JP2003077474A - Positive electrode active material for lithium secondary battery and its manufacturing method - Google Patents

Positive electrode active material for lithium secondary battery and its manufacturing method

Info

Publication number
JP2003077474A
JP2003077474A JP2001270342A JP2001270342A JP2003077474A JP 2003077474 A JP2003077474 A JP 2003077474A JP 2001270342 A JP2001270342 A JP 2001270342A JP 2001270342 A JP2001270342 A JP 2001270342A JP 2003077474 A JP2003077474 A JP 2003077474A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270342A
Other languages
Japanese (ja)
Inventor
Motoe Nakajima
源衛 中嶋
Teruo Uchikawa
晃夫 内川
Fumi Inada
ふみ 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001270342A priority Critical patent/JP2003077474A/en
Publication of JP2003077474A publication Critical patent/JP2003077474A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material that is superior in high temperature standing characteristics at charge and discharge, and its manufacturing method. SOLUTION: This is a positive electrode active material that is mainly made of a lithium manganese composite oxide as expressed by the following formula, Li1+x Mn2-x-y Ay O4 (where A is at least one element selected from Co and Al, and 0<x<0.1, 0<y<0.3). The positive electrode active material of the lithium secondary battery contains Zr more than 0 and 1 wt.% or less in the above composite oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、小型携帯情報端
末、電力貯蔵電源あるいは電気自動車等に使用されるリ
チウム二次電池の正極活物質及びその製造方法に関し、
特に高温における正極活物質およびそれを搭載したLi
イオン二次電池の信頼性を大幅に改善できることに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material for a lithium secondary battery used in a small portable information terminal, a power storage power source, an electric vehicle, etc., and a method for manufacturing the same.
Particularly, the positive electrode active material at high temperature and Li containing the same
The present invention relates to the fact that the reliability of an ion secondary battery can be significantly improved.

【0002】[0002]

【従来の技術】一般に、リチウム二次電池は正極、負極
およびセパレ−タを容器内に配置し、有機溶媒による非
水電解液を満たして構成される。正極材はアルミニウム
箔等の集電体に正極材活物質を塗布したものである。こ
の正極材活物質の電気伝導性は10−1〜10−6S/cm
一般の導体と比べて低い値であるため、アルミニウムの
集電体と正極材活物質間もしくは活物質相互間の電気伝
導性を高めるように、正極材活物質より電気伝導性の良
い炭素粉等の導電助材が使用される(特開平10−12
5323号公報参照)。実際には、正極材に重量比で数
〜数十%程度の炭素粉を混ぜ、さらにPVdF(ホ゜リフッ化ヒ゛ニ
リテ゛ン)、PTFE(ホ゜リテトラフルオロエチレン)等の結着材と混練した
後、ペ−スト状に練り上げて集電体箔に厚み100μm程度
で塗布、乾燥、プレス工程を経て正電極が製造される。
2. Description of the Related Art Generally, a lithium secondary battery is constructed by arranging a positive electrode, a negative electrode and a separator in a container and filling a non-aqueous electrolytic solution with an organic solvent. The positive electrode material is a current collector such as an aluminum foil coated with a positive electrode active material. Since the electric conductivity of this positive electrode active material is 10 −1 to 10 −6 S / cm 2 , which is a low value compared to general conductors, it is between the aluminum current collector and the positive electrode active material or between the active materials. In order to enhance the electric conductivity of the positive electrode active material, a conductive auxiliary material such as carbon powder, which has better electric conductivity than the positive electrode active material, is used (JP-A-10-12).
(See Japanese Patent No. 5323). Actually, carbon powder of about several to several tens% by weight ratio is mixed with the positive electrode material, and further kneaded with a binder such as PVdF (polyvinylidene fluoride) and PTFE (polytetrafluoroethylene), and then paste. The positive electrode is manufactured by kneading the mixture into a shape and applying it to a collector foil with a thickness of about 100 μm, drying, and pressing.

