JP2003080590A - Fluoroplastic porous body and manufacturing method thereof, tetrafluoroethylene resin fine powder, or extruded article using the same - Google Patents

Fluoroplastic porous body and manufacturing method thereof, tetrafluoroethylene resin fine powder, or extruded article using the same

Info

Publication number
JP2003080590A
JP2003080590A JP2001272993A JP2001272993A JP2003080590A JP 2003080590 A JP2003080590 A JP 2003080590A JP 2001272993 A JP2001272993 A JP 2001272993A JP 2001272993 A JP2001272993 A JP 2001272993A JP 2003080590 A JP2003080590 A JP 2003080590A
Authority
JP
Japan
Prior art keywords
fine powder
porous body
resin fine
radiation
tetrafluoroethylene resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001272993A
Other languages
Japanese (ja)
Other versions
JP4261091B2 (en
Inventor
Shinichi Kanazawa
進一 金澤
Toru Morita
徹 森田
Akihiro Oshima
明博 大島
Shigetoshi Ikeda
重利 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Fine Polymer Inc
Original Assignee
Sumitomo Electric Fine Polymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Fine Polymer Inc filed Critical Sumitomo Electric Fine Polymer Inc
Priority to JP2001272993A priority Critical patent/JP4261091B2/en
Publication of JP2003080590A publication Critical patent/JP2003080590A/en
Application granted granted Critical
Publication of JP4261091B2 publication Critical patent/JP4261091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problem that, although porosity is increased as a percentage of stretch is increased, the diameters of pores are also enlarged and a filtering performance lessens when a method of opening the pores by stretching is adopted as a manufacturing method of a fluoroplastic porous body and that, when the porosity is increased for enlarging a flow rate of permeation as to the porous body having small pore diameters and a high filtering performance, but having a small flow rate of penetration consequently, the pore diameters are enlarged accordingly, while the filtering performance lessens, and thereby to obtain the fluoroplastic porous body which has high processing efficiency and also has a high filtering performance. SOLUTION: In a manufacturing process of the fluoroplastic porous body, PTFE fine powder exposed to a radiation such as electron rays or gamma rays is extruded, or it is exposed to the radiation after it is extruded. Then, the material is stretched to manufacture the porous body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス分離膜、液体
分離膜、液体の脱気或いは液体への気体の溶解を目的と
する気液の隔膜、人工血管などの医療用材料等に利用さ
れるフッ素樹脂多孔質体及びその製造方法並びに、四フ
ッ化エチレン樹脂ファインパウダー、或いはその押出成
形品に関するものである。
TECHNICAL FIELD The present invention is used for a gas separation membrane, a liquid separation membrane, a gas-liquid separation membrane for the purpose of degassing a liquid or dissolving a gas in a liquid, a medical material such as an artificial blood vessel, and the like. The present invention relates to a fluororesin porous body and a method for producing the same, and a tetrafluoroethylene resin fine powder, or an extrusion molded product thereof.

【0002】[0002]

【従来の技術】四弗化エチレン樹脂(以下、PTFEと
略記)を素材とする多孔質体(フッ素樹脂多孔質体と称
する)は、耐薬品性、耐熱性などの材質的に優れた特徴
と、均一で微細な多孔質構造を持ち、従来から例えば、
分離膜、人工血管、カテーテル、培養器等の多くの用途
に利用されている。また撥水性であることを利用した、
水系液体の脱気、或いは逆に水系液体への気体溶解隔膜
としても用いられている。
2. Description of the Related Art A porous body (hereinafter referred to as fluororesin porous body) made of tetrafluoroethylene resin (hereinafter abbreviated as PTFE) has excellent characteristics such as chemical resistance and heat resistance. , Which has a uniform and fine porous structure, and has traditionally been
It is used in many applications such as separation membranes, artificial blood vessels, catheters and incubators. In addition, utilizing the fact that it is water repellent,
It is also used for degassing an aqueous liquid, or conversely, as a gas dissolution membrane for an aqueous liquid.

【0003】このフッ素樹脂多孔質体は、通常、原料と
なるPTFEファインパウダーに液状潤滑剤(助剤)を
混合し、予備成型にて円筒状に押し固めた後、所定の形
状にペースト押出し、この押出成形品を長軸方向に延伸
して多孔化し、しかる後、焼成する方法により製造され
ている。多孔化は、延伸法以外にも、造孔剤混合後の造
孔剤の抽出や、発泡剤による発泡などの方法があるが、
多孔化の程度を表す気孔率やフィルター性能、或いは強
度といった性能の面から先の延伸法が優れている。
This fluororesin porous material is usually prepared by mixing PTFE fine powder as a raw material with a liquid lubricant (auxiliary agent), pressing it into a cylindrical shape by preforming, and then extruding the paste into a predetermined shape. This extruded product is manufactured by a method in which the extruded product is stretched in the major axis direction to make it porous, and then fired. In addition to the stretching method, the porosification includes extraction of the pore-forming agent after mixing the pore-forming agent, foaming with a foaming agent, and the like.
The above stretching method is superior in terms of porosity indicating the degree of porosity, filter performance, or performance such as strength.

【0004】フッ素樹脂多孔質体は、各種用途に応じ
て、平均孔径、透過率、透過流量、強度などの特性が所
望の水準にあることが求められる。これら特性のうちフ
ィルターとしての性能を主に決めるのは、その多孔質内
を透過する気体や液体の透過流量と濾過分別する粒子の
大きさの限界値すなわち孔径である。この2つの特性は
各々、多孔質に占める空気の割合である気孔率と、アル
コール中での空気の透過開始圧力であるバブルポイント
で代用されることが多い。尚、バブルポイントは毛細管
現象を利用した方法であり、孔径が小さいほど毛細管現
象が大きくなることからバブルポイントが高い方が孔は
小さいことを表す。
The fluororesin porous material is required to have desired properties such as average pore diameter, transmittance, permeation flow rate and strength according to various uses. Among these characteristics, the performance of the filter is mainly determined by the permeation flow rate of the gas or liquid that permeates the inside of the porous material and the limit value of the size of the particles to be separated by filtration, that is, the pore size. These two characteristics are often substituted by the porosity, which is the ratio of air to the pores, and the bubble point, which is the pressure at which air permeates in alcohol. The bubble point is a method utilizing the capillary phenomenon, and the smaller the pore diameter, the larger the capillary phenomenon. Therefore, the higher the bubble point, the smaller the pore.

