JP2003077932A - Bidirectional type two terminal thyristor - Google Patents

Bidirectional type two terminal thyristor

Info

Publication number
JP2003077932A
JP2003077932A JP2001265787A JP2001265787A JP2003077932A JP 2003077932 A JP2003077932 A JP 2003077932A JP 2001265787 A JP2001265787 A JP 2001265787A JP 2001265787 A JP2001265787 A JP 2001265787A JP 2003077932 A JP2003077932 A JP 2003077932A
Authority
JP
Japan
Prior art keywords
conductive region
type conductive
region
type
bidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001265787A
Other languages
Japanese (ja)
Other versions
JP5371165B2 (en
Inventor
Masaaki Tomita
昌明 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2001265787A priority Critical patent/JP5371165B2/en
Publication of JP2003077932A publication Critical patent/JP2003077932A/en
Application granted granted Critical
Publication of JP5371165B2 publication Critical patent/JP5371165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Thyristor Switches And Gates (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase surge resistance by turning on all of a plurality of formed unit thyristors in a time as short as possible. SOLUTION: A first N type conductive region 2 and a second N type conductive region 3 are formed on a semiconductor substrate 100. Each of first P type conductive regions 4, 5, 6 in the first N type conductive region 2 and each of second P type conductive regions 7, 8, 9 in the second N type conductive region 3 are point-symmetrically formed, and a third P type conductive region 12 adjacent to the first N type conductive region 2 and a fourth P type conductive region 13 adjacent to the second N type conductive region 3 are arranged. In addition, it is constituted so that a common base current amplification factor α1 of a first transistor, where a first N type conductive region 2 is a collector, and the third P type conductive region 12 and the fourth P type conductive region 13 and a substrate conductive region 1 are a base, and a second N type conductive region 3 is an emitter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、サイリスタ、特に異常
電圧または異常電流から電子回路系を保護するサージ防
護素子等に用いる双方向型二端子サイリスタに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thyristor, and more particularly to a bidirectional two-terminal thyristor used as a surge protection element for protecting an electronic circuit system from abnormal voltage or current.

【0002】[0002]

【従来の技術】双方向型二端子サイリスタは、電話回線
などの通信回線に発生した異常電圧や異常電流から電子
回路を保護するサージ防護素子として、通信業界等で幅
広く用いられている。
2. Description of the Related Art Bidirectional two-terminal thyristors are widely used in the telecommunications industry and the like as surge protection elements for protecting electronic circuits from abnormal voltages and currents generated in communication lines such as telephone lines.

【0003】図2は、従来技術に係る双方向型二端子サ
イリスタを示す断面図である。図2において、1は基板
導電領域、2は第1N型導電領域、3は第2N型導電領
域、4は第1P型導電領域、7は第2P型導電領域、1
0は第1電極、11は第2電極、51はPNPN構造、
100は半導体基板である。また、図4は、従来技術に
係る双方向型二端子サイリスタの等価回路図である。
FIG. 2 is a sectional view showing a bidirectional two-terminal thyristor according to the prior art. In FIG. 2, 1 is a substrate conductive region, 2 is a first N-type conductive region, 3 is a second N-type conductive region, 4 is a first P-type conductive region, 7 is a second P-type conductive region, 1
0 is the first electrode, 11 is the second electrode, 51 is the PNPN structure,
100 is a semiconductor substrate. Further, FIG. 4 is an equivalent circuit diagram of a bidirectional two-terminal thyristor according to a conventional technique.

【0004】基板導電領域1は、P型の導電型を有する
ものである。第1N型導電領域2と第2N型導電領域3
は、基板導電領域1内部に不純物拡散によって形成され
たN型の導電型を有するものである。第1P型導電領域
4と第2P型導電領域7は、基板導電領域1内部に不純
物拡散によって形成されたP型の導電型を有するもので
ある。第1電極10と第2電極11は、半導体基板10
0の両主面に形成された電極である。ここで、電極10
は、第1N型導電領域2と第1P型導電領域4の双方と
電気的に接続される。また、第2電極11は、第2N型
導電領域3と第2P型導電領域7の双方と電気的に接続
されるが、電極10及び電極11からみた電気的特性が
同一になるように、全体の構造を点対称とするのが一般
的である。なお、図2に示した双方向型二端子サイリス
タの等価回路図は、図4に示すものとなる。
The substrate conductive region 1 has a P type conductivity type. First N-type conductive region 2 and second N-type conductive region 3
Has an N-type conductivity type formed by impurity diffusion inside the substrate conductive region 1. The first P-type conductive region 4 and the second P-type conductive region 7 have a P-type conductivity type formed by impurity diffusion inside the substrate conductive region 1. The first electrode 10 and the second electrode 11 are the semiconductor substrate 10
0 is an electrode formed on both main surfaces. Here, the electrode 10
Are electrically connected to both the first N-type conductive region 2 and the first P-type conductive region 4. In addition, the second electrode 11 is electrically connected to both the second N-type conductive region 3 and the second P-type conductive region 7, but the second electrode 11 has the same electrical characteristics as seen from the electrode 10 and the electrode 11. It is common to make the structure of point symmetry. The equivalent circuit diagram of the bidirectional two-terminal thyristor shown in FIG. 2 is shown in FIG.

【0005】前記した双方向型二端子サイリスタにおい
て、第1N型導電領域2が設けられた上面側を第2N型
導電領域3が設けられた下面側に対して正の電位とする
電圧の印加方向を順方向、上面側を下面側に対して負の
電位とする電圧の印加方向を逆方向とする。図3は、従
来技術に係る双方向型二端子サイリスタの順方向の電気
的特性を示すグラフである。図3に示すように、順方向
においては、第1P型導電領域4をエミッタ、第1N型
導電領域2をベース、基板導電領域1をコレクタとする
PNPトランジスタと、第2N型導電領域3をエミッ
タ、基板導電領域1をベース、第1N型導電領域2をコ
レクタとするNPNトランジスタの間で電子と正孔の交
換が行なわれて、オフ状態からオン状態へ移行する点弧
動作が行なわれる。
In the above-described bidirectional two-terminal thyristor, the voltage application direction in which the upper surface side where the first N-type conductive area 2 is provided has a positive potential with respect to the lower surface side where the second N-type conductive area 3 is provided. Is the forward direction, and the application direction of the voltage that makes the upper surface side a negative potential with respect to the lower surface side is the reverse direction. FIG. 3 is a graph showing a forward electrical characteristic of a bidirectional two-terminal thyristor according to the related art. As shown in FIG. 3, in the forward direction, a PNP transistor having the first P-type conductive region 4 as an emitter, the first N-type conductive region 2 as a base, and the substrate conductive region 1 as a collector, and the second N-type conductive region 3 as an emitter. Electrons and holes are exchanged between NPN transistors having the substrate conductive region 1 as a base and the first N-type conductive region 2 as a collector, and an ignition operation for transitioning from an off state to an on state is performed.

【0006】すなわち、最初オフ状態にあった図2のP
NPN構造51において、当該二端子電極領域に印加さ
れる電圧が、ブレークオ−バー電圧Vbに達すると雪崩
降伏あるいはパンチスルーにより、逆バイアス状態にあ
る第1N型導電領域2と基板導電領域1の境界及び当該
境界近傍において、電子と正孔の交換が活発に行なわれ
るようになる。そして、前記のPNPトランジスタのベ
ースと前記のNPNトランジスタのコレクタが共通の第
1N型導電領域2であるため、当該PNPN構造からな
るサイリスタが点弧してオン状態へ遷移する。なお、構
造が上下で対称であることから逆方向においても全く同
様な動作が行なわれる。
That is, P in FIG.
In the NPN structure 51, when the voltage applied to the two-terminal electrode region reaches the breakover voltage Vb, the boundary between the first N-type conductive region 2 and the substrate conductive region 1 in the reverse bias state due to avalanche breakdown or punch through. And, the exchange of electrons and holes is actively performed near the boundary. Since the base of the PNP transistor and the collector of the NPN transistor are the common first N-type conductive region 2, the thyristor having the PNPN structure is fired and transits to the ON state. Since the structure is vertically symmetrical, exactly the same operation is performed in the opposite direction.

【0007】なお、PNPN構造からなるサイリスタが
点弧動作してオフ状態からオン状態へ移行するときに、
前記PNPトランジスタのベース接地電流増幅率α
前記NPNトランジスタのベース接地電流増幅率α
間には、α2=1の関係があることは周知の事実で
あり、ここでは内部動作のより詳細な説明については省
略する。
When the thyristor having the PNPN structure is ignited to shift from the off state to the on state,
It is a well-known fact that there is a relationship of α 1 + α 2 = 1 between the grounded base current amplification factor α 1 of the PNP transistor and the grounded base current amplification factor α 2 of the NPN transistor. A more detailed description of the operation is omitted.

【0008】以上のような点弧動作を行うサイリスタ
は、前記したように、ブレークオーバー電圧Vbでサー
ジ電圧を抑圧するが、雷誘導サージのようにかなり速い
電気的サージに対してもその応答が他のサージ防護素
子、例えば避雷管や金属酸化物バリスタなどと比較して
非常に速いために、高い信頼性を要求される通信ネット
ワーク系の電子機器のように雷誘導サージを拾いやすい
ところでは殆ど利用されている状況にある。
As described above, the thyristor which performs the ignition operation as described above suppresses the surge voltage by the breakover voltage Vb, but it also has a response to a considerably fast electric surge such as lightning induced surge. It is very fast compared to other surge protection devices such as lightning arresters and metal oxide varistors, so it is almost impossible to pick up lightning-induced surges, such as electronic devices of communication networks that require high reliability. It is being used.

【0009】また、半導体基板で出来ているため、サー
ジ電流によって消耗するところがなく長期間に亘って信
頼性を維持することが可能であるという保守上の大きな
利点を有している。
Further, since it is made of a semiconductor substrate, it has a great advantage in maintenance that it can be maintained for a long period of time without being consumed by a surge current.

【0010】ところが、このような利点を有する双方向
型二端子サイリスタにおいても、どのような電気的サー
ジに対してもサージ電圧を抑圧出来るわけではなく、雷
誘導サージのような非常に時間変化の大きいサージに対
してはおのずと限界があり、そのサージに十分速く応答
出来ず、素子内で電流の集中が生じて局所的に高温とな
り、素子が溶解して破壊する場合がある。
However, even in the bidirectional two-terminal thyristor having such advantages, the surge voltage cannot be suppressed against any electrical surge, and a very time-dependent change such as lightning-induced surge occurs. There is a limit to a large surge, and it is not possible to respond to the surge sufficiently quickly, and current may be concentrated in the element to locally raise the temperature, and the element may be melted and destroyed.

【0011】そこで、時間変化の大きいサージに対する
対策の1つとして、本件の発明者らによるサイリスタが
ある。図5は、本件の発明者らによる双方向型二端子サ
イリスタの概略を示す断面図である。図5において、1
は基板導電領域、2は第1N型導電領域、3は第2N型
導電領域、4,5,6は第1P型導電領域、7,8,9
は第2P型導電領域、10は第1電極、11は第2電
極、18,19,20,21は絶縁体、52はPNPN
構造、100は半導体基板である。また、図6は、図5
に示した双方向型二端子サイリスタにおける単位サイリ
スタ構造の等価回路図である。
Therefore, as one of the countermeasures against the surge that greatly changes with time, there is a thyristor by the inventors of the present invention. FIG. 5 is a sectional view showing an outline of a bidirectional two-terminal thyristor by the inventors of the present invention. In FIG. 5, 1
Is a substrate conductive region, 2 is a first N type conductive region, 3 is a second N type conductive region, 4, 5 and 6 are first P type conductive regions, 7, 8 and 9
Is a second P-type conductive region, 10 is a first electrode, 11 is a second electrode, 18, 19, 20, 21 are insulators, and 52 is PNPN.
Structure 100 is a semiconductor substrate. In addition, FIG.
3 is an equivalent circuit diagram of a unit thyristor structure in the bidirectional two-terminal thyristor shown in FIG.

【0012】図5に示されるように、上面側と下面側の
P型導電領域は、それぞれ分割して形成されており、さ
らに平面的に見て上面側と下面側のエミッタを重ねてい
る。この構成によって、図6の回路モデルで示される単
位サイリスタを並列に形成し、各単位サイリスタにサー
ジ電流の分流を図り、内部温度の上昇を抑制したもので
ある。実験によると、4個の単位サイリスタで、サージ
耐量が図2に示したような従来構造のサイリスタよりも
30%以上向上することなどが確認されている。
As shown in FIG. 5, the P-type conductive regions on the upper surface side and the lower surface side are formed separately, and the emitters on the upper surface side and the lower surface side are overlapped with each other in plan view. With this configuration, the unit thyristors shown in the circuit model of FIG. 6 are formed in parallel, the surge current is shunted to each unit thyristor, and the rise of the internal temperature is suppressed. According to experiments, it has been confirmed that the surge withstand capability of four unit thyristors is improved by 30% or more as compared with the thyristor having the conventional structure as shown in FIG.

【0013】しかしながら、前記の構造では、図2に示
される従来構造のものより各単位サイリスタが点弧しや
すい構造になっているとはいえ、サージ電流が分流され
ることによって、点弧動作に必要な電流が大きくなり、
オフ状態からオン状態への遷移時間が長くなり、サージ
耐量が必ずしも期待したほど十分には大きくならないこ
とがあるという問題が残る。
However, in the above-mentioned structure, although each unit thyristor is more easily ignited than the conventional structure shown in FIG. 2, the surge current is shunted to the ignition operation. The required current increases,
The problem remains that the transition time from the off state to the on state becomes long and the surge withstand capability may not always be sufficiently large as expected.

【0014】[0014]