【0003】この正極材活物質は、コバルト酸リチウム
(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン
酸リチウム(LiMn2O4)等に代表されるようにリチウム
と遷移金属の酸化物からなる粉体が主として用いられ、
例えば特開平8−17471号公報にその製法が詳しく
開示されている。これら正極材活物質の合成は、一般に
リチウム塩粉末(LiOH、LiCO等)と遷移金属酸化物
(MnO、CoO、NiO等)粉末を混合し、焼成する方法が
広く採用されている。特に、LiMn2O4は、Mnを主原料に
用いるため、LiCoO2、LiNiO2に比べて低コスト化が可能
であり、蓄電や車両等に搭載される中大型のLiイオン電
池用正極材として注目されている。
This positive electrode active material is made of an oxide of lithium and a transition metal as represented by lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), and the like. Is mainly used,
For example, JP-A-8-17471 discloses the manufacturing method in detail. Generally, a method of mixing lithium salt powder (LiOH, Li 2 CO 3, etc.) and transition metal oxide (MnO 2 , CoO, NiO, etc.) powder and firing the mixture is widely adopted for the synthesis of these positive electrode active materials. . In particular, since LiMn 2 O 4 uses Mn as the main raw material, it is possible to reduce the cost compared to LiCoO 2 and LiNiO 2, and it can be used as a positive electrode material for medium- and large-sized Li-ion batteries that are installed in electricity storage and vehicles. Attention has been paid.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、その反
面LiMn2O4は、充放電により結晶格子が膨張収縮して結
晶構造の崩壊が起こりやすく、このため充放電を繰り返
すと容量低下が起こり寿命に問題がある。これらの対策
のため、特開平7−282798号公報ではLi過剰の
組成であるLi1+XMn2-XO4(0.02≦X≦0.081)とすること
や特開平4−160769号公報のLiXMn2-YMYO4(M=C
o,Ni,Fe,Crから選ばれた少なくとも一種で0≦X≦0.09、
0.01≦Y≦0.3)に見られるようにMnサイトへLiや遷
移金属等を一定量置換することで寿命を改善することが
図られている。しかしながら、これでも高温時には電解
液中にMnが溶出し易く、電池の容量劣化を引き起こし
ていた。上記した組成によって高温における容量劣化の
度合いは改善されつつあるも、まだ実用化のレベルには
至っていない。
However, on the other hand, in LiMn 2 O 4 , the crystal lattice is likely to expand and contract due to charge and discharge, and the crystal structure is likely to collapse. Therefore, repeated charge and discharge causes the capacity to decrease and the life to be shortened. There's a problem. To solve these problems, in JP-A-7-228798, Li 1 + X Mn 2-X O 4 (0.02 ≦ X ≦ 0.081), which is an excess composition of Li, is set and in JP-A-4-160769. X Mn 2-Y M Y O 4 (M = C
o, Ni, Fe, at least one selected from Cr, 0 ≦ X ≦ 0.09,
0.01 ≦ Y ≦ 0.3), it is attempted to improve the life by substituting a certain amount of Li, transition metal, or the like into the Mn site. However, even with this, Mn was easily eluted in the electrolytic solution at a high temperature, causing deterioration of the capacity of the battery. Although the degree of capacity deterioration at high temperatures is being improved by the above composition, it has not yet reached the level of practical use.

【0005】そこで、本発明は安全性が高く、安価なリ
チウムマンガン複合酸化物を主体とする正極活物質を用
いて、高温下においてもマンガンが溶出し難く劣化の少
ない安定した寿命の非水系リチウム二次電池の正極活物
質とその製造方法を、ひいてはこれらの特性の良好な非
水系リチウム二次電池を提供することを目的とする。
Therefore, the present invention uses a positive electrode active material mainly composed of a lithium manganese composite oxide, which is highly safe and inexpensive, and has a stable life with less manganese eluting and less deterioration even at high temperatures. It is an object of the present invention to provide a positive electrode active material for a secondary battery, a method for producing the same, and a non-aqueous lithium secondary battery having favorable characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、Mnの一部を
CoまたはAlで置換したリチウムマンガン複合酸化物にジ
ルコニアを含有させ、この含有量を規制することによっ
てMnの溶出が抑えられ、特に高温での放置特性に改善
効果があることを見出したものである。またを見出し、
このときさらに、リチウムマンガン複合酸化物原料粉の
混合工程において、ZrO2を主成分とするボールを使用す
ることによって前記ジルコニアの添加を行わしめること
が好ましいことを見出し本発明に至ったものである。
The present invention uses a part of Mn.
It has been found that the inclusion of zirconia in the lithium manganese composite oxide substituted with Co or Al and the regulation of this content suppresses the elution of Mn and has an effect of improving the leaving property particularly at high temperatures. . Also find
At this time, further, in the step of mixing the lithium manganese composite oxide raw material powder, it was found that it is preferable to perform the addition of the zirconia by using balls containing ZrO 2 as a main component, which led to the present invention. .

【0007】即ち、本発明は、下記式で表されるリチウ
ムマンガン複合酸化物を主体とする正極活物質であっ
て、Li1+XMn2-X-y(但し、AはCo,Alか
ら選ばれる少なくとも1種の元素であり、0<x<0.1、
0<y<0.3である。)前記複合酸化物中にZrを1wt
%以下含有することを特徴とするリチウム二次電池の正
極活物質である。ここで、複合酸化物中にZrを0.0
1以上0.5wt%以下含有することがより好ましく、
xは0.04≦x<0.1の範囲がより好ましく、yは0.05≦
y≦0.2の範囲がより好ましい。よって本発明の正極活
物質は、60℃で20日放置後の放電容量劣化率が3%
以下にあることを特徴とするリチウム二次電池の正極活
物質である。
That is, the present invention is a positive electrode active material mainly composed of a lithium manganese composite oxide represented by the following formula, wherein Li 1 + X Mn 2-X-y A y O 4 (where A is At least one element selected from Co and Al, 0 <x <0.1,
0 <y <0.3. ) 1 wt% Zr in the composite oxide
% Or less, it is a positive electrode active material for a lithium secondary battery. Here, Zr is 0.0 in the composite oxide.
It is more preferable to contain 1 or more and 0.5 wt% or less,
More preferably, x is 0.04 ≦ x <0.1, and y is 0.05 ≦
The range of y ≦ 0.2 is more preferable. Therefore, the positive electrode active material of the present invention has a discharge capacity deterioration rate of 3% after being left at 60 ° C. for 20 days.
The following is a positive electrode active material for a lithium secondary battery characterized by the following.

【0008】また、本発明は、下記式で表されるリチウ
ムマンガン複合酸化物を主体とする正極材活物質の製造
方法であって、Li1+XMn2-X-Y(但し、Aは
Co,Alから選ばれる少なくとも1種の元素であり、0<
X<0.1、0<Y<0.3である。) 前記複合酸化物の原料粉を混合する際、ZrO2を主成分と
するボールを用いて混合し、原料混合時にZr成分を添加
することを特徴とするリチウム二次電池の正極材活物質
の製造方法である。
Further, the present invention is a method for producing a positive electrode active material mainly composed of a lithium manganese composite oxide represented by the following formula, wherein Li 1 + X Mn 2-XY A y O 4 (however, A is
At least one element selected from Co and Al, 0 <
X <0.1 and 0 <Y <0.3. ) Preparation of a positive electrode active material for a lithium secondary battery, characterized in that, when the raw material powders of the complex oxide are mixed, they are mixed using a ball containing ZrO2 as a main component, and the Zr component is added at the time of mixing the raw materials. Is the way.

【0009】[0009]

【発明の実施の形態】以下、本発明の正極活物質とその
製造方法について説明する。まず、原料である炭酸リチ
ウム、酸化マンガン、酸化コバルトもしくは酸化アルミ
ニウム粉末の各々に純水を適量添加し、スラリ−とす
る。次にこのスラリ−を所定量混合し、その後、ジルコ
ニア(ZrO2)を主成分とするボ−ルと一緒に、原料粉を
樹脂製ポットに入れ、樹脂製ポットを所定の回転数で所
定時間回転させる。この工程で、スラリ−の粉砕、混合
とボ−ルの磨耗から、Zr成分が均一に原料へ添加され
る。Zrの添加量は混合時間で制御する。次に、このス
ラリ−へPVA(ポリビニルアルコール)を1wt%程
度加え、ディスクスプレーを使って平均粒径100μm程
度の顆粒とする。この顆粒を800℃〜1000℃の間で焼成
を行い、ライカイ機で解砕後、再び焼成を行う。このと
きの焼成温度は500℃〜900℃が望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The positive electrode active material of the present invention and the method for producing the same will be described below. First, an appropriate amount of pure water is added to each of the raw material lithium carbonate, manganese oxide, cobalt oxide or aluminum oxide powder to prepare a slurry. Next, this slurry is mixed in a predetermined amount, and then the raw material powder is put into a resin pot together with a ball containing zirconia (ZrO 2 ) as a main component, and the resin pot is kept at a predetermined rotation speed for a predetermined time. Rotate. In this step, the Zr component is uniformly added to the raw material due to crushing and mixing of the slurry and abrasion of the ball. The amount of Zr added is controlled by the mixing time. Next, about 1 wt% of PVA (polyvinyl alcohol) is added to this slurry, and a granule having an average particle size of about 100 μm is prepared using a disc sprayer. The granules are fired at a temperature between 800 ° C and 1000 ° C, crushed by a raikai machine, and then fired again. The firing temperature at this time is preferably 500 ° C to 900 ° C.

【0010】以上によって、一般式:Li1+XMn2-X-y
(但し、0<x<0.1、0<y<0.3、AはCo,Al
から選ばれた少なくとも1種の元素)からなり、Zrを
1wt%以下含有させた正極材活物質とすることができ
る。ここで、上記AはCoが特に望ましい。この理由は、
原料として添加する酸化アルミニウムに比べて酸化コバ
ルトの方が反応性に富み、Li1+XMn2-X-y
合成が容易なためと、下記実施例で示すように、同一添
加量ではAlに比べCoの方がより、高温放置特性に優れる
からである。また、XとYの範囲は0<x<0.1、0<y<
0.3から選ばれるが、このうち0.04≦x<0.1、0.05≦
y≦0.2が好ましい。この理由は、実施例で示すよう
に、Li過剰組成の方が、より高温放置特性に優れること
と、yの添加量は、その高温特性改善効果とコストのバ
ランスを取るためである。またZrの含有量は1wt%以
下としているが、0.01≦Zr≦0.5wt%が好ましい。
この理由は、添加量を多くすると、実施例に示したよう
に初期容量の低下を招くからである。
From the above, the general formula: Li 1 + X Mn 2-X-y
A y O 4 (where 0 <x <0.1, 0 <y <0.3, A is Co, Al
At least one element selected from
A positive electrode active material containing 1 wt% or less can be used. Here, Co is particularly desirable for A. The reason for this is
Cobalt oxide is more reactive than aluminum oxide added as a raw material, and the synthesis of Li 1 + X Mn 2-X-y A y O 4 is easy, and as shown in the following examples, the same This is because Co is more excellent in high-temperature storage characteristics than Al in the added amount. The range of X and Y is 0 <x <0.1, 0 <y <
It is selected from 0.3, of which 0.04 ≦ x <0.1, 0.05 ≦
y ≦ 0.2 is preferable. The reason for this is that, as shown in the examples, the excess composition of Li is more excellent in the high temperature storage property, and the addition amount of y balances the high temperature property improvement effect and the cost. The Zr content is set to 1 wt% or less, but 0.01 ≦ Zr ≦ 0.5 wt% is preferable.
The reason for this is that when the addition amount is increased, the initial capacity is lowered as shown in the examples.

【0011】また、原料粉の混合はZrO2を主成分とする
ボール状のメディアを用いている。粉砕を行うだけであ
ればボールミル等で混合時間を長くとれば良いが、正極
材活物質の場合には、通常メディアからの磨耗による異
材質の混入が特性劣化を引き起こす。そこで、磨耗によ
る異材質の混入が少なく、たとえ混入しても実用上特性
に問題が無く、短時間で原料の粉砕・混合に向くメディ
アを各種検討した。その結果、密度が6g/cmと高
く粉砕時の磨耗量が少ないメディアとして酸化ジルコニ
ウムが適することが見出された。さらにこのメディアの
場合、密度と硬度が高く粉砕が進行して密度が高くなる
こと、また酸化ジルコニウムの混合が高温特性の向上に
働くことが分かった。これは、混合により原料(例えば
MnO、LiCo)の粉砕が進み組成の均質化が促進さ
れると共に、Zr添加により部分的に巨大成長する粒子
の生成を抑制する効果があり、これにより組成が不均質
であることと、粒子の大きさのばらつきに起因する容量
の低下やサイクル特性の劣化が減少するためと考えられ
る。特に、Al、Co等の第三元素を添加する場合、その添
加量は主原料の炭酸Liや酸化マンガンに比べて、量的に
少ない。このように、配合比が極端に異なるものを均一
に混合するのは困難である。このような場合にも、本発
明のZrO2を主成分とするボール状のメディアを使った混
合は効果があり、組成の不均質さが少ない分、添加元素
による特性改善の効果が顕著に現れる。また、ZrがM
n溶出を抑制する効果についても確認されている。
The raw material powder is mixed by using a ball-shaped medium containing ZrO 2 as a main component. If only crushing is performed, the mixing time may be extended with a ball mill or the like, but in the case of the positive electrode active material, mixing of different materials due to abrasion from the medium usually causes characteristic deterioration. Therefore, we examined various media that are less likely to mix different materials due to abrasion, have practically no problem in characteristics even if mixed, and are suitable for crushing and mixing raw materials in a short time. As a result, it was found that zirconium oxide is suitable as a medium having a high density of 6 g / cm 3 and a small amount of wear during grinding. Further, in the case of this medium, it was found that the density and hardness were high, the crushing proceeded to increase the density, and the mixing of zirconium oxide worked to improve the high temperature characteristics. This is because the raw materials (eg
As MnO 2 and Li 2 Co 3 ) are pulverized to promote homogenization of the composition, the addition of Zr has the effect of suppressing the formation of particles that grow partially in large areas, which results in an inhomogeneous composition. It is considered that the decrease in capacity and the deterioration in cycle characteristics due to variations in particle size are reduced. In particular, when a third element such as Al or Co is added, its amount is smaller than that of Li carbonate or manganese oxide which is the main raw material. Thus, it is difficult to uniformly mix those having extremely different compounding ratios. Even in such a case, the mixing using the ball-shaped medium containing ZrO 2 as a main component of the present invention is effective, and since the composition is less inhomogeneous, the effect of improving the characteristics due to the added element becomes remarkable. . Also, Zr is M
The effect of suppressing n elution has also been confirmed.

【0012】(実施例)以下に実施例および比較例を試
料作製方法と充放電試験方法と共に示す。先ず、原料と
して炭酸リチウム(Li2CO3)、二酸化マンガン(Mn
O2)、酸化コバルト(Co3O4)及び酸化アルミニウム(A
l(OH))を原子比でそれぞれ表1に示す範囲になる
ように所定量秤量した。その後の混合については、ジル
コニア(ZrO2)を主成分とするメディアの場合と金属を
樹脂(ポリアミド系樹脂)でコーテイングしたメディア
の場合をそれぞれ使用した。前者のジルコニア(ZrO2
を主成分とするメディアの場合、樹脂製のボールミルポ
ットにボ−ルを投入し湿式で12時間、36時間、80時間各
1ロット混合した。樹脂製のメディアは24時間混合し
た。混合後、混合液にはPVA溶液を固形分に換算して1w
t%添加混合後、スプレードライヤにより造粒し乾燥させ
て10〜100μmの顆粒を作成した。また、1回目の
焼成は大気中960℃で行い、その後、乳鉢で解砕後、
再び2回目の焼成を大気中600℃で行った。なお、焼
成時間は各4時間とし、焼成雰囲気はそれぞれ大気中で
行っている。
(Examples) Examples and comparative examples are shown below together with a sample preparation method and a charge / discharge test method. First, as raw materials, lithium carbonate (Li 2 CO 3 ) and manganese dioxide (Mn
O 2 ), cobalt oxide (Co 3 O 4 ) and aluminum oxide (A
A predetermined amount of l (OH) 3 ) was weighed so that each had an atomic ratio within the range shown in Table 1. For the subsequent mixing, the case of a medium containing zirconia (ZrO 2 ) as a main component and the case of a medium coated with a metal (polyamide resin) were used. The former zirconia (ZrO 2 )
In the case of a medium containing as a main component, the ball was put into a ball mill pot made of a resin, and 1 lot each was mixed for 12 hours, 36 hours, and 80 hours by a wet method. The resin media was mixed for 24 hours. After mixing, PVA solution is converted to solid content in the mixed solution and it is 1w.
After adding and mixing t%, the mixture was granulated by a spray dryer and dried to prepare granules of 10 to 100 μm. In addition, the first firing is performed at 960 ° C. in the atmosphere, and after crushing in a mortar,
The second firing was performed again at 600 ° C. in the atmosphere. The firing time is 4 hours, and the firing atmosphere is in the atmosphere.

【0013】表1に作成した試料の組成とZr含有量を
示す。尚、表中のZr含有量はZrO2ボールによる均一的
な混入を図っているのでボールミルの混練時間により調
節している。例えば、12時間では約0.02wt%、36時間
では約0.1wt%、80時間では約0.3wt%の含有量を得
ることが出来る。また、正極活物質中に含まれるZrの量
はICP(高周波誘導結合プラズマ発光分光分析装置:セ
イコー電子工業製SPS1500R)で測定した。
Table 1 shows the composition and Zr content of the samples prepared. The Zr content in the table is adjusted by the kneading time of the ball mill because the ZrO 2 balls are uniformly mixed. For example, a content of about 0.02 wt% for 12 hours, about 0.1 wt% for 36 hours, and about 0.3 wt% for 80 hours can be obtained. Further, the amount of Zr contained in the positive electrode active material was measured by ICP (high frequency inductively coupled plasma emission spectroscopy analyzer: SPS1500R manufactured by Seiko Denshi Kogyo).

【0014】次に作成した試料の充放電試験について説
明する。この試験では、簡易モデルセルに試料を組み込
み評価した。図1に概略を示す。簡易モデルセルは試験
極1、Li参照極2(リチウムフォイル)、Li対極3(リチウムフォイル)から
成り、それぞれの電極は電解液4中に浸されている。参
照極端子と試験極端子には電位差計5を、試験極端子と
対極端子には定電流電源6を接続している。試験極1に
は、上記に記載した実施例で合成した正極活物質、炭素
粉等の導電助材、PVDF(ホ゜リフカヒ゛ニリテ゛ン)等の結着材を所定
の割合で混練し、ペ−スト状にした後、集電体であるア
ルミニウム箔上に塗布、乾燥後プレスで圧着したものを
用いた。電解液には1M LiPF6/EC:DMC=1:1を使用し
た。
Next, the charge / discharge test of the prepared sample will be described. In this test, the sample was incorporated into a simple model cell and evaluated. The outline is shown in FIG. The simple model cell comprises a test electrode 1, a Li reference electrode 2 (lithium foil), and a Li counter electrode 3 (lithium foil), and each electrode is immersed in an electrolyte solution 4. A potentiometer 5 is connected to the reference electrode terminal and the test electrode terminal, and a constant current power source 6 is connected to the test electrode terminal and the counter electrode terminal. The test electrode 1 was prepared by kneading the positive electrode active material synthesized in the above-mentioned examples, a conductive auxiliary material such as carbon powder, and a binder such as PVDF (polycarbonate vinylidene) at a predetermined ratio to form a paste. Then, it was applied on an aluminum foil as a current collector, dried, and then pressed with a press to be used. The electrolyte used was 1M LiPF 6 / EC: DMC = 1: 1.

【0015】充電は一定電流密度0.5mA/cm2で試験極上
にリチウムを電析させ、対リチウム参照極電位が4.3Vに
なるまで行った。また、放電容量の計測では試験極の電
位がリチウム参照極に対し3.0Vになるまでに流れた電気
量を計測した。初回の放電容量を100とし電池を充電
後、60℃-20日放置した後、再び放電容量を確認し
た。放置前後の容量から劣化率を以下の式で算出した。 表1に各試料の容量劣化率を併記して示す。
Charging was performed at a constant current density of 0.5 mA / cm 2 by depositing lithium on the test electrode until the potential of the reference electrode against lithium reached 4.3V. Further, in measuring the discharge capacity, the amount of electricity flowing until the potential of the test electrode reached 3.0 V with respect to the lithium reference electrode was measured. After the initial discharge capacity was set to 100 and the battery was charged, the battery was left at 60 ° C. for 20 days, and then the discharge capacity was confirmed again. The deterioration rate was calculated from the capacity before and after standing by the following formula. Table 1 also shows the capacity deterioration rate of each sample.

【0016】[0016]

【表1】 [Table 1]

【0017】表1の比較例と実施例1〜5よりLiMn2O4
中の一部をCoやAlで置換すると劣化率が低減することが
分かる。このとき、Li過剰組成にすることで更に劣化率
が低下することがわかった。また、Zr成分を微量添加
させることにより、CoやAlを単独で置換させた場合だけ
に比べ、更に劣化率を軽減させることが出来ている。こ
の理由はZrは粒成長を抑制させる効果があり、Zrを
微量添加すると、巨大成長する一次粒子が低減し、均一
な大きさをもった一次粒子が得られる。このように粒子
が均一なことが作用し、更に劣化率を低減しているもの
と考えられる。
From the comparative example of Table 1 and Examples 1 to 5, LiMn 2 O 4
It can be seen that the deterioration rate is reduced by substituting a part of the inside with Co or Al. At this time, it was found that the deterioration rate was further reduced by making the composition of Li excessive. Further, by adding a small amount of Zr component, the deterioration rate can be further reduced as compared with the case where Co or Al is replaced alone. The reason for this is that Zr has the effect of suppressing grain growth, and when a small amount of Zr is added, the primary particles that grow huge are reduced, and primary particles having a uniform size can be obtained. It is considered that the uniformity of the particles acts as described above and further reduces the deterioration rate.

【0018】次に、Li1.08Mn1.87Co0.05O4の組成につい
て、Zr成分の添加量を変えたときの初期容量の変化を
図2に示す。表1から分かるようにZr成分を添加する
と、高温放置劣化が改善する。しかしながら、含有量が
単に増加すると、図2から分かるようにZr含有量1w
t%あたりから初期容量は低下する傾向にあることが分
かった。このためZr成分の添加量は0<Zrの含有量
≦1wt%が望ましく、更に望ましく0.01≦Zr含有量
≦0.5wt%である。
Next, with respect to the composition of Li 1.08 Mn 1.87 Co 0.05 O 4 , the change of the initial capacity when the addition amount of the Zr component is changed is shown in FIG. As can be seen from Table 1, when the Zr component is added, deterioration at high temperature is improved. However, if the content is simply increased, as can be seen from FIG.
It was found that the initial capacity tends to decrease from around t%. Therefore, the Zr component content is preferably 0 <Zr content ≦ 1 wt%, and more preferably 0.01 ≦ Zr content ≦ 0.5 wt%.

【0019】[0019]

【発明の効果】本発明によれば、一部をCoまたはAlで置
換したリチウムマンガン複合酸化物にジルコニアを含有
させ、その含有量を規定することにより、特に高温での
放置特性に優れた正極活物質及びこれを用いたリチウム
二次電池を提供することが出来る。また、このとき、ボ
ールミル等メディアを用いた粉砕混合工程にZrO2ホ゛ールを
使用することによって製造工程が合理化できるし、この
工程でZrO2ホ゛ールから混入するジルコニア量を定量的に規
定できるので品質が安定する。
EFFECTS OF THE INVENTION According to the present invention, a lithium manganese composite oxide partially substituted with Co or Al contains zirconia, and by defining the content thereof, a positive electrode excellent in leaving characteristics especially at high temperature. An active material and a lithium secondary battery using the same can be provided. At this time, the manufacturing process can be streamlined by using ZrO 2 ball in the pulverizing and mixing process using media such as a ball mill, and the amount of zirconia mixed from ZrO 2 ball can be quantitatively regulated in this process, so that the quality is improved. Stabilize.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例で用いた充放電試験装置を示す
構成図である。
FIG. 1 is a configuration diagram showing a charge / discharge test apparatus used in an example of the present invention.

【図2】本発明の一実施例におけるZr添加量と初期容量
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the Zr addition amount and the initial capacity in one example of the present invention.

【符号の説明】[Explanation of symbols]

1:試験極 2:Li参照極 3:Li対極 4:電解液 5:電圧計 6:電源 1: test pole 2: Li reference electrode 3: Li counter electrode 4: Electrolyte 5: Voltmeter 6: Power supply

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AE05 5H029 AJ05 AJ12 AK03 AL12 AM03 AM05 AM07 CJ08 DJ16 DJ17 HJ01 HJ02 HJ14 5H050 AA07 AA15 BA15 CA09 CB12 FA17 FA19 GA05 GA10 HA01 HA02 HA14 HA20    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4G048 AA04 AB01 AB05 AC06 AE05                 5H029 AJ05 AJ12 AK03 AL12 AM03                       AM05 AM07 CJ08 DJ16 DJ17                       HJ01 HJ02 HJ14                 5H050 AA07 AA15 BA15 CA09 CB12                       FA17 FA19 GA05 GA10 HA01                       HA02 HA14 HA20

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記式で表されるリチウムマンガン複合
酸化物を主体とする正極活物質であって、 Li1+XMn2-X-y(但し、AはCo,Alから選
ばれる少なくとも1種の元素であり、0<x<0.1、0<
y<0.3である。) 前記複合酸化物中にZrを1wt%以下含有することを
特徴とするリチウム二次電池の正極活物質。
1. A positive electrode active material mainly composed of a lithium manganese composite oxide represented by the following formula, wherein Li 1 + X Mn 2-X-y A y O 4 (where A is Co or Al At least one element selected, 0 <x <0.1, 0 <
y <0.3. ) A positive electrode active material for a lithium secondary battery, wherein the composite oxide contains Zr in an amount of 1 wt% or less.
【請求項2】 前記複合酸化物中にZrを0.01以上
0.5wt%以下含有することを特徴とする請求項1記
載のリチウム二次電池の正極活物質。
2. The positive electrode active material for a lithium secondary battery according to claim 1, wherein Zr is contained in the composite oxide in an amount of 0.01 or more and 0.5 wt% or less.
【請求項3】 前記正極活物質において、60℃で20
日放置後の放電容量劣化率が3%以下であることを特徴
とする請求項1または2記載のリチウム二次電池の正極
活物質。
3. The positive electrode active material according to claim 20,
3. The positive electrode active material for a lithium secondary battery according to claim 1, wherein the deterioration rate of discharge capacity after standing for 3 days is 3% or less.
【請求項4】 下記式で表されるリチウムマンガン複合
酸化物を主体とする正極活物質の製造方法であって、 Li1+XMn2-X-y(但し、AはCo,Alから選
ばれる少なくとも1種の元素であり、0<x<0.1、0<
y<0.3である。) 前記複合酸化物の原料粉を混合する際、ZrO2を主成分と
するボールを用いて混合し、原料混合時にZr成分を添
加することを特徴とするリチウム二次電池の正極活物質
の製造方法。
4. A method for producing a positive electrode active material mainly composed of a lithium manganese composite oxide represented by the following formula, wherein Li 1 + X Mn 2-X-y A y O 4 (where A is Co , At least one element selected from Al, 0 <x <0.1, 0 <
y <0.3. ) A method of manufacturing a positive electrode active material for a lithium secondary battery, characterized in that, when the raw material powders of the composite oxide are mixed, they are mixed using a ball containing ZrO 2 as a main component, and the Zr component is added at the time of mixing the raw materials. Method.
JP2001270342A 2001-09-06 2001-09-06 Positive electrode active material for lithium secondary battery and its manufacturing method Pending JP2003077474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270342A JP2003077474A (en) 2001-09-06 2001-09-06 Positive electrode active material for lithium secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270342A JP2003077474A (en) 2001-09-06 2001-09-06 Positive electrode active material for lithium secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003077474A true JP2003077474A (en) 2003-03-14

Family

ID=19096007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270342A Pending JP2003077474A (en) 2001-09-06 2001-09-06 Positive electrode active material for lithium secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003077474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627128A (en) * 2019-09-11 2019-12-31 湖南金富力新能源股份有限公司 Lithium manganate positive electrode material, preparation method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627128A (en) * 2019-09-11 2019-12-31 湖南金富力新能源股份有限公司 Lithium manganate positive electrode material, preparation method and application
CN110627128B (en) * 2019-09-11 2020-11-17 湖南金富力新能源股份有限公司 Lithium manganate positive electrode material, preparation method and application

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
US9466829B2 (en) Lithium—manganese-type solid solution positive electrode material
US8101300B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and its production method
EP2442388B1 (en) Spinel type lithium-transition metal oxide
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
US10263244B2 (en) Lithium metal composite oxide having layered structure
WO1997023918A1 (en) Anode active material and nonaqueous secondary battery
JPWO2005020354A1 (en) Positive electrode active material powder for lithium secondary battery
US8734998B2 (en) Spinel-type lithium transition metal oxide and positive electrode active material for lithium battery
US10442699B2 (en) Method of manufacturing a positive electrode active material for lithium secondary batteries
JP4919147B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP4172024B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and non-aqueous lithium secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
EP3828968A1 (en) Positive electrode active material
JP2001243949A (en) Lithium transition metal oxide compound for lithium secondary battery positive electrode active material, its manufacturing method and secondary battery using it
CN102009998A (en) Method for preparing lithium ion battery cathode material lithium titanate
JPH11121006A (en) Positive electrode active material for lithium secondary battery
CN113690431B (en) Lithium manganate positive electrode material, preparation method, improvement method and application thereof
JP2005346956A (en) Positive electrode active material for nonaqueous lithium secondary battery, manufacturing method thereof, and nonaqueous lithium secondary battery using the positive electrode active material
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
CN113707873A (en) Lithium ion battery positive electrode material using eutectic lithium salt and preparation method thereof
JP2002184403A (en) Manufacturing method for lithium transition metal composite oxide