of a fine electrode portion having a predetermined fine shape by electroforming and then peeling it off. The present invention relates to a fine electroforming die for producing a metal product and a method for producing the die.

【0002】[0002]

【従来の技術】電鋳法は、超精密加工ができる、基材と
一体化して金属製品化できる、精密な模写ができるなど
の利点があり、例えばプリント配線基板用銅箔、電気カ
ミソリの外刃、精密スクリーン、時計の文字盤、コンパ
クトディスクの金型など、様々な金属製品に適用されて
いる。特に近年の、電子機器の小型化に伴う内部部品の
微小化に代表されるように、微細な、特にその寸法がミ
クロンオーダーの電鋳加工に対する要求が高まってい
る。
2. Description of the Related Art The electroforming method has the advantages that it can be processed with ultra-precision, that it can be integrated with a base material to produce a metal product, and that it can be copied accurately. For example, copper foil for printed wiring boards and electric razors can be used. It is applied to various metal products such as blades, precision screens, clock faces, and compact disc molds. Particularly, as typified by the miniaturization of internal parts accompanying the miniaturization of electronic devices in recent years, there is an increasing demand for fine electroforming, particularly the dimensions of which are in the micron order.

【0003】電鋳においては、型の上に金属薄膜をめっ
きして、型と一体化した金属製品を製造する場合と、め
っきした金属薄膜を型からはく離して金属製品を得る場
合とがある。現在は、このうち前者の、型と一体化した
金属製品を製造する場合が一般的であるが、今後、後者
の金属製品に対する需要が増加することが期待される。
しかし後者の金属製品を製造する場合は、金属薄膜の、
型からのはく離が容易でないという問題がある。その原
因は、型の表面と金属薄膜との間に、いわゆるアンカー
効果が生じることにある。そして、上記のようにはく離
が容易でないと、金属製品が微小構造を有するがゆえ
に、はく離時の応力によって変形したり破損したりしや
すいことから、金属製品の歩留まりが著しく低下すると
いう問題を生じる。また、強い力で無理にはく離しよう
とすると型にも無理な力が加わることになるため、型の
劣化も速くなる。
In electroforming, there are a case where a metal thin film is plated on a mold to manufacture a metal product integrated with the mold, and a case where the plated metal thin film is peeled from the mold to obtain a metal product. . At present, it is common to manufacture the former metal product integrated with the mold, but it is expected that demand for the latter metal product will increase in the future.
However, when manufacturing the latter metal products,
There is a problem that peeling from the mold is not easy. The cause is that a so-called anchor effect occurs between the surface of the mold and the metal thin film. And, if the peeling is not easy as described above, since the metal product has a microstructure, it is likely to be deformed or damaged by the stress at the time of peeling, which causes a problem that the yield of the metal product is significantly reduced. . Moreover, if the mold is forcibly peeled off with a strong force, the mold is also subjected to an excessive force, so that the mold deteriorates quickly.

【0004】そこで発明者は、金属薄膜に逆極性の電圧
を印加して陽極電解を施すことによって、型からの離型
を容易にすることを検討した。しかし陽極電解は、型の
金属が腐食するのを増長させるため、これを繰り返し行
うと、却って金型の劣化を促進するという問題を生じ
る。本発明の目的は、特に微細な金属製品を、電鋳法に
より、寸法や形状の再現性良く高精度に製造でき、しか
も製造した金属製品を容易にはく離できるため、長期間
にわたって、劣化を生じることなく良好に使用すること
のできる微細電鋳用金型と、当該微細電鋳用金型の効率
的な製造方法とを提供することにある。
Therefore, the inventor has studied to facilitate release from the mold by applying a reverse polarity voltage to the metal thin film and subjecting it to anodic electrolysis. However, since anodic electrolysis increases corrosion of the metal of the mold, repeating this process causes a problem of promoting deterioration of the mold. The object of the present invention is to produce a particularly fine metal product by electroforming with high reproducibility of dimensions and shape and with high precision, and since the produced metal product can be easily peeled off, deterioration occurs over a long period of time. It is an object of the present invention to provide a fine electroforming mold that can be used satisfactorily without use, and an efficient manufacturing method of the fine electroforming mold.

【0005】[0005]

【課題を解決するための手段および発明の効果】請求項
1記載の発明は、製造する金属製品の形状に対応した平
面形状を有する先端面を備えた微小電極部の、上記先端
面を、金型の表面を構成する絶縁層の表面に露出させて
配置した微細電鋳用金型であって、微小電極部の先端面
を、絶縁層の表面から0.1〜2μmの範囲で突出させ
たことを特徴とする微細電鋳用金型である。
According to a first aspect of the present invention, the tip surface of a microelectrode portion having a tip surface having a planar shape corresponding to the shape of a metal product to be manufactured is A fine electroforming mold, which is arranged so as to be exposed on the surface of an insulating layer that constitutes the surface of the mold, wherein the tip end surface of the microelectrode portion is projected from the surface of the insulating layer in the range of 0.1 to 2 μm. This is a fine electroforming mold characterized by the above.

【0006】請求項1の構成によれば、微小電極部の先
端面の、絶縁層の表面殻の突出量を、上記のように2μ
m以下としているため、微小電極部の先端面に形成され
る、金属製品となる金属薄膜との間に強いアンカー効果
が生じるのを防止することができる。これに対し、微小
電極部の先端面の突出量を2μmを超える範囲とした場
合には、金属薄膜が、そのエッジ部において、微小電極
部の先端面から側面に回りこむように成長するためアン
カー効果が助長され、はく離が困難となる。
According to the structure of claim 1, the protrusion amount of the surface shell of the insulating layer on the tip surface of the microelectrode portion is 2 μm as described above.
Since the thickness is m or less, it is possible to prevent a strong anchoring effect from being formed between the thin film which is a metal product and is formed on the tip surface of the microelectrode portion. On the other hand, when the amount of protrusion of the tip surface of the microelectrode portion is set to a range exceeding 2 μm, the metal thin film grows at the edge portion so as to wrap around from the tip surface of the microelectrode portion to the side surface, and thus the anchor effect. Is promoted and peeling becomes difficult.

【0007】また逆に、微小電極部の先端面の突出量を
0.1μm未満とした場合には、金属薄膜をはく離する
ための応力を、当該金属薄膜に集中的に加えることがで
きないため、やはりはく離が困難となる。さらに微小電
極部の先端面を絶縁層の表面より凹入させた場合には、
当該凹入によって形成された絶縁層の孔に金属薄膜が嵌
まり込むように成長する結果、やはりアンカー効果が助
長されてはく離が困難となる。
On the other hand, when the amount of protrusion of the tip surface of the microelectrode portion is less than 0.1 μm, the stress for peeling the metal thin film cannot be concentratedly applied to the metal thin film. After all, peeling becomes difficult. Furthermore, when the tip surface of the microelectrode part is recessed from the surface of the insulating layer,
As a result of the metal thin film growing so as to fit into the holes of the insulating layer formed by the depression, the anchor effect is also promoted and the peeling becomes difficult.

【0008】これに対し、前記のように微小電極部の先
端面を、絶縁層の表面から0.1〜2μmの範囲で突出
させた場合には、これらの現象によるアンカー効果の助
長を防止できるとともに、金属薄膜に、はく離のための
応力を集中的に加えることができるため、当該金属薄膜
を、これまでよりも弱い力で容易に、金属製品としては
く離することが可能となる。したがって、はく離時の応
力による金属製品の変形や破損の発生をこれまでよりも
抑制できる他、型の劣化を抑制することもできる。
On the other hand, when the tip surface of the microelectrode portion is projected in the range of 0.1 to 2 μm from the surface of the insulating layer as described above, promotion of the anchor effect due to these phenomena can be prevented. At the same time, since the stress for peeling can be concentratedly applied to the metal thin film, the metal thin film can be easily peeled as a metal product with a weaker force than before. Therefore, it is possible to suppress the deformation and damage of the metal product due to the stress at the time of peeling more than ever, and it is also possible to suppress the deterioration of the mold.

【0009】またそれゆえ電鋳と交互に、あるいは電鋳
後に陽極電解を行う場合には、その電界強度および/ま
たは頻度をこれまでよりも小さくすることができ、型
の、陽極電解による劣化を抑制することもできる。した
がって請求項1の構成によれば、特に微細な金属製品
を、電鋳法により、寸法や形状の再現性良く高精度に製
造でき、しかも製造した金属製品を容易にはく離できる
ため、長期間にわたって、劣化を生じることなく良好に
使用できる微細電鋳用金型を提供することが可能とな
る。
Therefore, when anodic electrolysis is performed alternately with electroforming or after electroforming, the electric field strength and / or frequency thereof can be made smaller than before, and the mold is not deteriorated by anodic electrolysis. It can be suppressed. Therefore, according to the configuration of claim 1, particularly fine metal products can be manufactured by electroforming with high reproducibility of dimensions and shapes with high precision, and the manufactured metal products can be easily peeled off, and thus, over a long period of time. Therefore, it becomes possible to provide a fine electroforming mold that can be favorably used without causing deterioration.

【0010】請求項11記載の発明は、請求項1記載の
微細電鋳用金型を製造する方法であって、表面に微小電
極部を配置した基体を用意し、この基体の、微小電極部
を配置した表面に、絶縁層のもとになる流動性を有する
樹脂組成物を供給し、金属製または樹脂製の刃を微小電
極部の先端面に当接させつつ、当該刃と基体とを相対移
動させることにより、樹脂組成物を微小電極部の隙間に
充てんしながら基体の表面に塗りひろげた後、樹脂組成
物を固化または硬化させて絶縁層を形成する工程を有す
ることを特徴とする微細電鋳用金型の製造方法である。
The invention according to claim 11 is a method for producing the fine electroforming die according to claim 1, wherein a base having a fine electrode portion arranged on the surface is prepared, and the fine electrode portion of the base is prepared. The resin composition having a fluidity that is a base of the insulating layer is supplied to the surface on which the blade is made to contact the blade of the metal or resin while contacting the tip surface of the fine electrode portion with the blade. It is characterized by comprising a step of forming an insulating layer by solidifying or curing the resin composition after applying the resin composition to the surface of the substrate while filling the gaps of the microelectrode parts by relative movement and spreading the resin composition. It is a method for manufacturing a fine electroforming mold.

【0011】請求項1の微細電鋳用金型は、例えばフォ
トリソグラフ法を用いてプリント配線板を製造する際の
技術などを応用した、従来公知の種々の製造方法によっ
て製造することが考えられる。しかし、例えば研磨やエ
ッチングなどを伴う製造方法では、金属と樹脂という加
工のし易さ(研磨速度、エッチング速度など)の異なる
異種の材料からなる微小電極部の先端面と絶縁層の表面
との間で、上記加工のし易さの相違に基づく段差を生じ
やすい上、特に研磨法では均一な加工を施すのが容易で
ないため、微小電極部の先端面の突出量を、金型の全面
に亘って0.1〜2μmの範囲内とするのは容易でな
い。
The fine electroforming die according to claim 1 may be manufactured by various conventionally known manufacturing methods to which a technique for manufacturing a printed wiring board using a photolithography method is applied. . However, for example, in a manufacturing method involving polishing or etching, the tip surface of the microelectrode portion and the surface of the insulating layer, which are made of different materials of metal and resin, which are different in processability (polishing rate, etching rate, etc.), are used. In addition, since a step is likely to occur due to the difference in ease of processing and it is not easy to perform uniform processing especially with the polishing method, the amount of protrusion of the tip end surface of the minute electrode portion should be distributed over the entire surface of the mold. It is not easy to set the thickness within the range of 0.1 to 2 μm.

【0012】これに対し、請求項11記載の発明の製造
方法では、研磨やエッチング等の加工工程を含まないた
め、従来に比べてより簡単に、かつ効率よく、微小電極
部の先端面の突出量を、金型の全面に亘って0.1〜2
μmの範囲内に維持して、請求項1記載の発明の微細電
鋳用金型を製造することが可能となる。
On the other hand, in the manufacturing method of the eleventh aspect of the present invention, since the processing steps such as polishing and etching are not included, the protrusion of the tip end surface of the microelectrode portion is simpler and more efficient than the conventional method. The amount is 0.1 to 2 over the entire surface of the mold.
It becomes possible to manufacture the fine electroforming die according to the first aspect of the invention while maintaining it within the range of μm.

【0013】[0013]

【発明の実施の形態】以下に、本発明を説明する。 (微細電鋳用金型)微細電鋳用金型は、製造する金属製
品の形状に対応した平面形状を有する先端面を備えた微
小電極部の、上記先端面を、金型の表面を構成する絶縁
層の表面に露出させて配置したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below. (Fine Electroforming Mold) The fine electroforming mold is configured such that the above-mentioned tip surface of the microelectrode portion having the tip surface having a planar shape corresponding to the shape of the metal product to be manufactured constitutes the above-mentioned tip surface. The insulating layer is exposed on the surface of the insulating layer.

【0014】例えば金属製品として、その平面形状が円
形などの、所定の形状を有する、平板状の金属粉末を製
造する場合には、図1(a)(b)に示すように、金属粉末の
平面形状に対応した先端面11aを備えた柱状の微小電
極部11を多数、金型1の表面を構成する絶縁層12の
裏面側に設けた導電性の基体10と一体に形成する。そ
して各微小電極部11を、絶縁層12を貫通させて、そ
の先端面11aを、絶縁層12の表面12aに露出させ
ることで、微細電鋳用金型1を構成する。かかる構造の
微細電鋳用金型1によれば、1回の電鋳で、微小電極部
11の数に相当する多数の金属粉末を製造できるため効
率的である。
For example, in the case of producing a flat metal powder having a predetermined shape, such as a circular planar shape, as a metal product, as shown in FIGS. A large number of columnar microelectrode portions 11 each having a tip surface 11a corresponding to a planar shape are formed integrally with a conductive substrate 10 provided on the back surface side of an insulating layer 12 forming the front surface of the mold 1. Then, the microelectrode portion 11 is penetrated through the insulating layer 12 and the tip surface 11a thereof is exposed on the surface 12a of the insulating layer 12, whereby the fine electroforming mold 1 is configured. The fine electroforming die 1 having such a structure is efficient because a large number of metal powders corresponding to the number of the fine electrode portions 11 can be produced by one electroforming.

【0015】本発明では、微小電極部11の先端面11
aの、絶縁層12の表面12aからの突出量D1を0.
1〜2μmとする必要がある。この限定により、先に述
べたように電鋳によって形成した金属薄膜を、微小電極
部11の先端面11aから、容易にはく離することが可
能となる。上記微細電鋳用金型1の各部を構成する材料
は特に限定されないが、微小電極部11は、少なくとも
その先端面11aを、SUS316系のステンレス鋼に
て形成するのが好ましい。SUS316系のステンレス
鋼は防食性に優れるため、めっき液などに対する耐性が
高い。したがって、特に陽極電解によって金属薄膜のは
く離を促進する金属製品の製造方法に適用した際の、型
の耐久性が向上する。
In the present invention, the tip surface 11 of the microelectrode portion 11 is
a of the protrusion D 1 from the surface 12a of the insulating layer 12 is 0.
It must be 1 to 2 μm. Due to this limitation, the metal thin film formed by electroforming as described above can be easily separated from the tip surface 11a of the microelectrode portion 11. The material forming each part of the fine electroforming mold 1 is not particularly limited, but it is preferable that at least the tip surface 11a of the microelectrode part 11 is formed of SUS316 series stainless steel. Since SUS316 series stainless steel has excellent corrosion resistance, it is highly resistant to plating solutions and the like. Therefore, the durability of the mold is improved, especially when it is applied to a method for manufacturing a metal product that promotes peeling of a metal thin film by anodic electrolysis.

【0016】なお、微小電極部11の先端面が腐食等に
よって徐々に侵食された際に、型をどれだけ長く繰り返
して使用できるかを考慮すると、微小電極部11は、先
端面11aだけでなくその全体を、SUS316系のス
テンレス鋼で形成しておくのが好ましい。さらに言え
ば、微小電極部11と導電性の基体10とを、SUS3
16系のステンレス鋼で一体形成しておくのが最も好ま
しい。SUS316系のステンレス鋼としては、その中
でも特に防食性に優れたSUS316Lを、最も好適に
使用することができる。
Considering how long the mold can be used when the tip surface of the microelectrode portion 11 is gradually eroded due to corrosion or the like, the microelectrode portion 11 is not limited to the tip surface 11a. It is preferable that the whole is made of SUS316 series stainless steel. Furthermore, the microelectrode portion 11 and the conductive substrate 10 are connected to each other by SUS3
Most preferably, they are integrally formed of 16 series stainless steel. Among them, as the SUS316 series stainless steel, SUS316L, which is particularly excellent in corrosion resistance, can be most preferably used.

【0017】微小電極部11の先端面11aには、金属
薄膜をはく離しやすくする離型層を設けてもよい。離型
層としては、例えば金属を圧延、熱処理などした際に形
成される不働態被膜を利用することができる他、必要に
応じて化学的あるいは電気化学的に不働態被膜を形成し
て離型層としてもよい。後者の例としては、電鋳用とし
て形成用の薬剤が市販されているチアゾール系化合物被
膜などが挙げられる。絶縁層12は、種々の絶縁性の材
料によって形成することができる。ただし、絶縁層12
の形成のし易さなどを考慮すると、熱可塑性あるいは硬
化性の、種々の樹脂の組成物によって絶縁層12を形成
するのが好ましく、とくに無溶剤系、もしくは溶剤をご
く微量、含んだ状態で流動性を呈する硬化性の樹脂組成
物(硬化性の樹脂とその硬化剤等とを含む)を使用する
のがさらに好ましい。硬化性の樹脂組成物は、硬化させ
て絶縁層12を形成する際の体積収縮率が小さいため、
微小電極部11の先端面11aの突出量D1を0.1〜
2μmの範囲にするのが容易である上、硬化後の耐食性
が良好である。硬化性の樹脂としては、特にエポキシ樹
脂が好ましい。
A release layer for facilitating the peeling of the metal thin film may be provided on the tip surface 11a of the microelectrode portion 11. As the release layer, for example, a passivation film formed when a metal is rolled or heat-treated can be used, and if necessary, a passivation film is chemically or electrochemically formed to release the release film. It may be a layer. Examples of the latter include a thiazole-based compound coating in which a forming agent for electroforming is commercially available. The insulating layer 12 can be formed of various insulating materials. However, the insulating layer 12
In consideration of easiness of forming, etc., it is preferable to form the insulating layer 12 by a composition of various resins that are thermoplastic or curable, particularly in a solventless system or in a state containing a very small amount of solvent. It is more preferable to use a curable resin composition that exhibits fluidity (including a curable resin and a curing agent thereof). Since the curable resin composition has a small volume shrinkage rate when cured to form the insulating layer 12,
The protrusion amount D 1 of the tip surface 11a of the microelectrode portion 11 is set to 0.1
It is easy to set the thickness in the range of 2 μm, and the corrosion resistance after curing is good. Epoxy resin is particularly preferable as the curable resin.

【0018】エポキシ樹脂などの硬化性の樹脂の組成物
には、当該樹脂を硬化させて絶縁層12を形成する際の
体積収縮率をさらに小さくするとともに、形成後の絶縁
層12の、温度変化による膨張収縮率を小さくして、微
小電極部11の先端面11aの突出量D1を、微細電鋳
用金型の使用時に0.1〜2μmの範囲に維持するため
に、絶縁性のフィラーを配合するのが好ましい。またフ
ィラーを配合した絶縁層12は、金属薄膜をはく離する
際に加わる摩擦に対する耐磨耗性にも優れる。
The composition of a curable resin such as an epoxy resin further reduces the volumetric shrinkage rate when the resin is cured to form the insulating layer 12, and the temperature change of the insulating layer 12 after the formation is changed. In order to reduce the expansion / shrinkage rate due to, and to maintain the protrusion amount D 1 of the tip end surface 11a of the microelectrode portion 11 in the range of 0.1 to 2 μm when the fine electroforming mold is used, an insulating filler is used. Is preferably blended. The insulating layer 12 containing the filler is also excellent in abrasion resistance against friction applied when peeling the metal thin film.

【0019】フィラーとしては、アルミナ、シリカ、ガ
ラスなどの無機のフィラーが好ましい。また、フィラー
としては球状のものが好ましい。球状のフィラーは、硬
化性の樹脂の組成物に配合した際に、組成物の粘度の上
昇を抑えて良好な流動性を維持するために機能するとと
もに、高充てんできるという利点がある。フィラーの平
均粒径は、微小電極部11の細かな形状に対応して、表
面12aの平滑性に優れ、なおかつ空洞等のない均一な
絶縁層12を形成することを考慮すると、0.5μm以
下であるのが好ましく、0.05〜0.2μm程度であ
るのがさらに好ましい。なおフィラーの平均粒径は、球
状でないフィラーの場合は、個々のフィラーの最大径の
平均値とする。
As the filler, inorganic fillers such as alumina, silica and glass are preferable. The filler is preferably spherical. The spherical filler has an advantage of functioning to suppress an increase in viscosity of the composition and maintaining good fluidity when compounded in a curable resin composition, and having an advantage that it can be highly filled. The average particle size of the filler is 0.5 μm or less in consideration of forming a uniform insulating layer 12 having excellent smoothness of the surface 12a and having no cavities or the like corresponding to the fine shape of the fine electrode portion 11. Is preferable, and it is more preferable that the thickness is about 0.05 to 0.2 μm. Note that the average particle diameter of the filler is the average value of the maximum diameters of the individual fillers when the filler is not spherical.

【0020】エポキシ樹脂系の組成物におけるフィラー
の配合割合は、組成物の総量中の1〜30重量%である
のが好ましい。フィラーの配合割合が1重量%未満で
は、当該フィラーを配合したことによる、先に述べた効
果が十分に得られないおそれがある。逆にフィラーの配
合割合が30重量%を超える場合には、硬化前の組成物
の流動性、追従性が低下して、表面12aの平滑性に優
れ、なおかつ空洞等のない均一な絶縁層12を形成でき
ないおそれがある。また硬化後の絶縁層12が脆くなっ
て、その耐久性が低下するおそれもある。なおフィラー
の配合割合は、上記の範囲内でも特に5〜20重量%で
あるのがさらに好ましい。
The compounding ratio of the filler in the epoxy resin composition is preferably 1 to 30% by weight based on the total amount of the composition. If the blending ratio of the filler is less than 1% by weight, the effect described above due to the blending of the filler may not be sufficiently obtained. On the other hand, when the compounding ratio of the filler exceeds 30% by weight, the fluidity and the followability of the composition before curing are deteriorated, the surface 12a is excellent in smoothness, and the insulating layer 12 is uniform without voids. May not be formed. Further, the cured insulating layer 12 may become brittle and its durability may be reduced. In addition, it is more preferable that the blending ratio of the filler be 5 to 20% by weight, even within the above range.

【0021】またエポキシ樹脂系の組成物には、シラン
カップリング剤を配合するのが好ましい。発明者の検討
によると、微細電鋳用金型1の劣化の主な原因として
は、(a)微小電極部11の腐食、(b) 絶縁層12の表面
の摩耗、(c) 微小電極部11や基体10と、絶縁層1
2との界面での、密着性の低下によるはく離の発生が挙
げられる。
A silane coupling agent is preferably added to the epoxy resin composition. According to the study by the inventor, the main causes of deterioration of the fine electroforming die 1 are (a) corrosion of the microelectrode portion 11, (b) abrasion of the surface of the insulating layer 12, and (c) microelectrode portion. 11 and the base 10, and the insulating layer 1
The occurrence of peeling at the interface with No. 2 due to a decrease in adhesion is mentioned.

【0022】このうち(a)は、前記のように微小電極部
11をSUS316系のステンレス鋼などによって形成
することで解決できる。また(b)は、絶縁層12をエポ
キシ樹脂などの硬化性の樹脂で形成することと、絶縁性
のフィラーを配合することとで解消できる。そこでさら
に(c)を解決するため、エポキシ樹脂の組成物にシラン
カップリング剤を配合して、微小電極部11や基体10
と、絶縁層12との密着性を向上することを検討した。
Of these, (a) can be solved by forming the fine electrode portion 11 from SUS316 series stainless steel as described above. Further, (b) can be solved by forming the insulating layer 12 with a curable resin such as an epoxy resin and blending an insulating filler. Therefore, in order to solve (c) further, a silane coupling agent is added to the composition of the epoxy resin, and the fine electrode portion 11 and the base 10 are mixed.
And to improve the adhesion to the insulating layer 12.

【0023】微小電極部11の先端面11aに金属薄膜
を形成したのちはく離する工程を繰り返し行うと、微小
電極部11や基体10と、絶縁層12との膨張収縮率の
違い、あるいは金属薄膜をはく離する際に微細電鋳用金
型1に加わる応力などによって、微小電極部11や基体
10と、絶縁層12との界面で、密着性の低下によって
はく離が発生しやすい。そして微小電極部11と絶縁層
12とがはく離すると、金属薄膜が、はく離した隙間に
入り込んだ形で成長して強いアンカー効果を生じるた
め、当該金属薄膜を回収するためには、より強い力で無
理にはく離したり、陽極電解を長時間行ったりする必要
が生じる。また隙間に入り込んだ金属薄膜の成長によっ
てさらにこの隙間が押し広げられたり、基体10と絶縁
層12との界面まではく離が進行したりする結果、絶縁
層12の脱落等を生じやすくなって微細電鋳用金型1が
劣化する。
When the step of forming a metal thin film on the tip end surface 11a of the microelectrode portion 11 and then peeling it off is repeated, the difference in the expansion / contraction rate between the microelectrode portion 11 or the base 10 and the insulating layer 12 or the metal thin film is removed. Due to the stress applied to the fine electroforming mold 1 during peeling, peeling is likely to occur at the interface between the fine electrode portion 11 and the substrate 10 and the insulating layer 12 due to the decrease in adhesion. Then, when the microelectrode portion 11 and the insulating layer 12 are peeled off, the metal thin film grows in a state of entering the peeled gap to generate a strong anchor effect. Therefore, in order to recover the metal thin film, a stronger force is applied. It is necessary to forcibly peel off or carry out anodic electrolysis for a long time. Further, as a result of the growth of the metal thin film that has entered the gap, the gap is further widened, or the peeling progresses to the interface between the base 10 and the insulating layer 12, so that the insulating layer 12 is likely to drop off and the like. The casting mold 1 deteriorates.

【0024】これに対し、エポキシ樹脂系の組成物にシ
ランカップリング剤を配合して、微小電極部11や基体
10と、絶縁層12との密着性を向上すれば、はく離の
発生を防止して微細電鋳用金型1の劣化を抑制し、微細
電鋳用金型1を、これまでよりもさらに長期間にわたっ
て、劣化を生じることなく良好に使用することができ
る。エポキシ樹脂系の組成物におけるシランカップリン
グ剤の配合割合は、組成物の総量中の1〜20重量%で
あるのが好ましい。シランカップリング剤の配合割合が
1重量%未満では、当該シランカップリング剤を配合し
たことによる、密着性向上の効果が十分に得られないお
それがある。逆にシランカップリング剤の配合割合が2
0重量%を超える場合には、当該組成物を硬化させて
も、所定の耐熱性、耐食性、耐磨耗性、耐久性を有する
絶縁層12を形成できないおそれがある。なおシランカ
ップリング剤の配合割合は、上記の範囲内でも特に2〜
10重量%であるのがさらに好ましい。
On the other hand, if a silane coupling agent is added to the epoxy resin composition to improve the adhesion between the microelectrode portion 11 and the substrate 10 and the insulating layer 12, the occurrence of peeling can be prevented. Therefore, deterioration of the fine electroforming mold 1 can be suppressed, and the fine electroforming mold 1 can be favorably used for a longer period of time than before without deterioration. The compounding ratio of the silane coupling agent in the epoxy resin composition is preferably 1 to 20% by weight based on the total amount of the composition. If the blending ratio of the silane coupling agent is less than 1% by weight, the effect of improving the adhesiveness due to the blending of the silane coupling agent may not be sufficiently obtained. On the contrary, the compounding ratio of the silane coupling agent is 2
If it exceeds 0% by weight, the insulating layer 12 having predetermined heat resistance, corrosion resistance, abrasion resistance, and durability may not be formed even when the composition is cured. In addition, the compounding ratio of the silane coupling agent is particularly 2 to within the above range.
More preferably, it is 10% by weight.

【0025】なおシランカップリング剤の使用法として
は、密着性を付与したい界面にシランカップリング剤の
層を介挿するのが一般的である。例えば図の微細電鋳用
金型1の場合、微小電極部11や基体10の、絶縁層1
2と接する面にシランカップリング剤を塗布して層を形
成したのち、エポキシ樹脂の組成物を流し込んで絶縁層
12を形成することが考えられる。しかし微細電鋳用金
型1においては、ごく微細に形成された微小電極部11
や絶縁層12と比較して、シランカップリング剤の層の
厚みが大きいため、絶縁層12に占めるシランカップリ
ング剤の層の比率が大きくなって、絶縁層12の強度が
低下するおそれがある。このためシランカップリング剤
は、先に説明したように絶縁層12を形成するエポキシ
樹脂の組成物中に配合しておくのが好ましい。
As a method of using the silane coupling agent, it is common to insert a layer of the silane coupling agent at the interface where adhesion is desired to be imparted. For example, in the case of the fine electroforming mold 1 shown in the figure, the insulating layer 1 of the fine electrode portion 11 or the base body 10 is
It is conceivable that a silane coupling agent is applied to the surface in contact with 2 to form a layer, and then the composition of the epoxy resin is poured to form the insulating layer 12. However, in the fine electroforming die 1, the fine electrode portion 11 formed extremely finely.
Since the thickness of the silane coupling agent layer is larger than that of the insulating layer 12 and the insulating layer 12, the ratio of the silane coupling agent layer in the insulating layer 12 may increase and the strength of the insulating layer 12 may decrease. . Therefore, it is preferable that the silane coupling agent is blended in the composition of the epoxy resin forming the insulating layer 12 as described above.

【0026】また微小電極部11や基体10と、絶縁層
12との密着性を向上するためには、これらの部分の、
少くとも絶縁層12と接する面に、当該微小電極部11
などよりOH基濃度の高い金属の薄膜層を設けることも
好ましい。かかる構成では、上記OH基と、とくにエポ
キシ樹脂中のエポキシ基との反応によって、微小電極部
11や基体10と、絶縁層12とをより強固に密着させ
ることができる。しかも金属の薄膜は微小電極部11や
基体10と一体化するため、シランカップリング剤の層
のように絶縁層12の強度を低下させるおそれもない。
In order to improve the adhesion between the microelectrode portion 11 and the base 10 and the insulating layer 12,
The microelectrode portion 11 is at least on the surface in contact with the insulating layer 12.
It is also preferable to provide a metal thin film layer having a higher OH group concentration. With such a configuration, the microelectrode portion 11 or the base 10 and the insulating layer 12 can be more firmly adhered to each other by the reaction between the OH group and the epoxy group in the epoxy resin in particular. Moreover, since the metal thin film is integrated with the microelectrode portion 11 and the base body 10, there is no fear of lowering the strength of the insulating layer 12 unlike the silane coupling agent layer.

【0027】金属の薄膜層としては、Ti層が好適に使
用される。またこのTi層の、微小電極部11や基体1
0との密着性を向上してはく離を防止するためには、こ
れらの部材とTi層との間にCr層を設けるのが好まし
い。これらの層は、例えばスパッタリング法などによっ
て形成することができる。Ti層などの、金属の薄膜層
の厚みは0.01〜1.0μmであるのが好ましい。厚
みが0.01μm未満では、密着性を向上する効果が十
分に得られないおそれがあり、逆に1.0μmを超える
場合には残留応力が大きくなって、層の破壊やはく離等
を生じるおそれがある。
A Ti layer is preferably used as the metal thin film layer. In addition, the microelectrode portion 11 and the substrate 1 of this Ti layer
In order to improve the adhesion with 0 and prevent peeling, it is preferable to provide a Cr layer between these members and the Ti layer. These layers can be formed by, for example, a sputtering method. The thickness of the metal thin film layer such as the Ti layer is preferably 0.01 to 1.0 μm. If the thickness is less than 0.01 μm, the effect of improving the adhesiveness may not be sufficiently obtained, while if it exceeds 1.0 μm, the residual stress may be large and the layer may be broken or peeled. There is.

【0028】なお前述した、エポキシ樹脂の組成物にシ
ランカップリング剤を配合することと、上記の、金属の
薄膜層を形成することとを併用すれば、微小電極部11
や基体10と、絶縁層12との密着性をさらに向上する
ことができる。(微細電鋳用金型の製造方法)微細電鋳
用金型1は、例えばフォトリソグラフ法を用いて、下記
(1)〜(3)などの、プリント配線板を製造する際の技術を
応用した種々の方法によって製造することができる。
If the above-described compounding of the epoxy resin composition with the silane coupling agent and the above-mentioned formation of the metal thin film layer are used together, the fine electrode portion 11 is formed.
The adhesiveness between the substrate 10 and the insulating layer 12 can be further improved. (Manufacturing Method of Fine Electroforming Mold) The fine electroforming mold 1 is manufactured by using, for example, a photolithography method,
It can be manufactured by various methods such as (1) to (3) to which the technology for manufacturing a printed wiring board is applied.

【0029】(1) 少なくとも、基体10の厚みに微小
電極部11の高さを加えた分の厚みを有する金属板をエ
ッチングして、図1に示した基体10と微小電極部11
とを一体に形成した後、微小電極部11間の空隙に、前
述した樹脂組成物を隙間なく充てんし、その表面12a
と、微小電極部11…の先端面11a…とを同一面とな
るように研磨して絶縁層12を形成する。 (2) あらかじめ形成した絶縁層12をエッチングし
て、多数の微小電極部11…の外形に対応する多数の通
孔を形成し、次いで電鋳等によって、絶縁層12の裏面
側に基体10を形成するとともに、通孔を金属で隙間な
く充てんして多数の微小電極部11…を形成した後、当
該微小電極部11…の先端面11a…と、絶縁層12の
表面12aとを同一面となるように研磨する。
(1) At least a metal plate having a thickness corresponding to the thickness of the base 10 plus the height of the microelectrode 11 is etched to etch the base 10 and the microelectrode 11 shown in FIG.
And (4) are integrally formed, the voids between the microelectrode portions 11 are filled with the above-mentioned resin composition without any gap, and the surface 12a thereof is formed.
And the tip surfaces 11a of the fine electrode portions 11 are polished to be flush with each other to form the insulating layer 12. (2) The pre-formed insulating layer 12 is etched to form a large number of through holes corresponding to the outer shapes of the large number of microelectrode portions 11, ... Then, the substrate 10 is formed on the back surface side of the insulating layer 12 by electroforming or the like. After forming and forming a large number of minute electrode portions 11 ... By filling the through holes with metal without any gaps, the tip surfaces 11a of the minute electrode portions 11 ... And the surface 12a of the insulating layer 12 are made the same surface. To be polished.

【0030】(3) 絶縁層12の裏面側に基体10が積
層された積層体を用意し、この積層体のうち絶縁層12
をエッチングして、多数の微小電極部11…の外形に対
応する、基体10に達する多数の通孔を形成し、次いで
電鋳等によって通孔を金属で隙間なく充てんして多数の
微小電極部11…を形成した後、当該微小電極部11…
の先端面11a…と、絶縁層12の表面12aとを同一
面となるように研磨する。
(3) A laminated body in which the substrate 10 is laminated on the back surface side of the insulating layer 12 is prepared, and the insulating layer 12 of the laminated body is prepared.
Are etched to form a large number of through holes corresponding to the outer shapes of a large number of minute electrode parts 11 ... Reaching the base body 10, and then the through holes are filled with metal by electroforming or the like without any gaps to form a large number of minute electrode parts. After forming 11 ..., the microelectrode portions 11 ...
.. and the surface 12a of the insulating layer 12 are polished to be flush with each other.

【0031】しかし、先に述べたように研磨などの工程
を含まない、以下に述べる本発明の製造方法によって微
細電鋳用金型を製造するのが好ましい。例えば図1の、
金属粉末製造用の微細電鋳用金型を製造する場合には、
まず図2(a)に示すように、表面に多数の微小電極部1
1を一体形成した基体10を用意する。基体10は、前
記(1)の製造方法の場合と同様に、少なくとも、基体1
0の厚みに微小電極部11の高さを加えた分の厚みを有
する金属板(好ましくはSUS316系のステンレス鋼
板)をエッチングするなどして製造する。またその表面
には、必要に応じて前述した金属の薄膜層を形成する。
However, it is preferable to manufacture a fine electroforming mold by the manufacturing method of the present invention described below, which does not include a step such as polishing as described above. For example, in Figure 1,
When manufacturing a fine electroforming mold for metal powder production,
First, as shown in FIG. 2 (a), a large number of microelectrode parts 1 are formed on the surface.
A substrate 10 on which 1 is integrally formed is prepared. The substrate 10 is at least the substrate 1 as in the case of the manufacturing method (1).
It is manufactured by, for example, etching a metal plate (preferably a SUS316-based stainless steel plate) having a thickness of 0 plus the height of the microelectrode portion 11. Further, on the surface thereof, the above-mentioned metal thin film layer is formed, if necessary.

【0032】そして、前述したエポキシ樹脂とフィラー
と、さらに必要に応じてシランカップリング剤とを含む
ものなどの、絶縁層12を形成するための流動性を有す
る樹脂組成物Rを、基体10の、微小電極部11を配置
した表面に供給する。次に図2(b)〜(c)に示すように、
金属製または樹脂製の刃Bを微小電極部11の先端面1
1aに当接させつつ、当該刃Bと基体10とを図中白矢
印で示すように相対移動させることにより、樹脂組成物
Rを微小電極部11の隙間に充てんしながら基体10の
表面に塗りひろげる。
Then, a resin composition R having fluidity for forming the insulating layer 12, such as one containing the above-mentioned epoxy resin and filler, and optionally a silane coupling agent, is applied to the base 10. , To the surface on which the microelectrode portion 11 is arranged. Next, as shown in FIGS. 2 (b) to (c),
The metal or resin blade B is attached to the tip surface 1 of the microelectrode portion 11.
The blade B and the substrate 10 are moved relative to each other as shown by the white arrow in the drawing while being in contact with 1a, so that the resin composition R is applied to the surface of the substrate 10 while filling the gaps of the minute electrode portions 11. Expand.

【0033】そして樹脂組成物R中の樹脂を乾燥固化、
もしくは硬化させると、図1に示す微細電鋳用金型1が
製造される。上記の製造方法では、刃先が整えられた刃
Bを微小電極部11の先端面11aに当接させつつ移動
させることによって、樹脂組成物Rを、上記先端面11
aとほぼ同一平面となるように、微小電極部11間の隙
間に充てんすることができる。
Then, the resin in the resin composition R is dried and solidified,
Alternatively, when it is cured, the fine electroforming mold 1 shown in FIG. 1 is manufactured. In the above-described manufacturing method, the resin composition R is moved to the tip surface 11 by moving the blade B having the adjusted blade edge while contacting the tip surface 11a of the microelectrode portion 11.
It is possible to fill the gaps between the minute electrode portions 11 so that they are substantially flush with a.

【0034】このため研磨等の工程が一切不要となり、
先に述べたように、従来に比べてより簡単に、かつ効率
よく、微小電極部11の先端面11aの突出量D1
0.1〜2μmの範囲とした微細電鋳用金型1を製造す
ることが可能となる。 (金属製品の製造)上記微細電鋳用金型1を用いて、金
属製品としての金属粉末を製造するには、まず図3(a)
に示すように、電鋳用の電源のうち陰極21と接続した
状態で、図示しないめっき液に浸漬して、各微小電極部
11を陰極とする電鋳を行う。
Therefore, no steps such as polishing are required,
As described above, the fine electroforming mold 1 in which the protrusion amount D 1 of the tip end surface 11a of the fine electrode portion 11 is in the range of 0.1 to 2 μm is simpler and more efficient than the conventional one. It becomes possible to manufacture. (Manufacture of Metal Product) In order to manufacture metal powder as a metal product using the above-mentioned fine electroforming die 1, first, referring to FIG.
As shown in (1), the electrocasting power source is connected to the cathode 21 and immersed in a plating solution (not shown) to perform electrocasting using the microelectrode portions 11 as cathodes.

【0035】そうすると図3(b)に示すように、各微小
電極部11の先端面11aに選択的にめっき金属が析出
して、当該先端面の形状に対応した、多数の微小な金属
薄膜30が形成される。次に、形成された微小な金属薄
膜30をこすり取るなどして、図3(c)に示すように各
微小電極部11の先端面11aからはく離すると、各微
小電極部11の先端面11aの形状に対応した微細形状
を有する金属粉末3が多数、製造される。
Then, as shown in FIG. 3 (b), the plating metal is selectively deposited on the tip surface 11a of each of the minute electrode portions 11, and a large number of minute metal thin films 30 corresponding to the shape of the tip surface are formed. Is formed. Next, when the minute metal thin film 30 thus formed is scraped off and peeled off from the tip surfaces 11a of the respective microelectrode portions 11 as shown in FIG. 3C, the tip surfaces 11a of the respective microelectrode portions 11 are separated. A large number of metal powders 3 having a fine shape corresponding to the shape are manufactured.

【0036】なお電鋳では、通電時間、電流密度等の条
件を調整することで、金属薄膜30の膜厚を厳密に制御
できるため、製造される金属粉末3の厚みを高精度で揃
えることもできる。しかもこの発明の微細電鋳用金型1
を使用すると、金属薄膜30を、例えばゴムローラでこ
するなどの、僅かな力でもって容易に、微小電極部11
の先端面11aからはく離できる。このため金属薄膜3
0が、はく離時の応力によって変形したり破損したりす
るのを極力、防止して、金属製品としての金属粉末3の
歩留まりを、これまでよりも向上することができる。ま
た金型1の損傷を防止して、これまでよりも長持ちさせ
ることもできる。
In electroforming, the film thickness of the metal thin film 30 can be strictly controlled by adjusting the conditions such as energization time and current density, so that the thickness of the metal powder 3 to be manufactured can be made uniform with high accuracy. it can. Moreover, the fine electroforming mold 1 of the present invention
When the metal thin film 30 is used, it is possible to easily rub the metal thin film 30 with a slight force such as rubbing it with a rubber roller.
It can be peeled off from the front end surface 11a of the. Therefore, the metal thin film 3
0 can prevent deformation or damage due to stress at the time of peeling as much as possible, and the yield of the metal powder 3 as a metal product can be improved more than ever. It is also possible to prevent damage to the die 1 and make it last longer than before.

【0037】また上記電鋳に際しては、電鋳による金属
薄膜30の形成後に一定時間の、もしくは電鋳による金
属薄膜30の成長と交互に短時間ずつ、陽極電解を施し
てやるのが好ましい。この処理により、微小電極部11
の先端面11aと、金属薄膜30との間でアンカー効果
を生じるもとになる、薄膜の端縁部の出っ張りなどを溶
解、除去して、両者の密着力を低下させることができ、
金属薄膜30を、微小電極部11の先端面11aからさ
らに容易にはく離することが可能となる。
In the electroforming, it is preferable to carry out anodic electrolysis for a certain period of time after the metal thin film 30 is formed by electroforming, or for a short time alternately with the growth of the metal thin film 30 by electroforming. By this processing, the microelectrode portion 11
It is possible to dissolve and remove the protrusions or the like at the edge portions of the thin film, which are the basis for producing the anchor effect between the tip surface 11a and the metal thin film 30, and to reduce the adhesive force between the two.
It is possible to more easily peel the metal thin film 30 from the tip end surface 11a of the microelectrode portion 11.

【0038】なおこの発明の微細電鋳用金型の構成は、
以上の図で説明した金属粉末の製造用の金型には限定さ
れない。例えば電池用の極板等に好適に使用される、所
定の平面形状の通孔が多数、形成されたメッシュ状の金
属薄膜など、電鋳での製造が可能な種々の製品を製造す
るための金型に、この発明の構成を適用することが可能
である。
The structure of the fine electroforming mold of the present invention is as follows.
It is not limited to the mold for producing the metal powder described in the above figures. For manufacturing various products that can be manufactured by electroforming, such as a mesh-shaped metal thin film formed with a large number of through holes each having a predetermined plane shape, which is preferably used for a battery electrode plate or the like. The structure of the present invention can be applied to a mold.

【0039】[0039]

【実施例】以下に、この発明を、実施例、比較例に基づ
いて説明する。 実施例1 縦200mm×横300mmのステンレス(SUS31
6L)製鋼板の片面に、フォトリソグラフ法を用いたエ
ッチングを行って、その表面に直径30μm、高さ7μ
mの円柱状の微小電極部を多数、一体形成した基体を得
た。
EXAMPLES The present invention will be described below based on Examples and Comparative Examples. Example 1 Stainless steel 200 mm long × 300 mm wide (SUS31
6L) One side of the steel sheet was etched using a photolithography method, and the surface had a diameter of 30 μm and a height of 7 μm.
A base body having a large number of m-shaped columnar microelectrode portions integrally formed was obtained.

【0040】次にこの基体を、面精度±2μmのステン
レス製のテーブル上に吸引、固定した状態で、微小電極
部を配置した表面の1辺側に、下記の各成分からなる樹
脂組成物(粘度400P)およそ2mlを供給した。 (成 分) (重量部) 特殊変性エポキシ樹脂 68 特殊アミン系硬化剤 22 球状のアルミナフィラー 10 (平均粒径0.1μm)次に、刃幅12mmのステンレ
ス製の刃を微小電極部の先端面に当接させつつ、当該刃
を基体に対して移動させることで、上記の樹脂組成物
を、微小電極部の隙間に充てんしながら基体の表面に塗
りひろげる操作を、基体の全面に亘って行った。
Next, while the substrate was suctioned and fixed on a stainless steel table having a surface accuracy of ± 2 μm, a resin composition (each of which was composed of the following components) was provided on one side of the surface on which the fine electrode portion was arranged. Viscosity 400P) Approximately 2 ml was fed. (Component) (Parts by weight) Special modified epoxy resin 68 Special amine curing agent 22 Spherical alumina filler 10 (Average particle size 0.1 μm) Next, a stainless steel blade with a blade width of 12 mm is attached to the tip surface of the microelectrode portion. By moving the blade with respect to the substrate while making contact with the substrate, the operation of coating the resin composition on the surface of the substrate while filling the gaps of the microelectrode parts and spreading it over the entire surface of the substrate. It was

【0041】そして樹脂組成物中のエポキシ樹脂を硬化
させることで、微小電極部間を埋める絶縁層を形成し
て、微細電鋳用金型を製造した。上記微細電鋳用金型に
おける、微小電極部の先端面の、絶縁層の表面からの突
出量D1を、基体上の複数個所において測定したとこ
ろ、いずれの個所においても0.1〜2μmの範囲内で
あり、その平均値は0.6μmであった。次に、上記微
細電鋳用金型と、下記組成のニッケルめっき液(pH=
3)とを使用して、エアバブリング中、液温60℃の条
件でニッケルの電鋳を行った。なお陽極にはニッケル板
を使用した。
Then, the epoxy resin in the resin composition was cured to form an insulating layer filling the spaces between the fine electrode portions, and a fine electroforming mold was manufactured. The amount of protrusion D 1 of the tip surface of the microelectrode portion from the surface of the insulating layer in the above-mentioned fine electroforming mold was measured at a plurality of locations on the substrate, and was 0.1 to 2 μm at any location. It was within the range, and the average value was 0.6 μm. Next, the above-mentioned fine electroforming die and a nickel plating solution (pH =
Using 3) and, nickel was electroformed under the condition of a liquid temperature of 60 ° C. during air bubbling. A nickel plate was used for the anode.

【0042】 (成 分) (濃 度) 硫酸ニッケル6水和物 200g/リットル 塩化ニッケル6水和物 40g/リットル ホウ酸 30g/リットル サッカリン 4g/リットル 電鋳は、金型を陰極にして、直流10A/dm2で20
0秒間の通電を行うによってニッケル薄膜を成長させた
後、金型を陽極にして、直流10A/dm2で10秒間
の通電を行うことによって陽極電解した。
(Component) (Concentration) Nickel Sulfate Hexahydrate 200 g / L Nickel Chloride Hexahydrate 40 g / L Boric Acid 30 g / L Saccharin 4 g / L 20 at 10 A / dm 2
After the nickel thin film was grown by applying an electric current for 0 seconds, the mold was used as an anode, and an electric current was applied for 10 seconds at a direct current of 10 A / dm 2 for anodic electrolysis.

【0043】そして、電鋳により微小電極部の先端面に
形成されたニッケル薄膜を、ゴムローラでこすることに
よってはく離してニッケル粉末を製造した。得られたニ
ッケル粉末を、走査型電子顕微鏡を用いて倍率1000
倍で観察したところ、いずれの粉末も欠陥のない、直径
30μm、厚み5μmの円盤状粉末であることが確認さ
れた。また金型表面へのニッケル薄膜の残留は全く見ら
れなかった。
Then, the nickel thin film formed on the tip surface of the microelectrode portion by electroforming was scraped off by rubbing with a rubber roller to produce nickel powder. The obtained nickel powder was magnified 1000 times using a scanning electron microscope.
Upon observing at double magnification, it was confirmed that all of the powders were disc-shaped powders having a diameter of 30 μm and a thickness of 5 μm without any defects. No nickel thin film remained on the surface of the mold.

【0044】さらに同じ金型を用いて、上記と同様の電
鋳およびはく離操作を50回、繰り返し行っても、金属
製品であるニッケル粉末の状態に変化は見られない上、
金型表面へのニッケル薄膜の残留も全く見られず、しか
も金型の損傷も確認されなかった。 比較例1 実施例1で使用したのと同じ基体上に、これも実施例1
で使用したのと同じ樹脂組成物を厚塗りして硬化させた
後、その表面を、番手2000番の研磨紙で研磨して微
小電極部の表面を露出させることを試みた。しかし微小
電極部の先端面を、基体の全面に亘って均一に露出させ
るのは難しく、絶縁層の研磨が不十分で先端面が全く露
出していないところや、逆に研磨しすぎて、突出量D1
が2μmを超えてしまったところなどが発生した。
Further, even if the same electroforming and peeling operations as described above are repeated 50 times using the same mold, no change is observed in the state of the nickel powder which is a metal product.
No nickel thin film remained on the mold surface, and no damage was found on the mold. Comparative Example 1 On the same substrate used in Example 1, this was also done in Example 1.
After thickly applying the same resin composition as used in 1 above and curing it, it was attempted to expose the surface of the microelectrode portion by polishing the surface with a No. 2000 abrasive paper. However, it is difficult to evenly expose the tip surface of the microelectrode part over the entire surface of the base, and the tip surface is not exposed at all due to insufficient polishing of the insulating layer, or conversely, excessive polishing causes protrusion. Amount D 1
Occurs where the thickness exceeds 2 μm.

【0045】そこで、研磨が不十分であったところをさ
らに研磨して、全ての微小電極部の先端面を露出させた
状態で、実施例1と同条件で電鋳を行った後、形成され
たニッケル薄膜を、ゴムローラでこすることによっては
く離しようとしたところ、突出量D1が2μm以下のと
ころではきれいにはく離することができたが、突出量D
1が2μmを超えた部分ではきれいにはく離できないニ
ッケル薄膜が多数、発生した。また突出量D1が0.1
μm未満であったところでは、ゴムローラが上滑りし
て、やはりきれいにはく離できないニッケル薄膜が多
数、発生した。
Then, the portion where the polishing was insufficient was further polished, and the electroforming was performed under the same conditions as in Example 1 with the tip surfaces of all the fine electrode portions exposed, and then formed. When the nickel thin film was rubbed with a rubber roller, it could be peeled off clearly when the protrusion D 1 was 2 μm or less.
A large number of nickel thin films that could not be peeled off cleanly occurred in the area where 1 exceeded 2 μm. In addition, the protrusion amount D 1 is 0.1
When the thickness was less than μm, the rubber roller slipped up, and many nickel thin films that could not be peeled off cleanly were generated.

【0046】そこで、残ったニッケル薄膜を、カッター
の刃をあててこすりとった後、電子顕微鏡で観察したと
ころ、殆どのものが欠陥や変形等を生じているのが確認
された。またニッケル薄膜を無理に擦り取ったところで
は、金型の表面に傷がついているのが確認された。 実施例2 前記実施例1で使用したのと同じ基体を、面精度±2μ
mのステンレス製のテーブル上に吸引、固定した状態
で、微小電極部を配置した表面の1辺側に、下記の各成
分からなる樹脂組成物(粘度400P)およそ2mlを
供給した。
Then, the remaining nickel thin film was scraped against a blade of a cutter and then observed with an electron microscope. As a result, it was confirmed that most of the nickel thin films had defects and deformations. Moreover, when the nickel thin film was forcibly scraped off, it was confirmed that the surface of the mold was scratched. Example 2 The same substrate used in Example 1 was used, and the surface accuracy was ± 2 μm.
About 2 ml of a resin composition (viscosity 400P) comprising each of the following components was supplied to one side of the surface on which the microelectrode portion was arranged while being sucked and fixed on a stainless steel table of m.

【0047】 (成 分) (重量部) 特殊変性エポキシ樹脂 58 特殊アミン系硬化剤 22 球状のアルミナフィラー 10 (平均粒径0.1μm) シランカップリング剤 10 次に、刃幅12mmのステンレス製の刃を微小電極部の
先端面に当接させつつ、当該刃を基体に対して移動させ
ることで、上記の樹脂組成物を、微小電極部の隙間に充
てんしながら基体の表面に塗りひろげる操作を、基体の
全面に亘って行った。
(Component) (Parts by Weight) Special Modified Epoxy Resin 58 Special Amine Hardener 22 Spherical Alumina Filler 10 (Average Particle Size 0.1 μm) Silane Coupling Agent 10 Next, a stainless steel blade having a blade width of 12 mm is used. While the blade is brought into contact with the tip end surface of the microelectrode portion, the blade is moved with respect to the base body, so that the resin composition can be applied to the surface of the base body while filling the gap between the microelectrode portions. , Over the entire surface of the substrate.

【0048】そして樹脂組成物中のエポキシ樹脂を硬化
させることで、微小電極部間を埋める絶縁層を形成し
て、微細電鋳用金型を製造した。上記微細電鋳用金型に
おける、微小電極部の先端面の、絶縁層の表面からの突
出量D1を、基体上の複数個所において測定したとこ
ろ、いずれの個所においても0.1〜2μmの範囲内で
あり、その平均値は0.6μmであった。次にこの微細
電鋳用金型を使用して、実施例1と同条件で電鋳を行っ
た後、形成されたニッケル薄膜を、ゴムローラでこする
ことによってはく離してニッケル粉末を製造した。
Then, by curing the epoxy resin in the resin composition, an insulating layer filling the space between the fine electrode portions was formed to manufacture a fine electroforming mold. The amount of protrusion D 1 of the tip surface of the microelectrode portion from the surface of the insulating layer in the above-mentioned fine electroforming mold was measured at a plurality of locations on the substrate, and was 0.1 to 2 μm at any location. It was within the range, and the average value was 0.6 μm. Next, using this fine electroforming mold, electroforming was performed under the same conditions as in Example 1, and then the formed nickel thin film was scraped by rubbing with a rubber roller to produce nickel powder.

【0049】得られたニッケル粉末を、走査型電子顕微
鏡を用いて倍率1000倍で観察したところ、いずれの
粉末も欠陥のない、直径30μm、厚み5μmの円盤状
粉末であることが確認された。また金型表面へのニッケ
ル薄膜の残留は全く見られなかった。さらに同じ金型を
用いて、上記と同様の電鋳およびはく離操作を繰り返し
行ったところ、先の実施例1では50回を過ぎたところ
で微小電極部と絶縁層との界面ではく離が発生した。し
かし実施例2では、上記の操作を100回、繰り返して
も、金属製品であるニッケル粉末の状態に変化は見られ
ない上、金型表面へのニッケル薄膜の残留も全く見られ
ず、しかも微小電極部と絶縁層との界面でのはく離など
の、金型の損傷も確認されなかった。
When the obtained nickel powder was observed with a scanning electron microscope at a magnification of 1000 times, it was confirmed that none of the powders was a disk-like powder having a diameter of 30 μm and a thickness of 5 μm. No nickel thin film remained on the surface of the mold. Further, when the same electroforming and peeling operations as described above were repeated using the same mold, peeling occurred at the interface between the fine electrode portion and the insulating layer after 50 times in Example 1 above. However, in Example 2, even when the above operation was repeated 100 times, no change was observed in the state of the nickel powder, which was a metal product, and no nickel thin film remained on the surface of the mold, and the amount was very small. No damage to the mold such as peeling at the interface between the electrode part and the insulating layer was confirmed.

【0050】実施例3 前記実施例1で使用したのと同じ基体の、微小電極部を
形成した側の全面に、スパッタリング法によって、厚み
10nmのCr層と、厚み0.1μmのTi層とをこの
順に積層した。次にこの基体を、面精度±2μmのステ
ンレス製のテーブル上に吸引、固定した状態で、微小電
極部を配置した表面の1辺側に、実施例2で使用したの
と同じ樹脂組成物(粘度400P)およそ2mlを供給
した。
Example 3 A Cr layer having a thickness of 10 nm and a Ti layer having a thickness of 0.1 μm were formed by sputtering on the entire surface of the same substrate as used in Example 1 on the side where the fine electrode portion was formed. The layers were laminated in this order. Next, with this substrate being sucked and fixed on a stainless steel table having a surface accuracy of ± 2 μm, the same resin composition as that used in Example 2 Viscosity 400P) Approximately 2 ml was fed.

【0051】次に、刃幅12mmのステンレス製の刃を
微小電極部の先端面に当接させつつ、当該刃を基体に対
して移動させることで、上記の樹脂組成物を、微小電極
部の隙間に充てんしながら基体の表面に塗りひろげる操
作を、基体の全面に亘って行った。そして樹脂組成物中
のエポキシ樹脂を硬化させることで、微小電極部間を埋
める絶縁層を形成して、微細電鋳用金型を製造した。
Next, the stainless steel blade having a blade width of 12 mm is brought into contact with the tip surface of the fine electrode portion, and the blade is moved with respect to the substrate, whereby the above resin composition is applied to the fine electrode portion. The operation of coating and spreading the surface of the substrate while filling the gap was performed over the entire surface of the substrate. Then, by curing the epoxy resin in the resin composition, an insulating layer filling the space between the fine electrode portions was formed to manufacture a fine electroforming mold.

【0052】上記微細電鋳用金型における、微小電極部
の先端面の、絶縁層の表面からの突出量D1を、基体上
の複数個所において測定したところ、いずれの個所にお
いても0.1〜2μmの範囲内であり、その平均値は
0.6μmであった。次にこの微細電鋳用金型を使用し
て、実施例1と同条件で電鋳を行った後、形成されたニ
ッケル薄膜を、ゴムローラでこすることによってはく離
してニッケル粉末を製造した。
The amount D 1 of protrusion of the tip surface of the fine electrode portion from the surface of the insulating layer in the above-mentioned fine electroforming mold was measured at a plurality of locations on the substrate, and was 0.1 at any location. It was within a range of ˜2 μm, and the average value was 0.6 μm. Next, using this fine electroforming mold, electroforming was performed under the same conditions as in Example 1, and then the formed nickel thin film was scraped by rubbing with a rubber roller to produce nickel powder.

【0053】得られたニッケル粉末を、走査型電子顕微
鏡を用いて倍率1000倍で観察したところ、いずれの
粉末も欠陥のない、直径30μm、厚み5μmの円盤状
粉末であることが確認された。また金型表面へのニッケ
ル薄膜の残留は全く見られなかった。さらに同じ金型を
用いて、上記と同様の電鋳およびはく離操作を繰り返し
行ったところ、上記の操作を500回、繰り返しても、
金属製品であるニッケル粉末の状態に変化は見られない
上、金型表面へのニッケル薄膜の残留も全く見られず、
しかも微小電極部と絶縁層との界面でのはく離などの、
金型の損傷も確認されなかった。
When the obtained nickel powder was observed with a scanning electron microscope at a magnification of 1000 times, it was confirmed that none of the powders had a defect and had a disk-like powder with a diameter of 30 μm and a thickness of 5 μm. No nickel thin film remained on the surface of the mold. Furthermore, when the same electroforming and peeling operations as described above were repeated using the same mold, even if the above operation was repeated 500 times,
No change was seen in the state of nickel powder, which is a metal product, and no nickel thin film remained on the mold surface.
Moreover, such as peeling at the interface between the microelectrode and the insulating layer,
No damage to the mold was confirmed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の微細電鋳用金型の、実施の形態の一
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an embodiment of a fine electroforming mold of the present invention.

【図2】同図(a)〜(c)は、それぞれ図1の例の微細電鋳
用金型を、この発明の製造方法によって製造する工程を
示す断面図である。
2 (a) to 2 (c) are cross-sectional views showing steps of manufacturing the fine electroforming die of the example of FIG. 1 by a manufacturing method of the present invention.

【図3】同図(a)〜(c)は、それぞれ図1の例の微細電鋳
用金型を用いて、金属製品としての金属粉末を製造する
工程を示す断面図である。
3 (a) to 3 (c) are cross-sectional views showing a process of producing a metal powder as a metal product by using the fine electroforming die of the example of FIG. 1, respectively.

【符号の説明】 1 微細電鋳用金型 11 微小電極部 11a 先端面 12 絶縁層 12a 表面 D1 突出量[Explanation of Codes] 1 Micro Electroforming Mold 11 Micro Electrode Part 11a Tip Surface 12 Insulating Layer 12a Surface D 1 Projection Amount

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細江 晃久 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 奥山 勲 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 (72)発明者 岡本 雅至 大阪市此花区島屋一丁目1番3号 住友電 気工業株式会社大阪製作所内 Fターム(参考) 4K029 AA02 AA29 BA07 BA17 BB02 BC02 BD03 CA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akihisa Hosoe             1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric             Ki Industry Co., Ltd. Osaka Works (72) Inventor Isao Okuyama             1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric             Ki Industry Co., Ltd. Osaka Works (72) Inventor Masaharu Okamoto             1-3-3 Shimaya, Konohana-ku, Osaka Sumitomo Electric             Ki Industry Co., Ltd. Osaka Works F term (reference) 4K029 AA02 AA29 BA07 BA17 BB02                       BC02 BD03 CA05

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】製造する金属製品の形状に対応した平面形
状を有する先端面を備えた微小電極部の、上記先端面
を、金型の表面を構成する絶縁層の表面に露出させて配
置した微細電鋳用金型であって、微小電極部の先端面
を、絶縁層の表面から0.1〜2μmの範囲で突出させ
たことを特徴とする微細電鋳用金型。
1. A microelectrode portion having a tip surface having a plane shape corresponding to the shape of a metal product to be manufactured, the tip surface being arranged so as to be exposed on the surface of an insulating layer constituting the surface of a mold. A fine electroforming mold, characterized in that the tip end surface of the microelectrode portion is projected from the surface of the insulating layer within a range of 0.1 to 2 μm.
【請求項2】微小電極部の少なくとも先端面を、SUS
316系のステンレス鋼にて形成した請求項1記載の微
細電鋳用金型。
2. The SUS is formed on at least the tip surface of the microelectrode portion.
The micro electroforming mold according to claim 1, which is formed of 316 series stainless steel.
【請求項3】絶縁層を、絶縁性のフィラーを配合したエ
ポキシ樹脂の組成物にて形成した請求項1記載の微細電
鋳用金型。
3. The fine electroforming mold according to claim 1, wherein the insulating layer is formed of an epoxy resin composition containing an insulating filler.
【請求項4】フィラーの平均粒径を0.5μm以下とし
た請求項3記載の微細電鋳用金型。
4. The fine electroforming mold according to claim 3, wherein the average particle diameter of the filler is 0.5 μm or less.
【請求項5】フィラーの配合割合を、組成物の総量中の
1〜30重量%とした請求項3記載の微細電鋳用金型。
5. The fine electroforming mold according to claim 3, wherein the blending ratio of the filler is 1 to 30% by weight based on the total amount of the composition.
【請求項6】フィラーが球状である請求項3記載の微細
電鋳用金型。
6. The fine electroforming mold according to claim 3, wherein the filler is spherical.
【請求項7】エポキシ樹脂の組成物にシランカップリン
グ剤を配合した請求項3記載の微細電鋳用金型。
7. The mold for fine electroforming according to claim 3, wherein a silane coupling agent is added to the epoxy resin composition.
【請求項8】微小電極部の、少なくとも絶縁層と接する
面に、当該微小電極部よりOH基濃度の高い金属の薄膜
層を設けた請求項3記載の微細電鋳用金型。
8. The micro electroforming mold according to claim 3, wherein a thin film layer of a metal having an OH group concentration higher than that of the fine electrode portion is provided on at least a surface of the fine electrode portion which is in contact with the insulating layer.
【請求項9】薄膜層がTi層である請求項8記載の微細
電鋳用金型。
9. The fine electroforming mold according to claim 8, wherein the thin film layer is a Ti layer.
【請求項10】微小電極部とTi層との間にCr層を設
けた請求項9記載の微細電鋳用金型。
10. The fine electroforming die according to claim 9, wherein a Cr layer is provided between the fine electrode portion and the Ti layer.
【請求項11】請求項1記載の微細電鋳用金型を製造す
る方法であって、 表面に微小電極部を配置した基体を用意し、 この基体の、微小電極部を配置した表面に、絶縁層のも
とになる流動性を有する樹脂組成物を供給し、 金属製または樹脂製の刃を微小電極部の先端面に当接さ
せつつ、当該刃と基体とを相対移動させることにより、
樹脂組成物を微小電極部の隙間に充てんしながら基体の
表面に塗りひろげた後、 樹脂組成物を固化または硬化させて絶縁層を形成する工
程を有することを特徴とする微細電鋳用金型の製造方
法。
11. A method for producing a fine electroforming die according to claim 1, wherein a base having a fine electrode portion arranged on the surface thereof is prepared, and a surface of the base having the fine electrode portion arranged thereon is By supplying a resin composition having fluidity that is a base of the insulating layer, and bringing the blade made of metal or resin into contact with the tip surface of the microelectrode portion, the blade and the base body are relatively moved,
A micro electroforming mold characterized by including a step of coating and spreading the resin composition on the surface of the substrate while filling the gaps between the microelectrode parts, and then solidifying or curing the resin composition to form an insulating layer. Manufacturing method.
JP2001329407A 2001-07-06 2001-10-26 Fine electroforming die, and manufacturing method thereof Pending JP2003082491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329407A JP2003082491A (en) 2001-07-06 2001-10-26 Fine electroforming die, and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-206661 2001-07-06
JP2001206661 2001-07-06
JP2001329407A JP2003082491A (en) 2001-07-06 2001-10-26 Fine electroforming die, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003082491A true JP2003082491A (en) 2003-03-19

Family

ID=26618307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329407A Pending JP2003082491A (en) 2001-07-06 2001-10-26 Fine electroforming die, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003082491A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131580A (en) * 2005-11-10 2007-05-31 Iwate Univ Alkoxysilyltriazinedithiol, manufacturing method of alkoxysilyltriazinedithiol, surface-reactive solid, manufacturing method of surface-reactive solid, shape transfer mold and manufacturing method of shape transfer mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131580A (en) * 2005-11-10 2007-05-31 Iwate Univ Alkoxysilyltriazinedithiol, manufacturing method of alkoxysilyltriazinedithiol, surface-reactive solid, manufacturing method of surface-reactive solid, shape transfer mold and manufacturing method of shape transfer mold

Similar Documents

Publication Publication Date Title
KR100397227B1 (en) Electroplating article, method and apparatus for electrochemical fabrication
US20010014409A1 (en) Article, method, and apparatus for electrochemical fabrication
JP2006281333A (en) Electro-chemical machining electrode tool and manufacturing method thereof
JP2010192204A (en) Anisotropic conductive member and its manufacturing method
US7393594B2 (en) Laminated metal thin plate formed by electrodeposition and method of producing the same
JP2006239803A (en) Electrochemical machining electrode tool tool and manufacturing method for it
US7267756B2 (en) Fine electroforming mold and manufacturing method thereof
CN107999908B (en) Manufacturing method of micro-pit array
JP2003082491A (en) Fine electroforming die, and manufacturing method thereof
JP6638589B2 (en) Cathode plate for metal electrodeposition and method for producing the same
WO2008001487A1 (en) Microstructural body and process for producing the same
JPH09279366A (en) Production of fine structural parts
JP2006341500A (en) Laminated structure, donor substrate and manufacturing method of laminated structure
CN111621816B (en) Method for manufacturing metal micro-column array with ultrahigh depth-to-width ratio
JP2023501603A (en) Indirect mold for directional dry adhesive
CN116670337A (en) Metal-filled microstructure and method for producing metal-filled microstructure
JP2002173792A (en) Method for manufacturing metallic product
JP2005231023A (en) Electrode tool for electrochemical machining and its manufacturing method
JP2003147570A (en) Method of manufacturing fine metallic parts
KR101493084B1 (en) Elastic print master and manufacturing method thereof
US20050139475A1 (en) Insert dies, molds, and methods for fabricating the same
JP3898822B2 (en) Wrapping carrier and manufacturing method thereof
JP3054012B2 (en) Manufacturing method of grinding wheel
JP2017039320A (en) Stencil for printing provided with organic polymer layer and method for producing the same
JP7238524B2 (en) Cathode plate for metal electrodeposition