【発明が解決しようとする課題】本発明は、図5に示さ
れる従来構造をさらに改良して、当該構造で複数形成さ
れている単位サイリスタの全てを出来るだけ短時間に点
弧させてサージ耐量を大きくすることを目的としてい
る。
The present invention further improves the conventional structure shown in FIG. 5 so that all of the unit thyristors formed in plural in the structure are ignited in the shortest time possible. The purpose is to increase.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
の手段として、本発明は、第1導電型の半導体基板に、
前記半導体基板の一方の面に露出させて形成してなる前
記半導体基板とは反対型の第2導電型の第1の導電領域
と、前記一方の面に露出させて形成すると共に前記第1
の導電領域内に配列してなるN個(N≧2)の第1導電
型の第2の導電領域と、前記第1の導電領域に隣接して
形成してなる第1導電型の第3の導電領域と、前記半導
体基板の前記一方の面に背向する他方の面に露出させて
形成してなる第2導電型の第4の導電領域と、前記他方
の面に露出させて形成すると共に前記第4の導電領域内
に配列してなるN個の第1導電型の第5の導電領域と、
前記第4の導電領域に隣接して形成してなる第1導電型
の第6の導電領域とを設け、1番目の前記第2の導電領
域は、平面的に見て2番目の前記第2の導電領域に近い
側の端部及びその近傍部分が1番目の前記第5の導電領
域と重なり合うように配置され、N番目の前記第5の導
電領域は、平面的に見てN−1番目の前記第5の導電領
域に近い側の端部及びその近傍部分がN番目の前記第2
の導電領域と重なり合うように配置され、1番目以外の
前記第2の導電領域は、平面的に見てそれらの両端部及
びそれらの近傍部分がN個の前記第5の導電領域と重な
り合うように配置され、N番目以外の前記第5の導電領
域は、平面的に見てそれらの両端部及びそれらの近傍部
分がN個の前記第2の導電領域と重なり合うように配置
されてなることを特徴とするものとした。前記した構成
においては、前記第3の導電領域及び前記第6の導電領
域を設けたことにより、前記第1の導電領域をコレク
タ、前記第3の導電領域、前記第6の導電領域、前記半
導体基板の第3及び第6の導電領域を設けていない残余
の領域からなるベース、前記第4の導電領域をエミッタ
とする第1のトランジスタのベース接地電流増幅率α1
を増大させた。
As a means for solving the above problems, the present invention provides a semiconductor substrate of the first conductivity type,
A first conductive region of a second conductivity type opposite to that of the semiconductor substrate, which is formed by being exposed on one surface of the semiconductor substrate; and a first conductive region which is exposed on the one surface.
Second conductive regions of the first conductivity type (N ≧ 2) arranged in the conductive region of the first conductivity type, and third conductive regions of the first conductivity type formed adjacent to the first conductive region. Conductive region, a fourth conductive region of the second conductivity type formed by being exposed on the other surface of the semiconductor substrate facing the one surface, and a second conductive type fourth conductive region formed by being exposed on the other surface. Together with N fifth conductive regions of the first conductivity type arranged in the fourth conductive region,
A sixth conductive region of the first conductivity type formed adjacent to the fourth conductive region is provided, and the first second conductive region is the second second conductive region in plan view. Is arranged so that the end portion on the side close to the conductive region and the vicinity thereof overlap with the first fifth conductive region, and the Nth fifth conductive region is the (N-1) th in plan view. Of the N-th second end of the end portion near the fifth conductive region and the vicinity thereof.
Of the second conductive regions other than the first conductive region are overlapped with the N fifth conductive regions at both end portions thereof and in the vicinity thereof. The fifth conductive regions other than the Nth conductive region are arranged such that both end portions of the fifth conductive region and their neighboring portions in a plan view overlap with the N second conductive regions. And decided to. In the above-described configuration, by providing the third conductive region and the sixth conductive region, the first conductive region is a collector, the third conductive region, the sixth conductive region, and the semiconductor. Base ground current amplification factor α 1 of the first transistor having the base formed of the remaining region of the substrate not provided with the third and sixth conductive regions and the emitter of the fourth conductive region
Increased.

【0016】従って、このベース接地電流増幅率α
1が、高抵抗率の半導体基板を用いることで大きくなっ
て、サージ電流が分流されることによって点弧動作に必
要な電流が大きくなり、オフ状態からオン状態への遷移
時間が長くなることに起因するサージ耐量の低下を改善
することが出来る。
Therefore, this base ground current amplification factor α
1 increases with the use of a high-resistivity semiconductor substrate, and the surge current is shunted to increase the current required for ignition operation, resulting in a longer transition time from the off state to the on state. It is possible to improve the decrease in the surge withstand amount caused by the surge.

【0017】また、前記の構成において、前記第3の導
電領域及び前記第6の導電領域は、それぞれ前記半導体
基板内に埋め込んで設けられるように出来る。
Further, in the above structure, the third conductive region and the sixth conductive region may be embedded in the semiconductor substrate.

【0018】また、前記第3の導電領域は、前記第1の
導電領域とその周辺との境界面のうち少なくとも前記第
4の導電領域に相対向する部分に接して設けられ、前記
第6の導電領域は、前記第4の導電領域とその周辺との
境界面のうち少なくとも前記第1の導電領域に相対向す
る部分に接して設けられるように出来る。
Further, the third conductive region is provided in contact with at least a portion of the boundary surface between the first conductive region and the periphery thereof facing the fourth conductive region, and the sixth conductive region is provided. The conductive region may be provided in contact with at least a portion of the boundary surface between the fourth conductive region and the periphery thereof facing the first conductive region.

【0019】さらに、前記第3の導電領域及び前記第6
の導電領域は、N個ずつ設けられると共に、それぞれ平
面的に見て前記第2の導電領域及び前記第5の導電領域
に重なり合う範囲内に設けられるように出来る。
Further, the third conductive region and the sixth conductive region
N conductive regions may be provided, and each may be provided in a range overlapping with the second conductive region and the fifth conductive region when seen in a plan view.

【0020】前記第3の導電領域及び前記第6の導電領
域は、N個ずつ設けられると共に、それぞれ平面的に見
て前記第2の導電領域及び前記第5の導電領域に重なり
合う範囲内に設けられるように出来る。
Each of the third conductive region and the sixth conductive region is provided in N number, and is provided within a range overlapping with the second conductive region and the fifth conductive region in plan view. I can do it.

【0021】くわえて、N個の前記第3の導電領域と前
記第6の導電領域とは、平面的に見て交互に且つ互いに
接した状態に配列されるように出来る。
In addition, the N third conductive regions and the sixth conductive regions can be arranged alternately and in contact with each other in plan view.

【0022】[0022]

【発明の実施の形態】以下に、本発明の第1の実施の形
態に係る双方向型二端子サイリスタを図面に基づいて詳
細に説明する。図1は、本発明の第1の実施の形態に係
る双方向型二端子サイリスタを示す断面図である。図1
において、1は基板導電領域、2は第1N型導電領域、
3は第2N型導電領域、4,5,6は第1P型導電領
域、7,8,9は第2P型導電領域、10は第1電極、
11は第2電極、12は第3P型導電領域,13は第4
P型導電領域、18,19,20,21は絶縁体、53
はPNPN構造、100は半導体基板である。
BEST MODE FOR CARRYING OUT THE INVENTION A bidirectional two-terminal thyristor according to a first embodiment of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing a bidirectional two-terminal thyristor according to a first embodiment of the present invention. Figure 1
, 1 is a substrate conductive region, 2 is a first N-type conductive region,
3 is a second N-type conductive region, 4, 5, 6 are first P-type conductive regions, 7, 8 and 9 are second P-type conductive regions, 10 is a first electrode,
11 is the second electrode, 12 is the third P-type conductive region, and 13 is the fourth
P-type conductive region, 18, 19, 20, 21 are insulators, 53
Is a PNPN structure, and 100 is a semiconductor substrate.