【0005】通常、濾過の分別能力である孔径・バブル
ポイントが同じであれば、濾過の処理効率を示す気孔率
は高い方が望ましい。ところが、フッ素樹脂多孔体の製
造方法として、延伸することで孔をあけていく方法を採
用すると、その延伸率を高くしていけば気孔率は高くな
っていくが、同時に孔径も大きくなって、濾過性能は小
さくなっていく。このように気孔率とバブルポイントと
には相関関係があり、通常、気孔率が決まれば、バブル
ポイントも決まってしまう。従って、小孔径で濾過性能
が高いものは透過流量が小さく、透過流量を大きくする
ために、気孔率を大きくしようとすると孔径も大きくな
って、濾過性能は小さくなってしまう。そのため、例え
ば、半導体の高集積化に伴うより高い濾過性能をもつよ
うな孔径の小さなフィルターとして使用しようとする
と、濾過処理能力が極めて小さいものしか得られず、実
用化が困難であった。
Generally, it is desirable that the porosity indicating the treatment efficiency of filtration is higher if the pore diameter and bubble point, which are the separation ability of filtration, are the same. However, as a method for producing a fluororesin porous body, if a method of forming holes by stretching is adopted, the porosity increases as the stretching rate increases, but at the same time, the pore size also increases, Filtration performance becomes smaller. As described above, there is a correlation between the porosity and the bubble point, and normally, when the porosity is determined, the bubble point is also determined. Therefore, a filter having a small pore size and high filtration performance has a small permeation flow rate, and when the porosity is increased in order to increase the permeation flow rate, the pore size also becomes large and the filtration performance becomes small. Therefore, for example, when it is attempted to be used as a filter having a small pore size, which has higher filtration performance due to the higher integration of semiconductors, only a filter having an extremely small filtration treatment capacity can be obtained, which is difficult to put into practical use.

【0006】[0006]

【発明が解決しようとする課題】このようにPTFE延
伸多孔質体は、その製法上の問題から、延伸時の速度・
温度条件の変更で、ある程度、孔径、気孔率の変更が可
能なものの、基本的に孔径と気孔率の関係に自由度が小
さい。もちろん多孔質体の孔の発生のメカニズムには延
伸以外にも、後述するように押出時の圧力によるPTF
E粒子同士の接続度合い、焼成時の加熱状況による焼成
の度合いなども影響する。しかし、前者には後述のよう
に限界値が存在し、後者は焼成が弱いとフィルターとし
ての性能は高いが強度や耐久性が損なわれるため多くの
場合性能が下がっても完全に焼成する必要がある。した
がって、PTFEファインパウダーを原料としたPTF
E多孔質体に於いて、より濾過性能がよく、かつ、処理
効率も高いものは実現できなかった。
As described above, the PTFE stretched porous body has a problem that the speed at the time of stretch
Although it is possible to change the pore diameter and the porosity to some extent by changing the temperature conditions, basically there is little freedom in the relationship between the pore diameter and the porosity. Of course, as a mechanism for generating pores in the porous body, in addition to stretching, PTF due to the pressure during extrusion will be described later.
The degree of connection between the E particles and the degree of firing depending on the heating conditions during firing also affect. However, the former has a limit value as described later, and the latter has high performance as a filter when firing is weak, but strength and durability are impaired, so in many cases it is necessary to completely fire even if the performance decreases. is there. Therefore, PTFE made from PTFE fine powder
In the case of the E porous body, it was not possible to realize a porous body having better filtration performance and higher treatment efficiency.

【0007】本発明の目的は、延伸に於いてPTFEフ
ァインパウダーがもつ特性を向上させて、濾過性能がよ
く、かつ、処理効率も高いフッ素樹脂多孔質体及びその
製造方法を提供することにある。
It is an object of the present invention to provide a fluororesin porous material which improves the characteristics of PTFE fine powder during stretching, has good filtration performance and high processing efficiency, and a method for producing the same. .

【0008】[0008]

【課題を解決するための手段】本発明者は、この問題に
ついて鋭意研究を重ねた結果、フッ素樹脂多孔質体の製
造工程に於ける延伸工程前の、原料パウダー段階のPT
FEファインパウダー、或いは押出成形段階の押出成形
品に、放射線を照射することで、バブルポイントと気孔
率との間に相関関係があって、気孔率を大きくしようと
するとバブルポイントが小さくなるといったPTFEフ
ァインパウダーの本来もつ欠点を改質し、これによっ
て、濾過性能がよく、かつ、処理効率も高いフッ素樹脂
多孔質体を得た。
As a result of intensive studies on this problem, the present inventor has found that PT at the raw material powder stage before the stretching step in the manufacturing process of the fluororesin porous material.
By irradiating the FE fine powder or the extrusion-molded product in the extrusion molding step with radiation, there is a correlation between the bubble point and the porosity, and the bubble point becomes smaller when the porosity is increased. By modifying the inherent drawbacks of fine powder, a porous fluororesin having good filtration performance and high processing efficiency was obtained.

【0009】[0009]

【発明の実施の形態】本発明のフッ素樹脂多孔質体は、
例えば以下のような技術で製造することができる。ま
ず、押出工程でPTFEファインパウダーと潤滑剤の混
合ペーストをシート状やチューブ状に押出し、必要に応
じて圧延し、次に延伸を行う。この工程で、押出で圧着
された樹脂パウダー同士が延伸により離れて裂けるよう
にしてできた亀裂状の孔間に糸を引くように繊維が延伸
方向に形成される。この後または同時に少なくともPT
FEの融点327℃以上に加熱し、焼結することでフッ
素樹脂多孔質体を得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The fluororesin porous material of the present invention comprises
For example, it can be manufactured by the following technique. First, in the extrusion step, a mixed paste of PTFE fine powder and a lubricant is extruded into a sheet shape or a tube shape, rolled if necessary, and then stretched. In this step, fibers are formed in the drawing direction so that a thread is drawn between the crack-like holes formed so that the resin powders press-bonded by extrusion separate from each other by drawing and are torn. After or at least PT
A fluororesin porous body can be obtained by heating the FE to a melting point of 327 ° C. or higher and sintering.

【0010】本発明では、上記の工程において、延伸工
程前のいずれかの段階でPTFEファインパウダーに、
重イオン線、アルファ線、ベータ線すなわち電子線、ガ
ンマ線、X線、紫外線等の放射線を照射する。この線種
については、重イオンなどの大きな粒子線ではPTFE
分子に与える影響にムラができる点、X線や紫外線では
PTFE分子に与えるエネルギーが小さい点からあまり
適さず、汎用性から考えると電子線やガンマ線の使用が
望ましく、粉末や押出成形への均一な照射処理が出来る
点から透過性の高いガンマ線が最も望ましい。
In the present invention, in the above process, the PTFE fine powder is obtained at any stage before the stretching process,
Irradiation with heavy ion rays, alpha rays, beta rays, that is, electron rays, gamma rays, X rays, ultraviolet rays, and the like. About this line type, PTFE is used for large particle beams such as heavy ions.
It is not suitable because the effect on the molecule is uneven, and the energy given to the PTFE molecule is small with X-rays and ultraviolet rays. From the viewpoint of versatility, it is desirable to use an electron beam or gamma ray, which is uniform for powder and extrusion molding. Gamma rays, which have high transparency, are most desirable because they can be irradiated.

【0011】本発明における延伸前の放射線照射量は、
一般的な高分子処理の放射線照射量と比較すると極めて
微量な照射量とする必要がある。具体的には10Gy以
上1000Gy未満が望ましく、後述の延伸性を制御す
る観点から100Gyから500Gyの範囲であること
が更に望ましい。
The radiation dose before stretching in the present invention is
It is necessary to make the irradiation dose extremely small as compared with the irradiation dose of general polymer treatment. Specifically, it is preferably 10 Gy or more and less than 1000 Gy, and more preferably 100 Gy to 500 Gy from the viewpoint of controlling the stretchability described later.

【0012】本発明の機能について以下に述べる。PT
FEファインパウダーの数百μmの二次粒子は、約0.
2μm程度の大きさの一次粒子が集まってできており、
この一次粒子の中では帯状の結晶が折り畳まれた状態で
存在する。押出工程における流動によって粒子同士が擦
れ合うことで形成される一次粒子間のコネクションは両
粒子を接続させ、延伸時に粒子間が引き延ばされると一
次粒子内の折り畳まれた結晶の帯がほどけて繊維状構造
となる。すなわち延伸による多孔質構造は、このコネク
ション形成の量と折り畳み構造からの結晶の帯のつむぎ
だし具合の2つによって決定される。
The function of the present invention will be described below. PT
Secondary particles of several hundred μm of FE fine powder have a particle size of about 0.
It is made up of primary particles with a size of about 2 μm.
In this primary particle, band-shaped crystals exist in a folded state. The connection between the primary particles formed by rubbing the particles by the flow in the extrusion process connects both particles, and when the particles are stretched during stretching, the band of folded crystals in the primary particles unwinds and becomes fibrous. It becomes a structure. That is, the porous structure by stretching is determined by two factors, the amount of this connection formation and the degree to which the crystal bands from the folded structure start to squeeze out.

【0013】気孔率は延伸率と相関するため、同じ気孔
率における孔の大きさは延伸前の押出成形品の単位長さ
あたりにどれだけたくさんの孔が発生するか、すなわち
孔の発生密度と逆相関する。つまり延伸によって発生す
る孔が多ければ小さな孔がたくさん空き、孔の発生が少
なければ1つ1つの孔は大きくなることになる。一般に
は押出圧が高いほどずり応力が粒子に多くかかりコネク
ションの形成量が多くなり、開孔密度が高くなる。
Since the porosity correlates with the draw ratio, the size of the pores at the same porosity depends on how many pores are generated per unit length of the extruded product before stretching, that is, the generation density of the holes. Inversely correlate. That is, if the number of holes generated by stretching is large, many small holes are open, and if the number of generated holes is small, each hole becomes large. Generally, the higher the extrusion pressure, the more shear stress is applied to the particles, the more the amount of connections formed, and the higher the open hole density.

【0014】従来の技術では押出圧を上げる方法とし
て、押出助剤であるオイルの量を減少させる方法を用い
てきた。しかし、発明者らの検討の結果ではコネクショ
ンの数は1粒子あたり2個、すなわち隣り合う粒子同士
が手をつなぐ状態が限界でありそれ以上押出圧を高くし
てもコネクション数は増加しないことがわかっている。
In the prior art, as a method of increasing the extrusion pressure, a method of reducing the amount of oil as an extrusion aid has been used. However, according to the results of the study conducted by the inventors, the number of connections is two per particle, that is, the state where adjacent particles hold hands is limited, and the number of connections does not increase even if the extrusion pressure is further increased. know.

【0015】前に述べたように、延伸による多孔質構造
は、コネクション形成の量と折り畳み構造からの結晶の
帯のつむぎだし具合によって決定される。本発明者らは
限界があるコネクション形成量以外に多孔質構造を制御
する方法について鋭意研究を重ねた結果、放射線照射に
よってPTFEファインパウダー粒子から繊維が発生で
きる長さを変化させることができることを発見した。す
なわちPTFEファインパウダーに放射線を照射してい
くと一次粒子内の結晶の帯の折り畳み構造が部分的に破
壊され糸のつむぎだされる量が短くなっていくのであ
る。
As mentioned above, the porous structure due to stretching is determined by the amount of connection formation and the degree of squeezing out the crystal bands from the folded structure. As a result of intensive studies on the method of controlling the porous structure in addition to the limited amount of connection formation, the present inventors have found that the length of fibers that can be generated from PTFE fine powder particles can be changed by irradiation with radiation. did. That is, when the PTFE fine powder is irradiated with radiation, the folded structure of the crystal bands in the primary particles is partially destroyed, and the amount of thread tipped is shortened.

【0016】この現象は照射後の押出成型品の引張試験
における照射量と伸びの関係で示すことが可能である。
押出成形品の伸びは放射線の照射量に依存し、伸びの現
象は照射量10Gyくらいから検出されはじめ、約1k
Gy以上の照射よってほとんど伸びなくなる。すなわち
繊維形成能力を失い実質的に延伸できなくなる。この伸
びの減少は押出前の原料パウダーへの照射と押出成形後
の照射とで差はない。また引張強度は押出圧に相関する
ものの照射量とは相関しない。すなわち放射線照射は押
出時のコネクション形成に影響するわけではなく、もっ
ぱら粒子からの糸のつむぎだし、つまり結晶の帯の折り
畳み構造の引き延ばしを阻害している。
This phenomenon can be shown by the relationship between the irradiation amount and the elongation in the tensile test of the extruded product after irradiation.
The elongation of the extruded product depends on the irradiation dose of radiation, and the phenomenon of elongation begins to be detected at an irradiation dose of about 10 Gy,
Irradiation of more than Gy causes almost no elongation. That is, the fiber-forming ability is lost and the film cannot be substantially stretched. This decrease in elongation does not differ between irradiation of the raw material powder before extrusion and irradiation after extrusion molding. The tensile strength correlates with the extrusion pressure but does not correlate with the irradiation dose. In other words, irradiation does not affect the connection formation during extrusion, but it does not prevent the thread from the particles, that is, the twitching of the thread, that is, the extension of the folded structure of the crystal band.

【0017】また本発明者らは、これらの現象が示差走
査熱量計によるPTFEの吸熱カーブの観察で捕らえる
ことができることを発見した。乳化重合から生成される
PTFEファインパウダーは他の重合方法からなるモー
ルディングパウダーや一旦加熱した後のPTFEがもつ
327℃より20℃も高い347℃に吸熱ピークを持
つ。放射線照射はこの347℃の融点ピークを335℃
付近に変化させることがわかった。
The present inventors have also discovered that these phenomena can be caught by observing the endothermic curve of PTFE with a differential scanning calorimeter. The PTFE fine powder produced by emulsion polymerization has an endothermic peak at 347 ° C., which is 20 ° C. higher than 327 ° C. which is obtained by molding powder made by another polymerization method or PTFE once heated. Irradiation causes this melting point peak at 347 ° C to reach 335 ° C.
It turned out to change to the neighborhood.

【0018】PTFEファインパウダーは、347℃の
ピークと335℃付近にショルダーをもつことが知られ
ている。放射線をPTFEファインパウダーに照射して
いくと、10Gyくらいからこの335℃付近のショル
ダーに吸熱ピークが現れ始め、更に照射量を増加させる
と347℃のピークは減少していき逆に335℃のピー
クが大きくなっていく。そして、約1kGy以上の照射
では、もはや347℃のピークは検知できなくなる。
(図2参照)図2チャートAに示されたように、347
℃のピークが検知できなくなった状態のPTFEからな
る押出成型品は、引張試験をすると、伸びがほとんどな
しで破断し、実際に延伸も不可能となる。
It is known that the PTFE fine powder has a peak at 347 ° C. and a shoulder near 335 ° C. When the PTFE fine powder is irradiated with radiation, an endothermic peak begins to appear on the shoulder at around 335 ° C from about 10 Gy, and when the irradiation amount is further increased, the peak at 347 ° C decreases and conversely the peak at 335 ° C. Is getting bigger. With irradiation of about 1 kGy or more, the peak at 347 ° C. can no longer be detected.
(See FIG. 2) As shown in FIG.
When a tensile test is conducted, an extruded product made of PTFE in a state where the peak at 0 ° C cannot be detected breaks with almost no elongation, and stretching is actually impossible.

【0019】すなわち、本発明の実現に際し、延伸の制
御をうまく行うためには、放射線を照射したPTFE
に、伸びが大きくなることを示す347℃ピークと、伸
びが小さくなることを示す335℃ピークとの両方のピ
ークが存在する必要があることになる。尚、少なくとも
前記の範囲の放射線照射では、結晶量の指標となる結晶
融解に必要な熱量すなわち溶融潜熱は未照射の場合と差
が認められず、上記に述べた伸びの減少等の現象が放射
線によるPTFEの結晶破壊によるものでないことが示
唆されている。
That is, when the present invention is realized, in order to control the stretching well, the PTFE irradiated with the radiation is used.
In addition, it is necessary to have both a peak of 347 ° C. indicating that the elongation increases and a peak of 335 ° C. indicating that the elongation decreases. Incidentally, in the radiation irradiation of at least the above range, the amount of heat necessary for melting the crystal that is an index of the amount of crystals, that is, the latent heat of fusion, is not different from that in the case of no irradiation, and the phenomenon such as the decrease in elongation described above It is suggested that this is not due to the crystal breakdown of PTFE.

【0020】この種の融点ピークの変化についての従来
の技術としては、例えば特公昭58−145735公報
や特許2533229号公報に開示されているPTFE
ファインパウダーの加熱処理がある。前者はファインパ
ウダーのもつ338℃の融点ショルダーを無くして34
7℃の単ピークにする方法であり、後者は335℃の単
ピークにすることを特徴としている。これらの方法と本
発明との最大の違いは本発明の方法が前項で述べたよう
に溶融潜熱の変化を伴わないことにある。すなわちPT
FEファインパウダーを加熱処理して行う従来の方法
は、結晶が加熱により多少なりとも融けることでその融
点に変化を及ぼすため結晶量の変化は避けがたい。本発
明の方法では例え特許2533229号公報に開示され
た方法によって得られた融熱ピークと同様の335℃の
単ピークになるまで照射しても溶融潜熱、すなわち結晶
の量にはほとんど変化がなく、結晶に及ぼすメカニズム
においてこれらの加熱法とは別のものであると考えられ
る。
As a conventional technique for changing the melting point peak of this type, for example, the PTFE disclosed in Japanese Patent Publication No. Sho 58-145735 and Japanese Patent No. 2533329 is disclosed.
There is fine powder heat treatment. The former is 34 without the melting point shoulder of 338 ° C that fine powder has.
This is a method of making a single peak at 7 ° C, and the latter is characterized by making a single peak at 335 ° C. The biggest difference between these methods and the present invention is that the method of the present invention does not involve the change of the latent heat of fusion as described in the previous section. Ie PT
In the conventional method in which FE fine powder is heat-treated, it is unavoidable that the amount of crystals changes because the crystals melt to some extent by heating and change the melting point. In the method of the present invention, there is almost no change in the latent heat of fusion, that is, the amount of crystals, even if irradiation is performed until a single peak at 335 ° C. similar to the fusion heat peak obtained by the method disclosed in Japanese Patent No. 2533329 is irradiated. , The mechanism affecting the crystal is considered to be different from these heating methods.

【0021】本発明の技術の応用例について、気孔率を
変えずに孔径を小さくする場合について具体的に説明す
る。通常の押出成型品は条件によって異なるが一般に1
000%以上の延伸可能である。孔径を小さくしたい場
合、延伸率を下げるが、例えば1軸延伸チューブの孔径
0.1μ相当品では延伸率を100〜150%に押さえ
なければならない。未照射では1000%以上の延伸に
対応できるため、初期に発生する孔は無理なくある程度
大きくなり、次の孔の発生につながらない。すなわち開
孔の密度はあまり上がらないことになる。
An application example of the technique of the present invention will be specifically described in the case of reducing the pore diameter without changing the porosity. Ordinary extruded products are generally 1
Stretching of 000% or more is possible. When it is desired to reduce the pore size, the stretching rate is lowered, but for example, for a uniaxially stretched tube having a pore size of 0.1 μm, the stretching rate must be suppressed to 100 to 150%. When unirradiated, it is possible to deal with stretching of 1000% or more, and therefore the pores initially generated are reasonably large to some extent and do not lead to the generation of the next pore. That is, the density of the openings does not increase so much.

【0022】これに対して延伸可能な量を制限された照
射品の場合は、延伸率が低くても開孔した部分の繊維が
それ以上伸びずに他に開孔部分の発生が可能となり、結
果として開孔密度の増加し、同じ延伸率すなわち気孔率
でより孔径が小さなものを得ることが可能となる。
On the other hand, in the case of the irradiated product in which the stretchable amount is limited, even if the stretching ratio is low, the fibers in the apertured portion do not extend further, and other apertured portions can be generated. As a result, the open pore density is increased, and it becomes possible to obtain one having a smaller pore diameter with the same draw ratio, that is, porosity.

【0023】本発明の技術は上記の例にあるチューブだ
けに限定されるものではなく、二軸延伸等より成形の自
由度の高いシート状多孔質体やロッド状多孔質体にも応
用可能である。またこの例以外にも、例えばガンマ線の
ような透過性の高い放射線ではなく、ごく表層にしか影
響しない加速電圧の低い電子線などを利用することで押
出成形体の表面のみに照射してから延伸することで照射
部と内部或いは裏側の非照射部の孔径が違う多孔質体の
作出などが可能となる。また押出成形体に金属製の網や
模様、絵文字などのマスクをかけた状態で放射線照射す
ることで前述の厚み方向でなく面方向に不均一な多孔質
構造をもつ多孔質体を得ることも可能であり、染料を使
用ないPTFE多孔質体へのマーキング等に利用でき
る。本発明の技術はPTFEの伸びのみを減少させ強度
には影響しないために、様々な応用が考えられる。
The technique of the present invention is not limited to the tube in the above example, but can be applied to a sheet-shaped porous body or a rod-shaped porous body having a high degree of freedom in molding by biaxial stretching or the like. is there. Further, in addition to this example, for example, the irradiation of only the surface of the extrusion-molded product after irradiation is performed by using an electron beam having a low accelerating voltage that affects only the surface layer, rather than a highly permeable radiation such as gamma rays. By doing so, it is possible to create a porous body in which the irradiation portion and the non-irradiation portion inside or on the back side have different pore sizes. It is also possible to obtain a porous body having a non-uniform porous structure in the plane direction rather than in the thickness direction described above by irradiating the extruded body with a metal net, a pattern, a mask such as pictograms, etc. It is possible and can be used for marking a PTFE porous body without using a dye. Since the technique of the present invention reduces only the elongation of PTFE and does not affect the strength, various applications are possible.

【0024】[0024]

【実施例】以下、本発明について、実施例および比較例
を挙げて具体的に説明するが、本発明はこれらの実施例
のみに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0025】PTFEファインパウダーは、旭アイシー
アイフロロポリマーズ社製の四フッ化エチレン樹脂ファ
インパウダーCD−123を使用した。Co60を線源
とするガンマ線を該パウダーに照射量100、300、
500、1000、1500Gyの5種類の線量にて照
射した。この各パウダーをソルベントナフサ22重量部
を混合し、内径1.5mm外径2.7mmのチューブ状
に押出成形した。さらに60℃乾燥炉にてナフサを除去
し、乾燥押出品を得た。これらを実施例1〜5とした。
また未照射のパウダーを同様にして得た乾燥押出品を比
較例1とした。
As the PTFE fine powder, tetrafluoroethylene resin fine powder CD-123 manufactured by Asahi IC Polymer Co., Ltd. was used. Gamma rays with Co60 as the radiation source are applied to the powder at doses of 100, 300,
Irradiation was performed with five doses of 500, 1000, and 1500 Gy. 22 parts by weight of solvent naphtha was mixed with each powder, and the mixture was extruded into a tube having an inner diameter of 1.5 mm and an outer diameter of 2.7 mm. Further, naphtha was removed in a 60 ° C. drying oven to obtain a dry extruded product. These were made into Examples 1-5.
Further, a dry extruded product obtained in the same manner as the unirradiated powder was set as Comparative Example 1.

【0026】さらに上記比較例1の未照射の乾燥押出品
に、Co60を線源とするガンマ線を照射量300、5
00Gyの線量にて照射したものを実施例6、7とし
た。以上の実施例1〜7および比較例1について、引張
温度200℃、引張速度100mm/分、チャック間
2.5cmにて引張試験を行った。結果を表1に示す。
Further, the unexposed dry extruded product of Comparative Example 1 was irradiated with gamma rays having Co60 as a radiation source at doses of 300 and 5, respectively.
Irradiation with a dose of 00 Gy was set as Examples 6 and 7. A tensile test was conducted on the above Examples 1 to 7 and Comparative Example 1 at a tensile temperature of 200 ° C., a tensile speed of 100 mm / min, and a chuck gap of 2.5 cm. The results are shown in Table 1.

【0027】実施例1〜7は、比較例1に対してガンマ
線の照射量に応じて破断伸びの減少が見られた。降伏点
強度については、照射によりパウダーの押出抵抗が下が
って流動性が上がるために、同じ助剤配合部数で同じ形
状に押し出すと押出圧が下がってしまうことによる。降
伏点強度はパウダー粒子間に形成されるコネクションの
量に依存するためコネクションを形成させるずり応力す
なわち押出圧に依存する。逆に押出後に照射した実施例
6、7ではあまり減少しない。
In Examples 1 to 7, reduction in elongation at break was observed in comparison with Comparative Example 1 depending on the irradiation amount of gamma rays. Regarding the yield point strength, since the extrusion resistance of the powder is lowered by irradiation and the fluidity is increased, the extrusion pressure is lowered when the powder is extruded into the same shape with the same number of parts of the auxiliary agent. The yield strength depends on the amount of connections formed between the powder particles, and thus on the shear stress forming the connections, that is, the extrusion pressure. On the contrary, in Examples 6 and 7 in which irradiation is performed after extrusion, there is not much reduction.

【0028】さらに実施例1〜7および比較例1につい
て示差走査熱量計にて融点ピークの観察を行った。比較
例1では347℃の1ピークであるのに対して、実施例
1では照射量が増えるに連れて335℃のピークが徐々
に大きくなるのが観察された。335℃のピークと34
7℃のピークの高さは実施例1と2の間で逆転し、34
7℃付近の吸収は実施例4ではわずかに残るのみで実施
例5ではほとんど見られなくなった。
Further, the melting point peaks of Examples 1 to 7 and Comparative Example 1 were observed with a differential scanning calorimeter. In Comparative Example 1, one peak at 347 ° C. was observed, whereas in Example 1, it was observed that the peak at 335 ° C. gradually increased as the irradiation amount increased. 335 ° C peak and 34
The peak height at 7 ° C. was reversed between Examples 1 and 2, 34
Absorption at around 7 ° C. remained slightly in Example 4, but was hardly seen in Example 5.

【0029】助剤部数を16.5部、ガンマ線照射量を
500Gyとしたこと以外は実施例1〜5と同様にして
乾燥押出品を得た。これを炉長1m、炉温550℃の炉
内で延伸率75%、巻取線速5.5m/分にて延伸後、
同じ加熱炉で炉温600℃、巻取線速5m/分にて焼成
した。この延伸多孔質チューブを実施例8とした。
Dry extrudates were obtained in the same manner as in Examples 1 to 5 except that the amount of the auxiliary agent was 16.5 parts and the gamma ray irradiation amount was 500 Gy. This was drawn in a furnace with a furnace length of 1 m and a furnace temperature of 550 ° C. at a draw ratio of 75% and a winding wire speed of 5.5 m / min.
Firing was performed in the same heating furnace at a furnace temperature of 600 ° C. and a winding wire speed of 5 m / min. This stretched porous tube was designated as Example 8.

【0030】実施例6の乾燥押出品を使用し、延伸率を
100%としたこと以外は実施例8と同様にして実施例
9を得た。また、助剤部数21部数としたこと以外は比
較例1と同様にして得た乾燥押出品を使用したこと以外
は実施例8と同様にして比較例2とした。さらに比較例
1の乾燥押出品を使用したこと以外は実施例6と同様に
して比較例3とした。
Example 9 was obtained in the same manner as in Example 8 except that the dry extruded product of Example 6 was used and the stretching ratio was 100%. Further, Comparative Example 2 was prepared in the same manner as in Example 8 except that the dry extruded product obtained in the same manner as in Comparative Example 1 was used except that the number of assistants was 21. Further, Comparative Example 3 was prepared in the same manner as in Example 6 except that the dry extruded product of Comparative Example 1 was used.

【0031】実施例8、9および比較例2、3の製造条
件およびその多孔質の特性について表2、図1に示す。
Table 2 and FIG. 1 show the manufacturing conditions of Examples 8 and 9 and Comparative Examples 2 and 3 and the characteristics of their porosity.

【0032】実施例8および比較例2は押出圧を合わせ
るために助剤部数を調整したもので、また実施例9と比
較例3は同じ乾燥押出品を使用したものである。図1を
見ると実施例は各々の対応する比較例に対してほぼ同じ
気孔率で孔径が小さな特性をもつことがわかる。
In Example 8 and Comparative Example 2, the number of auxiliary agents was adjusted to match the extrusion pressure, and in Example 9 and Comparative Example 3, the same dry extruded product was used. It can be seen from FIG. 1 that the examples have characteristics that the porosity is substantially the same as the corresponding comparative examples and the pore size is small.

【0033】これは実施例使用した乾燥押出品が放射線
照射により延伸性を制限されており、この延伸できる限
界近い延伸を行っているためであると考えられる。表1
を参考にすると未照射品は800%近く延伸できる。比
較例2、3のような75〜100%延伸では、全ての孔
が発生しきるまでに至っていなかった。これに対して実
施例では75〜100%の延伸は延伸可能範囲の限界に
近いものであり、小さな孔が無数に開孔していた。
It is considered that this is because the dry extruded products used in the examples have their stretchability limited by irradiation with radiation, and the stretchability is close to the limit at which they can be stretched. Table 1
With reference to, the unirradiated product can be stretched by nearly 800%. In the case of 75 to 100% stretching as in Comparative Examples 2 and 3, it was not possible to generate all the holes. On the other hand, in Examples, the stretching of 75 to 100% was close to the limit of the stretchable range, and numerous small holes were opened.

【0034】なお、以上に述べた実施例8,9および比
較例2,3は、いずれも示差走査熱量計による分析の結
果、融点ピークは327〜329℃の範囲、溶融潜熱も
25J/g以下と十分焼成されており、実施例と比較例
の差は焼成の度合いの差によるものではないと見なされ
た。
In each of Examples 8 and 9 and Comparative Examples 2 and 3 described above, as a result of analysis by a differential scanning calorimeter, the melting point peak was in the range of 327 to 329 ° C., and the latent heat of fusion was 25 J / g or less. It was considered that the difference between the example and the comparative example was not due to the difference in the degree of baking.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】以上に示したように、本発明の方法によ
れば、PTFEファインパウダーの延伸性を制御するこ
とが可能であり、適当な放射線照射量を選ぶことによっ
て同じ透過性でも、より高い濾過性能を持つフッ素樹脂
多孔質体を得ることが可能となる。また、示差走査熱量
計による溶融ピークの解析によってその性能を予め知る
ことが可能であり、工業的によく制御された生産が可能
となる。これらの発明品の用途に特に制限は無いが、分
離膜用途などに好適に用いることができる。
Industrial Applicability As described above, according to the method of the present invention, it is possible to control the stretchability of PTFE fine powder, and by selecting an appropriate radiation dose, even if the same permeability is obtained, It is possible to obtain a fluororesin porous body having high filtration performance. Further, its performance can be known in advance by analysis of a melting peak by a differential scanning calorimeter, and industrially well-controlled production becomes possible. The use of these invention products is not particularly limited, but they can be preferably used for separation membrane applications and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例8、9および比較例2、3のバ
ブルポイントと気孔率の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between bubble point and porosity in Examples 8 and 9 of the present invention and Comparative Examples 2 and 3.

【図2】PTFEファインパウダーの示差走査熱量計チ
ャートで放射線照射による融点ピークの変化を示す図で
ある。
FIG. 2 is a diagram showing a change in melting point peak due to radiation irradiation on a differential scanning calorimeter chart of PTFE fine powder.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // B29K 27:18 B29K 27:18 105:04 105:04 B29L 31:14 B29L 31:14 C08L 27:18 C08L 27:18 (72)発明者 大島 明博 群馬県多野郡新町2710丁目1番 ハイツパ ーシモン202号 (72)発明者 池田 重利 群馬県藤岡市立石新田210 ピュアハイツ 101号 Fターム(参考) 4D006 GA02 GA32 GA41 MB10 MB11 MB15 MC30X NA34 NA54 PB09 4F074 AA39 BB25 CA01 CC12Z CC48 DA43 DA53 DA59 4F207 AA17 AC04 AG20 AH03 KA01 KA11 KE30 KW26 KW33 4F210 AA17 AC04 AG20 AH03 QA10 QC01 QD10 QG04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // B29K 27:18 B29K 27:18 105: 04 105: 04 B29L 31:14 B29L 31:14 C08L 27: 18 C08L 27:18 (72) Inventor Akihiro Oshima 2710-1, Shinmachi, Tano-gun, Gunma Heights Persimmon No. 202 (72) Inventor Shigetoshi Ikeda 210 Gunma Prefecture Fujioka Tateshinarita 210 Pure Heights 101 F term (reference) 4D006 GA02 GA32 GA41 MB10 MB11 MB15 MC30X NA34 NA54 PB09 4F074 AA39 BB25 CA01 CC12Z CC48 DA43 DA53 DA59 4F207 AA17 AC04 AG20 AH03 KA01 KA11 KE30 KW26 KW33 4F210 AA17 AC04 AG20 AH03 QA10 QC01 QD10 QG04

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 四フッ化エチレン樹脂ファインパウダー
を所望の形状に押出成形した後に延伸するフッ素樹脂多
孔質体の製造方法において、四フッ化エチレン樹脂ファ
インパウダー、或いはその押出成形品に対して、延伸加
工前に放射線を照射することを特徴とするフッ素樹脂多
孔質体の製造方法。
1. A method for producing a fluororesin porous body which comprises extruding tetrafluoroethylene resin fine powder into a desired shape and then stretching it, wherein the tetrafluoroethylene resin fine powder or its extruded product is: A method for producing a fluororesin porous body, which comprises irradiating with radiation before stretching.
【請求項2】 放射線照射後の四フッ化エチレン樹脂フ
ァインパウダー、或いは該パウダーの押出成型品が、示
差走査熱量計分析における熱吸収曲線が該パウダーが本
来持つ347℃吸収ピークと放射線照射によって現れる
335℃付近の吸収ピークの両方を持つことを特徴とす
る特許請求第1項記載のフッ素樹脂多孔質体の製造方
法。
2. A tetrafluoroethylene resin fine powder after irradiation with radiation, or an extrusion-molded product of the powder has a heat absorption curve in a differential scanning calorimeter analysis that appears due to the radiation peak and the 347 ° C. absorption peak that the powder originally has. The method for producing a fluororesin porous material according to claim 1, which has both absorption peaks near 335 ° C.
【請求項3】 放射線が照射された四フッ化エチレン樹
脂ファインパウダー又は、それを用いた押出成形品であ
って、その示差走査熱量計分析における熱吸収曲線が、
四フッ化エチレン樹脂ファインパウダーが本来持つ34
7℃吸収ピークと、放射線照射によって現れる335℃
付近の吸収ピークとの両方を持つことを特徴とする四フ
ッ化エチレン樹脂ファインパウダー、或いはその押出成
形品。
3. A tetrafluoroethylene resin fine powder irradiated with radiation or an extrusion molded article using the same, wherein the heat absorption curve in differential scanning calorimeter analysis is
34 originally possessed by tetrafluoroethylene resin fine powder
7 ° C absorption peak and 335 ° C appearing by irradiation
A tetrafluoride ethylene resin fine powder characterized by having both absorption peaks in the vicinity, or an extrusion molded product thereof.
【請求項4】 放射線が照射された四フッ化エチレン樹
脂ファインパウダーを用いた押出成形品、又は、四フッ
化エチレン樹脂ファインパウダーを用いた押出成形品に
放射線を照射したものを延伸加工して得られたことを特
徴とするフッ素樹脂多孔質体。
4. An extruded product using a tetrafluoroethylene resin fine powder irradiated with radiation, or an extruded product using a tetrafluoroethylene resin fine powder irradiated with radiation is stretched. A fluororesin porous material characterized by being obtained.
JP2001272993A 2001-09-10 2001-09-10 Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same Expired - Fee Related JP4261091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001272993A JP4261091B2 (en) 2001-09-10 2001-09-10 Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001272993A JP4261091B2 (en) 2001-09-10 2001-09-10 Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008301021A Division JP4812826B2 (en) 2008-11-26 2008-11-26 Polytetrafluoroethylene resin fine powder or its extrusion

Publications (2)

Publication Number Publication Date
JP2003080590A true JP2003080590A (en) 2003-03-19
JP4261091B2 JP4261091B2 (en) 2009-04-30

Family

ID=19098268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001272993A Expired - Fee Related JP4261091B2 (en) 2001-09-10 2001-09-10 Fluororesin porous body and method for producing the same, tetrafluoroethylene resin fine powder, or extrusion molded article using the same

Country Status (1)

Country Link
JP (1) JP4261091B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032287A1 (en) * 2005-09-15 2007-03-22 Sumitomo Electric Fine Polymer, Inc. Tetrafluoroethylene resin moldings, stretched tetrafluoro- ethylene resin moldings, processes for production of both,and composite materials, filters, impact deformation absorbers, and sealing materials
JP2007237597A (en) * 2006-03-09 2007-09-20 Plact Corp Tube made of polytetrafluoroethylene
JP2008536558A (en) * 2005-04-13 2008-09-11 トライヴァスキュラー2 インコーポレイテッド PTFE layer and manufacturing method
JP2008537914A (en) * 2005-04-13 2008-10-02 トライヴァスキュラー2 インコーポレイテッド PTFE layer and manufacturing method
KR20160002357A (en) 2014-06-27 2016-01-07 (주)웰크론 Manufacturing method of artificial blood tube

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9446553B2 (en) 2005-04-13 2016-09-20 Trivascular, Inc. PTFE layers and methods of manufacturing
JP2008536558A (en) * 2005-04-13 2008-09-11 トライヴァスキュラー2 インコーポレイテッド PTFE layer and manufacturing method
JP2008537914A (en) * 2005-04-13 2008-10-02 トライヴァスキュラー2 インコーポレイテッド PTFE layer and manufacturing method
US8840824B2 (en) 2005-04-13 2014-09-23 Trivascular, Inc. PTFE layers and methods of manufacturing
US9549829B2 (en) 2005-04-13 2017-01-24 Trivascular, Inc. PTFE layers and methods of manufacturing
US10864070B2 (en) 2005-04-13 2020-12-15 Trivascular, Inc. PTFE layers and methods of manufacturing
US11510774B2 (en) 2005-04-13 2022-11-29 Trivascular, Inc. PTFE layers and methods of manufacturing
JP2007077323A (en) * 2005-09-15 2007-03-29 Sumitomo Electric Fine Polymer Inc Ethylene tetrafluoride resin formed article, stretched ethylene tetrafluoride resin formed article, methods for producing them, and composite material, filter, impact deformation-absorbing material and seal material
KR101234983B1 (en) * 2005-09-15 2013-02-21 스미토모덴코파인폴리머 가부시키가이샤 Expanded tetrafluoroethylene resin molded article, and composite member, filter, impact deformation absorber and sealing material utilizing it
US8715559B2 (en) 2005-09-15 2014-05-06 Sumitomo Electric Fine Polymer, Inc. Non-porous sinter molded article of tetrafluoroethylene resin, expanded tetrafluoroethylene resin molded article, producing methods therefor, composite member, filter, impact deformation absorber and sealing material
WO2007032287A1 (en) * 2005-09-15 2007-03-22 Sumitomo Electric Fine Polymer, Inc. Tetrafluoroethylene resin moldings, stretched tetrafluoro- ethylene resin moldings, processes for production of both,and composite materials, filters, impact deformation absorbers, and sealing materials
JP2007237597A (en) * 2006-03-09 2007-09-20 Plact Corp Tube made of polytetrafluoroethylene
KR20160002357A (en) 2014-06-27 2016-01-07 (주)웰크론 Manufacturing method of artificial blood tube

Also Published As

Publication number Publication date
JP4261091B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
CA2154061C (en) Textured, porous, expanded ptfe
EP0498414B1 (en) Porous hollow fiber membrane of polypropylene and production thereof
JP4531395B2 (en) Multilayer microporous membrane
US5294338A (en) Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
EP0766709B1 (en) Process of manufacturing orientated cellulose films
JPH0240254B2 (en)
DE4308368C2 (en) Porous polytetrafluoroethylene (PTFE) and a process for its production
JP2007077323A (en) Ethylene tetrafluoride resin formed article, stretched ethylene tetrafluoride resin formed article, methods for producing them, and composite material, filter, impact deformation-absorbing material and seal material
WO2002072248A1 (en) Microporous film and method for preparation thereof
JPS61293830A (en) Manufacture of polytetrafluoroethylene porous film
JP6053559B2 (en) Stretch material
JP2003080590A (en) Fluoroplastic porous body and manufacturing method thereof, tetrafluoroethylene resin fine powder, or extruded article using the same
JP4812826B2 (en) Polytetrafluoroethylene resin fine powder or its extrusion
JPH0549878A (en) Large-diameter-pore porous polyethylene hollow fiber membrane, its production and hydrophilic porous polyethylene hollow fiber membrane
JP2002348401A (en) Polyketone porous material
JP2015029927A (en) Hollow fiber membrane, method of manufacturing the same, and hollow fiber membrane module
JP2007167839A (en) Hydrophilic hollow fiber membrane and its manufacturing method
WO2017090247A1 (en) Polytetrafluoroethylene porous film
JPS61146522A (en) Preparation of porous body made of polytetrafluoroethylene resin
JPH119977A (en) Polyethylene composite microporous hollow fiber membrane
KR102641991B1 (en) Method of preparing fluorine-based resin porous membrane and fluorine-based resin porous membrane prepared thereby
JPS6157328A (en) Manufacture of polytetrafluoroethylene porous material
JPS63331A (en) Preparation of porous fluororesin membrane
KR101230141B1 (en) Manufacturing method of metallic hollow fiber having porosity
JP2022059805A (en) Hollow fiber membrane and production method of hollow fiber membrane

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050307

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050310

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees