JP2007167839A - Hydrophilic hollow fiber membrane and its manufacturing method - Google Patents

Hydrophilic hollow fiber membrane and its manufacturing method Download PDF

Info

Publication number
JP2007167839A
JP2007167839A JP2006313971A JP2006313971A JP2007167839A JP 2007167839 A JP2007167839 A JP 2007167839A JP 2006313971 A JP2006313971 A JP 2006313971A JP 2006313971 A JP2006313971 A JP 2006313971A JP 2007167839 A JP2007167839 A JP 2007167839A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
hydrophilic
treatment
hydrophilic hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006313971A
Other languages
Japanese (ja)
Inventor
Kenichi Suzuki
賢一 鈴木
Takeya Mizuno
斌也 水野
Yasuhiro Tada
靖浩 多田
Koji Ebihara
康志 海老原
Masayuki Hino
雅之 日野
Takeo Takahashi
健夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2006313971A priority Critical patent/JP2007167839A/en
Publication of JP2007167839A publication Critical patent/JP2007167839A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrophilic hollow fiber membrane consisting of polyvinylidene fluoride having physical strength and high-level separation performance and a method suitable for manufacturing the hydrophilic hollow fiber membrane. <P>SOLUTION: The hydrophilic hollow fiber membrane is formed from polyvinylidene fluoride and characterized in that the ratio of C-F bonds to C-H bonds, which exist on the surface of the hydrophilic hollow fiber membrane and are measured by XPS (X-ray photoelectron spectroscopy), is 0.6-0.9, the ratio of the O element content to the F element content, which exist on the surface of the hydrophilic hollow fiber membrane and are measured by XPS, is 0.15-0.67 and the hydrophilic hollow fiber membrane has ≥40 mN/m penetrating/wetting tension. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、親水性中空糸膜に係わる技術に関する。より詳しくは、親水化処理されたフッ化ビニリデンポリマーからなる中空糸膜と該中空糸膜の製造方法に関する。   The present invention relates to a technique related to a hydrophilic hollow fiber membrane. More specifically, the present invention relates to a hollow fiber membrane made of a hydrophilic vinylidene fluoride polymer and a method for producing the hollow fiber membrane.

液体中の不要物の分離(ろ過)除去、透析、液体中の溶存ガスの脱気、液体の濃縮等々を行うときに、しばしば「中空糸膜」が利用される。この中空糸膜は、内部に空洞を有するチューブ状又はストロー状のフィラメント膜であり、通常1.5mm程度以下の外径に設計され、一般的には、これを多数本束ねた膜モジュール形態として利用される。   A “hollow fiber membrane” is often used when performing separation (filtration) removal of unnecessary substances in liquid, dialysis, degassing of dissolved gas in liquid, concentration of liquid, and the like. This hollow fiber membrane is a tube-like or straw-like filament membrane having a cavity inside, and is usually designed to have an outer diameter of about 1.5 mm or less, and is generally in the form of a membrane module in which many are bundled. Used.

この中空糸膜は、分離特性(ろ過特性)、耐薬品性、物理的強度、透過性などにおいて優れた性能を備えることが要求される。このため、従来から材料面での研究開発が行われている。親水性高分子材料からなる中空糸膜(例えば、セルロース系膜)は、その親水性のために、フミン質に代表される有機物による膜汚染が生じ難いが、一方で酸やアルカリの薬品に対する耐性が乏しい。   This hollow fiber membrane is required to have excellent performance in separation characteristics (filtration characteristics), chemical resistance, physical strength, permeability, and the like. For this reason, research and development on the material side has been conventionally performed. Hollow fiber membranes made of hydrophilic polymer materials (for example, cellulosic membranes) are less susceptible to membrane contamination by organic substances typified by humic substances due to their hydrophilicity, while they are resistant to acid and alkali chemicals. Is scarce.

このため、耐薬品性に優れる疎水性高分子材料の表面に親水性官能基(例えば、水酸基、カルボキシル基など)を導入して親水化することによって、耐薬品性と膜汚染抑制による透水性能の維持を達成しようとする研究開発が進んでいる。この疎水性高分子材料の代表的なものが、ポリフッ化ビニリデン(Poly Vinylidene DiFluoride;略称PVDF、構造式-[CFCH]n-)である。 For this reason, by introducing hydrophilic functional groups (for example, hydroxyl groups, carboxyl groups, etc.) to the surface of hydrophobic polymer materials with excellent chemical resistance to make them hydrophilic, chemical resistance and water permeability performance by suppressing membrane contamination can be achieved. Research and development is progressing to achieve maintenance. A typical example of this hydrophobic polymer material is poly vinylidene difluoride (abbreviation PVDF, structural formula-[CF 2 CH 2 ] n-).

ここで、特許文献1には、フッ化ビニリデンポリマーからなる多孔膜をアルカリ水溶液処理することによって親水化する技術が開示されている。特許文献2には、フッ化ビニリデンポリマーをアルカリ処理した後にオゾン処理することによって親水化する技術が開示されている。   Here, Patent Document 1 discloses a technique for hydrophilizing a porous film made of a vinylidene fluoride polymer by treating with an alkaline aqueous solution. Patent Document 2 discloses a technique of hydrophilizing a vinylidene fluoride polymer by performing an alkali treatment after an alkali treatment.

さらに、特許文献3には、フッ化ビニリデンポリマーからなる多孔膜の細孔部に水溶液溶媒を含浸させた後に、酸化剤を含む強アルカリ水溶液で処理することによって親水性のフッ化ビニリデンポリマー多孔膜を得る技術が開示されている。この特許文献3に示された実施例では、3.0重量%の過マンガン酸カリウムを含む40重量%水酸化カリウム水溶液が用いられている。この技術では、強アルカリの作用によりフッ化ビニリデンポリマー分子上に生成した二重結合を酸化剤の作用で瞬時に酸化して極性基を導入できる結果、褐色化の原因となる過剰な二重結合の発生を抑えることができるとされている。なお、特許文献4にも同様の技術が開示されている。   Further, Patent Document 3 discloses that a porous vinylidene fluoride polymer porous membrane is obtained by impregnating an aqueous solution solvent into pores of a porous membrane made of a vinylidene fluoride polymer and then treating with a strong alkaline aqueous solution containing an oxidizing agent. A technique for obtaining the above is disclosed. In the example shown in Patent Document 3, a 40 wt% aqueous potassium hydroxide solution containing 3.0 wt% potassium permanganate is used. In this technology, the double bond formed on the vinylidene fluoride polymer molecule by the action of strong alkali can be instantly oxidized by the action of an oxidizing agent to introduce polar groups, resulting in excessive double bonds that cause browning It is said that the occurrence of Patent Document 4 discloses a similar technique.

さらに、特許文献5には、XPS(X線光電子分光法)測定で求められる膜表面のフッ素原子−炭素原子結合の水素原子−炭素原子結合の比率が0.5以下である、オゾン処理されたフッ化ビニリデンポリマーからなる微多孔膜が開示されており、前記XPS測定値が0.5以下のときは親水性に優れていると記載されている。
特開昭58−93734号公報。 特開平5−317663号公報。 特開昭63−172745号公報。 特開平1−75542号公報。 特開平6−343843号公報。
Further, in Patent Document 5, the ratio of the hydrogen atom-carbon atom bond of the fluorine atom-carbon atom bond on the film surface obtained by XPS (X-ray photoelectron spectroscopy) measurement is 0.5 or less, and the ozone treatment is performed. A microporous membrane made of a vinylidene fluoride polymer is disclosed, and it is described that the hydrophilicity is excellent when the XPS measurement value is 0.5 or less.
JP-A-58-93734. JP-A-5-317663. JP-A-63-172745. JP-A-1-75542. JP-A-6-343843.

上掲する先行文献に開示されたフッ化ビニリデンポリマーからなる親水性中空糸膜は、程度の差はあっても、親水化過程での炭素-炭素二重結合形成に伴う変色(褐色化又は黒色化)の発生、該親水化過程での物理的強度(強度、伸度)の低下などの技術的課題を抱えている。   The hydrophilic hollow fiber membrane composed of the vinylidene fluoride polymer disclosed in the above-mentioned prior art document is discolored (browned or blackened) due to the formation of carbon-carbon double bonds in the hydrophilization process, although to a different extent. )) And a reduction in physical strength (strength, elongation) during the hydrophilization process.

そこで、本発明は、前記技術的課題を解決するとともに、高度な分離性能を備えるフッ化ビニリデンポリマーからなる親水性中空糸膜、並びにその好適な製造方法を提供することを主な目的とする。   Therefore, the main object of the present invention is to solve the technical problems and to provide a hydrophilic hollow fiber membrane made of a vinylidene fluoride polymer having a high degree of separation performance and a suitable production method thereof.

本発明者らは、フッ化ビニリデンポリマーの親水化処理について長年研究を行ってきた。その結果、前記親水化処理の工程や条件を鋭意工夫して、膜表面上の炭素原子が係わる所定の化学結合状態をコントロールすることで、所望の浸透濡れ張力、破断伸度、引張強度を備える新規な物性の親水性中空糸膜を提供できることを突き止めた。   The present inventors have conducted research for many years on hydrophilization treatment of vinylidene fluoride polymers. As a result, the process and conditions of the hydrophilization treatment are devised to control the predetermined chemical bonding state involving carbon atoms on the film surface, thereby providing the desired osmotic wet tension, breaking elongation, and tensile strength. It has been found that a hydrophilic hollow fiber membrane having new physical properties can be provided.

特に、フッ化ビニリデンポリマーにアルカリ処理を施すことによって炭素−炭素二重結合が形成されるとき、脱フッ化水素の過程で分子鎖切断も付随して発生することにより破断伸度や引張強度で特定され得る物理的強度(機械的物性)の低下が生じることを新規に突き止め、これに基づき、アルカリ処理過程での破断伸度、引張強度の低下を極力抑制するようにコントロールしながら酸化処理により必要かつ充分な親水化を達成することができる方法を新規に見出した。   In particular, when a carbon-carbon double bond is formed by subjecting a vinylidene fluoride polymer to an alkali treatment, molecular chain breakage also occurs in the course of dehydrofluorination, resulting in a break elongation and tensile strength. Newly discovered that the physical strength (mechanical properties) that can be specified will decrease, and based on this, the oxidation treatment is performed while controlling the decrease in elongation at break and tensile strength in the alkali treatment process as much as possible. A new method has been found that can achieve the necessary and sufficient hydrophilization.

本発明は、まず、フッ化ビニリデンポリマーから形成され、(1)XPS(X線光電子分光法)で測定される膜表面上のC-F結合のC-H結合に対する比率が0.6〜0.9、(2)XPS(X線光電子分光法)で測定される膜表面上のO元素含有量のF元素含有量に対する比率が0.15〜0.67、(3)浸透濡れ張力40mN/m以上、これら(1)〜(3)のすべてを具備する親水性中空糸膜を提供し、さらには、破断伸度が40%以上、引張強度が7.5MPa以上である前記発明の親水性中空糸膜を提供する。そして、本発明では、薬品浸漬によって親水性効果が失われないようにするために、有効塩素濃度5,000ppmの次亜塩素酸ナトリウム及び1重量%水酸化ナトリウムの混合水溶液に23℃で3日間浸漬した後の前記浸透濡れ張力が40mN/m以上である親水性中空糸膜を提供する。このような物性を備える親水性中空糸膜の用途は様々であるが、一例を挙げると、水処理用途として好適である。   In the present invention, first, a ratio of C—F bonds to C—H bonds on a film surface formed from a vinylidene fluoride polymer and measured by (1) XPS (X-ray photoelectron spectroscopy) is 0.6 to 0. .9, (2) The ratio of the O element content on the film surface measured by XPS (X-ray photoelectron spectroscopy) to the F element content is 0.15 to 0.67, (3) Osmotic wetting tension 40 mN / m or more, providing a hydrophilic hollow fiber membrane comprising all of these (1) to (3), and further having a breaking elongation of 40% or more and a tensile strength of 7.5 MPa or more. A hollow fiber membrane is provided. And in this invention, in order not to lose a hydrophilic effect by chemical | medical immersion, it is 3 days at 23 degreeC in the mixed aqueous solution of sodium hypochlorite and 1 weight% sodium hydroxide with an effective chlorine concentration of 5,000 ppm. Provided is a hydrophilic hollow fiber membrane in which the osmotic wetting tension after immersion is 40 mN / m or more. The use of the hydrophilic hollow fiber membrane having such physical properties is various, but one example is suitable as a water treatment application.

次に、本発明では、上記した物性の親水性中空糸膜を得ることができる好適な製造方法を提供する。具体的には、まず、フッ化ビニリデンポリマーからなる中空糸膜に弱アルカリ処理を行い、次いで、酸化処理を行う親水性中空糸膜の製造方法を提供する。   Next, the present invention provides a suitable production method capable of obtaining the above-described hydrophilic hollow fiber membrane having physical properties. Specifically, a method for producing a hydrophilic hollow fiber membrane is first provided in which a hollow fiber membrane made of a vinylidene fluoride polymer is first subjected to a weak alkali treatment and then subjected to an oxidation treatment.

前記弱アルカリ処理では、フッ化ビニリデンポリマー表面を脱フッ化水素して炭素−炭素二重結合を緩やかに形成することによって、中空糸膜の破断伸度や引張強度の低下をコントロールする。酸化処理では、弱アルカリ処理によって適度に形成された前記炭素−炭素二重結合を最終的にヒドロキシル化(水酸基付加)し、膜表面を親水化する。このように、本発明では、弱アルカリ処理によって炭素−炭素二重結合形成を繊細にコントロールすることを可能としたことで、酸化処理による親水化の程度についても膜汚染の抑制の効果等を考慮しながらコントロールすることが可能となる。   In the weak alkali treatment, the breaking elongation and the decrease in tensile strength of the hollow fiber membrane are controlled by dehydrofluorinating the vinylidene fluoride polymer surface to gently form a carbon-carbon double bond. In the oxidation treatment, the carbon-carbon double bond appropriately formed by the weak alkali treatment is finally hydroxylated (hydroxyl group addition) to make the film surface hydrophilic. As described above, in the present invention, since the carbon-carbon double bond formation can be delicately controlled by the weak alkali treatment, the effect of suppressing the membrane contamination is also considered with respect to the degree of hydrophilization by the oxidation treatment. It becomes possible to control while.

また、本製造方法では、特に、予め延伸処理が施されたフッ化ビニリデンポリマーからなる中空糸膜に対して前記弱アルカリ処理を行うようにする。延伸処理が施されたフッ化ビニリデンポリマーからなる中空糸膜を対象として弱アルカリ処理工程、さらにはこれに続く酸化処理を行うことによって、水処理用膜として必要な強度を実現できる。   In this production method, the weak alkali treatment is particularly performed on a hollow fiber membrane made of a vinylidene fluoride polymer that has been previously stretched. By performing the weak alkali treatment step on the hollow fiber membrane made of the vinylidene fluoride polymer that has been subjected to the stretching treatment, and then the subsequent oxidation treatment, the strength required for the water treatment membrane can be realized.

本発明に係る親水性中空糸膜は、浸透濡れ張力、破断伸度、引張強度において優れている。さらに、薬品浸漬によっても親水性効果が失われない。   The hydrophilic hollow fiber membrane according to the present invention is excellent in penetrating wetting tension, breaking elongation, and tensile strength. Furthermore, the hydrophilic effect is not lost even by chemical immersion.

また、本発明に係る親水性中空糸膜の製造方法は、親水化過程での炭素-炭素二重結合形成に伴う変色(褐色化又は黒色化)の発生を防止しながら、該親水化過程での樹脂構造の分解による物理的強度の低下を防止するとともに、高度な分離性能を備えるフッ化ビニリデンポリマーからなる親水性中空糸膜を確実に製造することができる。   Further, the method for producing a hydrophilic hollow fiber membrane according to the present invention prevents the occurrence of discoloration (browning or blackening) associated with the formation of a carbon-carbon double bond in the hydrophilization process, while in the hydrophilization process. It is possible to reliably produce a hydrophilic hollow fiber membrane made of a vinylidene fluoride polymer having a high separation performance while preventing a decrease in physical strength due to decomposition of the resin structure.

(フッ化ビニリデンポリマー)
本発明において、フッ化ビニリデンポリマーとしては、フッ化ビニリデンの単独重合体、すなわちポリフッ化ビニリデン、他の共重合可能なモノマーとの共重合体あるいはこれらの混合物が用いられる。フッ化ビニリデンポリマーと共重合可能なモノマーとしては、四フッ化エチレン、六フッ化プロピレン、三フッ化エチレン、三フッ化塩化エチレン、フッ化ビニル等の一種又は二種以上を用いることができる。フッ化ビニリデンポリマーは、構成単位としてフッ化ビニリデンを70モル%以上含有することが好ましい。なかでも機械的強度の高さからフッ化ビニリデン100モル%からなる単独重合体を用いることが好ましい。
(Vinylidene fluoride polymer)
In the present invention, as the vinylidene fluoride polymer, a homopolymer of vinylidene fluoride, that is, a copolymer of polyvinylidene fluoride, another copolymerizable monomer, or a mixture thereof is used. As the monomer copolymerizable with the vinylidene fluoride polymer, one or more of tetrafluoroethylene, hexafluoropropylene, ethylene trifluoride, ethylene trifluoride chloride, vinyl fluoride and the like can be used. The vinylidene fluoride polymer preferably contains 70 mol% or more of vinylidene fluoride as a structural unit. Among these, it is preferable to use a homopolymer composed of 100 mol% of vinylidene fluoride because of its high mechanical strength.

(フッ化ビニリデンポリマーからなる中空糸膜)
このようなフッ化ビニリデンポリマーからなる中空糸膜は、公知の方法によって製造されるが、製造される中空糸膜の一般的特徴としては、空孔率が55〜90%、好ましくは60〜85%、特に好ましくは65〜80%、また膜厚は、5〜800μm程度の範囲が通常であり、好ましくは50〜600μm、特に好ましくは150〜500μmである。外径は0.3〜3mm程度、特に1〜3mm程度が適当である。このようなフッ化ビニリデンポリマーからなる中空糸膜に弱アルカリ処理及び酸化処理を行っても、前記一般的特徴に変化はない。
(Hollow fiber membrane made of vinylidene fluoride polymer)
A hollow fiber membrane made of such a vinylidene fluoride polymer is produced by a known method. As a general feature of the produced hollow fiber membrane, the porosity is 55 to 90%, preferably 60 to 85. %, Particularly preferably 65 to 80%, and the film thickness is usually in the range of about 5 to 800 μm, preferably 50 to 600 μm, particularly preferably 150 to 500 μm. The outer diameter is about 0.3 to 3 mm, particularly about 1 to 3 mm. Even if the hollow fiber membrane made of such a vinylidene fluoride polymer is subjected to weak alkali treatment and oxidation treatment, the general characteristics are not changed.

(湿潤処理)
上記の方法により製造されたフッ化ビニリデンポリマーからなる中空糸膜をアルカリ水溶液で弱アルカリ処理を行う場合、該フッ化ビニリデンポリマーからなる中空糸膜がアルカリ水溶液に濡れ難いため、処理直前に湿潤処理を行うことが好ましい。例えば、該フッ化ビニリデンポリマーからなる中空糸膜を濡らすことができるメタノール、エタノールなどのアルコールに浸漬し、その後、水に置換することで、中空糸膜の全表面が水で濡れた状態にすることができる。
(Wet treatment)
When the hollow fiber membrane made of the vinylidene fluoride polymer produced by the above method is subjected to weak alkali treatment with an alkaline aqueous solution, the hollow fiber membrane made of the vinylidene fluoride polymer is difficult to wet with the alkaline aqueous solution. It is preferable to carry out. For example, the hollow fiber membrane made of the vinylidene fluoride polymer is immersed in an alcohol such as methanol or ethanol that can be wetted, and then replaced with water, so that the entire surface of the hollow fiber membrane is wetted with water. be able to.

(弱アルカリ処理)
本発明に用いられるアルカリとしては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウムなどのアルカリ土類金属水酸化物、あるいはアルカリ金属又はアルカリ土類金属アルコキシド類、トリメチルアミン、トリエチルアミンなどの有機アミン類が挙げられる。これらのアルカリが液体の場合はそのまま処理に用いることができる。固体の場合やあるいは液体の場合であっても、水やメタノール、エタノールなどのアルコールに溶解し、その溶液を処理に用いることもできる。これらのアルカリ溶液が、フッ化ビニリデンポリマーからなる中空糸膜を濡らすことができる場合には、上記湿潤処理を省略してもよい。
(Weak alkali treatment)
Examples of the alkali used in the present invention include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as magnesium hydroxide and calcium hydroxide, or alkali metals or alkaline earth metal alkoxides. And organic amines such as trimethylamine and triethylamine. When these alkalis are liquid, they can be used for treatment as they are. Even in the case of a solid or liquid, it can be dissolved in water, alcohol such as methanol or ethanol, and the solution can be used for the treatment. In the case where these alkaline solutions can wet the hollow fiber membrane made of vinylidene fluoride polymer, the above-described wetting treatment may be omitted.

弱アルカリ処理条件は、弱アルカリ処理後の中空糸膜の浸透濡れ張力が37〜40mN/mの範囲になるような条件を指す。浸透濡れ張力が37mN/m未満になるようなアルカリ処理では、炭素−炭素二重結合の生成量が不足し、その結果、酸化処理を行っても充分な親水性を付与することができない。一方、浸透濡れ張力が40mN/mを超えるようなアルカリ処理では、強度・伸度の低下が著しく、水処理用膜として適さない。   The weak alkali treatment conditions refer to conditions under which the penetration wet tension of the hollow fiber membrane after the weak alkali treatment is in the range of 37 to 40 mN / m. In the alkali treatment in which the osmotic wet tension is less than 37 mN / m, the amount of carbon-carbon double bonds formed is insufficient, and as a result, sufficient hydrophilicity cannot be imparted even if oxidation treatment is performed. On the other hand, the alkali treatment in which the penetrating wetting tension exceeds 40 mN / m is not suitable as a film for water treatment because the strength and elongation are remarkably lowered.

(酸化処理)
本製造方法での酸化処理の好適例として、過マンガン酸カリウム(KMnO)、次亜塩素酸ナトリウム(NaClO)、過蟻酸(HCOOOH)、濃硫酸(HSO)のいずれかから選択される一つの酸化剤を少なくとも用いる方法を提案できる。過マンガン酸カリウムでは0.1〜5重量%、次亜塩素酸ナトリウムでは有効塩素濃度1〜12%、過蟻酸では5〜40重量%、濃硫酸では20〜97重量%の範囲の水溶液でそれぞれ処理することが好ましい。
(Oxidation treatment)
As a preferred example of the oxidation treatment in this production method, it is selected from potassium permanganate (KMnO 4 ), sodium hypochlorite (NaClO), formic acid (HCOOOH), and concentrated sulfuric acid (H 2 SO 4 ). A method using at least one oxidizing agent can be proposed. Potassium permanganate is 0.1 to 5% by weight, sodium hypochlorite is 1 to 12% effective chlorine concentration, formic acid is 5 to 40% by weight, and concentrated sulfuric acid is 20 to 97% by weight. It is preferable to process.

弱アルカリ処理と酸化処理は、それぞれの処理において使用する薬剤の特性に基づき、両処理を一工程で、あるいは二工程以上に分離して行うことは適宜選択可能であるが、例えば、濃硫酸を採用した酸化処理(硫酸付加及び水和反応)場合は、弱アルカリ処理工程と分離された工程として行うようにする。   In the weak alkali treatment and the oxidation treatment, it is possible to appropriately select both treatments in one step or in two steps or more based on the characteristics of the chemicals used in each treatment. The employed oxidation treatment (sulfuric acid addition and hydration reaction) is performed as a step separated from the weak alkali treatment step.

なお、本発明の酸化処理工程は、上記方法に狭く限定されることなく、例えば、OsO(四酸化オスミウム)を使ったMilas反応により炭素−炭素二重結合に水酸基を付加(シス付加)したり、m-クロロ過安息香酸(過酸の一種)から水酸基をトランス付加したりする方法なども採用することが可能である。 In addition, the oxidation treatment process of the present invention is not limited to the above-mentioned method. For example, a hydroxyl group is added to a carbon-carbon double bond (cis addition) by a Milas reaction using OsO 4 (osmium tetroxide). Alternatively, a method of trans-adding a hydroxyl group from m-chloroperbenzoic acid (a kind of peracid) can also be employed.

上記一連の工程を通じて得られる本発明のフッ化ビニリデンポリマーからなる親水性中空糸膜は、(1)XPS(X線光電子分光法)で測定される膜表面上のC-F結合のC-H結合に対する比率が0.6〜0.9、好ましくは0.65〜0.8、(2)XPS(X線光電子分光法)で測定される膜表面上のO元素含有量のF元素含有量に対する比率が0.15〜0.67、好ましくは0.2〜0.55、さらに好ましくは0.2〜0.3、(3)浸透濡れ張力40mN/m以上、好ましくは42〜60mN/mである。即ち、これら(1)〜(3)のすべてを満たすことを特徴とするものである。その結果、水処理において有機物に対する膜汚染を効果的に抑制することが可能になる。より詳しくは、河川水のろ過における透水性能の維持性を示すフラックス維持率を効果的に高めることができる。   The hydrophilic hollow fiber membrane comprising the vinylidene fluoride polymer of the present invention obtained through the series of steps described above is (1) C—F bond C—H on the membrane surface measured by XPS (X-ray photoelectron spectroscopy). Ratio of bonds to 0.6 to 0.9, preferably 0.65 to 0.8, (2) F element content of O element content on film surface measured by XPS (X-ray photoelectron spectroscopy) Is 0.15-0.67, preferably 0.2-0.55, more preferably 0.2-0.3, (3) penetrating wetting tension of 40 mN / m or more, preferably 42-60 mN / m. It is. That is, all of these (1) to (3) are satisfied. As a result, it is possible to effectively suppress film contamination with respect to organic substances in water treatment. More specifically, it is possible to effectively increase the flux maintenance rate indicating the maintenance performance of water permeability in river water filtration.

そして、本発明により得られる親水性中空糸膜は、破断伸度が40%以上、好ましくは45〜100%、強度が7.5MPa以上、好ましくは8〜15MPaであることを特徴とする。   The hydrophilic hollow fiber membrane obtained by the present invention is characterized by having a breaking elongation of 40% or more, preferably 45 to 100%, and a strength of 7.5 MPa or more, preferably 8 to 15 MPa.

さらに、本発明により得られる親水性中空糸膜は、薬品浸漬によって親水性効果が失われないことも特徴として挙げられる。より詳しくは、この性質は、有効塩素濃度5,000ppmの次亜塩素酸ナトリウム及び1重量%水酸化ナトリウムの混合水溶液に23℃で3日間浸漬した後の浸透濡れ張力が40mN/m以上であることで表される。これにより、前記薬品を用いて化学洗浄を行う水処理などの用途において、有機物に対する膜汚染抑制効果を長期的に持続させることができる。より詳しくは、前記フラックス維持率を長期間に渡って高く保持できる。   Furthermore, the hydrophilic hollow fiber membrane obtained by the present invention is also characterized in that the hydrophilic effect is not lost by chemical immersion. More specifically, this property is that the osmotic wet tension after being immersed in a mixed aqueous solution of sodium hypochlorite having an effective chlorine concentration of 5,000 ppm and 1 wt% sodium hydroxide at 23 ° C. for 3 days is 40 mN / m or more. It is expressed by that. Thereby, the film | membrane contamination inhibitory effect with respect to organic substance can be maintained over a long term in uses, such as water treatment which performs chemical cleaning using the said chemical | drug | medicine. More specifically, the flux maintenance factor can be kept high over a long period of time.

以下、本発明の実施例を比較例と対照しながら説明する。なお、以下の実施例により、本発明の範囲が狭く解釈されることはない。以下の記載を含め、本明細書に記載の特性は、以下の方法による測定値に基づくものである。   Examples of the present invention will be described below in comparison with comparative examples. The scope of the present invention is not construed narrowly by the following examples. The characteristics described in this specification, including the following description, are based on measured values by the following method.

(フッ化ビニリデンポリマーの重量平均分子量)
「フッ化ビニリデンポリマーの重量平均分子量(Mw)」は、日本分光社製のGPC装置(GPC-900)を用いて、カラムに昭和電工社製のShodexKD-806M、プレカラムに同社製の「ShodexKD-G」、溶媒にNMPを使用し、温度40℃、流量10mL/minにて、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算分子量として測定した。
(Weight average molecular weight of vinylidene fluoride polymer)
“Weight average molecular weight (Mw) of vinylidene fluoride polymer” was measured using ShodexKD-806M manufactured by Showa Denko Co., Ltd. on the column and ShodexKD- G ”, NMP was used as a solvent, and the molecular weight was measured in terms of polystyrene by gel permeation chromatography (GPC) at a temperature of 40 ° C. and a flow rate of 10 mL / min.

(ポリビニルアルコール系樹脂(PVA)の重量平均分子量)
「ポリビニルアルコール系樹脂(PVA)の重量平均分子量(Mw)」は、昭和電工社製のGPC装置(Shodex GPC-104)を用いて、カラムに同社製のShodexKF-606M、プレカラムに同社製の「ShodexKF-G」、溶媒にヘキサフルオロプロパノール(HFIP)を使用し、温度40℃、流量0.6mL/minにて、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリメチルメタクリレート換算分子量として測定した。
(Weight average molecular weight of polyvinyl alcohol resin (PVA))
The “weight average molecular weight (Mw) of polyvinyl alcohol resin (PVA)” is calculated using Shodex KF-606M for the column and Shodex KF-606M for the pre-column using a GPC device (Shodex GPC-104) manufactured by Showa Denko. ShodexKF-G ", hexafluoropropanol (HFIP) was used as a solvent, and the molecular weight was measured as a polymethyl methacrylate equivalent molecular weight by gel permeation chromatography (GPC) method at a temperature of 40 ° C and a flow rate of 0.6 mL / min.

(XPS)
「XPS(X線光電子分光法:X-ray Photoelectron Spectroscopy)」は、軟X線を照射することで発生する元素固有の光電子ピークを検出・解析することで極表面の状態分析を非破壊で行うことができる分析測定方法である。このXPSは、本発明に係る親水性中空糸膜の膜表面上の化学構造の特定のために採用されている。測定には、Quantera SXM(Physical Electronics社製)を用いた。線源に単色化AlKα線(1486.6eV)を使用し、測定領域100μm、検出深さ約4〜5nm(光電子取出角 45度)の条件下で測定を行った。この測定方法によって得られる特定の原子間の結合エネルギー(eV)におけるピーク面積値(A)で、比較される原子間の結合エネルギー(eV)におけるピーク面積値(B)を割ることによって比率値(B/A)を得る。また、特定の元素のピーク面積(C)で、比較される元素のピーク面積(D)を割ることによって比率値(D/C)を得る。より詳しくは、本発明では、膜表面上のC-F結合(a)のC-H結合(b)に対する比率(a/b)、膜表面上のO元素含有量(c)のF元素含有量(d)に対する比率(c/d)を求め、この比率の数値範囲によって、膜表面の好適な親水化状態を特定した。
(XPS)
“XPS (X-ray Photoelectron Spectroscopy)” performs non-destructive analysis of the state of the extreme surface by detecting and analyzing the photoelectron peaks unique to the elements generated by irradiation with soft X-rays. It is an analytical measurement method that can. This XPS is adopted for specifying the chemical structure on the membrane surface of the hydrophilic hollow fiber membrane according to the present invention. For the measurement, Quantera SXM (manufactured by Physical Electronics) was used. Measurement was performed under the conditions of a measurement area of 100 μm and a detection depth of about 4 to 5 nm (photoelectron extraction angle of 45 degrees) using monochromatic AlKα radiation (1486.6 eV) as a radiation source. By dividing the peak area value (B) in the bond energy (eV) between atoms to be compared with the peak area value (A) in the bond energy (eV) between specific atoms obtained by this measurement method, the ratio value ( B / A) is obtained. Further, the ratio value (D / C) is obtained by dividing the peak area (D) of the element to be compared by the peak area (C) of the specific element. More specifically, in the present invention, the ratio of the C—F bond (a) on the film surface to the C—H bond (b) (a / b), the O element content (c) on the film surface, and the F element content. A ratio (c / d) to the amount (d) was determined, and a suitable hydrophilic state on the membrane surface was specified by a numerical range of this ratio.

(浸透濡れ張力)
「浸透濡れ張力」は、膜表面の親水状態を知ることができるパラメータとして採用する。本発明では、水とエタノールの比率を変えて混合し、表面張力の異なるエタノール水溶液を用意し、温度25℃、相対湿度50%の雰囲気中で、前記エタノール水溶液に、長さ5mmに裁断した中空糸膜を静かに浮かべ、該中空糸膜が1分以内に水面から下に100mm以上沈むエタノール水溶液の表面張力をその中空糸膜の浸透濡れ張力とした。なお、エタノール濃度と表面張力の関係は化学工業便覧(丸善株式会社、改訂第5版)を参照した。
(Osmotic wet tension)
“Osmotic wetting tension” is adopted as a parameter that allows the hydrophilic state of the membrane surface to be known. In the present invention, water and ethanol are mixed at different ratios, and ethanol aqueous solutions having different surface tensions are prepared. A hollow cut into a length of 5 mm in the ethanol aqueous solution in an atmosphere at a temperature of 25 ° C. and a relative humidity of 50%. The surface tension of the aqueous ethanol solution in which the hollow fiber membrane was gently floated and the hollow fiber membrane sinked 100 mm or more below the water surface within 1 minute was defined as the penetration wet tension of the hollow fiber membrane. The relationship between ethanol concentration and surface tension was referred to the Chemical Industry Handbook (Maruzen Co., Ltd., revised 5th edition).

(次亜塩素酸ナトリウム及び水酸化ナトリウム混合水溶液浸漬後の浸透濡れ張力)
中空糸膜を有効塩素濃度5,000ppmの次亜塩素酸ナトリウム及び1重量%水酸化ナトリウムの混合水溶液に23℃で3日間浸漬した後に、前記方法で浸透濡れ張力を測定した。
(Penetration wetting tension after immersion in aqueous solution of sodium hypochlorite and sodium hydroxide)
After immersing the hollow fiber membrane in a mixed aqueous solution of sodium hypochlorite having an effective chlorine concentration of 5,000 ppm and 1% by weight sodium hydroxide at 23 ° C. for 3 days, the permeation wetting tension was measured by the above method.

(破断伸度及び引張強度)
「破断伸度」は、材料に引張方向の力を加えた際、破断に至った時の初期長に対する伸び率であり、「引張強度(tensile strength)」は、材料に引張方向の力を加えた際、破断に至るまでの最大引張応力であり、いずれも本発明に係る中空糸膜の物理的強度を特定するためのパラメータである。本発明では、引張試験機(東洋ボールドウイン社製「RTM-100」)を使用して、温度23℃、相対湿度50%の雰囲気中で初期試料長20mm、クロスヘッド速度40mm/分の条件で測定した値を採用している。
(Elongation at break and tensile strength)
“Elongation at break” is the elongation relative to the initial length when a tensile force is applied to the material, and “tensile strength” is the tensile force applied to the material. It is the maximum tensile stress until it breaks, and all are parameters for specifying the physical strength of the hollow fiber membrane according to the present invention. In the present invention, using a tensile tester (“RTM-100” manufactured by Toyo Baldwin Co., Ltd.) in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% under conditions of an initial sample length of 20 mm and a crosshead speed of 40 mm / min. The measured value is used.

(空孔率)
中空糸膜の長さ、並びに外径及び内径を測定して中空糸膜の見かけ体積V(cm)を算出し、さらに中空糸膜の重量W(g)を測定して、次の数式1により空孔率を求めた。なお、数式1中のρはポリフッ化ビニリデンの密度(1.78g/cm)である。
(Porosity)
The apparent volume V (cm 3 ) of the hollow fiber membrane is calculated by measuring the length, outer diameter and inner diameter of the hollow fiber membrane, and the weight W (g) of the hollow fiber membrane is further measured. Thus, the porosity was obtained. In Equation 1, ρ is the density of polyvinylidene fluoride (1.78 g / cm 3 ).

Figure 2007167839
Figure 2007167839

(純水フラックス)
はじめに試料中空糸膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤させた後、図1に示す装置を用いて、試長L(ろ過が行われる長さ)が800mmになるように中空糸膜を取り付け、両端は引き出し部として圧力容器の外に取り出した。引き出し部(ろ過が行われない部分であり、圧力容器との接合部)の長さは両端それぞれ50mmとした。中空糸膜が測定終了まで供給水に充分に浸かるように耐圧容器内に純水(水温25℃)を満たした後、耐圧容器内を圧力100KPaに維持しながらろ過を行った。得られた1日あたりの透水量(m/day)を、中空糸膜の膜面積(m)(=外径×π×試長L)で除して純水フラックスを得た。単位は、m/day(m/m/day)である。
(Pure water flux)
First, the sample hollow fiber membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes and wetted, and then using the apparatus shown in FIG. The hollow fiber membrane was attached so that both ends were taken out of the pressure vessel as lead portions. The length of the lead-out portion (the portion where filtration is not performed and the joint portion with the pressure vessel) was 50 mm at both ends. After filling the pressure vessel with pure water (water temperature 25 ° C.) so that the hollow fiber membrane was sufficiently immersed in the supplied water until the measurement was completed, filtration was performed while maintaining the pressure vessel at a pressure of 100 KPa. The obtained amount of water per day (m 3 / day) was divided by the membrane area (m 2 ) (= outer diameter × π × test length L) of the hollow fiber membrane to obtain a pure water flux. The unit is m / day (m 3 / m 2 / day).

(フラックス維持率)。
茨城県石岡市内で採取した恋瀬川河川水に凝集剤としてポリ塩化アルミニウムを濃度10ppmで添加して撹拌し、次いで6時間静置した後、その上澄み液を供給水としてろ過試験を行い、膜汚染性を評価した。供給水の濁度は1.0N.T.U、色度は5.6度であった。はじめに、試料中空糸膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤した後、図1に示した装置を用いて試長(ろ過が行われる部分の長さ)が400mmになるように中空糸膜を取り付け、両端は引き出し部として圧力容器の外に取り出した。引き出し部(ろ過が行われない部分であり、圧力容器との接合部)の長さは両端それぞれ50mmとした。中空糸膜が測定終了時まで供給水に充分に浸かるように耐圧容器内に純水(水温25℃)を満たした後、耐圧容器内を圧力50kPaに維持しながらろ
過を行った。ろ過開始後、最初の1分間に両端から流れ出たろ過水の重量を初期透水量とした。次いで、純水の代わりに供給水(水温25℃)を、中空糸膜が測定終了時まで供給水に充分に浸かるように耐圧容器内に満たした後、耐圧容器内を圧力50kPaに維持しながら、単位膜面積あたりのろ過量が0.3m/mになるまでろ過を行った。単位膜面積あたりのろ過量が0.3m/mになったとき、1分間に両端から流れ出たろ過水の重量を、0.3m/m時の透水量とした。初期透水量と0.3m/m時の透水量から、数式2によりフラックス維持率を算出した。
(Flux maintenance rate).
Polyaluminum chloride as a flocculant was added to the Koisegawa river water collected in Ishioka City, Ibaraki Prefecture at a concentration of 10 ppm, stirred, then allowed to stand for 6 hours, and then a filtration test was conducted using the supernatant as the feed water. Contamination was evaluated. The turbidity of the feed water is 1.0N. T.A. U and chromaticity were 5.6 degrees. First, the sample hollow fiber membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes and wetted, and then the test length (the length of the portion to be filtered) was 400 mm using the apparatus shown in FIG. A hollow fiber membrane was attached so that both ends were taken out of the pressure vessel as a lead-out portion. The length of the lead-out portion (the portion where filtration is not performed and the joint portion with the pressure vessel) was 50 mm at both ends. After filling the pressure vessel with pure water (water temperature 25 ° C.) so that the hollow fiber membrane was sufficiently immersed in the supplied water until the end of measurement, filtration was performed while maintaining the pressure vessel at a pressure of 50 kPa. After the start of filtration, the weight of filtered water that flowed out from both ends during the first minute was taken as the initial water permeability. Next, instead of pure water, supply water (water temperature 25 ° C.) is filled in the pressure vessel so that the hollow fiber membrane is sufficiently immersed in the supply water until the end of the measurement, and then the pressure vessel is maintained at a pressure of 50 kPa. Filtration was performed until the filtration amount per unit membrane area became 0.3 m 3 / m 2 . When the amount of filtration per unit membrane area became 0.3 m 3 / m 2 , the weight of the filtered water that flowed out from both ends per minute was defined as the amount of water permeation at 0.3 m 3 / m 2 . From the initial water permeability and the water permeability at 0.3 m 3 / m 2 , the flux maintenance factor was calculated by Equation 2.

Figure 2007167839
Figure 2007167839

(平均孔径)
ASTM F316-86及びASTM E1294-89に準拠して、Porous Materials,Inc.社製「パームポロメータCFP-200AEX」を用いて、ハーフドライ法により平均孔径を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
(Average pore diameter)
Based on ASTM F316-86 and ASTM E1294-89, average pore diameter was measured by a half dry method using “Palm Porometer CFP-200AEX” manufactured by Porous Materials, Inc. Perfluoropolyester (trade name “Galwick”) was used as a test solution.

(最大孔径)
ASTM F316-86及びASTM E1294-89に準拠して、Porous Materials,Inc.社製「パームポロメータCFP-200AEX」を用いて、バブルポイント法により最大孔径を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
(Maximum hole diameter)
Based on ASTM F316-86 and ASTM E1294-89, the maximum pore size was measured by the bubble point method using “Palm Porometer CFP-200AEX” manufactured by Porous Materials, Inc. Perfluoropolyester (trade name “Galwick”) was used as a test solution.

(実施例1)
(1)製膜。
重量平均分子量(Mw)が4.12×10の主体ポリフッ化ビニリデン(PVDF)(粉体)とMwが9.36×10の結晶特性改質用ポリフッ化ビニリデン(PVDF)(粉体)を、それぞれ95重量%および5重量%となる割合で、ヘンシェルミキサーを用いて混合して、Mwが4.38×10である混合物Aを得た。
Example 1
(1) Film formation.
Polyvinylidene fluoride (PVDF) (powder) having a weight average molecular weight (Mw) of 4.12 × 10 5 and polyvinylidene fluoride (PVDF) (powder) for crystal property modification having an Mw of 9.36 × 10 5 Were mixed using a Henschel mixer in proportions of 95% by weight and 5% by weight, respectively, to obtain a mixture A having an Mw of 4.38 × 10 5 .

次に、脂肪族ポリエステルとしてアジピン酸系ポリエステル可塑剤(旭電化工業株式会社製「PN−150」)と、溶媒としてN−メチルピロリドン(NMP)を、72.5重量%/27.5重量%の割合で、常温にて撹拌混合して、混合物Bを得た。   Next, adipic acid-based polyester plasticizer ("PN-150" manufactured by Asahi Denka Kogyo Co., Ltd.) as the aliphatic polyester and N-methylpyrrolidone (NMP) as the solvent, 72.5 wt% / 27.5 wt% The mixture B was obtained by stirring and mixing at room temperature.

同方向回転噛み合い型二軸押出機(プラスチック工学研究所社製「BT−30」、スクリュー直径30mm、L/D=48)を使用し、シリンダ最上流部から80mmの位置に設けられた粉体供給部から混合物Aを供給し、シリンダ最上流部から480mmの位置に設けられた液体供給部から温度160℃に加熱された混合物Bを、混合物A/混合物B=35.7/64.3(重量%)の割合で供給して、バレル温度220℃で混練し、混練物を外径6mm、内径4mmの円形スリットを有するノズルから吐出量16.6g/minで中空糸状に押し出した。この際、ノズル中心部に設けた通気口から空気を流量9.5ml/minで糸の中空部に注入した。   Using a co-rotating meshing twin screw extruder (“BT-30” manufactured by Plastics Engineering Laboratory Co., Ltd., screw diameter 30 mm, L / D = 48), powder provided at a position 80 mm from the most upstream part of the cylinder The mixture A is supplied from the supply unit, and the mixture B heated to a temperature of 160 ° C. from the liquid supply unit provided at a position 480 mm from the most upstream part of the cylinder is mixed A / mixture B = 35.7 / 64.3 ( The mixture was kneaded at a barrel temperature of 220 ° C., and the kneaded product was extruded into a hollow fiber form at a discharge rate of 16.6 g / min from a nozzle having a circular slit having an outer diameter of 6 mm and an inner diameter of 4 mm. At this time, air was injected into the hollow portion of the yarn at a flow rate of 9.5 ml / min from a vent provided in the center of the nozzle.

押し出された混合物を、溶融状態のまま40℃の温度に維持され、且つノズルから280mm離れた位置に液面を有する(すなわちエアギャップが280mmの)水中に導いて冷却・固化させて(液体中の滞留時間:約3秒)、11m/minの引取速度で引き取った後、これを周長約1mのカセに巻き取って第1中間形成体を得た。   The extruded mixture is maintained in a molten state at a temperature of 40 ° C. and has a liquid surface at a position 280 mm away from the nozzle (ie, an air gap of 280 mm), and is cooled and solidified (in the liquid) Was taken up at a take-up speed of 11 m / min, and was wound around a case having a circumference of about 1 m to obtain a first intermediate formed body.

次に、この第1中間成形体をジクロロメタン中に振動を与えながら室温で30分間浸漬し、次いでジクロロメタンを新しいものに取り替えて再び同条件にて浸漬して、脂肪族系ポリエステルと溶媒を抽出し、次いで温度120℃のオーブン内で1時間加熱してジクロロメタンを除去すると共に熱処理を行って第2中間成形体を得た。   Next, the first intermediate molded body is immersed in dichloromethane at room temperature for 30 minutes while being vibrated, and then the dichloromethane is replaced with a new one and immersed again under the same conditions to extract the aliphatic polyester and the solvent. Subsequently, heating was performed in an oven at a temperature of 120 ° C. for 1 hour to remove dichloromethane and heat treatment was performed to obtain a second intermediate molded body.

次に、この第2中間成形体を第一のロール速度を12.5m/minにして、60℃の水浴中を通過させ、第二のロール速度を23.1m/minにする事で長手方向に1.85倍に延伸した。次いで温度90℃に制御した水中を通過させ、第三のロール速度を21.3m/minまで落とすことで、水中で8%緩和処理を行った。さらに空間温度140℃に制御した乾熱バス槽(2.0m長さ)を通過させ、第四のロール速度を21.4m/minまで落とすことにより乾熱バス槽中で4%緩和処理を行った。これを巻き取ってポリフッ化ビニリデン系多孔質中空糸膜(第3成形体)を得た。   Next, the second intermediate formed body is passed through a 60 ° C. water bath at a first roll speed of 12.5 m / min, and the second roll speed is set to 23.1 m / min in the longitudinal direction. The film was stretched 1.85 times. Next, 8% relaxation treatment was performed in water by passing through water controlled at a temperature of 90 ° C. and dropping the third roll speed to 21.3 m / min. Furthermore, 4% relaxation treatment was performed in the dry heat bath tank by passing it through a dry heat bath tank (2.0 m long) controlled at a space temperature of 140 ° C. and dropping the fourth roll speed to 21.4 m / min. It was. This was wound up to obtain a polyvinylidene fluoride porous hollow fiber membrane (third molded body).

得られた中空糸膜は、外径が1.35mm、内径が0.85mm、膜厚が0.25mm、空孔率が71%であり、純水フラックス38m/m/day(100kPa,L=200mm)、35m/m/day(100kPa,L=800mm)、ハーフドライ法による平均孔径0.11μm、バブルポイント法による最大孔径0.19μm、引張強度11MPa、破断伸度85%、浸透濡れ張力34mN/mの物性を示した。 The obtained hollow fiber membrane has an outer diameter of 1.35 mm, an inner diameter of 0.85 mm, a film thickness of 0.25 mm, a porosity of 71%, and a pure water flux of 38 m 3 / m 2 / day (100 kPa, L = 200 mm), 35 m 3 / m 2 / day (100 kPa, L = 800 mm), average pore diameter of 0.11 μm by half dry method, maximum pore diameter of 0.19 μm by bubble point method, tensile strength of 11 MPa, elongation at break of 85%, The physical properties were 34mN / m.

(2)アルカリ処理。
得られた前記中空糸膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤処理した後、1重量%水酸化ナトリウム水溶液に70℃で1時間浸漬し、水洗乾燥した。
(2) Alkali treatment.
The obtained hollow fiber membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes and wet-treated, then immersed in a 1% by weight aqueous sodium hydroxide solution at 70 ° C. for 1 hour, washed and dried.

(3)酸化剤処理。
得られたアルカリ処理中空糸膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤処理した後、97重量%硫酸に室温で10分間浸漬し、水洗後乾燥した。
(3) Oxidant treatment.
The obtained alkali-treated hollow fiber membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes and wet treated, then immersed in 97 wt% sulfuric acid at room temperature for 10 minutes, washed with water and dried.

得られた中空糸膜は、外径が1.35mm、内径が0.85mm、膜厚が0.25mm、空孔率が71%であり、純水フラックス47m/m/day(100kPa,L=800mm)、ハーフドライ法による平均孔径0.13μm、バブルポイント法による最大孔径0.22μm、引張強度10.0MPa、破断伸度75%、浸透濡れ張力45mN/mの物性を示した。 The obtained hollow fiber membrane has an outer diameter of 1.35 mm, an inner diameter of 0.85 mm, a film thickness of 0.25 mm, a porosity of 71%, and a pure water flux of 47 m 3 / m 2 / day (100 kPa, L = 800 mm), an average pore size of 0.13 μm by the half dry method, a maximum pore size of 0.22 μm by the bubble point method, a tensile strength of 10.0 MPa, a breaking elongation of 75%, and an osmotic wetting tension of 45 mN / m.

(実施例2)
実施例1のアルカリ処理を5重量%水酸化ナトリウム水溶液に70℃で30分間浸漬して行った以外は実施例1と同様の方法で中空糸膜を得た。
(Example 2)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the alkali treatment of Example 1 was performed by immersing in a 5 wt% aqueous sodium hydroxide solution at 70 ° C. for 30 minutes.

(実施例3)
酸化剤処理を1重量%過マンガン酸カリウム水溶液に室温で10分間浸漬して行った以外は実施例1と同様の方法で中空糸膜を得た。
(Example 3)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the oxidizing agent treatment was performed by immersing in a 1 wt% aqueous potassium permanganate solution at room temperature for 10 minutes.

(実施例4)
酸化剤処理を有効塩素濃度10%次亜塩素酸ナトリウム水溶液に室温で8時間浸漬して行った以外は実施例1と同様の方法で中空糸膜を得た。
Example 4
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the oxidant treatment was performed by immersing in an aqueous solution of sodium hypochlorite having an effective chlorine concentration of 10% at room temperature for 8 hours.

(実施例5)
延伸処理および緩和処理を行わなかった以外は実施例2と同様の方法で中空糸膜を得た。
(Example 5)
A hollow fiber membrane was obtained in the same manner as in Example 2 except that the stretching treatment and the relaxation treatment were not performed.

(比較例1)
アルカリ処理および酸化剤処理を行わなかった以外は実施例1と同様の方法で中空糸膜を得た。
(Comparative Example 1)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the alkali treatment and the oxidizing agent treatment were not performed.

(比較例2)
酸化剤処理を行わなかった以外は実施例1と同様にして中空糸膜を得た。
(Comparative Example 2)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the oxidizing agent treatment was not performed.

(比較例3)
アルカリ処理を20重量%水酸化ナトリウム水溶液に80℃で3時間浸漬して行った以外は実施例1と同様にして中空糸膜を得た。
(Comparative Example 3)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the alkali treatment was performed by immersing in a 20 wt% aqueous sodium hydroxide solution at 80 ° C. for 3 hours.

(比較例4)
アルカリ処理を10重量%水酸化ナトリウム水溶液に25℃で10分間浸漬して行った以外は実施例1と同様の方法で中空糸膜を得た。
(Comparative Example 4)
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the alkali treatment was performed by immersing in a 10 wt% aqueous sodium hydroxide solution at 25 ° C for 10 minutes.

(比較例5)。
アルカリ処理を10重量%水酸化ナトリウム水溶液に70℃で10分間浸漬して行った以外は実施例1と同様の方法で中空糸膜を得た。
(Comparative Example 5).
A hollow fiber membrane was obtained in the same manner as in Example 1 except that the alkali treatment was performed by immersing in a 10 wt% aqueous sodium hydroxide solution at 70 ° C. for 10 minutes.

(比較例6)
重量平均分子量(Mw)が4.12×10の主体ポリフッ化ビニリデン(PVDF)(粉体)とMwが9.36×10の結晶特性改質用ポリフッ化ビニリデン(PVDF)(粉体)およびポリビニルアルコール系樹脂(日本・酢ビポバール株式会社製、「Jポバール JMR−150L」、平均ケン化度が22モル%のPVA)(粉体、平均粒径:約1080μm)を、それぞれ95重量%、5重量%および8.6重量%となる割合で、ヘンシェルミキサーを用いて混合して、混合物Aを得た。
(Comparative Example 6)
Main polyvinylidene fluoride (PVDF) (powder) having a weight average molecular weight (Mw) of 4.12 × 10 5 and polyvinylidene fluoride (PVDF) (powder) for crystal property modification having an Mw of 9.36 × 10 5 And 95% by weight of polyvinyl alcohol resin (manufactured by Nihon Vinegar Bipoval Co., Ltd., “J Poval JMR-150L”, PVA having an average saponification degree of 22 mol%) (powder, average particle size: about 1080 μm) Mixing was performed using a Henschel mixer at a ratio of 5 wt% and 8.6 wt% to obtain a mixture A.

脂肪族ポリエステルとしてアジピン酸系ポリエステル可塑剤(旭電化工業株式会社製「PN−150」)と、溶媒としてN−メチルピロリドン(NMP)を、82.5重量%/17.5重量%の割合で、常温にて撹拌混合して、混合物Bを得た。   Adipic acid polyester plasticizer ("PN-150" manufactured by Asahi Denka Kogyo Co., Ltd.) as the aliphatic polyester and N-methylpyrrolidone (NMP) as the solvent in a ratio of 82.5 wt% / 17.5 wt% The mixture B was obtained by stirring and mixing at room temperature.

同方向回転噛み合い型二軸押出機(プラスチック工学研究所社製「BT−30」、スクリュー直径30mm、L/D=48)を使用し、シリンダ最上流部から80mmの位置に設けられた粉体供給部から混合物Aを供給し、シリンダ最上流部から480mmの位置に設けられた液体供給部から温度160℃に加熱された混合物Bを、混合物A/混合物B=35.7/64.3(重量%)の割合で供給して、バレル温度220℃で混練し、混練物を外径5mm、内径3.5mmの円形スリットを有するノズルから吐出量11.8g/minで中空糸状に押出した。この際、ノズル中心部に設けた通気口から空気を流量4.0ml/minで糸の中空部に注入した。   Using a co-rotating meshing twin screw extruder (“BT-30” manufactured by Plastics Engineering Laboratory Co., Ltd., screw diameter 30 mm, L / D = 48), powder provided at a position 80 mm from the most upstream part of the cylinder The mixture A is supplied from the supply unit, and the mixture B heated to a temperature of 160 ° C. from the liquid supply unit provided at a position 480 mm from the most upstream part of the cylinder is mixed A / mixture B = 35.7 / 64.3 ( The kneaded material was extruded at a discharge rate of 11.8 g / min from a nozzle having a circular slit with an outer diameter of 5 mm and an inner diameter of 3.5 mm. At this time, air was injected into the hollow portion of the yarn at a flow rate of 4.0 ml / min from a vent provided in the center of the nozzle.

押し出された混合物を、溶融状態のまま40℃の温度に維持され、且つノズルから280mm離れた位置に液面を有する(すなわちエアギャップが280mmの)水中に導いて冷却・固化させ(液体中の滞留時間:約7秒)、5m/minの引取速度で引き取った後、これを周長約1mのカセに巻き取って第1中間成形体を得た。   The extruded mixture is maintained in a molten state at a temperature of 40 ° C. and has a liquid surface at a position 280 mm away from the nozzle (that is, an air gap of 280 mm) and is cooled and solidified (in the liquid) (Residence time: about 7 seconds) After being taken up at a take-up speed of 5 m / min, this was wound around a case having a circumference of about 1 m to obtain a first intermediate molded body.

次に、この第1中間成形体をジクロロメタン中に振動を与えながら室温で30分間浸漬し、次いでジクロロメタンを新しいものに取り替えて再び同条件にて浸漬して、脂肪族系ポリエステルと溶媒を抽出し、次いで温度120℃のオーブン内で1時間加熱してジクロロメタンを除去すると共に熱処理を行い第2中間成形体を得た。   Next, the first intermediate molded body is immersed in dichloromethane at room temperature for 30 minutes while being vibrated, and then the dichloromethane is replaced with a new one and immersed again under the same conditions to extract the aliphatic polyester and the solvent. Subsequently, heating was performed in an oven at a temperature of 120 ° C. for 1 hour to remove dichloromethane and heat treatment was performed to obtain a second intermediate molded body.

次に、この第2中間成形体を第一のロール速度を12.5m/minにして、60℃の水浴中を通過させ、第二のロール速度を22.5m/minにする事で長手方向に1.8倍に延伸した。次いで温度5℃に制御したジクロロメタン液中を通過させ、第三のロール速度を21.4m/minまで落とすことで、ジクロロメタン液中で5%緩和処理を行った。   Next, the second intermediate formed body is passed through a 60 ° C. water bath at a first roll speed of 12.5 m / min, and the second roll speed is set to 22.5 m / min in the longitudinal direction. The film was stretched 1.8 times. Next, 5% relaxation treatment was performed in the dichloromethane solution by passing through a dichloromethane solution controlled to a temperature of 5 ° C. and dropping the third roll speed to 21.4 m / min.

さらに空間温度140℃に制御した乾熱バス槽(2.0mの長さ)を通過させ、第四のロール速度を20.3m/minまで落とすことにより乾熱バス槽中で5%緩和処理を行った。これを巻き取ってポリフッ化ビニリデン系多孔質中空糸膜(第3成形体)を得た。   Furthermore, 5% relaxation treatment was performed in the dry heat bath tank by passing it through a dry heat bath tank (2.0 m long) controlled at a space temperature of 140 ° C. and reducing the fourth roll speed to 20.3 m / min. went. This was wound up to obtain a polyvinylidene fluoride porous hollow fiber membrane (third molded body).

以上の実施例1〜5、並びに比較例1〜6に関する原料組成、製膜条件、アルカリ・酸化処理条件、物性測定値を次の「表1」にまとめた。   The raw material compositions, film forming conditions, alkali / oxidation treatment conditions, and physical property measured values for Examples 1 to 5 and Comparative Examples 1 to 6 are summarized in the following “Table 1”.

Figure 2007167839
Figure 2007167839

前掲した「表1」に示された結果からわかるように、弱アルカリ処理と酸化処理が施されたポリフッ化ビニリデン中空糸膜(実施例1〜5)は、浸透濡れ張力に優れ、かつ破断伸度と引張強度も充分な値を示す。   As can be seen from the results shown in the above-mentioned “Table 1”, the polyvinylidene fluoride hollow fiber membranes (Examples 1 to 5) subjected to weak alkali treatment and oxidation treatment are excellent in osmotic wetting tension and elongation at break. Degree and tensile strength also show sufficient values.

一方、弱アルカリ処理と酸化処理のいずれも行わなかった比較例1では、浸透濡れ張力が35mN/mに留まっており、本発明の範囲外である。次に、弱アルカリ処理のみを行った比較例2では、浸透濡れ張力が38mN/mに留まっており、本発明の範囲外である。   On the other hand, in Comparative Example 1 in which neither weak alkali treatment nor oxidation treatment was performed, the penetrating wetting tension remained at 35 mN / m, which is outside the scope of the present invention. Next, in Comparative Example 2 in which only the weak alkali treatment was performed, the penetrating wetting tension remained at 38 mN / m, which is outside the scope of the present invention.

強アルカリ処理と濃硫酸処理を行った比較例3は、破断伸度が大きく不足してしまい、本発明の範囲外となった。   Comparative Example 3 in which the strong alkali treatment and the concentrated sulfuric acid treatment were performed was insufficient in the elongation at break, and was outside the scope of the present invention.

次に、アルカリ処理を10重量%水酸化ナトリウム水溶液で、25℃で10分間浸漬の条件とした比較例4は、浸透濡れ張力が38mN/mに留まり、本発明の範囲外となった。この比較例4のように、過剰な弱アルカリ条件を採用した場合、目的とする親水性(浸透濡れ張力40mN/m以上)を達成することができないことがわかった。   Next, in Comparative Example 4 in which the alkali treatment was performed with a 10% by weight aqueous sodium hydroxide solution and immersed at 25 ° C. for 10 minutes, the osmotic wet tension remained at 38 mN / m, which was outside the scope of the present invention. As in Comparative Example 4, it was found that when excessive weak alkali conditions were employed, the desired hydrophilicity (penetration wetting tension of 40 mN / m or more) could not be achieved.

一方、アルカリ処理の温度を70℃に変更した比較例5では、強アルカリ条件になってしまい、親水性は達成できるが、伸度を達成することができなかった。また、比較例6は、部分けん化ポリビニルアルコールをブレンドしたポリフッ化ビニリデンの一例であり、このような例では、親水性は向上するものの、ポリビニルアルコールに耐薬品性がなく、薬品浸漬後、元の親水性度に戻ってしまうという問題が生じる。   On the other hand, in Comparative Example 5 in which the temperature of the alkali treatment was changed to 70 ° C., it became a strong alkali condition, and hydrophilicity could be achieved, but elongation could not be achieved. Comparative Example 6 is an example of polyvinylidene fluoride blended with partially saponified polyvinyl alcohol. In such an example, although the hydrophilicity is improved, polyvinyl alcohol has no chemical resistance, and after the chemical immersion, the original The problem of returning to hydrophilicity arises.

本発明に係る親水性中空糸膜は、水処理分野、例えば、液体中の不要物の分離(ろ過)除去、透析、液体中の溶存ガスの脱気、液体の濃縮、電子工業用純水の製造、医薬品製造時の水の除菌などの分野において利用できる。特に、本発明に係る親水性中空糸膜は、河川水、湖沼水、地下水などを原水とする上水製造時の膜ろ過処理技術、下水や排水などの膜ろ過処理技術などの分野に好適に利用できる。   The hydrophilic hollow fiber membrane according to the present invention is used in the field of water treatment, for example, separation (filtration) removal of unnecessary substances in liquid, dialysis, degassing of dissolved gas in liquid, concentration of liquid, pure water for electronic industry. It can be used in fields such as manufacturing and sterilization of water during pharmaceutical manufacturing. In particular, the hydrophilic hollow fiber membrane according to the present invention is suitable for fields such as membrane filtration treatment technology during the production of clean water using river water, lake water, groundwater, etc., and membrane filtration treatment technology such as sewage and wastewater. Available.

また、本発明に係る製造方法は、強伸度が充分であり、かつ高い分離性能を有するフッ化ビニリデンポリマーからなる親水性中空糸膜の製造技術として利用できる。   In addition, the production method according to the present invention can be used as a production technique for a hydrophilic hollow fiber membrane made of a vinylidene fluoride polymer having sufficient strength and high separation performance.

純水フラックスを測定する装置の構成を示すである。It is a structure of the apparatus which measures a pure water flux.

Claims (7)

フッ化ビニリデンポリマーから形成されており、次の(1)〜(3)のすべてを具備する親水性中空糸膜。
(1)XPS(X線光電子分光法)で測定される膜表面上のC-F結合のC-H結合に対する比率が0.6〜0.9。
(2)XPS(X線光電子分光法)で測定される膜表面上のO元素含有量のF元素含有量に対する比率が0.15〜0.67。
(3)浸透濡れ張力40mN/m以上。
A hydrophilic hollow fiber membrane formed from a vinylidene fluoride polymer and comprising all of the following (1) to (3).
(1) The ratio of C—F bonds to C—H bonds on the film surface measured by XPS (X-ray photoelectron spectroscopy) is 0.6 to 0.9.
(2) The ratio of the O element content on the film surface measured by XPS (X-ray photoelectron spectroscopy) to the F element content is 0.15 to 0.67.
(3) Penetration wetting tension of 40 mN / m or more.
破断伸度40%以上、及び引張強度7.5MPa以上である請求項1記載の親水性中空糸膜。   The hydrophilic hollow fiber membrane according to claim 1, which has a breaking elongation of 40% or more and a tensile strength of 7.5 MPa or more. 有効塩素濃度5,000ppmの次亜塩素酸ナトリウム及び1重量%水酸化ナトリウムの混合水溶液に23℃で3日間浸漬した後の前記浸透濡れ張力が40mN/m以上であることを特徴とする請求項1又は2に記載の親水性中空糸膜。   The osmotic wetting tension after being immersed in a mixed aqueous solution of sodium hypochlorite having an effective chlorine concentration of 5,000 ppm and 1 wt% sodium hydroxide at 23 ° C for 3 days is 40 mN / m or more. 3. The hydrophilic hollow fiber membrane according to 1 or 2. 水処理に用いられることを特徴とする請求項1〜3に記載の親水性中空糸膜。   The hydrophilic hollow fiber membrane according to claim 1, which is used for water treatment. フッ化ビニリデンポリマーから中空糸膜に弱アルカリ処理を行い、次いで、酸化処理を行う親水性中空糸膜の製造方法。   A method for producing a hydrophilic hollow fiber membrane, comprising subjecting a hollow fiber membrane to a weak alkali treatment from a vinylidene fluoride polymer, followed by an oxidation treatment. 前記弱アルカリ処理の前に中空糸膜が延伸処理されていることを特徴とする請求項5に記載の親水性中空糸膜の製造方法。   6. The method for producing a hydrophilic hollow fiber membrane according to claim 5, wherein the hollow fiber membrane is stretched before the weak alkali treatment. 前記酸化処理では、過マンガン酸カリウム、次亜塩素酸ナトリウム、過蟻酸、濃硫酸のいずれかから選択される一つの酸化剤を少なくとも用いることを特徴とする請求項5又は6に記載の親水性中空糸膜の製造方法。   The hydrophilic property according to claim 5 or 6, wherein at least one oxidizing agent selected from potassium permanganate, sodium hypochlorite, performic acid, and concentrated sulfuric acid is used in the oxidation treatment. A method for producing a hollow fiber membrane.
JP2006313971A 2005-11-25 2006-11-21 Hydrophilic hollow fiber membrane and its manufacturing method Ceased JP2007167839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313971A JP2007167839A (en) 2005-11-25 2006-11-21 Hydrophilic hollow fiber membrane and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005340642 2005-11-25
JP2006313971A JP2007167839A (en) 2005-11-25 2006-11-21 Hydrophilic hollow fiber membrane and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007167839A true JP2007167839A (en) 2007-07-05

Family

ID=38295093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313971A Ceased JP2007167839A (en) 2005-11-25 2006-11-21 Hydrophilic hollow fiber membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007167839A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055889A1 (en) * 2008-11-14 2010-05-20 株式会社トクヤマ Anion-exchange membrane and method for producing same
WO2012176810A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Porous polymer film and production method for porous polymer film
CN109046035A (en) * 2018-08-28 2018-12-21 浙江工业大学 A kind of hydrophilic modifying Kynoar filter membrane and its application
KR102056871B1 (en) 2013-03-15 2019-12-17 도레이첨단소재 주식회사 Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003031038A1 (en) * 2001-10-04 2003-04-17 Toray Industries, Inc. Hollow fiber film and method for production thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010055889A1 (en) * 2008-11-14 2010-05-20 株式会社トクヤマ Anion-exchange membrane and method for producing same
EP2725041A1 (en) * 2011-06-22 2014-04-30 Daikin Industries, Ltd. Fluoropolymer, production method for fluoropolymer, and porous polymer film
WO2012176815A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Fluoropolymer, production method for fluoropolymer, and porous polymer film
JP2013163179A (en) * 2011-06-22 2013-08-22 Daikin Industries Ltd Porous polymer film and production method for porous polymer film
CN103608368A (en) * 2011-06-22 2014-02-26 大金工业株式会社 Porous polymer film and production method for porous polymer film
CN103619891A (en) * 2011-06-22 2014-03-05 大金工业株式会社 Fluoropolymer, production method for fluoropolymer, and porous polymer film
WO2012176810A1 (en) 2011-06-22 2012-12-27 ダイキン工業株式会社 Porous polymer film and production method for porous polymer film
US20140138304A1 (en) * 2011-06-22 2014-05-22 Daikin Industries, Ltd. Porous polymer film and production method for porous polymer film
EP2725041A4 (en) * 2011-06-22 2014-12-24 Daikin Ind Ltd Fluoropolymer, production method for fluoropolymer, and porous polymer film
US9180414B2 (en) 2011-06-22 2015-11-10 Daikin Industries, Ltd. Fluoropolymer, production method for fluoropolymer, and porous polymer film
US9283525B2 (en) 2011-06-22 2016-03-15 Daikin Industries, Ltd. Porous polymer film and production method for porous polymer film
CN103608368B (en) * 2011-06-22 2016-08-17 大金工业株式会社 High-molecular porous plasma membrane and the manufacture method of high-molecular porous plasma membrane
KR102056871B1 (en) 2013-03-15 2019-12-17 도레이첨단소재 주식회사 Positive charged poly(vinylidene fluoride) porous membranes and manufacturing method thereof
CN109046035A (en) * 2018-08-28 2018-12-21 浙江工业大学 A kind of hydrophilic modifying Kynoar filter membrane and its application

Similar Documents

Publication Publication Date Title
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
KR101657307B1 (en) Fluorinated hollow fiber membrane and method for preparing the same
JP3979521B2 (en) Heat-resistant microporous membrane
JP4987471B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
EP3103546A1 (en) Hollow fiber membrane, and method for producing hollow fiber membrane
KR20070036151A (en) Porous membrane for water treatment and process for producing the same
JP4835221B2 (en) Hollow fiber membrane and method for producing the same
KR20100022928A (en) Porous membrane and method for manufacturing the same
WO2014142394A1 (en) Polyvinylidene fluoride hollow fiber membranes and preparation thereof
JPWO2008117740A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
WO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and process for producing same
WO2019066061A1 (en) Porous hollow fiber membrane and method for producing same
Zhou et al. Improving bonding strength between a hydrophilic coating layer and poly (ethylene terephthalate) braid for preparing mechanically stable braid‐reinforced hollow fiber membranes
JP2007167839A (en) Hydrophilic hollow fiber membrane and its manufacturing method
JP4761967B2 (en) Vinylidene fluoride resin porous hollow fiber and method for producing the same
JP4781691B2 (en) Porous membrane and method for producing the same
JPWO2006006340A1 (en) Vinylidene fluoride resin porous water treatment membrane and method for producing the same
JP2012200635A (en) Method for producing composite hollow fiber membrane
JP2007283232A (en) Vinylidene fluoride type resin hollow filament porous membrane and its manufacturing method
KR20090133100A (en) Hydrophilizing method for water-treatment membrane and water-treatment membrane
JP2006326497A (en) Semi-permeable membrane for water treatment and its production method
JP2008168224A (en) Hollow fiber porous membrane and its manufacturing method
RU2440181C2 (en) Porous membrane from vinylidene fluoride resin and method of its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110225

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20130129

Free format text: JAPANESE INTERMEDIATE CODE: A01

A045 Written measure of dismissal of application

Effective date: 20130528

Free format text: JAPANESE INTERMEDIATE CODE: A045