【0023】図1に示されるように、本発明の第1の実
施の形態に係る双方向型二端子サイリスタは、双方向で
電気的特性が対称となるように形成している。すなわ
ち、P型の半導体基板100に第1N型導電領域2、第
2N型導電領域3を形成する。また、第1N型導電領域
2内に3つの第1P型導電領域4,5,6、第2N型導
電領域3内に3つの第2P型導電領域7,8,9を相対
向するP型導電領域と点対称になるように且つ等間隔に
形成する。また、第1N型導電領域2に隣接して第3P
型導電領域12、第2N型導電領域3に隣接して第4P
型導電領域13を配置する。また、第1P型導電領域4
を、平面的に見て第1P型導電領域5に近い側の端部及
びその近傍部分が第2P型導電領域7に重なり合うよう
に配置する。さらに、第2P型導電領域9を、平面的に
見て第2P型導電領域8に近い側の端部及びその近傍部
分が第1P型導電領域6に重なり合うように配置する。
くわえて、第1P型導電領域5,6と第2P型導電領域
7,8とを、平面的に見てそれらの両端部及びそれらの
近傍部分が相対向するP型導電領域とそれぞれ重なり合
うように配置する。電極は、半導体基板100の上面側
の第1電極10を第1P型導電領域4,5,6及び第1
N型導電領域2に接するように形成し、半導体基板10
0の下面側の第2電極11を第2P型導電領域7及び第
2N型導電領域13に接するように形成して構成する。
なお、半導体基板100の上記各領域を設けていない領
域は、P型の基板導電領域1となる。
As shown in FIG. 1, the bidirectional two-terminal thyristor according to the first embodiment of the present invention is formed so that the electrical characteristics are bidirectional. That is, the first N-type conductive region 2 and the second N-type conductive region 3 are formed on the P-type semiconductor substrate 100. In addition, three first P-type conductive regions 4, 5, 6 in the first N-type conductive region 2 and three second P-type conductive regions 7, 8, 9 in the second N-type conductive region 3 face each other. It is formed so as to be point-symmetric with respect to the region and at equal intervals. In addition, the third P is adjacent to the first N-type conductive region 2.
Adjacent to the second conductive type region 12 and the second N-type conductive region 3
A type conductive region 13 is arranged. In addition, the first P-type conductive region 4
Is arranged so that the end portion on the side closer to the first P-type conductive region 5 and the vicinity thereof in plan view overlap the second P-type conductive region 7. Further, the second P-type conductive region 9 is arranged so that the end portion on the side closer to the second P-type conductive region 8 and the vicinity thereof are overlapped with the first P-type conductive region 6 in plan view.
In addition, the two ends of the first P-type conductive regions 5 and 6 and the second P-type conductive regions 7 and 8 and their neighboring portions are overlapped with the opposing P-type conductive regions. Deploy. The electrodes are formed by connecting the first electrode 10 on the upper surface side of the semiconductor substrate 100 to the first P-type conductive regions 4, 5, 6 and the first P-type conductive regions.
The semiconductor substrate 10 is formed so as to be in contact with the N-type conductive region 2.
The second electrode 11 on the lower surface side of 0 is formed so as to be in contact with the second P-type conductive region 7 and the second N-type conductive region 13.
The region of the semiconductor substrate 100 where the above regions are not provided becomes the P-type substrate conductive region 1.

【0024】なお、第1P型導電領域4,5,6、及び
第2P型導電領域7,8,9は、上述した単位サイリス
タの特性を均一にするために、全て同一形状で同一面積
に形成することが好ましい。同様に、第3P型導電領域
12及び第4P型導電領域13も、全て同一形状で同一
面積に形成することが好ましい。また、第1P型導電領
域4,5,6と第2P型導電領域7,8,9との重ね幅
は、例えば2.6mmチップの場合、マスク幅250μ
mに対して、25μm重なるようにすればよく、サージ
耐量が向上することなどが確認されている。重なりが大
きくなるとオン電流が流れる領域が狭くなるため、重な
りはマスク幅の50%未満とする必要がある。従って、
これらの重ね幅はあまり大きく出来ないが、サージの種
類に応じて適当な重ね幅に変更することが可能である。
第3P型導電領域12と第4P型導電領域13は、それ
ぞれ第1N型導電領域2を形成するための写真マスクの
パターンと第2N型導電領域3を形成するための写真マ
スクと兼用でもよいが、その場合余計な写真マスクは不
要であるという製造上の利点がある。図1に示される構
造においては、半導体基板100の不純物濃度が小さい
が、サージ防護素子で重要となる順方向のブレークオー
バー電圧は、第1N型導電領域2と第3P型導電領域1
2で主に決定され、逆方向のブレークオーバー電圧は、
第2N型導電領域3と第4P型導電領域13で主に決定
され、半導体基板100の不純物濃度のばらつきに対し
て設計余裕度があるという製造上の利点がある。また、
半導体基板100の不純物濃度のばらつきが大きいほ
ど、半導体基板の価格は安くなるので製造コストを低減
出来るという利点もある。第1P型導電領域4,5,
6、第3P型導電領域12、第4P型導電領域13、第
1N型導電領域2、第3N型導電領域3はエピタキシャ
ル成長で形成することも出来る。
The first P-type conductive regions 4, 5, 6 and the second P-type conductive regions 7, 8, 9 are all formed in the same shape and in the same area in order to make the characteristics of the above-mentioned unit thyristor uniform. Preferably. Similarly, it is preferable that the third P-type conductive region 12 and the fourth P-type conductive region 13 are also formed in the same shape and in the same area. The overlapping width of the first P-type conductive regions 4, 5, 6 and the second P-type conductive regions 7, 8, 9 is, for example, a 2.6 mm chip, the mask width is 250 μm.
It has been confirmed that the surge withstand capability is improved, for example, by making 25 μm overlap with m. Since the region where the on-current flows becomes narrower as the overlap becomes larger, the overlap needs to be less than 50% of the mask width. Therefore,
Although the overlap width cannot be made very large, it is possible to change it to an appropriate overlap width according to the type of surge.
The third P-type conductive region 12 and the fourth P-type conductive region 13 may also serve as a photomask pattern for forming the first N-type conductive region 2 and a photomask for forming the second N-type conductive region 3, respectively. In that case, there is a manufacturing advantage that an extra photomask is unnecessary. In the structure shown in FIG. 1, although the impurity concentration of the semiconductor substrate 100 is low, the forward breakover voltage, which is important in the surge protection element, has a first N-type conductive region 2 and a third P-type conductive region 1.
2 is mainly determined, and the reverse breakover voltage is
It is mainly determined by the second N-type conductive region 3 and the fourth P-type conductive region 13, and has a manufacturing advantage that there is a design margin with respect to variations in the impurity concentration of the semiconductor substrate 100. Also,
The larger the variation in the impurity concentration of the semiconductor substrate 100, the lower the price of the semiconductor substrate, which is an advantage that the manufacturing cost can be reduced. First P-type conductive regions 4, 5,
6, the third P-type conductive region 12, the fourth P-type conductive region 13, the first N-type conductive region 2 and the third N-type conductive region 3 can also be formed by epitaxial growth.

【0025】従って、本発明の第1の実施の形態におけ
る構造では、前記各単位サイリスタを構成するトランジ
スタのベース接地電流増幅率が大きくなって、各単位サ
イリスタが短時間に点弧し易くなって、素子破壊に繋が
る発熱を抑制出来、サージ耐量を向上させることが出来
るようになる。
Therefore, in the structure according to the first embodiment of the present invention, the base ground current amplification factor of the transistor forming each unit thyristor is increased, and each unit thyristor is easily ignited in a short time. Therefore, it is possible to suppress heat generation that leads to element destruction and improve surge withstand capability.

【0026】図1に示した構造の等価回路モデルは、図
7に示すものとなる。図7は、図1に示した双方向型二
端子サイリスタの等価回路図である。本発明の第1の実
施の形態に係る双方向型二端子サイリスタにおいては、
前記ベース接地電流増幅率α 0 、α0 、α0 の値が
従来構造と比較して大きく、短時間に点弧しやすくなる
ため、サージ耐量を向上させることが出来る。
The equivalent circuit model of the structure shown in FIG.
7 is shown. FIG. 7 shows the bidirectional type shown in FIG.
It is an equivalent circuit diagram of a terminal thyristor. First fruit of the present invention
In the bidirectional two-terminal thyristor according to the embodiment,
The base ground current amplification factor α 0 1, Α0 Two, Α0 ThreeThe value of
Larger than conventional structure and easier to fire in a short time
Therefore, the surge resistance can be improved.

【0027】また、図1に示した構造では、製造上のば
らつきがあっても、第1P型導電領域4,5,6と第2
P型導電領域7,8,9が平面的に見て必ず重なるよう
に余裕をもってマスクパターンを設計することで、製造
上のばらつきがあっても、一部のサイリスタ領域におい
て、第1P型導電領域4,5,6と第2P型導電領域
7,8,9が平面的に見て必ず重なるようにしている。
Further, in the structure shown in FIG. 1, the first P-type conductive regions 4, 5, 6 and the second P-type conductive regions are formed even if there are variations in manufacturing.
By designing the mask pattern with a margin so that the P-type conductive regions 7, 8 and 9 are always overlapped in plan view, even if there is a manufacturing variation, in some thyristor regions, the first P-type conductive region is formed. 4, 5, 6 and the second P-type conductive regions 7, 8, 9 are made to overlap each other when seen in a plan view.

【0028】さらに、本発明の第2の実施の形態に係る
双方向型二端子サイリスタを図面に基づいて詳細に説明
する。図8は、本発明の第2の実施の形態に係る双方向
型二端子サイリスタを示す断面図である。図8におい
て、1は基板導電領域、2は第1N型導電領域、3は第
2N型導電領域、4,5,6は第1P型導電領域、7,
8,9は第2P型導電領域、10は第1電極、11は第
2電極、18,19,20,21は絶縁体、12は第3
P型導電領域、13は第4P型導電領域、54はPNP
N構造、100は半導体基板である。
Further, a bidirectional two-terminal thyristor according to a second embodiment of the present invention will be described in detail with reference to the drawings. FIG. 8 is a sectional view showing a bidirectional two-terminal thyristor according to the second embodiment of the present invention. In FIG. 8, 1 is a substrate conductive region, 2 is a first N-type conductive region, 3 is a second N-type conductive region, 4, 5 and 6 are first P-type conductive regions, 7,
Reference numerals 8 and 9 are second P-type conductive regions, 10 is a first electrode, 11 is a second electrode, 18, 19, 20, and 21 are insulators, and 12 is a third electrode.
P-type conductive region, 13 is fourth P-type conductive region, and 54 is PNP
N structure, 100 is a semiconductor substrate.

【0029】本発明の第2の実施の形態に係る双方向型
二端子サイリスタの構成は、前記した第1の実施の形態
に係る双方向型二端子サイリスタの構成と殆ど同じであ
るが、第3P型導電領域12を、第1N型導電領域2の
第2N型導電領域3に相対向する面にのみ隣接するよう
に設け、第4P型導電領域13を、第2N型導電領域3
の第1N型導電領域2に相対向する面にのみ隣接するよ
うに設ける。したがって、第3P型導電領域12及び第
4P型導電領域13は、第1N型導電領域2と第2N型
導電領域3との平面的に見て重なりあう領域内に設けら
れている。
The structure of the bidirectional two-terminal thyristor according to the second embodiment of the present invention is almost the same as the structure of the bidirectional two-terminal thyristor according to the first embodiment described above. The 3P-type conductive region 12 is provided so as to be adjacent to only the surface of the first N-type conductive region 2 facing the second N-type conductive region 3, and the fourth P-type conductive region 13 is provided to the second N-type conductive region 3.
Is provided so as to be adjacent to only the surface facing the first N-type conductive region 2. Therefore, the third P-type conductive region 12 and the fourth P-type conductive region 13 are provided in a region where the first N-type conductive region 2 and the second N-type conductive region 3 overlap with each other in plan view.

【0030】前記の双方向型二端子サイリスタでは、第
1N型導電領域2と第2N型導電領域3を不純物拡散で
形成したときに、ブレークオーバー電圧が、第1N型導
電領域2と第2N型導電領域3の端部の曲率半径の小さ
な領域で決定されず、曲率半径の大きい領域で決定され
ることになるため、前記第1の実施の形態と比較してブ
レークオ−バー電圧を大きくすることが容易に出来る。
In the above-described bidirectional two-terminal thyristor, when the first N-type conductive region 2 and the second N-type conductive region 3 are formed by impurity diffusion, the breakover voltage is the first N-type conductive region 2 and the second N-type. The breakover voltage is set to be larger than that in the first embodiment because it is determined not in the region having a small radius of curvature at the end of the conductive region 3 but in the region having a large radius of curvature. Can be done easily.

【0031】さらに、本発明の第3の実施の形態に係る
双方向型二端子サイリスタを図面に基づいて詳細に説明
する。図9は、本発明の第3の実施の形態に係る双方向
型二端子サイリスタを示す断面図である。図9におい
て、1は基板導電領域、2は第1N型導電領域、3は第
2N型導電領域、4,5,6は第1P型導電領域、7,
8,9は第2P型導電領域、10は第1電極、11は第
2電極、12,14,16は第3P型導電領域、、1
3,15,17第4P型導電領域、55はPNPN構
造、100は半導体基板である。
Further, a bidirectional two-terminal thyristor according to a third embodiment of the present invention will be described in detail with reference to the drawings. FIG. 9 is a sectional view showing a bidirectional two-terminal thyristor according to the third embodiment of the present invention. In FIG. 9, 1 is a substrate conductive region, 2 is a first N-type conductive region, 3 is a second N-type conductive region, 4, 5 and 6 are first P-type conductive regions, 7,
8 and 9 are second P-type conductive regions, 10 is a first electrode, 11 is a second electrode, 12, 14 and 16 are third P-type conductive regions, 1
3, 15 and 17 are fourth P-type conductive regions, 55 is a PNPN structure, and 100 is a semiconductor substrate.

【0032】本発明の第3の実施の形態に係る双方向型
二端子サイリスタにおいては、前記第2の実施の形態に
係る双方向型二端子サイリスタにおける第3P型導電領
域12を単位サイリスタ毎に分割して設けている。分割
して設けた第3P型導電領域12,14,16は、第1
P型導電領域4,5,6との平面的に見て重なり合う領
域内に設ける。また、前記第2の実施の形態に係る双方
向型二端子サイリスタにおける第4P型導電領域13も
単位サイリスタ毎に分割して設けている。分割して設け
た第4P型導電領域13,15,17もまた、第2P型
導電領域7との平面的に見て重なり合う領域内に設け
る。
In the bidirectional two-terminal thyristor according to the third embodiment of the present invention, the third P-type conductive region 12 in the bidirectional two-terminal thyristor according to the second embodiment is provided for each unit thyristor. It is provided separately. The third P-type conductive regions 12, 14, 16 provided separately are the first
It is provided in a region overlapping with the P-type conductive regions 4, 5 and 6 in plan view. Further, the fourth P-type conductive region 13 in the bidirectional two-terminal thyristor according to the second embodiment is also provided separately for each unit thyristor. The divided fourth P-type conductive regions 13, 15, 17 are also provided in a region overlapping with the second P-type conductive region 7 in plan view.

【0033】前記の双方向型二端子サイリスタでは、前
記第1の実施の形態及び前記第2の実施の形態と比較し
て、第1N型導電領域2と第2N型導電領域3の間に形
成されるベースの抵抗率を高くすることと同じ効果が得
られるため、係るベース接地電流増幅率をより大きくす
ることが出来る。従って、本発明の第3の実施の形態に
おける構造では、各単位サイリスタがより短時間に点弧
し易くなって、素子破壊に繋がる発熱を抑制出来、サー
ジ耐量を向上させることが出来るようになる。なお、第
3P型導電領域12,14,16、及び第4P型導電領
域13,15,17は、上述した単位サイリスタの特性
を均一にするために、全て同一形状で同一面積に形成す
ることが好ましい。
The bidirectional two-terminal thyristor is formed between the first N-type conductive region 2 and the second N-type conductive region 3 as compared with the first and second embodiments. Since the same effect as increasing the resistivity of the base to be obtained can be obtained, the base ground current amplification factor can be further increased. Therefore, in the structure according to the third embodiment of the present invention, each unit thyristor is more easily ignited in a shorter time, heat generation leading to element destruction can be suppressed, and surge withstand capability can be improved. . The third P-type conductive regions 12, 14, 16 and the fourth P-type conductive regions 13, 15, 17 may all be formed in the same shape and in the same area in order to make the characteristics of the unit thyristor uniform. preferable.

【0034】くわえて、本発明の第4の実施の形態に係
る双方向型二端子サイリスタを図面に基づいて詳細に説
明する。図10は、本発明の第4の実施の形態に係る双
方向型二端子サイリスタを示す断面図である。図10に
おいて、1は基板導電領域、2は第1N型導電領域、3
は第2N型導電領域、4,5,6は第1P型導電領域、
7,8,9は第2P型導電領域、10は第1電極、11
は第2電極、12,14,16は第3P型導電領域、1
3、15,17は第4P型導電領域、18,19,2
0,21は絶縁体、22,23,24、25,26は第
1孔状導電領域、27,28,29,30,31は第2
孔状導電領域、32,33,34は第1抵抗体、35,
36,37は第2抵抗体、38,39,40は第3N型
導電領域、41,42,43は第4N型導電領域、56
はPNPN構造、100は半導体基板である。
In addition, a bidirectional two-terminal thyristor according to a fourth embodiment of the present invention will be described in detail with reference to the drawings. FIG. 10 is a sectional view showing a bidirectional two-terminal thyristor according to the fourth embodiment of the present invention. In FIG. 10, 1 is a substrate conductive region, 2 is a first N-type conductive region, 3
Is a second N-type conductive region, 4, 5 and 6 are first P-type conductive regions,
7, 8 and 9 are second P-type conductive regions, 10 is a first electrode, 11
Is a second electrode, 12, 14, 16 are third P-type conductive regions, 1
3, 15, 17 are fourth P-type conductive regions, 18, 19, 2
0, 21 are insulators, 22, 23, 24, 25, 26 are first hole-shaped conductive regions, 27, 28, 29, 30, 31 are second
The hole-shaped conductive region, 32, 33, 34 are first resistors, 35,
36 and 37 are second resistors, 38, 39 and 40 are third N-type conductive regions, 41, 42 and 43 are fourth N-type conductive regions, and 56.
Is a PNPN structure, and 100 is a semiconductor substrate.

【0035】前記の双方向型二端子サイリスタでは、半
導体基板100と第1電極10との間、及び半導体基板
100と第2電極11との間の接触抵抗がそれぞれ第3
N型導電領域38,39,40及び第4N型導電領域4
1,42,43が存在することによって低減する。従っ
て、点弧動作に必要な電流が流れやすくなると共に、一
部の単位サイリスタに電流が集中することを防止しなが
ら点弧後のオン電圧を小さく出来る。ひいては、電気的
損失すなわち破壊に繋がる熱の発生を低減出来、サージ
耐量をより向上させることが出来る。
In the bidirectional two-terminal thyristor, the contact resistance between the semiconductor substrate 100 and the first electrode 10 and between the semiconductor substrate 100 and the second electrode 11 is the third, respectively.
N-type conductive regions 38, 39, 40 and fourth N-type conductive region 4
It is reduced by the presence of 1, 42, 43. Therefore, the current required for the ignition operation can easily flow, and the ON voltage after ignition can be reduced while preventing the current from concentrating on a part of the unit thyristors. As a result, it is possible to reduce electrical loss, that is, generation of heat that leads to destruction, and it is possible to further improve surge withstand capability.

【0036】また、前記の双方向型二端子サイリスタで
は、半導体基板100と第1電極10との間、及び半導
体基板100と第2電極11との間に追加された第1抵
抗体32,33,34及び第2抵抗体35,36,37
は、各々エミッタに直列に挿入されている。従って、本
発明の第1の実施の形態における構造では、一部の単位
サイリスタに電流が集中しても当該単位サイリスタのベ
ース電位が上昇して他の単位サイリスタが点弧し易くな
って一部の単位サイリスタに電流が集中しにくくなる。
これは、電流の分流を理想状態に近づけられることを意
味し、素子破壊に繋がる発熱を抑制出来、サージ耐量を
向上させることが出来るようになる。
In the bidirectional two-terminal thyristor, the first resistors 32 and 33 added between the semiconductor substrate 100 and the first electrode 10 and between the semiconductor substrate 100 and the second electrode 11 are also included. , 34 and second resistors 35, 36, 37
Are inserted in series with the respective emitters. Therefore, in the structure according to the first embodiment of the present invention, even if the current is concentrated in a part of the unit thyristors, the base potential of the unit thyristor rises and other unit thyristors are easily ignited. It becomes difficult for current to concentrate on the unit thyristor.
This means that the shunt of the current can be brought close to the ideal state, the heat generation leading to the element destruction can be suppressed, and the surge withstand amount can be improved.

【0037】また、前記の双方向型二端子サイリスタで
は、第2の導電領域及び第5の導電領域からなるエミッ
タを深く形成し、第1P型導電領域4,5,6及び第2
P型導電領域7,8,9内にそれぞれ第1孔状導電領域
22,23,24、25,26及び第2孔状導電領域2
7,28,29,30,31を形成することにより、複
数形成されている各単位サイリスタの特性のばらつきを
小さくして、一部の単位サイリスタへの電流集中を防止
し易いようにしたので、各単位サイリスタの並列動作の
安定化を図り易い。第1孔状導電領域22,23,2
4、25,26と第2孔状導電領域27,28,29,
30,31の配置や形状については、本件の発明者によ
る別の出願の明細書の記載に準ずる。
In the bidirectional two-terminal thyristor, the emitter including the second conductive region and the fifth conductive region is deeply formed, and the first P-type conductive regions 4, 5, 6 and the second P-type conductive regions are formed.
In the P-type conductive regions 7, 8 and 9, the first hole-shaped conductive regions 22, 23, 24, 25 and 26 and the second hole-shaped conductive regions 2 are respectively formed.
By forming 7, 28, 29, 30, and 31, it is possible to reduce the variation in the characteristics of each of the plurality of unit thyristors and to easily prevent the concentration of current in some of the unit thyristors. It is easy to stabilize the parallel operation of each unit thyristor. First hole-shaped conductive regions 22, 23, 2
4, 25, 26 and the second hole-shaped conductive regions 27, 28, 29,
The arrangement and shape of 30, 31 are based on the description in the specification of another application by the inventor of the present application.

【0038】第4の実施の形態に係る双方向型二端子サ
イリスタは、製造工程が複雑になって製造コストが上昇
することから、第1抵抗体32,33,34及び第2抵
抗体35,36,37を形成しない双方向型二端子サイ
リスタや、第3N型導電領域38,39,40及び第4
N型導電領域41,42,43を形成しない双方向型二
端子サイリスタを実施してもよい。また、第1の実施の
形態に係る双方向型二端子サイリスタや第2の実施の形
態に係る双方向型二端子サイリスタにおいて、第3の実
施の形態に係る二端子サイリスタにあるように第1抵抗
体32,33,34及び第2抵抗体35,36,37、
または、第3N型導電領域38,39,40及び第4N
型導電領域41,42,43を形成してもよい。また、
第1の実施の形態に係る双方向型二端子サイリスタや第
2の実施の形態に係る双方向型二端子サイリスタにおい
て、第1P型導電領域4,5,6及び第2P型導電領域
7,8,9からなるエミッタを深く形成し、第1P型導
電領域4,5,6及び第2P型導電領域7,8,9内に
それぞれ第1孔状導電領域22,23,24、25,2
6及び第2孔状導電領域27,28,29,30,31
を形成してもよい。
In the bidirectional two-terminal thyristor according to the fourth embodiment, since the manufacturing process is complicated and the manufacturing cost is increased, the first resistor 32, 33, 34 and the second resistor 35, Bidirectional two-terminal thyristor not forming 36, 37, third N-type conductive regions 38, 39, 40 and fourth
A bidirectional two-terminal thyristor which does not form the N-type conductive regions 41, 42 and 43 may be implemented. Further, in the bidirectional two-terminal thyristor according to the first embodiment and the bidirectional two-terminal thyristor according to the second embodiment, the first two-terminal thyristor according to the third embodiment Resistors 32, 33, 34 and second resistors 35, 36, 37,
Alternatively, the third N-type conductive regions 38, 39, 40 and the fourth N-type
The type conductive regions 41, 42, 43 may be formed. Also,
In the bidirectional two-terminal thyristor according to the first embodiment and the bidirectional two-terminal thyristor according to the second embodiment, first P-type conductive regions 4, 5, 6 and second P-type conductive regions 7, 8 are provided. , 9 are deeply formed, and the first hole-shaped conductive regions 22, 23, 24, 25, 2 are respectively formed in the first P-type conductive regions 4, 5, 6 and the second P-type conductive regions 7, 8, 9.
6 and second hole-shaped conductive regions 27, 28, 29, 30, 31
May be formed.

【0039】[0039]

【発明の効果】このように本発明によれば、ブレークオ
ーバー電圧を変更せずに各単位サイリスタを構成するト
ランジスタのベース抵抗を大きくすることが出来、その
ためベース接地電流増幅率が高くなって、短時間に点弧
動作し易いようにしたので、サージ電流の分流による点
弧動作の遅れ改善出来、素子破壊に繋がる発熱を抑制
し、従来技術に係るサイリスタよりもサージ耐量を向上
させることが出来る。
As described above, according to the present invention, it is possible to increase the base resistance of the transistor forming each unit thyristor without changing the breakover voltage, and thus the base ground current amplification factor becomes high. Since the ignition operation is made easier in a short time, the delay of the ignition operation due to the shunting of the surge current can be improved, the heat generation that leads to element destruction can be suppressed, and the surge withstand capability can be improved compared to the conventional thyristor. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1の実施の形態に係る双方向型二
端子サイリスタを示す断面図である。
FIG. 1 is a sectional view showing a bidirectional two-terminal thyristor according to a first embodiment of the present invention.

【図2】 従来技術に係る双方向型二端子サイリスタを
示す断面図である。
FIG. 2 is a sectional view showing a bidirectional two-terminal thyristor according to a conventional technique.

【図3】 従来技術に係る双方向型二端子サイリスタの
順方向の電気的特性を示すグラフである。
FIG. 3 is a graph showing forward electrical characteristics of a bidirectional two-terminal thyristor according to a conventional technique.

【図4】 従来技術に係る双方向型二端子サイリスタの
等価回路図である。
FIG. 4 is an equivalent circuit diagram of a bidirectional two-terminal thyristor according to a conventional technique.

【図5】 本件の発明者らによる双方向型二端子サイリ
スタの概略を示す断面図である。
FIG. 5 is a cross-sectional view showing an outline of a bidirectional two-terminal thyristor by the present inventors.

【図6】 図5に示した双方向型二端子サイリスタにお
ける単位サイリスタ構造の等価回路図である。
6 is an equivalent circuit diagram of a unit thyristor structure in the bidirectional two-terminal thyristor shown in FIG.

【図7】 図1に示した双方向型二端子サイリスタの等
価回路図である。
7 is an equivalent circuit diagram of the bidirectional two-terminal thyristor shown in FIG.

【図8】 本発明の第2の実施の形態に係る双方向型二
端子サイリスタを示す断面図である。
FIG. 8 is a sectional view showing a bidirectional two-terminal thyristor according to a second embodiment of the present invention.

【図9】 本発明の第3の実施の形態に係る双方向型二
端子サイリスタを示す断面図である。
FIG. 9 is a sectional view showing a bidirectional two-terminal thyristor according to a third embodiment of the present invention.

【図10】 本発明の第4の実施の形態に係る双方向型
二端子サイリスタを示す断面図である。
FIG. 10 is a sectional view showing a bidirectional two-terminal thyristor according to a fourth embodiment of the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1 基板導電領域 2 第1N型導電領域 3 第2N型導電領域 4 第1P型導電領域 5 第1P型導電領域 6 第1P型導電領域 7 第2P型導電領域 8 第2P型導電領域 9 第2P型導電領域 10 第1電極 11 第2電極 12 第3P型導電領域 13 第4P型導電領域 14 第3P型導電領域 15 第4P型導電領域 16 第3P型導電領域 17 第4P型導電領域 18 絶縁体 19 絶縁体 20 絶縁体 21 絶縁体 22 第1孔状導電領域 23 第1孔状導電領域 24 第1孔状導電領域 25 第1孔状導電領域 26 第1孔状導電領域 27 第2孔状導電領域 28 第2孔状導電領域 29 第2孔状導電領域 30 第2孔状導電領域 31 第2孔状導電領域 32 第1抵抗体 33 第1抵抗体 34 第1抵抗体 35 第2抵抗体 36 第2抵抗体 37 第2抵抗体 38 第3N型導電領域 39 第3N型導電領域 40 第3N型導電領域 41 第4N型導電領域 42 第4N型導電領域 43 第4N型導電領域 51 PNPN構造 52 PNPN構造 53 PNPN構造 54 PNPN構造 55 PNPN構造 56 PNPN構造 100 半導体基板 1 Substrate conductive area 2 First N-type conductive region 3 Second N-type conductive region 4 First P-type conductive area 5 First P-type conductive region 6 First P-type conductive region 7 Second P-type conductive region 8 Second P-type conductive region 9 Second P-type conductive region 10 First electrode 11 Second electrode 12 Third P-type conductive region 13 Fourth P-type conductive region 14 Third P-type conductive region 15 Fourth P-type conductive region 16 Third P-type conductive region 17 Fourth P-type conductive region 18 Insulator 19 insulator 20 insulator 21 Insulator 22 First hole-shaped conductive region 23 First hole-shaped conductive region 24 First hole-shaped conductive region 25 First hole-shaped conductive region 26 First hole-shaped conductive region 27 Second hole-shaped conductive region 28 Second hole-shaped conductive region 29 Second hole-shaped conductive region 30 Second hole-shaped conductive region 31 second hole-shaped conductive region 32 1st resistor 33 First resistor 34 First resistor 35 Second resistor 36 Second resistor 37 Second resistor 38 Third N-type conductive region 39 Third N-type conductive region 40 Third N-type conductive region 41 Fourth N-type conductive region 42 Fourth N-type conductive region 43 Fourth N-type Conductive Region 51 PNPN structure 52 PNPN structure 53 PNPN structure 54 PNPN structure 55 PNPN structure 56 PNPN structure 100 semiconductor substrate

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板に、 前記半導体基板の一方の面に露出させて形成してなる前
記半導体基板とは反対型の第2導電型の第1の導電領域
と、 前記一方の面に露出させて形成すると共に前記第1の導
電領域内に配列してなるN個(N≧2)の第1導電型の
第2の導電領域と、 前記第1の導電領域に隣接して形成してなる第1導電型
の第3の導電領域と、 前記半導体基板の前記一方の面に背向する他方の面に露
出させて形成してなる第2導電型の第4の導電領域と、 前記他方の面に露出させて形成すると共に前記第4の導
電領域内に配列してなるN個の第1導電型の第5の導電
領域と、 前記第4の導電領域に隣接して形成してなる第1導電型
の第6の導電領域とを設け、 1番目の前記第2の導電領域は、平面的に見て2番目の
前記第2の導電領域に近い側の端部及びその近傍部分が
1番目の前記第5の導電領域と重なり合うように配置さ
れ、 N番目の前記第5の導電領域は、平面的に見てN−1番
目の前記第5の導電領域に近い側の端部及びその近傍部
分がN番目の前記第2の導電領域と重なり合うように配
置され、 1番目以外の前記第2の導電領域は、平面的に見てそれ
らの両端部及びそれらの近傍部分がN個の前記第5の導
電領域と重なり合うように配置され、N番目以外の前記
第5の導電領域は、平面的に見てそれらの両端部及びそ
れらの近傍部分がN個の前記第2の導電領域と重なり合
うように配置されてなることを特徴とする双方向型二端
子サイリスタ。
1. A first-conductivity-type semiconductor substrate, a first-conductivity region of a second-conductivity-type opposite to the semiconductor substrate, the first-conductivity region being formed by being exposed on one surface of the semiconductor substrate. Adjacent to the first conductive region, N (N ≧ 2) second conductive regions of the first conductivity type, which are formed so as to be exposed on one surface and arranged in the first conductive region. A third conductive region of the first conductivity type formed by the above, and a fourth conductivity of the second conductivity type formed by being exposed on the other surface of the semiconductor substrate, which is opposite to the one surface. A region, N fifth conductive regions of the first conductivity type, which are formed so as to be exposed on the other surface and arranged in the fourth conductive region, and are adjacent to the fourth conductive region. And a sixth conductive region of the first conductivity type formed by: forming the first conductive region of the second conductive region; The end on the side closer to the second conductive region and the vicinity thereof are arranged so as to overlap the first fifth conductive region, and the Nth fifth conductive region is N in plan view. -1 is arranged so that the end portion on the side close to the fifth conductive region and the vicinity thereof overlap the N-th second conductive region, and the second conductive region other than the first is a flat surface. Are arranged so that their both end portions and their vicinity are overlapped with the N fifth conductive regions, and the fifth conductive regions other than the Nth are both ends of the fifth conductive region when viewed two-dimensionally. A bidirectional two-terminal thyristor, wherein the parts and their vicinity are arranged so as to overlap the N second conductive regions.
【請求項2】 前記第3の導電領域及び前記第6の導電
領域は、それぞれ前記半導体基板内に埋め込んで設けら
れることを特徴とする請求項1に記載の双方向型二端子
サイリスタ。
2. The bidirectional two-terminal thyristor according to claim 1, wherein the third conductive region and the sixth conductive region are provided by being embedded in the semiconductor substrate, respectively.
【請求項3】 前記第3の導電領域は、前記第1の導電
領域とその周辺との境界面のうち少なくとも前記第4の
導電領域に相対向する部分に接して設けられ、 前記第6の導電領域は、前記第4の導電領域とその周辺
との境界面のうち少なくとも前記第1の導電領域に相対
向する部分に接して設けられることを特徴とする請求項
1または請求項2に記載の双方向型二端子サイリスタ。
3. The third conductive region is provided in contact with at least a portion of the boundary surface between the first conductive region and the periphery thereof facing the fourth conductive region, and the sixth conductive region is provided. The conductive region is provided in contact with at least a portion of the boundary surface between the fourth conductive region and the periphery thereof facing the first conductive region. Bidirectional two-terminal thyristor.
【請求項4】 前記第3の導電領域及び前記第6の導電
領域は、N個ずつ設けられると共に、それぞれ平面的に
見て前記第2の導電領域及び前記第5の導電領域に重な
り合う範囲内に設けられることを特徴とする請求項2ま
たは請求項3に記載の双方向型二端子サイリスタ。
4. The third conductive region and the sixth conductive region are provided in N number each and within a range overlapping with the second conductive region and the fifth conductive region when seen in a plan view, respectively. The bidirectional two-terminal thyristor according to claim 2 or 3, wherein the bidirectional two-terminal thyristor is provided.
【請求項5】 N個の前記第3の導電領域と前記第6の
導電領域とは、平面的に見て交互に且つ互いに接した状
態に配列されることを特徴とする請求項4に記載の双方
向型二端子サイリスタ。
5. The N-th third conductive region and the sixth conductive region are arranged alternately and in contact with each other when seen in a plan view. Bidirectional two-terminal thyristor.
JP2001265787A 2001-09-03 2001-09-03 Bidirectional two-terminal thyristor Expired - Fee Related JP5371165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001265787A JP5371165B2 (en) 2001-09-03 2001-09-03 Bidirectional two-terminal thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001265787A JP5371165B2 (en) 2001-09-03 2001-09-03 Bidirectional two-terminal thyristor

Publications (2)

Publication Number Publication Date
JP2003077932A true JP2003077932A (en) 2003-03-14
JP5371165B2 JP5371165B2 (en) 2013-12-18

Family

ID=19092200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001265787A Expired - Fee Related JP5371165B2 (en) 2001-09-03 2001-09-03 Bidirectional two-terminal thyristor

Country Status (1)

Country Link
JP (1) JP5371165B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471163A (en) * 1987-06-09 1989-03-16 Texas Instruments Inc Semiconductor device for protecting electrical excessive stress
JPH07307459A (en) * 1994-03-14 1995-11-21 Fuji Electric Co Ltd Double-sided semiconductor device
JPH088420A (en) * 1994-06-20 1996-01-12 Nippon Telegr & Teleph Corp <Ntt> Surge protective element
JPH0945892A (en) * 1995-07-26 1997-02-14 Nippon Telegr & Teleph Corp <Ntt> Surge-preventing device
JP2655575B2 (en) * 1991-07-29 1997-09-24 日本電信電話株式会社 Surge protection element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6471163A (en) * 1987-06-09 1989-03-16 Texas Instruments Inc Semiconductor device for protecting electrical excessive stress
JP2655575B2 (en) * 1991-07-29 1997-09-24 日本電信電話株式会社 Surge protection element
JPH07307459A (en) * 1994-03-14 1995-11-21 Fuji Electric Co Ltd Double-sided semiconductor device
JPH088420A (en) * 1994-06-20 1996-01-12 Nippon Telegr & Teleph Corp <Ntt> Surge protective element
JPH0945892A (en) * 1995-07-26 1997-02-14 Nippon Telegr & Teleph Corp <Ntt> Surge-preventing device

Also Published As

Publication number Publication date
JP5371165B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
CN101512685B (en) Integrated circuit providing overvoltage protection for low voltage lines
US4967256A (en) Overvoltage protector
US20050245006A1 (en) Overvoltage protection device and manufacturing process for the same
JP2011228505A (en) Semiconductor integrated circuit
JP2004055796A (en) Semiconductor device
US10325905B2 (en) Semiconductor device and semiconductor circuit device
JPH0485963A (en) Semiconductor protective element
JP5371165B2 (en) Bidirectional two-terminal thyristor
GB2208257A (en) Overvoltage protector
JP2003282865A (en) Thyristor
JP5371164B2 (en) Bidirectional two-terminal thyristor
JP5084084B2 (en) Bidirectional two-terminal thyristor
JP2802970B2 (en) Planar type two-terminal bidirectional thyristor
JPH0133951B2 (en)
JP4260402B2 (en) Two-terminal thyristor
JP3785375B2 (en) Bidirectional two-terminal thyristor
JP4907341B2 (en) Thyristor
JP2003017681A (en) Bidirectional two-terminal thyristor
JP3963751B2 (en) Thyristor
JP2002368209A (en) Bidirectional two-terminal thyristor
JP3998498B2 (en) Thyristor
JPH1098202A (en) Semiconductor surge protection element
JPH088420A (en) Surge protective element
JP2003197922A (en) Bidirectional two-terminal thyristor
JP4260414B2 (en) Thyristor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees