JP2003074114A - Earthquake-resisting reclaiming method and earthquake- resisting reclaiming structure - Google Patents

Earthquake-resisting reclaiming method and earthquake- resisting reclaiming structure

Info

Publication number
JP2003074114A
JP2003074114A JP2001263063A JP2001263063A JP2003074114A JP 2003074114 A JP2003074114 A JP 2003074114A JP 2001263063 A JP2001263063 A JP 2001263063A JP 2001263063 A JP2001263063 A JP 2001263063A JP 2003074114 A JP2003074114 A JP 2003074114A
Authority
JP
Japan
Prior art keywords
tubular
rehabilitation
water
earthquake
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001263063A
Other languages
Japanese (ja)
Other versions
JP4632592B2 (en
Inventor
Hisao Mitani
久夫 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Tec Corp
Original Assignee
Asahi Tec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Tec Corp filed Critical Asahi Tec Corp
Priority to JP2001263063A priority Critical patent/JP4632592B2/en
Publication of JP2003074114A publication Critical patent/JP2003074114A/en
Application granted granted Critical
Publication of JP4632592B2 publication Critical patent/JP4632592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake-resisting reclaiming method and an earthquake-resisting reclaiming structure capable of ensuring the aseismicity of the connecting sections of a manhole and a pipe body such as a pipe and a culvert for sewerage or the like at a time when the interior wall face of the pipe body is lined and reclaimed by a cylindrical reclaiming material. SOLUTION: In the earthquake-resisting reclaiming method and the earthquake-resisting reclaiming structure, the interior wall face 3b of the pipe body 3 penetrated and connected to the wall 4 of a tubular structure (the manhole 2) is lined and reclaimed. The pipe body 3 is isolated by annularly cutting off a section from an exposed surface on the manhole 2 side of the pipe body 3 to the exterior wall face 4a of the manhole, and an annular cut-off section 7 is formed. An elastically deformable elastic sealing material 8 is charged to the annular cut-off section 7, and the interior wall face 3b of the pipe body 3 is lined by the cylindrical reclaiming material 10 extending over the elastic sealing material 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、マンホールや桝
などの管状構造物に結合された下水道用管渠などの管体
の内壁面を更生する更生方法及びその構造に関し、さら
に詳しくは管状構造物と管体との結合部分の耐震性を確
保できる耐震化更生方法及び耐震化更生構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rehabilitation method and structure for rehabilitating an inner wall surface of a pipe body such as a sewer pipe connected to a tubular structure such as a manhole or a basin, and more particularly to a tubular structure. The present invention relates to an earthquake-resistant rehabilitation method and an earthquake-resistant rehabilitation structure capable of ensuring the earthquake resistance of a joint portion between a pipe and a pipe.

【0002】[0002]

【従来の技術】マンホール取付管渠、建物設備排水管と
接続されて屋外地中に配管されている屋外排水管と地中
に埋設されている排水桝などの接続構造等において、自
動車・鉄道の交通振動、地震、地盤沈下、地下水流、樹
木の根の成長などにより管体が破損する場合があり、地
面を掘り起こして新管に交換するには、地上交通や建築
物への悪影響、工事期間の長期化、工事費の増大などの
様々な問題が発生するので、掘り起こさずに管体の更生
が行える工法が開発されている。
2. Description of the Related Art In connection structures such as a manhole attachment pipe, an outdoor drainage pipe connected to a building equipment drainage pipe and piped outdoors in the ground, and a drainage basin buried in the ground, etc. The pipe body may be damaged due to traffic vibration, earthquake, ground subsidence, groundwater flow, tree root growth, etc.To dig up the ground and replace it with a new pipe, adverse effects on ground traffic and buildings, construction period Since various problems such as a long period of time and an increase in construction costs occur, a construction method that can rehabilitate the pipe body without digging has been developed.

【0003】このような工法の一つとして、従来から、
繊維質材料に硬化性樹脂を含浸させた筒状基材を含む筒
状更生材が広く知られている。このような筒状更生材
は、ひび割れなどにより補修や更生の必要な地中管内に
配設され、内部から膨らまされて管路の内壁面に押圧さ
れつつ硬化性樹脂が硬化されることにより、管路内に硬
化された自立管としての被覆筒体(ライナー)を形成し
ている。これにより、このような筒状更生材を用いた管
路の更生方法によれば、地中管を掘り起こすことなく更
生が行えるという利点を備えている。
As one of such construction methods, conventionally,
BACKGROUND ART A tubular rehabilitation material including a tubular base material in which a fibrous material is impregnated with a curable resin is widely known. Such a tubular rehabilitation material is disposed in the underground pipe that needs repair or rehabilitation by cracking or the like, and is cured from the curable resin while being expanded from the inside and pressed against the inner wall surface of the conduit. A coated cylindrical body (liner) as a hardened self-supporting tube is formed in the pipeline. Thus, according to the method for rehabilitating a pipe using such a tubular rehabilitation material, there is an advantage that rehabilitation can be performed without excavating the underground pipe.

【0004】ここで、一般に下水道用管渠などの管路
は、30m〜50m毎に1個所の割合で設置されたマン
ホール間に埋設管(地中管)として設置されている。こ
のような地中管では、数m単位の長さのコンクリート製
のヒューム管や陶器製の陶管が継手部で結合されて長尺
に構成されているので、内面を筒状更生材によりライニ
ングすれば地震などにより埋設管の長手方向に引っ張り
によるズレが生じても、継手部の差込の範囲内で有れ
ば、管体の結合部が抜けたり破壊することがなく、ま
た、被覆筒体(ライナー)自体も破壊することが無く、
埋設管部分での耐震性は優れているという特徴も有して
いる。
Generally, a pipeline such as a sewer pipe is installed as a buried pipe (underground pipe) between manholes installed at a ratio of one every 30 m to 50 m. In such underground pipes, concrete fume pipes with a length of several meters or earthenware porcelain pipes are joined together at a joint to form a long pipe, so the inner surface is lined with a tubular rehabilitation material. Even if there is a displacement due to pulling in the longitudinal direction of the buried pipe due to an earthquake, etc., the joint part of the pipe body will not fall out or break as long as it is within the range of insertion of the joint part, and the covered tube The body (liner) itself is not destroyed,
It also has the feature that it has excellent earthquake resistance in the buried pipe section.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このマ
ンホールと埋設管とが、モルタルやコンクリートなどに
より一体化されて結合されている場合、管体の内壁面を
如何なる筒状更生材(補修材)によりライニングしても
管体とマンホール壁とが剛結合されているので、地震等
の際にマンホールと管体との間での変位が発生すると、
そのマンホール壁と管体端部との結合箇所で亀裂が発生
したり破壊されたりするなどして十分な耐震性を確保す
ることができない。
However, when the manhole and the buried pipe are integrally joined by mortar, concrete, etc., the inner wall surface of the pipe body is made of any tubular rehabilitation material (repair material). Even if it is lined, the pipe and the manhole wall are rigidly connected, so if a displacement occurs between the manhole and pipe during an earthquake, etc.,
Sufficient seismic resistance cannot be ensured due to cracking or destruction at the joint between the manhole wall and the end of the pipe.

【0006】このため、近年においては、新たに管体を
敷設する場合には、マンホールに面する管体の端部に、
例えば、フレキシブルな環状部などの可撓性を有する部
分を設置することにより、管体端部に生じる伸縮及び曲
げをこの可撓性を有する部分により吸収させることによ
って耐震性を持たせているが、既設管路に対してこれを
行うには、掘り起こし作業などを含めて多大の工数及び
経費を必要とする。
For this reason, in recent years, when newly laying a pipe body, at the end of the pipe body facing the manhole,
For example, by providing a flexible portion such as a flexible annular portion, expansion and contraction and bending occurring at the end of the tubular body are absorbed by this flexible portion, thereby providing earthquake resistance. However, in order to do this for the existing pipeline, a great number of man-hours and expenses including excavation work are required.

【0007】一方、最近、既設のマンホールにおいて、
耐震化するためにマンホール内より、管体の周囲のマン
ホール壁を環状に切除し、その切除によって形成された
環状空隙内に弾性材を充填する耐震化方法が提案された
(例えば、特開2001−40751号公報)。
On the other hand, recently, in an existing manhole,
In order to make it seismic resistant, a seismic resistance method has been proposed in which the manhole wall around the pipe body is annularly cut from the inside of the manhole, and an elastic material is filled in the annular void formed by the cutting (for example, Japanese Patent Laid-Open No. 2001-2001). No. 40751).

【0008】しかしながら、この公報には、下水道用管
渠などの管体の内壁面を更生する際の耐震化更生方法及
び耐震化更生構造については、何ら開示がなされていな
い。
However, this publication does not disclose any seismic retrofitting method or seismic retrofitting structure when the inner wall surface of a pipe body such as a sewer pipe is rehabilitated.

【0009】この発明は、下水道用管渠などの管体の内
壁面を筒状更生材によりライニングして更生する際のマ
ンホールと管体との結合部分の耐震性を確保できる耐震
化更生方法及び耐震化更生構造を提供することを目的と
する。
The present invention relates to a seismic retrofitting method capable of ensuring the seismic resistance of the joint portion between the manhole and the tubular body when the inner wall surface of the tubular body such as a sewer pipe is lined with a tubular rehabilitation material for rehabilitation. The purpose is to provide a seismic retrofit structure.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に、請求項1記載の発明は、管状構造物の壁を貫通して
結合された管体の内壁面をライニングして更生する管更
生方法において、前記管体の前記管状構造物側露出面を
前記管状構造物外壁面まで環状に切除することによって
前記管体を縁切りさせて環状切除部を形成し、該環状切
除部に弾性変形可能な弾性材を装填した後に、前記管体
の内壁面を前記弾性材に跨って筒状更生材によりライニ
ングすることを特徴とする耐震化更生方法である。
In order to achieve this object, the invention according to claim 1 is to rehabilitate a pipe by lining and rehabilitating an inner wall surface of a tubular body which penetrates through a wall of a tubular structure and is joined. In the method, the tubular structure side exposed surface of the tubular body is annularly cut to the outer wall surface of the tubular structure to edge-cut the tubular body to form an annular cut portion, and the annular cut portion is elastically deformable. After the elastic material is loaded, the inner wall surface of the tubular body is lined with a tubular rehabilitation material over the elastic material.

【0011】請求項2記載の発明は、前記ライニング
は、前記弾性材と前記管状構造物の壁との間又は前記弾
性材と前記筒状更生材との間に、前記弾性材と前記筒状
更生材又は前記管状構造物の壁との隙間に水が浸入した
場合に該浸入水により膨張して前記隙間を水密とする水
膨張性を有する水膨張性弾性体を介在させた状態で行わ
れることを特徴とする請求項1に記載の耐震化更生方法
である。
According to a second aspect of the present invention, the lining includes the elastic material and the tubular shape between the elastic material and the wall of the tubular structure or between the elastic material and the tubular rehabilitation material. When water penetrates into the gap between the rehabilitation material or the wall of the tubular structure, the water-expansion elastic body having water expansibility that expands by the infiltration water to make the gap watertight is interposed. The earthquake-resistant rehabilitation method according to claim 1.

【0012】請求項3記載の発明は、管状構造物の壁を
貫通して結合された管体の内壁面が筒状更生材によりラ
イニングされて更生された更生構造であって、前記管状
構造物内に露出した管体の露出端面が環状に切除される
ことにより生じた環状切除部に弾性変形可能な弾性材が
装填され、前記管体の内壁面及び前記弾性材は筒状更生
材により一体的にライニングされていることを特徴とす
る耐震化更生構造である。
According to a third aspect of the present invention, there is provided a rehabilitation structure in which an inner wall surface of a tubular body which is connected through a wall of the tubular structure is lined with a tubular rehabilitation material to be rehabilitated. An elastic material that is elastically deformable is loaded into an annular cut portion formed by cutting the exposed end surface of the tube body that is exposed inside, and the inner wall surface of the tube body and the elastic material are integrated by a tubular rehabilitation material. It is an earthquake-resistant rehabilitation structure that is characterized by being lined up.

【0013】請求項4記載の発明は、前記弾性材と前記
筒状更生材又は前記管状構造物の壁との隙間には、該隙
間に水が浸入した場合に該浸入水により膨張して前記隙
間を水密とする水膨張性を有する水膨張性弾性体が介在
されていることを特徴とする請求項3に記載の耐震化更
生構造である。
According to a fourth aspect of the present invention, when water enters the gap between the elastic material and the wall of the tubular rehabilitation material or the tubular structure, the water expands due to the infiltration water, and The earthquake-resistant rehabilitation structure according to claim 3, wherein a water-expandable elastic body having water-expansion property that makes the gap watertight is interposed.

【0014】請求項5記載の発明は、前記水膨張性弾性
体は線条として前記管体の円周方向に複数本が平行に環
状配列されていることを特徴とする請求項4記載の耐震
化更生構造である。
According to a fifth aspect of the present invention, a plurality of the water-expandable elastic bodies are annularly arranged in parallel in the circumferential direction of the tubular body as filaments. It is a chemical rehabilitation structure.

【0015】請求項6記載の発明は、前記弾性材は、シ
ーリング機能を備えた弾性シーリング材であることを特
徴とする請求項3〜5のいずれかに記載の耐震化更生構
造である。
The invention according to claim 6 is the seismic retrofit structure according to any one of claims 3 to 5, wherein the elastic material is an elastic sealing material having a sealing function.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づき説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1及び図2は、本発明に係る耐震化更生
方法を施工する既設のマンホール取付管渠1の一例を示
している。この図において、符号2は既設のマンホール
であり、符号3、3はマンホール2の壁4を貫通して結
合されている既設のコンクリート製のヒューム管、陶器
製の陶管などの管体であり、符号5はマンホールの底部
に打設されているインバートコンクリートである。
FIG. 1 and FIG. 2 show an example of an existing manhole mounting conduit 1 for carrying out the seismic retrofitting method according to the present invention. In this figure, reference numeral 2 is an existing manhole, and reference numerals 3 and 3 are existing concrete fume pipes and earthenware porcelain pipes that are connected through the wall 4 of the manhole 2. Reference numeral 5 is invert concrete placed on the bottom of the manhole.

【0018】このようなマンホール取付管渠1では、マ
ンホール壁4と管体3との結合は、例えば、マンホール
壁4に管体3の外形より大きい貫通孔を開けておき、貫
通孔内に管体3の先端部6を挿入し、管体3の外壁面3
aと貫通孔内周面との間の空隙をモルタル等で埋めた
り、埋設された管体3の先端部6をマンホール成形用の
型枠内に挿入しておき、コンクリートによってマンホー
ルを成形することによって一体化する等により形成さ
れ、これにより地中に埋設された管体(埋設管)3がマ
ンホール壁4と一体的に結合されて剛結合されている。
In such a manhole mounting conduit 1, the connection between the manhole wall 4 and the pipe body 3 is made by, for example, opening a through hole larger than the outer shape of the pipe body 3 in the manhole wall 4 and inserting the pipe into the through hole. The tip 6 of the body 3 is inserted, and the outer wall surface 3 of the tubular body 3 is inserted.
Filling the space between a and the inner peripheral surface of the through hole with mortar or the like, or inserting the embedded tip 3 of the tubular body 3 into the manhole forming frame, and forming the manhole with concrete. The pipe body (buried pipe) 3 buried in the ground is integrally and rigidly connected to the manhole wall 4.

【0019】以下に、このような既設のマンホール取付
管渠1を掘り起こすことなく管体3の内壁面をライニン
グして更生する耐震化更生方法及びその耐震化更生構造
について更生方法の工程を追って説明する。
Hereinafter, the seismic-resistant rehabilitation method and the seismic-resistant rehabilitation structure for lining and rehabilitating the inner wall surface of the tubular body 3 without excavating the existing manhole-mounting conduit 1 will be described step by step. To do.

【0020】先ず、図3に示すように、マンホール2内
において、必要な作業空間を形成するために先端部6の
前面又は周辺のインバートコンクリート5を必要な範囲
だけはつり取る。
First, as shown in FIG. 3, in the manhole 2, the invert concrete 5 on the front surface or the periphery of the tip end portion 6 is scraped off in a necessary range in order to form a necessary working space.

【0021】ついでコア抜き治具や切削治具を使用し
て、マンホール2内より、管体3のマンホール側露出面
である先端部6をマンホール2の外壁面4aまで環状に
切除することによって管体3を縁切りさせ、図4に示す
ように、環状に切除部(環状切除部7)を形成させる。
このとき、マンホール壁4の外壁面4aに沿って管体内
(管路内)から切り込みを入れることにより環状切除部
7の切除が容易となる。また、この環状切除部7の形成
は、マンホール2側からのみならず、管体3側から切除
することもできるので、必要な部分のコア抜きが容易に
行える。
Then, by using a core removing jig or a cutting jig, the tip portion 6 which is the exposed surface on the manhole side of the tubular body 3 is annularly cut from the inside of the manhole 2 to the outer wall surface 4a of the manhole 2. The body 3 is trimmed, and a cut portion (annular cut portion 7) is formed in a ring shape as shown in FIG.
At this time, cutting the annular cutting portion 7 becomes easy by making a cut along the outer wall surface 4a of the manhole wall 4 from the inside of the pipe (inside the pipe). Further, since the annular cutout portion 7 can be cut not only from the manhole 2 side but also from the pipe body 3 side, the core removal of a necessary portion can be easily performed.

【0022】ついで、この環状切除部7に例えば、シリ
コーンや吸水材を含有する水膨張ゴム材等からなる弾性
変形可能な弾性材としての弾性シーリング材8を装填す
る(図5)。この弾性シーリング材8は、例えば、マン
ホール2の径と管体3の径とを考慮して環状切除部7に
嵌合するように予め環状に成型されたものであってもよ
い。
Next, the annular cut portion 7 is loaded with an elastic sealing material 8 as an elastically deformable elastic material made of, for example, a water-expanded rubber material containing silicone or a water absorbing material (FIG. 5). The elastic sealing material 8 may be preliminarily formed into an annular shape so as to fit into the annular cutout portion 7 in consideration of the diameter of the manhole 2 and the diameter of the tubular body 3.

【0023】ついで、図6に示すように、この管体3の
内壁面を弾性シーリング材8に跨って筒状更生材10に
よりライニングする。
Then, as shown in FIG. 6, the inner wall surface of the tubular body 3 is lined with a cylindrical rehabilitating material 10 across the elastic sealing material 8.

【0024】筒状更生材10としては、例えば、図7に
示すように、繊維質材料に硬化性樹脂を含浸させた筒状
基材11とその筒状基材11の内外の両表面に積層され
た不透過性のフィルム又はシート(例えば、内層フィル
ム12、外層フィルム13)とから構成されたものが例
示される。
As the tubular rehabilitating material 10, for example, as shown in FIG. 7, a tubular base material 11 in which a fibrous material is impregnated with a curable resin and laminated on both inner and outer surfaces of the tubular base material 11. And the impermeable film or sheet (for example, the inner layer film 12 and the outer layer film 13).

【0025】また、他の筒状更生材10の例としては、
図8に示すように、ベースホース21とキャリブレーシ
ョンホース22とから構成されている。ここで、このベ
ースホース21は、外層フィルム13と繊維質材料に硬
化性樹脂が含浸された筒状基材11とから構成され、キ
ャリブレーションホース22は、内層フィルム12の外
周側に内層樹脂吸収フェルト23が積層されて構成され
ている。
As another example of the tubular rehabilitation material 10,
As shown in FIG. 8, it is composed of a base hose 21 and a calibration hose 22. Here, the base hose 21 is composed of an outer layer film 13 and a tubular substrate 11 in which a fibrous material is impregnated with a curable resin, and a calibration hose 22 is provided on the outer peripheral side of the inner layer film 12 to absorb the inner layer resin. The felt 23 is laminated and configured.

【0026】これらの筒状更生材10を構成する繊維質
材料としては、ポリエステルなどの有機繊維やガラス繊
維などの無機繊維であり、その形態は不織布や織布、編
物などを包含する布帛である。
The fibrous material constituting the tubular rehabilitation material 10 is an organic fiber such as polyester or an inorganic fiber such as glass fiber, and its form is a cloth including a non-woven fabric, a woven fabric, a knitted fabric or the like. .

【0027】また、このような繊維質材料に含浸される
硬化性樹脂としては、液状のエポキシ樹脂や不飽和ポリ
エステル樹脂等の硬化性樹脂が例示され、これらの硬化
性樹脂は、熱硬化性であっても紫外線等の光硬化性(電
磁波硬化性)であってもよい。
Examples of the curable resin impregnated in such a fibrous material include curable resins such as liquid epoxy resin and unsaturated polyester resin. These curable resins are thermosetting resins. It may be photocurable with ultraviolet rays or the like (electromagnetic wave curable).

【0028】内層フィルム12は、液状の熱硬化性樹脂
が蒸散等により透過又は飛散することが防止できるよう
に不透過性であるのが好ましく、管路の補修後には管路
の仕上がり内面となるので、耐傷性や耐久性、耐摩耗性
などを考慮して適宜に選択される。このような条件を満
たす好ましい内層フィルム材料としては、ポリウレタン
が例示される。
The inner layer film 12 is preferably impermeable so that the liquid thermosetting resin can be prevented from permeating or scattering due to evaporation or the like, and becomes the finished inner surface of the pipe after repairing the pipe. Therefore, it is appropriately selected in consideration of scratch resistance, durability, wear resistance and the like. As a preferable inner layer film material satisfying such a condition, polyurethane is exemplified.

【0029】また外層フィルム13としては、液状の硬
化性樹脂が外部に蒸散等により透過、又は飛散すること
が防止できるように不透過性のものが好ましく、耐久性
を考慮して安価な材料を選択することができる。このよ
うな条件を満たす好ましい外層フィルム材料としては、
ポリエチレン、ポリプロピレンなどのポリオレフィンが
例示される。
The outer layer film 13 is preferably impermeable so that the liquid curable resin can be prevented from permeating or scattering outside by evaporation or the like, and an inexpensive material is taken into consideration in consideration of durability. You can choose. As a preferable outer layer film material satisfying such conditions,
Examples are polyolefins such as polyethylene and polypropylene.

【0030】このような構成の筒状更生材10は、繊維
質材料により形成されているので、筒状基材に可撓性が
あり、かつ、伸縮性を備えている。これにより、この筒
状更生材10は折り畳まれた状態で管路内に配設するこ
とができる。
Since the tubular rehabilitating material 10 having such a structure is made of a fibrous material, the tubular base material has flexibility and elasticity. As a result, the tubular rehabilitation material 10 can be disposed in the pipe line in a folded state.

【0031】ついで、この筒状更生材10内側に空気又
は温水などの媒体を循環させて筒状更生材10を管路の
内壁面に押圧させつつ硬化性樹脂を熱又は光などにより
硬化させる。これにより、筒状更生材10の主要部を構
成する筒状基材11が膨張して管路の内壁面に密着され
た状態で硬化させることができる。
Then, a medium such as air or warm water is circulated inside the tubular rehabilitating material 10 to press the tubular rehabilitating material 10 against the inner wall surface of the pipe, and the curable resin is cured by heat or light. As a result, the tubular base material 11 forming the main part of the tubular rehabilitation material 10 can be expanded and cured while being in close contact with the inner wall surface of the conduit.

【0032】また、この筒状更生材10は、繊維質材料
に硬化性樹脂が含浸されたことにより、硬化後は、樹脂
が繊維で補強されるので、その厚みや材質を適宜に設定
することにより硬化された状態で自立管として形態を保
持できる程度に剛性が強く、かつ、適度な伸縮性を備え
ることができる。
Further, in the tubular rehabilitation material 10, since the fibrous material is impregnated with the curable resin, the resin is reinforced by the fibers after curing, so that the thickness and the material thereof should be set appropriately. Thus, the rigidity is strong to the extent that it can retain its shape as a self-supporting tube in a cured state, and it can be provided with appropriate stretchability.

【0033】たとえば、内径が150mmである管路の
更生を行う場合、ポリエステル繊維などの合成繊維不織
布(フェルト)を繊維質材料とする場合には、ライナー
の厚みが3mm程度では、硬化後の曲げ強さは20〜4
0N/mm2であり、曲げ弾性率は2000〜4000N
/mm2程度である。また、ガラス繊維を用いることによ
り、硬化後の曲げ強さが50N/mm2以上、曲げ弾性率
が5000N/mm2以上であるライナーを得ることもで
きる。
For example, when a pipeline having an inner diameter of 150 mm is rehabilitated and synthetic fiber non-woven fabric (felt) such as polyester fiber is used as the fibrous material, a liner having a thickness of about 3 mm may be bent after curing. Strength is 20-4
0N / mm 2 and flexural modulus 2000-4000N
It is about / mm 2 . Further, by using the glass fibers, the bending strength after curing 50 N / mm 2 or more, it is also possible flexural modulus to obtain a liner is 5000N / mm 2 or more.

【0034】最後に、マンホール2内の底部に新たなイ
ンバートコンクリート5を打設する。これにより、掘り
起こすことなくライニングして更生する耐震化更生方法
及びその耐震化更生構造が提供される。
Finally, a new invert concrete 5 is placed at the bottom of the manhole 2. This provides a seismic retrofitting method and a seismic retrofitting structure for lining and rehabilitating without excavating.

【0035】なお、実際の施工においては、図9に示す
ように、インバートコンクリート5と弾性シーリング材
8との間の隙間に追加の弾性材としての弾性シーリング
材8´を装填するのがよい。ここで、この弾性シーリン
グ材8´は弾性シーリング材8と同一素材であっても別
素材であってもよい。また、この弾性シーリング材8´
は弾性シーリング材8と一体であってもよい。これによ
り、追加の弾性シーリング材8´を装填した場合には、
インバートコンクリート5の面にも弾性シーリング材8
´が装填されることにより地震による変位が大きい場合
にもその変位を吸収することができる。
In the actual construction, as shown in FIG. 9, it is preferable to load an elastic sealing material 8'as an additional elastic material in the gap between the invert concrete 5 and the elastic sealing material 8. Here, the elastic sealing material 8'may be the same material as the elastic sealing material 8 or may be a different material. In addition, this elastic sealing material 8 '
May be integral with the elastic sealing material 8. As a result, when the additional elastic sealing material 8'is loaded,
Elastic sealing material 8 on the surface of invert concrete 5
Even if the displacement due to an earthquake is large, the displacement can be absorbed by loading ′.

【0036】以上のように構成すれば、管体3とマンホ
ール壁4とは弾性シーリング材8を介して一体化される
ので、地震時に両者間に変位が有っても、この弾性シー
リング材8の変形によりこの変位を吸収することができ
る。
With the above construction, the tubular body 3 and the manhole wall 4 are integrated with each other via the elastic sealing material 8, so that even if there is a displacement between the two during the earthquake, the elastic sealing material 8 This displacement can be absorbed by the deformation of the.

【0037】また、弾性シーリング材8と管体3との界
面に隙間があっても弾性シーリング材8と管体3の内壁
面3bに跨って筒状更生材10によりライニングされて
いるので、ここから漏水することがない。
Even if there is a gap at the interface between the elastic sealing material 8 and the tubular body 3, since it is lined with the tubular rehabilitating material 10 across the inner wall surface 3b of the elastic sealing material 8 and the tubular body 3, No water leaks from.

【0038】また、弾性シーリング材8と筒状更生材1
0又はマンホール壁4との界面は、筒状更生材10が内
面から押圧された状態で硬化されているので、隙間無く
弾性シーリング材8を装填することができる。
Also, the elastic sealing material 8 and the tubular rehabilitation material 1
0 or the interface with the manhole wall 4 is hardened in a state where the tubular rehabilitation material 10 is pressed from the inner surface, so that the elastic sealing material 8 can be loaded without a gap.

【0039】[0039]

【変形例1】実施の形態に係る耐震化更生構造におい
て、弾性シーリング材8と筒状更生材10との界面、又
は弾性シーリング材8とマンホール2の壁4との界面に
は隙間に水により膨張する水膨張性弾性体を介在させる
ことが好ましく、この水膨張性弾性体は線条として管体
3の円周方向に複数本が平行に環状配列されていること
が好ましい。
[Modification 1] In the earthquake-resistant rehabilitation structure according to the embodiment, water is left in the gap between the elastic sealing material 8 and the tubular rehabilitation material 10 or the interface between the elastic sealing material 8 and the wall 4 of the manhole 2. It is preferable to interpose a water-expandable elastic body that expands, and it is preferable that a plurality of the water-expandable elastic bodies are annularly arranged as parallel lines in the circumferential direction of the tube body 3 in parallel.

【0040】例えば、図10に示すように、弾性シーリ
ング材8の内周側(筒状更生材10側)及び外周側(マ
ンホール壁4側)に水膨潤性の材料からなる環状線条9
を介在させる。このような環状線条8は、例えば、環状
に成形された弾性シーリング材8の外周又は内周に平行
に複数本の環状線条9を仮固定し、この弾性シーリング
材8を環状切除部7に装填し、ついで筒状更生材10を
ライニングすることにより得ることができる。
For example, as shown in FIG. 10, an annular line 9 made of a water-swellable material is provided on the inner peripheral side (cylindrical rehabilitation material 10 side) and outer peripheral side (manhole wall 4 side) of the elastic sealing material 8.
Intervene. Such an annular filament 8 is, for example, a plurality of annular filaments 9 temporarily fixed in parallel to the outer circumference or the inner circumference of the elastic sealing material 8 formed in an annular shape. , And then lining the tubular rehabilitation material 10.

【0041】このように構成すれば、長期間の使用中に
弾性シーリング材8が劣化して弾性シーリング材8と筒
状更生材10との界面、又は弾性シーリング材8とマン
ホール2の壁4との界面に隙間が生じても、その隙間に
水が浸入すると環状線条9が膨張して隙間の「みずみ
ち」を遮断することができる。これにより、長期間に亘
っても管渠内部の水の漏水や外部からの水の浸入を防止
することができる。
According to this structure, the elastic sealing material 8 deteriorates during long-term use and the interface between the elastic sealing material 8 and the tubular rehabilitating material 10, or the elastic sealing material 8 and the wall 4 of the manhole 2. Even if a gap is formed at the interface of the above, when water enters the gap, the annular filament 9 expands and can block the "mizumichi" of the gap. As a result, it is possible to prevent leakage of water inside the pipe and intrusion of water from the outside even for a long period of time.

【0042】また、この環状線条9は、複数本が環状に
配置されているので、水の浸入防止効果を確実に行うこ
とができる。
Further, since a plurality of the annular filaments 9 are arranged in an annular shape, the effect of preventing water from entering can be surely achieved.

【0043】その他の作用効果は、実施の形態と略同一
乃至は均等であるので、詳細な説明は省略する。
Other functions and effects are substantially the same as or equivalent to those of the embodiment, so detailed description will be omitted.

【0044】なお、この変形例1のように環状線条9を
用いる場合には、弾性シーリング材8は、シーリング効
果があってもよいが、無くてもよい。この場合には、環
状線条9が実質的なシーリング効果を補完している。
When the annular filament 9 is used as in the first modification, the elastic sealing material 8 may or may not have a sealing effect. In this case, the annular filament 9 complements the substantial sealing effect.

【0045】[0045]

【変形例2】以上の発明の実施の形態では、筒状更生材
による更生は最後の工程で行われたが、予め筒状更生材
10により更生がなされた管渠においてもこの発明の耐
震化更生構造を得ることができる。
[Modification 2] In the embodiment of the invention described above, the rehabilitation with the tubular rehabilitation material was performed in the last step, but the seismic retrofitting of the present invention is performed even in the pipes that have been rehabilitated beforehand with the tubular rehabilitation material 10. Rehabilitation structure can be obtained.

【0046】例えば、筒状更生材によりライニングがな
された管体3の先端部6側からコア抜きを行い、管体3
の環状切除部7を形成させ、その環状切除部7に弾性シ
ーリング材を充填又は圧入する。この場合は、実施の形
態に比べて、環状切除部7のコア抜き作業性が劣るこ
と、及び筒状更生材を弾性シーリング材に向けて押圧し
つつ筒状更生材を硬化させることができないが、発明の
実施の形態と略同一の構造の耐震化更生構造を得ること
ができる。
For example, a core is removed from the tip end 6 side of the tubular body 3 lined with a tubular rehabilitation material to obtain the tubular body 3.
The annular cutout 7 is formed, and the elastic cutout 7 is filled or pressed into the annular cutout 7. In this case, as compared with the embodiment, the workability of removing the core of the annular cutout portion 7 is inferior, and the tubular rehabilitation material cannot be cured while being pressed against the elastic sealing material. It is possible to obtain a seismic retrofit structure having substantially the same structure as the embodiment of the invention.

【0047】このような耐震化更生構造によれば、管体
3とマンホール壁4とは弾性シーリング材8を介して一
体化されるので、地震時に両者間に変位が有っても、こ
の弾性シーリング材8の変形によりこの変位を吸収する
ことができる。
According to such a seismic retrofit structure, since the pipe body 3 and the manhole wall 4 are integrated with each other through the elastic sealing material 8, even if there is a displacement between them during an earthquake, this elastic This displacement can be absorbed by the deformation of the sealing material 8.

【0048】また、弾性シーリング材8と管体3との界
面に隙間があっても弾性シーリング材8と管体3の内壁
面3bに跨って筒状更生材10によりライニングされて
いるので、ここから管渠内部の水の漏水が防止でき、ま
た、外部より水が管渠内部に浸入することがない。
Further, even if there is a gap at the interface between the elastic sealing material 8 and the tubular body 3, since it is lined with the tubular rehabilitating material 10 across the elastic sealing material 8 and the inner wall surface 3b of the tubular body 3, Water can be prevented from leaking from the drainage pipe, and water does not enter the drainage pipe from the outside.

【0049】また、弾性シーリング材8を環状切除部7
に圧入すれば、筒状更生材10又はマンホール壁4との
界面は隙間無く弾性シーリング材8を装填することがで
き、これにより、マンホール内からの漏水や外部からマ
ンホール内への水の浸入を防止することができる。
Further, the elastic sealing material 8 is attached to the annular cutting portion 7
If it is press-fitted into the cylindrical rehabilitation material 10 or the manhole wall 4, the elastic sealing material 8 can be loaded in the interface with the manhole wall 4 without any gap, thereby preventing leakage of water from inside the manhole or intrusion of water into the manhole from the outside. Can be prevented.

【0050】以上、本発明の実施の形態を図面により詳
述したが、本発明の具体的な構成はこの実施の形態に限
られるものではなく、本発明の要旨を逸脱しない範囲の
設計変更等があっても本発明に含まれる。
The embodiment of the present invention has been described in detail above with reference to the drawings. However, the specific configuration of the present invention is not limited to this embodiment, and the design change and the like within the scope not departing from the gist of the present invention. Even so, it is included in the present invention.

【0051】例えば、以上の実施の形態では、マンホー
ル取付管渠について一例を挙げて説明したが、桝取付管
渠であってもよい。また、建物設備排水管と接続されて
屋外地中に配管されている屋外排水管と地中に埋設され
ている排水桝(又は雨水桝)などの接続構造においても
同様に排水管の排水桝への露出部を排水桝の外壁面まで
環状に切除することによって排水管を縁切りさせて環状
切除部を形成し、この環状切除部に弾性材を装填し、排
水管の内壁面を弾性材に跨って筒状更生材によりライニ
ングすることにより耐震化更生が行える。
For example, in the above embodiment, the manhole mounting pipe culvert is described as an example, but it may be a basin mounting pipe culvert. Also, in the connection structure such as the outdoor drainage pipe connected to the building equipment drainage pipe and piped outdoors in the ground and the drainage basin (or rainwater basin) buried in the ground By cutting the exposed part of the pipe to the outer wall surface of the drainage pipe in an annular manner, the drainage pipe is edged to form a ring-shaped cutout part, and an elastic material is loaded into this ring-shaped cutout part. Seismic rehabilitation can be performed by lining with a tubular rehabilitation material.

【0052】また、このような耐震化更生は、地中管同
士の接続構造においても同様に行うことができる。
Further, such seismic retrofitting can be similarly performed in the connection structure of underground pipes.

【0053】また、以上の実施の形態では、管状構造体
は平面視円形のマンホールを例示しているが、平面視が
方形のマンホール又は桝でも同様な効果が得られること
は明らかである。また、平面視方形のマンホール又は桝
では、環状切除部の構造が簡略化されるので、環状の弾
性パッキング材などの弾性材を用いることも簡易に行え
る。
Further, in the above embodiments, the tubular structure is exemplified by a circular manhole in plan view, but it is clear that the same effect can be obtained by a square manhole or a square in plan view. In addition, since the structure of the annular cutout portion is simplified in the square manhole or basin in plan view, it is possible to easily use an elastic material such as an annular elastic packing material.

【0054】[0054]

【発明の効果】以上説明したように、本発明に従えば、
下水道用管渠などの管体の内壁面を筒状更生材によりラ
イニングして更生する際のマンホールと管体との結合部
分の耐震性を確保できる耐震化更生方法及び耐震化更生
構造を提供することができる。
As described above, according to the present invention,
Provide a seismic retrofitting method and seismic retrofit structure that can secure the seismic resistance of the joint part between the manhole and the tubular body when lining the inner wall surface of the pipe such as sewer pipe with a tubular rehabilitation material be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】 既設のマンホール取付管渠の一例を示す断面
図である。
FIG. 1 is a cross-sectional view showing an example of an existing manhole mounting pipe culvert.

【図2】 図1の既設のマンホール取付管渠を説明する
一部切欠斜視図である。
FIG. 2 is a partially cutaway perspective view for explaining the existing manhole mounting conduit of FIG.

【図3】 本発明の実施の形態に係る耐震化更生方法に
おけるインバートコンクリートはつり後の状態を示す部
分断面図である。
FIG. 3 is a partial cross-sectional view showing a state after the invert concrete has been suspended in the seismic retrofit method according to the embodiment of the present invention.

【図4】 同上の管体の先端部切除後の状態を示す部分
断面図である。
FIG. 4 is a partial cross-sectional view showing a state after the distal end portion of the tubular body is cut off.

【図5】 同上の弾性シーリング材の装填後の状態を示
す部分断面図である。
FIG. 5 is a partial cross-sectional view showing a state after loading the above elastic sealing material.

【図6】 同上の筒状更生材をライニングした後の状態
を示し、本発明の実施の形態に係る耐震化更生構造を説
明する部分断面図である。
FIG. 6 is a partial cross-sectional view showing a state after the tubular rehabilitation material of the above is lined and illustrating an earthquake-resistant rehabilitation structure according to an embodiment of the present invention.

【図7】 筒状更生材の一例を説明する部分切断斜視図
である。
FIG. 7 is a partially cut perspective view illustrating an example of a tubular rehabilitation material.

【図8】 筒状更生材の他の例を説明する部分切断斜視
図である。
FIG. 8 is a partially cut perspective view illustrating another example of the tubular rehabilitation material.

【図9】 本発明の実施の形態に係る耐震化更生構造を
説明する部分断面図である。
FIG. 9 is a partial cross-sectional view illustrating a seismic retrofit structure according to an embodiment of the present invention.

【図10】 本発明の実施の形態に係る変形例1におけ
る環状線条を介在させた耐震化更生構造を示す部分断面
図である。
FIG. 10 is a partial cross-sectional view showing an earthquake-resistant rehabilitation structure with an annular wire interposed in a first modification according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:マンホール取付管渠 2:マンホール(管状構造物) 3:管体 3a:外壁面 3b:内壁面 4:マンホール壁 4a:外壁面 5:インバートコンクリート 6:先端部 7:環状切除部 8、8´:弾性シーリング材(弾性材) 9:環状線条 10:筒状更生材 11:筒状基材 12:内層フィルム(不透過性のフィルム又はシート) 13:外層フィルム(不透過性のフィルム又はシート) 21:ベースホース 22:キャリブレーションホース 23:内層樹脂吸収フェルト 1: Manhole mounting conduit 2: Manhole (tubular structure) 3: Tube 3a: outer wall surface 3b: inner wall surface 4: Manhole wall 4a: outer wall surface 5: Invert concrete 6: Tip 7: Circular resection 8, 8 ': Elastic sealing material (elastic material) 9: Circular wire 10: Cylindrical rehabilitation material 11: Cylindrical base material 12: Inner layer film (impermeable film or sheet) 13: Outer layer film (impermeable film or sheet) 21: Base hose 22: Calibration hose 23: Inner layer resin absorbent felt

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 管状構造物の壁を貫通して結合された管
体の内壁面をライニングして更生する管更生方法におい
て、 前記管体の前記管状構造物側露出面を前記管状構造物外
壁面まで環状に切除することによって前記管体を縁切り
させて環状切除部を形成し、 該環状切除部に弾性変形可能な弾性材を装填した後に、 前記管体の内壁面を前記弾性材に跨って筒状更生材によ
りライニングすることを特徴とする耐震化更生方法。
1. A pipe rehabilitation method for lining and rehabilitating an inner wall surface of a tubular body that penetrates through a wall of a tubular structure, the exposed surface of the tubular body on the tubular structure side being outside the tubular structure. An annular cut portion is formed by cutting the tubular body up to the wall surface to form an annular cut portion, and an elastic material that is elastically deformable is loaded on the annular cut portion, and then the inner wall surface of the tubular body is straddled over the elastic material. A method of earthquake-resistant rehabilitation characterized by lining with a tubular rehabilitation material.
【請求項2】 前記ライニングは、前記弾性材と前記管
状構造物の壁との間又は前記弾性材と前記筒状更生材と
の間に、前記弾性材と前記筒状更生材又は前記管状構造
物の壁との隙間に水が浸入した場合に該浸入水により膨
張して前記隙間を水密とする水膨張性を有する水膨張性
弾性体を介在させた状態で行われることを特徴とする請
求項1に記載の耐震化更生方法。
2. The lining includes the elastic material and the tubular rehabilitation material or the tubular structure between the elastic material and the wall of the tubular structure or between the elastic material and the tubular rehabilitation material. It is carried out in a state in which a water-expandable elastic body having water expansibility that expands due to the infiltrated water to make the gap watertight is interposed when water enters the gap between the wall of the object and the space. Item 1. The earthquake-resistant rehabilitation method according to Item 1.
【請求項3】 管状構造物の壁を貫通して結合された管
体の内壁面が筒状更生材によりライニングされて更生さ
れた更生構造であって、 前記管状構造物内に露出した管体の露出端面が環状に切
除されることにより生じた環状切除部に弾性変形可能な
弾性材が装填され、 前記管体の内壁面及び前記弾性材は筒状更生材により一
体的にライニングされていることを特徴とする耐震化更
生構造。
3. A rehabilitated structure in which an inner wall surface of a tubular body joined through a wall of the tubular structure is lined with a tubular rehabilitation material to be rehabilitated, and the tubular body exposed in the tubular structure. An elastically deformable elastic material is loaded in an annular cut portion formed by cutting the exposed end surface of the tubular body in an annular shape, and the inner wall surface of the tubular body and the elastic material are integrally lined by a tubular rehabilitation material. A seismic retrofit structure that is characterized by that.
【請求項4】 前記弾性材と前記筒状更生材又は前記管
状構造物の壁との隙間には、該隙間に水が浸入した場合
に該浸入水により膨張して前記隙間を水密とする水膨張
性を有する水膨張性弾性体が介在されていることを特徴
とする請求項3に記載の耐震化更生構造。
4. Water that is watertight in the space between the elastic material and the wall of the tubular rehabilitation material or the tubular structure, when water enters the space, the water expands by the infiltration water to make the space watertight. The earthquake-resistant rehabilitation structure according to claim 3, wherein a water-expandable elastic body having expandability is interposed.
【請求項5】 前記水膨張性弾性体は線条として前記管
体の円周方向に複数本が平行に環状配列されていること
を特徴とする請求項4記載の耐震化更生構造。
5. The seismic retrofit structure according to claim 4, wherein a plurality of the water-expandable elastic bodies are annularly arranged as parallel lines in a circumferential direction of the pipe body.
【請求項6】 前記弾性材は、シーリング機能を備えた
弾性シーリング材であることを特徴とする請求項3〜5
のいずれかに記載の耐震化更生構造。
6. The elastic material according to claim 3, wherein the elastic material is an elastic sealing material having a sealing function.
The earthquake-resistant rehabilitation structure described in any of 1.
JP2001263063A 2001-08-31 2001-08-31 Seismic rehabilitation method and seismic rehabilitation structure Expired - Lifetime JP4632592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001263063A JP4632592B2 (en) 2001-08-31 2001-08-31 Seismic rehabilitation method and seismic rehabilitation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001263063A JP4632592B2 (en) 2001-08-31 2001-08-31 Seismic rehabilitation method and seismic rehabilitation structure

Publications (2)

Publication Number Publication Date
JP2003074114A true JP2003074114A (en) 2003-03-12
JP4632592B2 JP4632592B2 (en) 2011-02-16

Family

ID=19089877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001263063A Expired - Lifetime JP4632592B2 (en) 2001-08-31 2001-08-31 Seismic rehabilitation method and seismic rehabilitation structure

Country Status (1)

Country Link
JP (1) JP4632592B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291631A (en) * 2007-02-23 2008-12-04 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for manhole connection part of existing pipe
JP2009138433A (en) * 2007-12-06 2009-06-25 Tokyo Metropolitan Sewerage Service Corp Construction method for making manhole connecting section of existing pipe aseismic
JP2009138434A (en) * 2007-12-06 2009-06-25 Tokyo Metropolitan Sewerage Service Corp Construction method for making manhole connecting section of existing pipe aseismic
JP2009155963A (en) * 2007-12-27 2009-07-16 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for manhole connection part of existing pipe
JP2010133091A (en) * 2008-12-02 2010-06-17 Tokyo Metropolitan Sewerage Service Corp Construction method for making existing pipe manhole connection part earthquake-resistant
JP2010248806A (en) * 2009-04-16 2010-11-04 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for existing pipe manhole connection part
JP2010255205A (en) * 2009-04-21 2010-11-11 Sekisui Chem Co Ltd Regeneration method for existing pipe
JP2011179228A (en) * 2010-03-01 2011-09-15 Tokyo Metropolitan Sewerage Service Corp Earthquake-resisting construction method for manhole connecting section of existing pipe
JP2017002613A (en) * 2015-06-12 2017-01-05 積水化学工業株式会社 Pipeline connection structure in manhole, and pipeline connection method
JP7217444B1 (en) 2021-12-20 2023-02-03 株式会社トラストテクノ Lining material for rehabilitation of existing pipes and method for rehabilitation of existing pipes for sewerage and water supply using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246390A (en) * 1988-08-05 1990-02-15 Bridgestone Corp Flexible joint
JPH10305483A (en) * 1997-05-07 1998-11-17 Kyogyo Kumiai Kosei Kigyo Lining liner of pipe groove and lining construction method thereof
JPH11323983A (en) * 1998-05-08 1999-11-26 Hayakawa Rubber Co Ltd Joint structure, expansion band, expansion jig and execution work method of joint structure
JP2000226860A (en) * 1999-02-08 2000-08-15 Takaharu Ozaki Flexible joint construction method for pipe installing part of existing manhole
JP2001040751A (en) * 1999-07-30 2001-02-13 Tokyoto Gesuido Service Kk Earthquake resisting construction method of pipe culvert fitted to existing manhole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0246390A (en) * 1988-08-05 1990-02-15 Bridgestone Corp Flexible joint
JPH10305483A (en) * 1997-05-07 1998-11-17 Kyogyo Kumiai Kosei Kigyo Lining liner of pipe groove and lining construction method thereof
JPH11323983A (en) * 1998-05-08 1999-11-26 Hayakawa Rubber Co Ltd Joint structure, expansion band, expansion jig and execution work method of joint structure
JP2000226860A (en) * 1999-02-08 2000-08-15 Takaharu Ozaki Flexible joint construction method for pipe installing part of existing manhole
JP2001040751A (en) * 1999-07-30 2001-02-13 Tokyoto Gesuido Service Kk Earthquake resisting construction method of pipe culvert fitted to existing manhole

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291631A (en) * 2007-02-23 2008-12-04 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for manhole connection part of existing pipe
JP4628409B2 (en) * 2007-02-23 2011-02-09 東京都下水道サービス株式会社 Seismic retrofitting method for existing pipe manhole connections
JP2009138433A (en) * 2007-12-06 2009-06-25 Tokyo Metropolitan Sewerage Service Corp Construction method for making manhole connecting section of existing pipe aseismic
JP2009138434A (en) * 2007-12-06 2009-06-25 Tokyo Metropolitan Sewerage Service Corp Construction method for making manhole connecting section of existing pipe aseismic
JP2009155963A (en) * 2007-12-27 2009-07-16 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for manhole connection part of existing pipe
JP4648449B2 (en) * 2008-12-02 2011-03-09 東京都下水道サービス株式会社 Seismic retrofitting method for existing pipe manhole connections
JP2010133091A (en) * 2008-12-02 2010-06-17 Tokyo Metropolitan Sewerage Service Corp Construction method for making existing pipe manhole connection part earthquake-resistant
JP2010248806A (en) * 2009-04-16 2010-11-04 Tokyo Metropolitan Sewerage Service Corp Aseismatic construction method for existing pipe manhole connection part
JP2010255205A (en) * 2009-04-21 2010-11-11 Sekisui Chem Co Ltd Regeneration method for existing pipe
JP2011179228A (en) * 2010-03-01 2011-09-15 Tokyo Metropolitan Sewerage Service Corp Earthquake-resisting construction method for manhole connecting section of existing pipe
JP2017002613A (en) * 2015-06-12 2017-01-05 積水化学工業株式会社 Pipeline connection structure in manhole, and pipeline connection method
JP7217444B1 (en) 2021-12-20 2023-02-03 株式会社トラストテクノ Lining material for rehabilitation of existing pipes and method for rehabilitation of existing pipes for sewerage and water supply using the same
JP2023091531A (en) * 2021-12-20 2023-06-30 株式会社トラストテクノ Lining material for renewing existing pipe conduit and renewal construction method for existing pipe conduit for sewerage and water supply using the same

Also Published As

Publication number Publication date
JP4632592B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
US5386669A (en) Corrosion resistant leakproof plastic manhole system
JP4632592B2 (en) Seismic rehabilitation method and seismic rehabilitation structure
JP2001311387A (en) Repairing method for existing conduit, repairing material used for it and repaired conduit
WO2003014485A1 (en) Reinforcing element of underground pipe, and trenchless repairing and reinforcing method using the same
US7223051B1 (en) Removable maintenance port with method for rehabilitating manhole
US20080075538A1 (en) Method and apparatus for repairing underground pipes
JPWO2003008715A1 (en) Construction method of manhole structure, waterproof joint for manhole structure and manhole structure
KR100336372B1 (en) Inner Excavation Repairing
JPH02248797A (en) Lining method for conduit embedded in ground
WO2004007849A1 (en) Manhole structure, flexible water shut off joint for manhole structure and method for installing manhole structure
KR20160145977A (en) Tube for pipe repairing and strengthen insert shape-memory alloy
JP2011126253A (en) Repairing structure and repairing method of pipe line, and laminate lining material
JP4890312B2 (en) Pipe bridge rehabilitation method
CN212273415U (en) Trenchless pipeline is restoreed and is used interior bushing pipe
KR20050072863A (en) A not-digging repair method for pipe connetion part, damage part, pipe sill
KR200369219Y1 (en) A part repair device nonexcavation type for pipe
KR100618620B1 (en) Sewer repairing system with pvc sheet
Garcia et al. Rehabilitation alternatives for concrete and brick sewers
CN113108154A (en) CIPP water overturning and repairing method for inspection well and pipeline
JP3691880B2 (en) Cover for pipe repair
KR20030009711A (en) Liner for rehabilitating pipe conduit
KR200190166Y1 (en) Unexcavated Inner Repair
KR20040022069A (en) Method for repairing a non-excavation drainpipe capable being facilitate sewage stream
KR200255487Y1 (en) Liner for rehabilitating pipe conduit
JP7224007B1 (en) Duct manhole, pipe joint structure at pipe end, joint element for pipe and pipe construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term