JP2003074310A - Exhaust recombustion type combined cycle plant - Google Patents

Exhaust recombustion type combined cycle plant

Info

Publication number
JP2003074310A
JP2003074310A JP2001266758A JP2001266758A JP2003074310A JP 2003074310 A JP2003074310 A JP 2003074310A JP 2001266758 A JP2001266758 A JP 2001266758A JP 2001266758 A JP2001266758 A JP 2001266758A JP 2003074310 A JP2003074310 A JP 2003074310A
Authority
JP
Japan
Prior art keywords
boiler
exhaust gas
gas turbine
cooler
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001266758A
Other languages
Japanese (ja)
Inventor
Ichiro Matsumoto
一郎 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001266758A priority Critical patent/JP2003074310A/en
Publication of JP2003074310A publication Critical patent/JP2003074310A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust recombustion type combined cycle plant in which a starting time is short. SOLUTION: The plant comprises: a once-through boiler 1; a gas turbine 18 for supplying an exhaust gas as an air for combustion to the boiler 1 through a gas turbine exhaust gas cooler 19 (hereafter: the cooler 19); a water system for supplying a boiler water to the cooler 19 and feeding the water heated by a turbine exhaust gas to the boiler 1; a boiler starting circulation system circulating a boiler inside fluid before starting of the boiler 1, and including a steam separator 3, a drain tank 4, and a pump 5. In the plant, reciprocation passages (each passage of point A→C, D→B) for feeding/returning the boiler inside fluid to/from the cooler 19 by branching from the boiler starting circulation system are provided, the boiler inside fluid before starting of the boiler 1 is made to flow between the boiler starting circulation system and the cooler 19 via the reciprocation passages, and a coolant of the cooler 19 after ignition of the boiler 1 is switched from the boiler inside fluid to the boiler water of the water system.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、蒸気・ガスタービ
ン複合サイクルとして、蒸気を発生するボイラにガスタ
ービンの排気を供給し燃焼用空気として利用する排気再
燃型コンバインドサイクルプラントに係り、特にボイラ
の起動時間の短縮、結局はプラントの起動時間短縮に好
適なプラント系統構成に関する。 【0002】 【従来の技術】従来の排気再燃型コンバインドサイクル
の概略構成を図2により説明する。なお、詳細な構成は
発明の実施の形態の項で後述しているので参照された
い。従来の排気再燃型コンバインドサイクルプラント
は、蒸気タービンに蒸気を供給するボイラ1とガスター
ビン18とを組み合わて構成する。ボイラ1への給水系
の一つは復水器から低圧給水加熱器9、高圧給水加熱器
6、節炭器2等を経てボイラ1に給水を送給する系であ
り、もう一つの給水系は復水器から低圧ガス給水加熱器
11、高圧ガス給水加熱器10、ガスタービン排ガスク
ーラ19、節炭器2等を経てボイラ1に給水を送給する
系統である。各給水加熱器9、6はボイラ1の抽気を、
各ガス給水加熱器11、10はボイラ排ガスを、ガスタ
ービン排ガスクーラ19はガスタービン排ガスを加熱に
利用する。また、ボイラ1へ燃焼用空気を供給する系の
一つは空気予熱器15を経てボイラ1に空気を送給する
系であり、もう一つ系はガスタービン18から排出され
たタービン排気(以下タービン排ガスという)をガスタ
ービン排ガスクーラ19で冷却して燃焼用空気としてボ
イラ1に送給する系である。空気予熱器15はボイラ排
ガスを加熱に利用する。 【0003】一方、ボイラ型式が変圧貫流ボイラにおい
ては、通常、起動時にボイラ1の内部流体を循環させ、
熱回収を図ることを目的として、ボイラ1から分岐して
汽水分離器3、汽水分離器ドレンタンク4、ボイラ循環
ポンプ5を通過し、ボイラの給水系に合流するボイラ起
動循環系が設置されている。このボイラ起動循環系は、
ガス給水加熱器10、11、ガスタービン排ガスクーラ
19等を経るボイラ給水系とは、独立した系統となって
いる。すなわち、ボイラ循環ポンプ5を通過したボイラ
内部流体は全量が節炭器2側へ流れるような系統となっ
ている。このため、ガスタービン先行起動時のガスター
ビン排ガスの熱回収は、主にガスタービン排ガスクーラ
19にてボイラ給水に対して行われ、ボイラ内部流体の
加熱は直接行われていない。 【0004】 【発明が解決しようとする課題】上記のように、従来の
排気再燃型コンバインドサイクルプラントにおいては、
ガスタービン先行起動時、特にボイラ内部流体の温度が
低い場合に、ボイラ起動循環系を流れるボイラ内部流体
を直接加熱する手段が無いため、ボイラの起動に時間が
かかり、ひいてはプラントの起動時間が長いという問題
があり、またガスタービン排ガスの熱を排気再燃コンバ
イインドサイクルプラントの起動時間短縮の目的で、有
効に使用するという配慮が欠如していた。 【0005】本発明の目的は、排気再燃型コンバインド
サイクルプラントにおいて、ガスタービン排ガスの熱を
直接ボイラ起動循環系を流れるボイラ内部流体に回収す
ることにより、排気再燃型コンバインドサイクルプラン
トの起動時間を短縮することにある。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、本発明の排気再燃型コンバインドサイクルプラント
は、蒸気タービンに蒸気を供給する貫流ボイラと、貫流
ボイラに燃焼用空気としてガスタービン排ガスをガスタ
ービン排ガスクーラを介して供給するガスタービンと、
ガスタービン排ガスクーラに冷却媒体としてボイラ給水
を送給しタービン排ガスにより加熱された給水を貫流ボ
イラへ送給する流路を形成する給水系と、貫流ボイラの
起動前に貫流ボイラ内のボイラ内部流体を該ボイラから
分岐して外部に取り出し再び内部に戻す循環流路を形成
するボイラ起動循環系とを備えた排気再燃型コンバイン
ドサイクルプラントにおいて、ボイラ起動循環系の循環
流路から分岐してガスタービン排ガスクーラに冷却媒体
としてボイラ内部流体を送給しかつ戻す往復流路を設
け、そして貫流ボイラの起動前にボイラ内部流体を循環
流路とガスタービン排ガスクーラとの間を往復流路を通
じて流通させ、貫流ボイラの点火後にガスタービン排ガ
スクーラの冷却媒体をボイラ内部流体から給水系のボイ
ラ給水に切り替える切替え手段を設けたことを特徴とす
る。 【0007】上記のように構成した排気再燃型コンバイ
ンドサイクルプラントにおいて、切替え手段は、ボイラ
起動前でガスタービン先行起動の状態で、ボイラ起動循
環系内のボイラ内部流体を分岐して往復流路を通じてガ
スタービン排ガスクーラに流すので、ボイラ起動前にボ
イラ内部流体は昇温し、ボイラの点火後、ボイラ内の流
体温度を所定温度に昇温するまでのボイラ起動時間を短
縮することができ、結局、排気再燃型コンバインドサイ
クルプラントの起動時間を短縮することができる。 【0008】 【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。図1は実施の形態となる排気再燃型コンバ
インドサイクルプラントの系統構成図である。 【0009】この排気再燃型コンバインドサイクルプラ
ントは、発電用の蒸気タービンに蒸気を供給するボイラ
と、同じく発電用のガスタービンとを組み合わせた熱機
関である。 【0010】ボイラ1への給水系は2系統設置されてい
る。一給水系は、復水器から順次に低圧給水加熱器9、
脱気器8、ボイラ給水ポンプ7、高圧給水加熱器6を通
り、ボイラ1の煙道に設けた節炭器2を経てボイラ1に
給水を送給する系で、各給水加熱器9、6はボイラ1の
抽気を給水の加熱に利用し、また節炭器2はボイラ排ガ
スを給水の加熱に利用する。もう一つの給水系は、復水
器から順次に低圧ガス給水加熱器11、脱気器8、ボイ
ラ給水ポンプ7、高圧ガス給水加熱器10、ガスタービ
ン排ガスクーラ19を通り、節炭器2を経てボイラ1に
給水を送給する系で、各ガス給水加熱器11、10はボ
イラ排ガスをボイラ給水の加熱に利用し、ガスタービン
排ガスクーラ19はガスタービン18からの排ガスをボ
イラ給水の加熱に利用する。2系統の給水系はボイラ1
に入る前に合流し節炭器2に接続する。 【0011】ボイラ排ガスは、ボイラ1の煙道から排出
されて、順次に脱硝装置14、高圧ガス給水加熱器1
0、低圧ガス給水加熱器11、誘引通風機12を経て煙
突13から外気に放出され、そして前述のように各ガス
給水加熱器10、11でボイラ給水を加熱する。 【0012】ボイラ1へ燃焼用空気を供給する系は2系
統設置されている。一つの系は押込み通風機16、空気
予熱器15を経てボイラ1に空気を送給する系で、空気
予熱器15は高圧ガス給水加熱器10及び低圧ガス給水
加熱器11を通るボイラ排ガスの流路と並列に設けた流
路に設置されている。もう一つの燃焼用空気供給系はガ
スタービン18から排出されたタービン排気(タービン
排ガスともいう)をガスタービン排ガスクーラ19で冷
却して燃焼用空気としてボイラ1に送給する系で、ター
ビン排ガスはガスタービン排ガスクーラ19で前述のよ
うにボイラ給水と熱交換しボイラ給水を加熱する。な
お、タービン排ガスはボイラ1に供給される他、ガスタ
ービン排ガスクーラ19の出口側で分岐してボイラ排ガ
スの排出路にある脱硝装置14入口側に接続する分岐路
を通じて最終的に煙突13から放出される。図中符号1
7はコンプレッサでタービンに圧縮高温圧縮気体を送
る。 【0013】また、ボイラ1の形式が変圧貫流ボイラー
である場合、変圧貫流ボイラの起動/停止時にボイラ1
の内部流体を循環させるため、ボイラ1から分岐して汽
水分離器3、汽水分離器ドレンタンク4、ボイラ循環ポ
ンプ5を通過し、ボイラの給水系に合流して節炭器2を
介してボイラ1に戻るボイラ起動循環系が設置されてい
る。本発明の排気再燃型コンバインドサイクルプラント
は、ボイラ1起動時にボイラ起動循環系の流体をガスタ
ービン排ガスクーラ19に導き、該流体をガスタービン
排ガスと熱交換して昇温させ、ボイラ1に戻すように構
成しており、これが本発明の特徴である。すなわち、ボ
イラ起動を加速するために、ボイラ起動循環系を循環す
る流体をボイラ循環ポンプ5の出口側(図1に示すA
点)で分岐して高圧ガス給水加熱器10の給水出口側
(C点)を経て、ガスタービン排ガスクーラ19に導入
しそこで加熱し、ガスタービン排ガスクーラ19の給水
出口側(D点)から循環ポンプ5の出口側のA点より下
流側(B点)に戻し、そこから節炭器2を通じてボイラ
1に戻すボイラ起動加速循環系を設置している。なお、
ガスタービン排ガスクーラ19からD点、B点を通るよ
うな系統を通してボイラ起動循環系へ流体を導くのは、
ボイラ起動循環系と、ガスタービン排ガスクーラの系統
と、ボイラ給水系との位置関係や温度の異なる流体が問
題なく合流可能となるよう配慮したためであるが、問題
ない限り、必ずしもこのD点から流体を分岐させ、B点
で合流させるような系統としなくてもよい。 【0014】次にこの排気再燃型コンバインドサイクル
プラントの動作について説明する。汽力単独運転時に
は、ボイラ給水を低圧給水加熱器9及び高圧給水加熱器
6を含む一給水系に全量流しているが、排気再燃コンバ
インドサイクル運転時には、一給水系と共に、低圧ガス
給水加熱器11、高圧ガス給水加熱器10及びガスター
ビン排ガスクーラ19を含むもう一つの給水系にもボイ
ラ給水の一部を流すことから、一給水系にある高圧給水
加熱器6及び低圧給水加熱器9に使用するタービン抽気
の蒸気量を低減し、プラント効率が向上する。 【0015】さて、本発明の排気再燃コンバインドサイ
クルプラントは、ガスタービン18を先行起動し、その
後、ボイラ1を点火し、蒸気タービンに通気する運転に
おいて、ボイラ1の起動時間短縮を図った構成となって
いる。 【0016】ガスタービン18が先行起動しかつボイラ
1が起動前で、ボイラ1内部の流体の温度が低下してい
る場合に、ボイラ内部流体をボイラ起動循環系より分岐
しガスタービン排ガスクーラ19に送り、そこでガスタ
ービン排ガスクーラ19で高温のガスタービン排ガスと
熱交換してボイラ内部流体を昇温させ、再びボイラ起動
循環系を経てボイラ1に戻す。ボイラ1で内部流体があ
る温度に達し、ボイラ1を点火した時に、ボイラ起動系
とガスタービン排ガスクーラ19との間の流路を閉止
し、ガスタービン排ガスクーラ19の冷却媒体をボイラ
内部流体から復水器からのボイラ給水に切り替える。即
ち、低圧ガス給水加熱器11、高圧ガス給水加熱器1
0、19等を含む他の給水系の給水に切替える。系統切
り替え手段として、例えばボイラ起動循環系とガスター
ビン排ガスクーラ19との間の流路を形成する配管及び
他の給水系で、適宜位置に切換弁を配置し、ボイラ内部
流体の温度を測定する温度検出計により作動させるとよ
い。 【0017】このようにボイラ内部流体を先ずガスター
ビン排ガスで昇温させることにより、ガスタービン18
から効果的に熱回収を図り、その後、ボイラ点火により
ボイラ給水を加熱することにより、ボイラ1の昇温を早
め、起動時間の短縮を図ることができる。一方、ボイラ
の点火後は、ガス給水加熱器により、タービン通気前に
ボイラ給水の加熱も行える。このように、ボイラ内部流
体と給水加熱の両方を起動の早い段階で実施することか
ら、ボイラの昇温を短時間で行えるようになるため、ボ
イラの給水系においてのみ熱回収を行う方法よりも起動
時間の短縮が図れる。 【0018】また、ボイラ内部流体が充分に昇温してい
る場合には、ガスタービン排ガスクーラ19の冷却媒体
はボイラの内部流体からボイラ給水に切替わるため、ガ
スタービン18やボイラ1の運用に支障を来たすことは
無い。 【0019】 【発明の効果】本発明によれば、ガスタービン起動時に
ガスタービン排ガスの熱によりボイラ内部流体を加熱す
ることができるため、従来のボイラ給水にのみ熱回収を
図る系統構成よりも、ボイラの昇温特性を早めることが
可能であり、したがってガスタービン点火から蒸気ター
ビン通気までの時間が短縮され、排気再燃コンバインド
サイクルプラントの全負荷到達までの時間の短縮が図れ
る。また、合わせて起動損失も低減される。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam / gas turbine combined cycle, in which exhaust gas of a gas turbine is supplied to a boiler for generating steam and used as combustion air. The present invention relates to a mold combined cycle plant, and more particularly to a plant system configuration suitable for shortening the startup time of a boiler, and eventually reducing the startup time of a plant. 2. Description of the Related Art A schematic configuration of a conventional exhaust refueling type combined cycle will be described with reference to FIG. It should be noted that the detailed configuration will be described later in the section of the embodiments of the present invention. A conventional exhaust reburning combined cycle plant is configured by combining a boiler 1 for supplying steam to a steam turbine and a gas turbine 18. One of the water supply systems to the boiler 1 is a system for supplying water to the boiler 1 from a condenser through a low-pressure feed water heater 9, a high-pressure feed water heater 6, a economizer 2, and the like, and another water supply system. Is a system for feeding water from the condenser to the boiler 1 through the low-pressure gas feedwater heater 11, the high-pressure gas feedwater heater 10, the gas turbine exhaust gas cooler 19, the economizer 2, and the like. Each feed water heater 9, 6 extracts the air from the boiler 1,
The gas feed water heaters 11 and 10 use the boiler exhaust gas for heating, and the gas turbine exhaust gas cooler 19 uses the gas turbine exhaust gas for heating. One of the systems for supplying combustion air to the boiler 1 is a system for supplying air to the boiler 1 via an air preheater 15, and the other system is a turbine exhaust (hereinafter, referred to as a turbine exhaust) discharged from a gas turbine 18. This is a system that cools the gas by a gas turbine exhaust gas cooler 19 and sends it to the boiler 1 as combustion air. The air preheater 15 uses boiler exhaust gas for heating. [0003] On the other hand, in the case of a variable-pressure once-through boiler of a boiler type, the internal fluid of the boiler 1 is usually circulated at the time of startup.
For the purpose of heat recovery, a boiler starting circulation system is installed, which branches off from the boiler 1, passes through the brackish water separator 3, the brackish water separator drain tank 4, and the boiler circulation pump 5, and joins the water supply system of the boiler. I have. This boiler startup circulation system
The boiler water supply system via the gas feed water heaters 10 and 11 and the gas turbine exhaust gas cooler 19 is an independent system. That is, the boiler internal fluid that has passed through the boiler circulation pump 5 has a system in which the entire amount flows to the economizer 2 side. For this reason, the heat recovery of the gas turbine exhaust gas at the time of the gas turbine pre-start is mainly performed on the boiler feed water by the gas turbine exhaust gas cooler 19, and the boiler internal fluid is not directly heated. [0004] As described above, in the conventional exhaust gas reburning type combined cycle plant,
When the gas turbine pre-starts, especially when the temperature of the boiler internal fluid is low, there is no means for directly heating the boiler internal fluid flowing through the boiler startup circulation system, so it takes time to start the boiler, and thus the plant startup time is long In addition, there has been a lack of consideration for effectively using the heat of the exhaust gas from the gas turbine for the purpose of shortening the startup time of the combined cycle plant. SUMMARY OF THE INVENTION An object of the present invention is to reduce the start-up time of an exhaust gas recirculation type combined cycle plant by recovering heat of gas turbine exhaust gas directly into a boiler internal fluid flowing through a boiler startup circulation system in an exhaust gas recirculation type combined cycle plant. Is to do. [0006] To achieve the above object, an exhaust gas reburning combined cycle plant according to the present invention comprises a once-through boiler for supplying steam to a steam turbine, and a gas as combustion air for the once-through boiler. A gas turbine that supplies turbine exhaust gas via a gas turbine exhaust gas cooler,
A water supply system that supplies boiler feed water as a cooling medium to a gas turbine exhaust gas cooler and forms a flow path that feeds water heated by turbine exhaust gas to a once-through boiler, and a boiler internal fluid in the once-through boiler before starting the once-through boiler Recirculating type combined cycle system having a boiler starting circulation system that forms a circulation flow path that branches off from the boiler to take out to the outside and returns to the inside again, the gas turbine that branches off from the circulation flow path of the boiler starting circulation system A reciprocating flow path for feeding and returning the boiler internal fluid as a cooling medium to the exhaust gas cooler is provided, and before starting the once-through boiler, the boiler internal fluid is circulated between the circulation flow path and the gas turbine exhaust gas cooler through the reciprocating flow path. Switches the cooling medium of gas turbine exhaust gas cooler from boiler internal fluid to boiler feedwater of water supply system after ignition of once-through boiler Characterized in that a changing means. In the exhaust gas reburning combined cycle plant configured as described above, the switching means branches the boiler internal fluid in the boiler start-up circulation system through the reciprocating flow path in a state in which the gas turbine is pre-started before starting the boiler. Since the gas flows into the gas turbine exhaust gas cooler, the temperature of the fluid inside the boiler rises before the boiler starts, and the boiler startup time until the fluid temperature in the boiler rises to a predetermined temperature after ignition of the boiler can be shortened. In addition, the start-up time of the exhaust gas reburning combined cycle plant can be reduced. [0008] Embodiments of the present invention will be described below. FIG. 1 is a system configuration diagram of an exhaust gas reburning combined cycle plant according to an embodiment. [0009] The exhaust gas reburning combined cycle plant is a heat engine combining a boiler for supplying steam to a steam turbine for power generation and a gas turbine for power generation. [0010] There are two water supply systems to the boiler 1. One water supply system is a low-pressure feed water heater 9 sequentially from the condenser,
The feed water heaters 9 and 6 pass through a deaerator 8, a boiler feed pump 7, and a high-pressure feed water heater 6, and then feed water to the boiler 1 via a economizer 2 provided in a flue of the boiler 1. Uses the extracted air of the boiler 1 for heating the feedwater, and the economizer 2 uses the boiler exhaust gas for heating the feedwater. The other water supply system passes through the low-pressure gas feed water heater 11, the deaerator 8, the boiler feed pump 7, the high pressure gas feed water heater 10, the gas turbine exhaust gas cooler 19, and the gas saver 2 sequentially from the condenser. In a system for supplying water to the boiler 1 through the system, each gas feed water heater 11, 10 uses boiler exhaust gas for heating the boiler feed water, and a gas turbine exhaust gas cooler 19 uses exhaust gas from the gas turbine 18 for heating the boiler feed water. Use. The two water supply systems are boiler 1
Before entering, join and connect to the economizer 2. The boiler exhaust gas is discharged from the flue of the boiler 1, and is sequentially denitrated 14 and the high-pressure gas feed water heater 1.
0, the gas is supplied to the outside air from the chimney 13 via the low-pressure gas feed water heater 11 and the induction ventilator 12, and the boiler feed water is heated by the gas feed water heaters 10, 11 as described above. Two systems for supplying combustion air to the boiler 1 are provided. One system is a system for supplying air to the boiler 1 via a pressurized ventilator 16 and an air preheater 15, and the air preheater 15 is a flow of boiler exhaust gas passing through a high pressure gas feed water heater 10 and a low pressure gas feed water heater 11. It is installed in a channel provided in parallel with the road. Another combustion air supply system is a system for cooling turbine exhaust (also referred to as turbine exhaust gas) discharged from the gas turbine 18 by a gas turbine exhaust gas cooler 19 and sending it to the boiler 1 as combustion air. As described above, the gas turbine exhaust gas cooler 19 exchanges heat with the boiler feed water to heat the boiler feed water. The turbine exhaust gas is supplied to the boiler 1, and is branched off at the outlet side of the gas turbine exhaust gas cooler 19 and finally discharged from the chimney 13 through a branch path connected to the denitration device 14 at the discharge side of the boiler exhaust gas. Is done. Symbol 1 in the figure
Reference numeral 7 denotes a compressor for sending compressed high-temperature compressed gas to the turbine. When the type of the boiler 1 is a variable-pressure once-through boiler, when the variable-pressure once-through boiler is started / stopped, the boiler 1 is turned off.
In order to circulate the internal fluid of the boiler 1, it branches off from the boiler 1, passes through the brackish water separator 3, the brackish water separator drain tank 4, the boiler circulation pump 5, joins the boiler water supply system, and passes through the boiler 2 A boiler startup circulation system returning to 1 is installed. In the exhaust gas recirculation type combined cycle plant of the present invention, when the boiler 1 is started, the fluid in the boiler start-up circulation system is guided to the gas turbine exhaust gas cooler 19, and the fluid exchanges heat with the gas turbine exhaust gas to raise the temperature and return to the boiler 1. This is the feature of the present invention. That is, in order to accelerate the boiler startup, the fluid circulating in the boiler startup circulation system is supplied to the outlet side of the boiler circulation pump 5 (A shown in FIG. 1).
At the point (point), the gas is fed into the gas turbine exhaust gas cooler 19 via the water supply outlet side (point C) of the high-pressure gas feed water heater 10, heated there, and circulated from the water supply outlet side (point D) of the gas turbine exhaust gas cooler 19. A boiler start-up acceleration circulation system is installed, which is returned to the downstream side (point B) from the point A on the outlet side of the pump 5 and then returned to the boiler 1 through the economizer 2. In addition,
The flow of the fluid from the gas turbine exhaust gas cooler 19 to the boiler start-up circulation system through a system passing through the points D and B is as follows.
This is because fluids with different positional relationships and temperatures between the boiler start-up circulation system, the gas turbine exhaust gas cooler system, and the boiler water supply system can be merged without any problem. Need not be branched to form a system that joins at point B. Next, the operation of the exhaust reburning combined cycle plant will be described. At the time of the steam only operation, the entire amount of the boiler feedwater flows to one feedwater system including the low-pressure feedwater heater 9 and the high-pressure feedwater heater 6, but at the time of the exhaust refueling combined cycle operation, together with the one feedwater system, the low-pressure gas feedwater heater 11, Since a part of the boiler feedwater flows into another feedwater system including the high-pressure gas feedwater heater 10 and the gas turbine exhaust gas cooler 19, it is used for the high-pressure feedwater heater 6 and the low-pressure feedwater heater 9 in one feedwater system. The steam amount of the turbine bleed is reduced, and the plant efficiency is improved. Now, the exhaust gas reburning combined cycle plant according to the present invention has a configuration in which the starting time of the boiler 1 is reduced in the operation of starting the gas turbine 18 in advance, igniting the boiler 1 and ventilating the steam turbine. Has become. If the temperature of the fluid inside the boiler 1 is low before the gas turbine 18 is started and before the boiler 1 is started, the fluid inside the boiler 1 branches off from the boiler startup circulation system to the gas turbine exhaust gas cooler 19. The gas is then exchanged with high-temperature gas turbine exhaust gas in the gas turbine exhaust gas cooler 19 to raise the temperature of the boiler internal fluid, and is returned to the boiler 1 via the boiler startup circulation system again. When the internal fluid reaches a certain temperature in the boiler 1 and the boiler 1 is ignited, the flow path between the boiler starting system and the gas turbine exhaust gas cooler 19 is closed, and the cooling medium of the gas turbine exhaust gas cooler 19 is removed from the boiler internal fluid. Switch to boiler water supply from condenser. That is, the low pressure gas feed water heater 11, the high pressure gas feed water heater 1
The water supply is switched to another water supply system including 0, 19, and the like. As a system switching unit, for example, a switching valve is disposed at an appropriate position in a pipe forming a flow path between the boiler startup circulation system and the gas turbine exhaust gas cooler 19 and another water supply system, and the temperature of the fluid inside the boiler is measured. It may be activated by a temperature detector. As described above, the temperature of the boiler internal fluid is first raised by the gas turbine exhaust gas, so that the gas turbine 18
Then, by effectively recovering heat, and thereafter heating the boiler feed water by boiler ignition, the temperature rise of the boiler 1 can be accelerated, and the startup time can be shortened. On the other hand, after the boiler is ignited, the boiler feedwater can also be heated by the gas feedwater heater before venting the turbine. As described above, since both the boiler internal fluid and the feedwater heating are performed at an early stage of startup, the temperature of the boiler can be raised in a short time, so that the heat recovery is performed only in the water supply system of the boiler. Startup time can be reduced. When the temperature of the internal fluid of the boiler is sufficiently raised, the cooling medium of the gas turbine exhaust gas cooler 19 is switched from the internal fluid of the boiler to the supply water of the boiler. There is no trouble. According to the present invention, since the internal fluid of the boiler can be heated by the heat of the gas turbine exhaust gas at the time of starting the gas turbine, the system configuration can recover heat only in the conventional boiler feedwater. It is possible to accelerate the temperature rise characteristics of the boiler, so that the time from gas turbine ignition to steam turbine ventilation can be shortened, and the time from exhaust gas reburning combined cycle plant to full load can be shortened. In addition, the startup loss is also reduced.

【図面の簡単な説明】 【図1】本発明の排気再燃型コンバインドサイクルの系
統構成図である。 【図2】従来技術の排気再燃型コンバインドサイクルの
系統構成例である。 【符号の説明】 1 ボイラ 2 節炭器 3 気水分離器 4 気水分離器ドレンタンク 5 ボイラ循環ポンプ 6 高圧給水加熱器 7 ボイラ給水ポンプ 8 脱気器 9 低圧給水加熱器 10 高圧ガス給水加熱器 11 低圧ガス給水加熱器 12 誘引通風機 13 煙突 14 脱硝装置 15 空気予熱器 16 押込通風機 17 コンプレッサ 18 ガスタービン 19 ガスタービン排ガスクーラ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram of an exhaust gas reburning combined cycle of the present invention. FIG. 2 is an example of a system configuration of a conventional exhaust gas reburning combined cycle. [Description of Signs] 1 Boiler 2 Energy saving device 3 Steam separator 4 Steam separator drain tank 5 Boiler circulation pump 6 High pressure feed water heater 7 Boiler feed pump 8 Deaerator 9 Low pressure feed water heater 10 High pressure gas feed water heating Heater 11 Low-pressure gas feed water heater 12 Induction ventilator 13 Chimney 14 Denitration device 15 Air preheater 16 Push-in ventilator 17 Compressor 18 Gas turbine 19 Gas turbine exhaust gas cooler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01D 19/00 F01D 19/00 R F01K 13/02 F01K 13/02 B F02C 6/18 F02C 6/18 B F22B 1/18 F22B 1/18 C E 33/02 33/02 Z F22D 1/36 F22D 1/36 11/00 11/00 E ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01D 19/00 F01D 19/00 R F01K 13/02 F01K 13/02 B F02C 6/18 F02C 6/18 B F22B 1/18 F22B 1/18 C E 33/02 33/02 Z F22D 1/36 F22D 1/36 11/00 11/00 E

Claims (1)

【特許請求の範囲】 【請求項1】 蒸気タービンに蒸気を供給する貫流ボイ
ラと、該貫流ボイラに燃焼用空気としてガスタービン排
ガスをガスタービン排ガスクーラを介して供給するガス
タービンと、前記ガスタービン排ガスクーラに冷却媒体
としてボイラ給水を送給し前記タービン排ガスにより加
熱された給水を前記貫流ボイラへ供給する流路を形成す
る給水系と、前記貫流ボイラの起動前に該貫流ボイラ内
のボイラ内部流体を該ボイラから分岐して外部に取り出
し再び内部に戻す循環流路を形成するボイラ起動循環系
とを備えた排気再燃型コンバインドサイクルプラントに
おいて、 前記ボイラ起動循環系の循環流路から分岐して前記ガス
タービン排ガスクーラに冷却媒体として前記ボイラ内部
流体を送給しかつ戻す往復流路を設け、そして前記貫流
ボイラの起動前に前記ボイラ内部流体を前記循環流路と
前記ガスタービン排ガスクーラとの間を前記往復流路を
通じて流通させ、前記貫流ボイラの点火後に前記ガスタ
ービン排ガスクーラの冷却媒体を前記ボイラ内部流体か
ら前記給水系のボイラ給水に切り替える切替え手段を設
けたことを特徴とする排気再燃型コンバインドサイクル
プラント。
Claims: 1. A once-through boiler that supplies steam to a steam turbine, a gas turbine that supplies gas turbine exhaust gas as combustion air to the once-through boiler via a gas turbine exhaust gas cooler, and the gas turbine. A water supply system for supplying boiler feed water as a cooling medium to an exhaust gas cooler and forming a flow path for supplying feed water heated by the turbine exhaust gas to the once-through boiler; and a boiler inside the once-through boiler before the start of the once-through boiler A recirculation type combined cycle plant having a boiler starting circulation system for forming a circulation flow path for branching out the fluid from the boiler and taking it out to the outside and returning it to the inside again. A reciprocating flow path for feeding and returning the boiler internal fluid as a cooling medium to the gas turbine exhaust gas cooler; Before starting the once-through boiler, the boiler internal fluid is caused to flow between the circulation flow path and the gas turbine exhaust gas cooler through the reciprocating flow path, and after igniting the once-through boiler, the cooling medium of the gas turbine exhaust gas cooler is discharged. An exhaust reburn type combined cycle plant, comprising: switching means for switching from boiler internal fluid to boiler feedwater of the water supply system.
JP2001266758A 2001-09-04 2001-09-04 Exhaust recombustion type combined cycle plant Pending JP2003074310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001266758A JP2003074310A (en) 2001-09-04 2001-09-04 Exhaust recombustion type combined cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001266758A JP2003074310A (en) 2001-09-04 2001-09-04 Exhaust recombustion type combined cycle plant

Publications (1)

Publication Number Publication Date
JP2003074310A true JP2003074310A (en) 2003-03-12

Family

ID=19092992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001266758A Pending JP2003074310A (en) 2001-09-04 2001-09-04 Exhaust recombustion type combined cycle plant

Country Status (1)

Country Link
JP (1) JP2003074310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120030427A (en) * 2009-05-27 2012-03-28 두산 파워 시스템즈 리미티드 Heat recovery module
JP2014504548A (en) * 2011-01-21 2014-02-24 上海伏波▲環▼保▲設備▼有限公司 Non-contact exhaust residual heat sludge drying system
JP2014509559A (en) * 2011-03-16 2014-04-21 上海伏波▲環▼保▲設備▼有限公司 Exhaust extraction sludge drying system of boiler unit with heat compensation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120030427A (en) * 2009-05-27 2012-03-28 두산 파워 시스템즈 리미티드 Heat recovery module
KR101659527B1 (en) * 2009-05-27 2016-09-30 두산 밥콕 리미티드 Heat recovery module
JP2014504548A (en) * 2011-01-21 2014-02-24 上海伏波▲環▼保▲設備▼有限公司 Non-contact exhaust residual heat sludge drying system
JP2014509559A (en) * 2011-03-16 2014-04-21 上海伏波▲環▼保▲設備▼有限公司 Exhaust extraction sludge drying system of boiler unit with heat compensation

Similar Documents

Publication Publication Date Title
CN203892027U (en) Fuel gas heating system with heat energy storage unit
JP4540472B2 (en) Waste heat steam generator
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
RU2200850C2 (en) Gas-and steam-turbine plant and method of its operation
JP5476003B2 (en) Apparatus and method for start-up of a power plant
RU2595192C2 (en) Power plant with built-in pre-heating of fuel gas
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
JPH08114104A (en) Composite gas-steam turbine power plant
JP5027887B2 (en) Steam turbine power plant and method for increasing steam mass flow of a high pressure turbine in a steam turbine power plant
EP2351915A1 (en) Combined cycle power plant and method of operating such power plant
US20110247335A1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
JP2015514179A (en) Combined cycle power plant and method for operating a combined cycle power plant
US20100031660A1 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
CA2922778A1 (en) Flue gas heat recovery integration
JP2002508059A (en) An improved heat exchanger for operation in a simple or combined cycle with a combustion turbine
CN109312635B (en) Condensate recirculation
JP2008248730A (en) Combined power plant
US7033420B2 (en) Process and apparatus for the thermal degassing of the working medium of a two-phase process
JP2003074310A (en) Exhaust recombustion type combined cycle plant
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP3964709B2 (en) Gas turbine fuel gas supply system and operation method thereof
JPH10331610A (en) Combined cycle power generating system
JP2006052738A (en) Gas turbine plant
JPS5993907A (en) Quick starting device for combined-cycle power generation plant
JP2002021508A (en) Condensate supply system