JP2003074057A - Execution method of steel pipe pile - Google Patents

Execution method of steel pipe pile

Info

Publication number
JP2003074057A
JP2003074057A JP2001270271A JP2001270271A JP2003074057A JP 2003074057 A JP2003074057 A JP 2003074057A JP 2001270271 A JP2001270271 A JP 2001270271A JP 2001270271 A JP2001270271 A JP 2001270271A JP 2003074057 A JP2003074057 A JP 2003074057A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
spiral blade
value
pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001270271A
Other languages
Japanese (ja)
Inventor
Masayoshi Umeda
雅芳 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001270271A priority Critical patent/JP2003074057A/en
Publication of JP2003074057A publication Critical patent/JP2003074057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piles And Underground Anchors (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an execution method of a steel pipe pile capable of effectively expecting tip bearing power and peripheral surface frictional force, and capable of shortening execution time. SOLUTION: A spiral blade 6a of an intermediate steel pipe pile 6 provided with the spiral blade 6a is buried in an intermediate part over the total length to the intermediate layer 7 having an N value of 10 to 30 by a standard penetration test, and a spiral blade 1a of a lower steel pipe pile 1 provided with the spiral blade 1a is buried only in a tip part to a lower support layer 8 having an N value of an average N value of +5 or more of the intermediate layer 7.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、螺旋状の羽根を設
けた鋼管杭を回転推進させて地盤に埋設する鋼管杭の施
工方法に関するものである。 【0002】 【従来の技術】従来から、図4に示すように、先端部に
切削刃、掘削爪、螺旋状の羽根1aを取り付けた鋼管杭
1をドライバ3により回転推進することによって該鋼管
杭1を地盤4にねじり込み推進させて該鋼管杭1本体の
体積分の土砂を自動的に杭側面方向に押圧し、無振動、
無排土で所定の地盤4に基礎杭を設置する工法が知られ
ている。 【0003】鋼管杭の種類としては、図5に示すよう
に、先端部にのみ螺旋状の羽根1aを設けた下鋼管杭1
と、螺旋状の羽根1aを有さないストレートの中鋼管杭
2或いは上鋼管杭2とを接続する形態と、図6に示すよ
うに、先端部及び全長に亘る中間部に螺旋状の羽根5a
を設けた下鋼管杭5と、全長に亘る中間部に螺旋状の羽
根6aを設けた中鋼管杭6或いは上鋼管杭6とを接続す
る形態とが知られている。 【0004】図5に示すように、先端部に螺旋状の羽根
1aを有する鋼管杭1では先端支持力を期待するもので
あり、図6に示すように、中間部に螺旋状の羽根5aを
有する鋼管杭5では先端支持力及び周面摩擦力を期待す
るものである。 【0005】 【発明が解決しようとする課題】しかしながら、前述の
従来例において、図5に示すように、先端部にのみ螺旋
状の羽根1aを設けた下鋼管杭1と、螺旋状の羽根1a
を有さないストレートの中鋼管杭2或いは上鋼管杭2と
を接続する形態では、先端支持力は期待出来るが、周面
摩擦力が期待出来ないため地盤4の地層の土質の種類に
よっては十分な支持力が得られない場合もある。 【0006】また、図6に示すように、先端部及び全長
に亘る中間部に螺旋状の羽根5aを設けた下鋼管杭5
と、全長に亘る中間部に螺旋状の羽根6aを設けた中鋼
管杭6或いは上鋼管杭6とを接続する形態では、地盤4
の標準貫入試験によるN値が低い地層では周面摩擦力が
あまり期待出来ないため多くの螺旋状の羽根5a,6a
が無駄になり、鋼管杭5,6を地盤4に対して回転推進
させる際に中間部の螺旋状の羽根5a,6aにより回転
抵抗を増すためN値が小さい地盤4であっても回転トル
クが増加して施工性が悪く、更に施工時間がかかるとい
う問題があった。 【0007】本発明は前記課題を解決するものであり、
その目的とするところは、先端支持力と周面摩擦力を効
果的に期待出来、施工時間も短縮出来る鋼管杭の施工方
法を提供せんとするものである。 【0008】 【課題を解決するための手段】本発明者は先端部及び中
間部に螺旋状の羽根を設けた鋼管杭を地盤に埋設する際
に、どの程度の先端支持力と周面摩擦力が得られるか
を、標準貫入試験による中間層及び下部支持層のN値
と、それ等の各支持層に各種の鋼管杭を埋設して支持力
を計算すると共に試験を実施して検証し、十分な支持力
を得ることが出来る範囲の各支持層のN値と各鋼管杭の
形態とを求めることで本発明に係る鋼管杭の施工方法を
完成したものである。 【0009】尚、前記「N値」とは、重さ622.7N
(63.5kgf)のハンマーを高さ75cmから自由落下
させ、標準貫入試験用サンプラーを30cm打ち込むのに
要する打撃回数を言うものである。 【0010】即ち、前記目的を達成するための本発明に
係る鋼管杭の施工方法は、先端部に螺旋状の羽根を設け
た鋼管杭を回転推進させて先端部及び中間部の所定位置
に螺旋状の羽根を設けた鋼管杭を地盤に埋設する鋼管杭
の施工方法であって、前記鋼管杭の先端部に設けられた
螺旋状の羽根を標準貫入試験によるN値が中間層の平均
N値+5以上のN値を有する下部支持層に埋設し、該鋼
管杭の中間部に設けられた螺旋状の羽根をN値が10以
上、且つ30以下の中間層に埋設することを特徴とす
る。 【0011】本発明は、上述の如く構成したので、標準
貫入試験によるN値が10以上、且つ30以下の中間層
に対して鋼管杭の中間部に設けられた螺旋状の羽根を埋
設したことで周面摩擦力を得ることが出来、中間層の平
均N値+5以上のN値を有する下部支持層に鋼管杭の先
端部に設けられた螺旋状の羽根を埋設したことで先端支
持力を得ることが出来、これにより先端部のみに螺旋状
の羽根を設けた鋼管杭よりも鋼管杭の引抜き耐力を向上
することが出来る。 【0012】前記中間層及び下部支持層以外の地層には
螺旋状の羽根を有さないストレートの部位を埋設するこ
とで螺旋状の羽根の部品点数を削減してコストダウンを
図ることが出来、鋼管杭を地盤に対して回転推進させる
際に螺旋状の羽根による回転抵抗を極力低減出来るため
回転トルクの増加を低減して施工性を向上し、更に施工
時間の短縮を図ることが出来る。 【0013】例えば、先端部のみに螺旋状の羽根を設け
た第1の鋼管杭と、前記第1の鋼管杭に接続可能で、且
つ全長に亘る中間部に螺旋状の羽根を設けた第2の鋼管
杭とを用意し、標準貫入試験によるN値が10以上、且
つ30以下の中間層に対して前記第2の鋼管杭の螺旋状
の羽根を埋設し、前記中間層の平均N値+5以上のN値
を有する下部支持層に前記第1の鋼管杭の螺旋状の羽根
を埋設すれば好ましい。 【0014】そして、前記中間層及び下部支持層以外の
地層には螺旋状の羽根を有さないストレートの鋼管杭を
接続すれば好ましい。 【0015】 【発明の実施の形態】図により本発明に係る鋼管杭の施
工方法の一実施形態を具体的に説明する。図1は本発明
に係る鋼管杭の施工方法により下部支持層に先端部のみ
に螺旋状の羽根を有する鋼管杭の螺旋状の羽根を埋設
し、中間層に全長に亘る中間部に螺旋状の羽根を設けた
鋼管杭の螺旋状の羽根を埋設し、他の土質にはストレー
トの鋼管杭を接続して埋設した様子を示す土質柱状図、
図2は従来の施工方法により下部支持層に先端部のみに
螺旋状の羽根を有する鋼管杭の螺旋状の羽根を埋設し、
他の土質にはストレートの鋼管杭を埋設した様子を示す
土質柱状図、図3は比較例として下部支持層に先端部及
び全長に亘る中間部に螺旋状の羽根を設けた鋼管杭の螺
旋状の羽根を埋設し、他の土質にはストレートの鋼管杭
を接続して埋設した様子を示す土質柱状図である。 【0016】図1〜図3に示された地盤4は、地表面か
ら深さ6.4m程度迄は標準貫入試験によるN値が1〜
2程度の範囲を推移し、深さ6.9mから10.4m程
度迄が中間層7を構成し、そのN値は10〜18程度の
範囲を推移して平均N値が約13である。 【0017】更に深さ11.3mから14.3m程度迄
は再びN値が下がって1〜3程度の範囲を推移し、深さ
15.4mから17.3m程度迄はN値が徐々に上がっ
て10〜20程度の範囲を推移し、更に深さ17.3m
から18.2m程度迄はN値が急激に上昇して50に達
する。そして、深さ18.2m程度以降のN値は50を
維持する。 【0018】下部支持層8は中間層7の平均N値13に
5を加えた18以上のN値となる17.1mより深い地
層で構成される。尚、18m以深の砂礫層は換算で50
以上のN値を有する地層である。 【0019】本発明に係る鋼管杭の施工方法において、
種々の実験結果によれば、中間層7は標準貫入試験によ
るN値が10以上、且つ30以下が適用可能であり、下
部支持層8は中間層7の平均N値+5以上のN値を有す
る場合に適用可能である。尚、中間層7の地層厚さは2
m以上が好ましい。 【0020】本発明に係る鋼管杭の施工方法は、図4に
示して前述したように、先ず、先端部のみに切削刃、掘
削爪、螺旋状の羽根1aを取り付けた第1の鋼管杭とな
る下鋼管杭1を図示しない自走装置のリーダに取り付け
られたドライバ3により回転推進することによって該下
鋼管杭1を地盤2にねじり込み推進させる。 【0021】次にドライバ3を下鋼管杭1から取り外
し、全長に亘る中間部に2mのピッチで3つの螺旋状の
羽根6aを並設した第2の鋼管杭となる中鋼管杭6をド
ライバ3に取り付けて該中鋼管杭6を下鋼管杭1に接続
して同様にドライバ3により回転推進することによって
該中鋼管杭6及び下鋼管杭1を一体的に地盤2にねじり
込み推進させる。 【0022】更にドライバ3を中鋼管杭6から取り外
し、ストレートの上鋼管杭2をドライバ3に取り付けて
該上鋼管杭2を中鋼管杭6に接続して同様にドライバ3
により回転推進することによって該上鋼管杭2、中鋼管
杭6及び下鋼管杭1を一体的に地盤2にねじり込み推進
させる。 【0023】この時、下鋼管杭1本体、中鋼管杭6本体
及び上鋼管杭2本体の体積分の土砂を自動的に杭側面方
向に押圧し、無振動、無排土で所定の地盤2に基礎杭を
設置することが出来る。 【0024】ここで、本実施形態では、下鋼管杭1本
体、中鋼管杭6本体及び上鋼管杭2本体の夫々の全長は
6m、外径直径は190.7mmであり、厚さは7.0mm
である。また、下鋼管杭1の先端部に設けられた螺旋状
の羽根1aの外径直径は400mmであり、厚さは19mm
である。また、中鋼管杭6の全長に亘る中間部に設けら
れた螺旋状の羽根6aの外径直径は400mmであり、厚
さは9mmである。 【0025】そして、図1に示すように、中間層7に対
して全長に亘る中間部に2mのピッチで3つの螺旋状の
羽根6aを並設した第2の鋼管杭となる中鋼管杭6の螺
旋状の羽根6aが埋設され、下部支持層8に対して先端
部のみに螺旋状の羽根1aを取り付けた第1の鋼管杭と
なる下鋼管杭1の螺旋状の羽根1aが埋設される。 【0026】図1に示した基礎杭の構成において、長期
許容鉛直支持力Ra1(kN)は、先端支持力係数をα
(=30)、杭先端から螺旋状の羽根1aの外径直径に
相当する下方及び上方の深さの地盤4の平均N値をN
(=50)、杭先端有効面積(m 2)をAp(=0.0
6283)、砂質土層の杭周面摩擦力度(kN/m2)をτ
s、砂質土層の内杭の周面摩擦を考慮する長さ(m)を
Ls、螺旋状の羽根1a,6aの周長(m)をψ(=
1.2566)、粘性土層の杭周面摩擦力度(kN/m2
をτc、粘性土層の内杭の周面摩擦を考慮する長さ
(m)をLcとすると、以下の式により求められる。 【0027】尚、砂質土層の杭周面摩擦力度(kN/m2
τs、砂質土層の内杭の周面摩擦を考慮する長さ(m)
Ls、粘性土層の杭周面摩擦力度(kN/m2)τc、粘性
土層の内杭の周面摩擦を考慮する長さ(m)Lcは地盤
4の各地層の土質毎に算出し、これ等の和を求める。 【0028】 【数1】 【0029】上記式により求められた図1に示す鋼管
杭の長期許容鉛直支持力Ra1は382.46(kN/
本)であった。 【0030】ここで、図2に示すように、前述と同じ地
盤4に対して、従来の施工方法により下部支持層8に先
端部のみに螺旋状の羽根1aを有する下鋼管杭1の螺旋
状の羽根1aを埋設し、他の土質にはストレートの中鋼
管杭2及び上鋼管杭2を接続して埋設した場合の長期許
容鉛直支持力Ra1(kN)は、先端支持力係数をα(=
30.0)、杭先端から螺旋状の羽根1aの外径直径に
相当する下方及び上方の深さの地盤4の平均N値をN
(=50.0)、杭先端有効面積(m2)をAp(=
0.06283)、杭周面摩擦力度(kN/m2)をτ(=
14.7)、杭の周面摩擦を考慮する長さ(m)をLf
(=4.0)、杭本体の周長(m)をψ(=0.599
1)とすると、以下の式により求められる。 【0031】 【数2】 【0032】上記式により求められた図2に示す鋼管
杭の長期許容鉛直支持力Ra1は319.79(kN/
本)であった。 【0033】また、図3に示すように、前述と同じ地盤
4に対して、比較例として下部支持層8に先端部及び全
長に亘る中間部に螺旋状の羽根5aを有する下鋼管杭5
の先端部の螺旋状の羽根5aを埋設し、他の土質にはス
トレートの中鋼管杭2及び上鋼管杭2を接続して埋設し
た場合の長期許容鉛直支持力Ra1(kN)は、前記式
により同様に求められ、図3に示す鋼管杭の長期許容鉛
直支持力Ra1は348.63(kN/本)であった。 【0034】以上のように、図2の従来例及び図3の比
較例における鋼管杭の長期許容鉛直支持力Ra1(=3
19.79(kN/本)、348.63(kN/本))と比
較しても、図1に示す本発明に係る鋼管杭の施工方法に
よれば、その鋼管杭の長期許容鉛直支持力Ra1(=3
82.46(kN/本))は向上した。 【0035】即ち、標準貫入試験によるN値が10以
上、且つ30以下の中間層7に対して全長に亘る中間部
に螺旋状の羽根6aを設けた第2の鋼管杭となる中鋼管
杭6の螺旋状の羽根6aを埋設したことで周面摩擦力を
得ることが出来、該中間層7の平均N値+5以上のN値
を有する下部支持層8に先端部のみに螺旋状の羽根1a
を設けた第1の鋼管杭となる下鋼管杭1の螺旋状の羽根
1aを埋設したことで先端支持力を得ることが出来、こ
れにより鋼管杭の引抜き耐力を向上することが出来たも
のである。 【0036】また、中間層7及び下部支持層8以外の地
層には螺旋状の羽根を有さないストレートの鋼管杭(下
鋼管杭1の先端部以外の部位と上鋼管杭2)を接続する
ことで螺旋状の羽根の部品点数を削減してコストダウン
を図ることが出来、鋼管杭を地盤4に対して回転推進さ
せる際に螺旋状の羽根による回転抵抗を極力低減出来る
ため回転トルクの増加を低減して施工性を向上し、更に
施工時間の短縮を図ることが出来る。 【0037】即ち、図1の場合の実質的な埋設施工時間
は、下鋼管杭1が5分、中鋼管杭6が7分、上鋼管杭2
が10分、全体で22分を要したが、図示しない従来の
工法で先端部及び全長に亘る中間部に螺旋状の羽根5
a,6aを設けた下鋼管杭5、中鋼管杭6、上鋼管杭6
を連結して埋設した場合には、下鋼管杭5が7分、中鋼
管杭6が9分、上鋼管杭6が12分、全体で28分程度
を要するため施工時間の短縮を図ることが出来たもので
ある。 【0038】尚、前記実施形態では、先端部のみに螺旋
状の羽根1aを設けた鋼管杭1と、全長に亘る中間部に
螺旋状の羽根6aを設けた鋼管杭6と、螺旋状の羽根を
有さないストレートの鋼管杭2を連結して埋設した場合
について説明したが、1本の鋼管杭で中間層7と下部支
持層8に対応する部位に螺旋状の羽根を設けて埋設する
場合でも良い。 【0039】 【発明の効果】本発明は、上述の如き構成と作用とを有
するので、標準貫入試験によるN値が10以上、且つ3
0以下の中間層に対して鋼管杭の中間部に設けられた螺
旋状の羽根を埋設したことで周面摩擦力を得ることが出
来、中間層の平均N値+5以上のN値を有する下部支持
層に鋼管杭の先端部に設けられた螺旋状の羽根を埋設し
たことで先端支持力を得ることが出来、これにより先端
部のみに螺旋状の羽根を設けた鋼管杭よりも鋼管杭の引
抜き耐力を向上することが出来る。 【0040】また、中間層及び下部支持層以外の地層に
は螺旋状の羽根を有さないストレートの部位を埋設する
ことで螺旋状の羽根の部品点数を削減してコストダウン
を図ることが出来、鋼管杭を地盤に対して回転推進させ
る際に螺旋状の羽根による回転抵抗を極力低減出来るた
め回転トルクの増加を低減して施工性を向上し、更に施
工時間の短縮を図ることが出来る。
DETAILED DESCRIPTION OF THE INVENTION [0001] BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a spiral blade
Of steel pipe piles buried in the ground
It relates to the construction method. [0002] 2. Description of the Related Art Conventionally, as shown in FIG.
Steel pipe pile with cutting blade, excavation claw and spiral blade 1a
1 is driven by a driver 3 to rotate the steel pipe.
The pile 1 is screwed into the ground 4 and propelled so that the steel pipe pile 1
A volume of earth and sand is automatically pressed toward the side of the pile,
A method of installing a foundation pile on a predetermined ground 4 with no earth removal is known.
ing. [0003] As shown in FIG.
And a lower steel pipe pile 1 provided with a spiral blade 1a only at its tip.
And a straight medium steel pipe pile having no spiral blade 1a
2 or the form in which the steel pipe pile 2 is connected, as shown in FIG.
As described above, the spiral blade 5a is provided at the tip portion and the middle portion over the entire length.
And a spiral wing at the middle part over the entire length
Connect the middle steel pipe pile 6 provided with the root 6a or the upper steel pipe pile 6
Is known. As shown in FIG. 5, a spiral blade is provided at the tip.
In the steel pipe pile 1 having 1a, it is expected to support the tip.
There is a spiral blade 5a in the middle as shown in FIG.
Steel pipe pile 5 with high expected bearing capacity and peripheral friction
Things. [0005] However, the above-mentioned problem is not solved.
In the conventional example, as shown in FIG.
Lower steel pipe pile 1 provided with spiral blades 1a, and spiral blade 1a
Straight steel pipe pile 2 or upper steel pipe pile 2
In the form of connection, the tip support force can be expected, but the peripheral surface
Because the frictional force cannot be expected, the type of soil of the stratum of the ground 4
Therefore, a sufficient supporting force may not be obtained. Further, as shown in FIG.
Steel pipe pile 5 provided with spiral blades 5a in the middle part
And a middle steel provided with a spiral blade 6a at an intermediate portion over the entire length.
In a mode in which the pipe pile 6 or the upper steel pipe pile 6 is connected, the ground 4
In the stratum where N value is low by the standard penetration test of
Many spiral blades 5a, 6a
Is wasted, and the steel pipe piles 5, 6 are rotationally propelled with respect to the ground 4.
Rotated by the spiral blades 5a and 6a in the middle part
Even if the ground 4 has a small N value to increase the resistance,
The workability is poor due to the increase in work
There was a problem. [0007] The present invention is to solve the above-mentioned problems,
The purpose is to use the tip support force and the peripheral friction force.
Construction method of steel pipe pile that can be expected effectively and shorten the construction time
It does not provide a law. [0008] SUMMARY OF THE INVENTION The present inventor has disclosed a tip and a middle part.
When burying steel pipe piles with spiral blades in the ground
How much tip support and peripheral friction can be obtained
Is the N value of the middle layer and the lower support layer by the standard penetration test.
And various steel pipe piles are buried in each support layer to support
And conduct tests to verify that there is sufficient bearing capacity
N value of each support layer in the range where
The construction method of the steel pipe pile according to the present invention
It is completed. The "N value" means a weight of 622.7N.
(63.5kgf) hammer free fall from height 75cm
To drive a standard penetration sampler 30cm
The number of hits required. That is, according to the present invention for achieving the above object,
The construction method of such a steel pipe pile is to provide a spiral blade at the tip.
The steel pipe pile is rotated and propelled to the specified position at the tip and middle.
Pipe pile with spiral blades installed in the ground
Construction method, provided at the tip of the steel pipe pile
N value of the spiral blade is measured by the standard penetration test.
Embedded in a lower support layer having an N value of at least N value +5,
The spiral blade provided in the middle of the pipe pile has an N value of 10 or more.
It is characterized in that it is embedded in the upper and 30 or less intermediate layers.
You. The present invention is constructed as described above.
Intermediate layer whose N value by penetration test is 10 or more and 30 or less
Helical blade provided in the middle of the steel pipe pile
With this arrangement, it is possible to obtain the peripheral friction force,
The tip of the steel pipe pile is placed on the lower support layer having an average N value +5 or more.
By burying the spiral blade provided at the end,
Helical force can be obtained, so that only the tip
Pull-out strength of steel pipe piles is better than steel pipe piles with blades
You can do it. In the formation other than the intermediate layer and the lower support layer,
Do not bury straight sections that do not have spiral blades.
To reduce the number of parts of spiral blades and reduce costs
The steel pipe pile is rotated and propelled with respect to the ground.
In order to minimize rotational resistance due to the spiral blades,
Improve workability by reducing increase in rotational torque, and further work
Time can be reduced. For example, a spiral blade is provided only at the tip.
A first steel pipe pile that is connected to the first steel pipe pile, and
Steel pipe provided with spiral blades in the middle part over the entire length
Pile is prepared and N value by standard penetration test is 10 or more, and
Spiral of the second steel pipe pile for no more than 30 intermediate layers
Buried the wings, the average N value of the intermediate layer + N value of 5 or more
Spiral blades of the first steel pipe pile on a lower support layer having
Is preferably embedded. And, other than the intermediate layer and the lower support layer,
For the stratum, a straight steel pipe pile without spiral blades
It is preferable to connect. [0015] BRIEF DESCRIPTION OF THE DRAWINGS FIG.
One embodiment of the construction method will be specifically described. FIG. 1 shows the present invention.
Only the tip of the lower support layer due to the construction method of the steel pipe pile according to
Buried spiral blades of steel pipe pile with spiral blades
Then, a spiral blade was provided at an intermediate portion over the entire length of the intermediate layer.
Spiral blades of steel pipe piles are buried, and other soil
Column diagram showing the connection of steel pipe piles
Fig. 2 shows only the tip of the lower support layer by the conventional construction method.
Burying spiral blades of steel pipe piles with spiral blades,
A straight steel pipe pile is buried in other soil.
Soil column diagram, Fig. 3 shows a comparative example,
Of a steel pipe pile with a spiral blade at the middle part over the entire length
Buried spiral blades, straight steel pipe pile for other soil
FIG. 3 is a soil column diagram showing a state of connecting and burying. The ground 4 shown in FIG. 1 to FIG.
Up to a depth of 6.4m, the N value by the standard penetration test is 1 to
The range is about 2 and the depth is about 6.9m to 10.4m
Degrees constitute the intermediate layer 7 and its N value is about 10-18.
The average N value is about 13 over the range. Further, from a depth of 11.3 m to about 14.3 m
Changes again in the range of 1 to 3 as the N value decreases,
N value rises gradually from 15.4m to 17.3m
In the range of about 10 to 20 and a depth of 17.3m
The N value rises rapidly to about 18.2m and reaches 50
I do. The N value after the depth of about 18.2 m is 50.
maintain. The lower support layer 8 has an average N value of 13 of the intermediate layer 7.
The ground which is deeper than 17.1m which becomes N value more than 18 which added 5
It is composed of layers. The gravel layer at a depth of 18m or less is equivalent to 50
It is a stratum having the above N value. In the method for constructing a steel pipe pile according to the present invention,
According to various experimental results, the middle layer 7 was subjected to the standard penetration test.
N value of 10 or more and 30 or less is applicable.
The part support layer 8 has an N value equal to or more than the average N value of the intermediate layer 7 +5
It is applicable when The thickness of the middle layer 7 is 2
m or more is preferable. The method for constructing a steel pipe pile according to the present invention is shown in FIG.
As shown and described above, first, only the cutting edge and
The first steel pipe pile to which the nail and the spiral blade 1a are attached is used.
Lower steel pipe pile 1 attached to the leader of a self-propelled device (not shown)
The lowering is performed by rotating the
The steel pipe pile 1 is screwed into the ground 2 and propelled. Next, the driver 3 is removed from the lower steel pipe pile 1.
And three spirals at a pitch of 2 m in the middle part over the entire length.
The middle steel pipe pile 6, which is the second steel pipe pile with the blades 6a juxtaposed, is
Connect the middle steel pipe pile 6 to the lower steel pipe pile 1 by attaching to the driver 3
And by similarly propulsion by the driver 3
The middle steel pipe pile 6 and the lower steel pipe pile 1 are integrally twisted to the ground 2.
Promote. Further, the driver 3 is removed from the middle steel pipe pile 6.
And attach the straight upper steel pipe pile 2 to the driver 3
The upper steel pipe pile 2 is connected to the middle steel pipe pile 6 and the driver 3
The upper steel pipe pile 2, the middle steel pipe
The pile 6 and the lower steel pipe pile 1 are integrally screwed into the ground 2 and propelled.
Let it. At this time, the main body of the lower steel pipe pile 1 and the main body of the middle steel pipe pile 6
And the soil of the volume of the upper steel pipe pile 2 is automatically transferred to the side of the pile.
To the foundation pile on the specified ground 2 with no vibration and no earth removal.
Can be installed. In this embodiment, one lower steel pipe pile is used.
Body, medium steel pipe pile 6 body and upper steel pipe pile 2 body
6m, outer diameter 190.7mm, thickness 7.0mm
It is. In addition, the spiral shape provided at the tip of the lower steel pipe pile 1
The outer diameter of the blade 1a is 400 mm and the thickness is 19 mm.
It is. In addition, the steel pipe pile 6 is provided at an intermediate portion over the entire length.
The outer diameter of the spiral wing 6a is 400 mm,
The height is 9 mm. Then, as shown in FIG.
And 3 spirals at 2m pitch in the middle part over the entire length
The screw of the middle steel pipe pile 6 which becomes the second steel pipe pile with the blades 6a juxtaposed
The spiral blade 6a is buried, and the tip is
A first steel pipe pile with a spiral blade 1a attached only to the
The spiral blade 1a of the lower steel pipe pile 1 is buried. In the structure of the foundation pile shown in FIG.
The allowable vertical supporting force Ra1 (kN) is obtained by calculating the tip supporting force coefficient by α
(= 30), from the tip of the pile to the outer diameter of the spiral blade 1a
The average N value of the ground 4 at the corresponding lower and upper depths is N
(= 50), pile tip effective area (m Two) To Ap (= 0.0
6283), Friction of sand surface of sandy soil layer (kN / mTwo) To τ
s, length (m) considering the peripheral friction of the inner pile of sandy soil layer
Ls, the circumference (m) of the spiral blades 1a, 6a is represented by ψ (=
1.2566), frictional force around the pile surface of cohesive soil layer (kN / mTwo)
Is τc, the length considering the peripheral friction of the inner pile of the cohesive soil layer
When (m) is Lc, it is obtained by the following equation. Incidentally, the frictional strength of the sand surface of the sandy soil layer (kN / mTwo)
τs, length taking into account the peripheral friction of the inner pile of sandy soil layer (m)
Ls, frictional force around the pile surface of cohesive soil layer (kN / mTwo) Τc, viscosity
The length (m) Lc taking into account the peripheral friction of the inner pile of the soil layer is the ground
Calculate for each soil of each layer of 4 and calculate the sum of them. [0028] (Equation 1) The steel pipe shown in FIG. 1 obtained by the above equation
The long-term allowable vertical bearing capacity Ra1 of the pile is 382.46 (kN /
Book). Here, as shown in FIG.
For the board 4, the lower support layer 8 is
Spiral of lower steel pipe pile 1 having spiral blade 1a only at the end
-Shaped blades 1a are buried.
Long-term permit when pipe pile 2 and upper steel pipe pile 2 are connected and buried
The vertical supporting force Ra1 (kN) is calculated by setting the tip supporting force coefficient to α (=
30.0), from the tip of the pile to the outer diameter of the spiral blade 1a
The average N value of the ground 4 at the corresponding lower and upper depths is N
(= 50.0), effective area of pile tip (mTwo) To Ap (=
0.06283), pile surface friction force (kN / mTwo) To τ (=
14.7) The length (m) considering the peripheral friction of the pile is Lf
(= 4.0), the perimeter (m) of the pile body was set to ψ (= 0.599
Assuming 1), it is obtained by the following equation. [0031] (Equation 2) The steel pipe shown in FIG. 2 obtained by the above equation
The long-term allowable vertical bearing capacity Ra1 of the pile is 319.79 (kN /
Book). Also, as shown in FIG.
As a comparative example, the tip portion and the entire
Lower steel pipe pile 5 having spiral blades 5a in the middle part over the length
The spiral blade 5a at the tip of the
Connect the middle steel pipe pile 2 and the upper steel pipe pile 2 of the trait and bury them
The long-term allowable vertical bearing force Ra1 (kN) in the case of
And the long-term allowable lead of the steel pipe pile shown in Fig. 3.
The direct supporting force Ra1 was 348.63 (kN / piece). As described above, the conventional example shown in FIG.
Long-term allowable vertical bearing capacity Ra1 (= 3) of steel pipe piles in comparative example
19.79 (kN / line), 348.63 (kN / line))
Compared with the method for constructing a steel pipe pile according to the present invention shown in FIG.
According to this, the long-term allowable vertical bearing capacity Ra1 (= 3
82.46 (kN / piece)). That is, the N value obtained by the standard penetration test is 10 or less.
Upper and middle portions over the entire length of the middle layer 7 of 30 or less
Steel pipe serving as a second steel pipe pile provided with spiral blades 6a
By embedding the spiral blade 6a of the pile 6, the peripheral frictional force is reduced.
Average N value of the intermediate layer 7 + N value of 5 or more
Spiral blade 1a only at the tip portion on lower support layer 8 having
Spiral blade of lower steel pipe pile 1 which becomes the first steel pipe pile provided with
By embedding 1a, it is possible to obtain the tip support force.
As a result, the pull-out strength of the steel pipe pile was improved.
It is. The ground other than the intermediate layer 7 and the lower support layer 8
The layers are straight steel pipe piles without spiral blades (below
Connect parts other than the tip of steel pipe pile 1 to upper steel pipe pile 2)
This reduces the number of spiral blade parts and reduces costs
And the steel pipe pile is rotationally propelled with respect to the ground 4.
Rotation resistance due to spiral blades can be reduced as much as possible
Therefore, the increase in rotational torque is reduced to improve workability,
The construction time can be shortened. That is, the substantial burying time in the case of FIG.
The lower steel pipe pile 1 is 5 minutes, the middle steel pipe pile 6 is 7 minutes, the upper steel pipe pile 2
Took 10 minutes and 22 minutes in total, but the conventional
Spiral blades 5 at the tip and the middle over the entire length
a, 6a provided lower steel pipe pile 5, middle steel pipe pile 6, upper steel pipe pile 6
When the steel pipe pile 5 is connected and buried, the lower steel pipe pile 5
Pipe pile 6 for 9 minutes, upper steel pipe pile 6 for 12 minutes, about 28 minutes in total
Required to reduce the construction time.
is there. In the above embodiment, a spiral is formed only at the tip end.
Steel pipe pile 1 provided with blade-like blades 1a and an intermediate portion over the entire length
A steel pipe pile 6 provided with a spiral blade 6a and a spiral blade
When buried by connecting straight steel pipe piles 2 without
Was explained, but the middle layer 7 and the lower support
Spiral blades are provided at the site corresponding to the holding layer 8 and embedded.
Even if good. [0039] The present invention has the above-described configuration and operation.
The N value by the standard penetration test is 10 or more and 3
Screws provided in the middle part of the steel pipe pile for the middle layer of 0 or less
It is possible to obtain the peripheral friction force by embedding the spiral blade.
Since then, the lower support with the average N value of the middle layer + N value more than 5
Spiral blades provided at the tip of the steel pipe pile are embedded in the layer.
The end support can be obtained by this
Of steel pipe piles rather than steel pipe piles with spiral blades
The pullout strength can be improved. In addition, in the formation other than the intermediate layer and the lower support layer,
Embeds straight sections without spiral wings
This reduces the number of spiral blade parts and reduces costs
The steel pipe pile is rotated and propelled with respect to the ground.
The rotational resistance of the helical blades
To increase workability by reducing the increase in rotational torque.
Work time can be reduced.

【図面の簡単な説明】 【図1】本発明に係る鋼管杭の施工方法により下部支持
層に先端部のみに螺旋状の羽根を有する鋼管杭の螺旋状
の羽根を埋設し、中間層に全長に亘る中間部に螺旋状の
羽根を設けた鋼管杭の螺旋状の羽根を埋設し、他の土質
にはストレートの鋼管杭を接続して埋設した様子を示す
土質柱状図である。 【図2】従来の施工方法により下部支持層に先端部のみ
に螺旋状の羽根を有する鋼管杭の螺旋状の羽根を埋設
し、他の土質にはストレートの鋼管杭を埋設した様子を
示す土質柱状図である。 【図3】比較例として下部支持層に先端部及び全長に亘
る中間部に螺旋状の羽根を設けた鋼管杭の螺旋状の羽根
を埋設し、他の土質にはストレートの鋼管杭を接続して
埋設した様子を示す土質柱状図である。 【図4】螺旋状の羽根を設けた鋼管杭を回転推進させて
地盤に埋設する様子を示す図である。 【図5】先端部のみに螺旋状の羽根を設けた鋼管杭の構
成を示す図である。 【図6】全長に亘る中間部に螺旋状の羽根を設けた鋼管
杭の構成を示す図である。 【符号の説明】 1…下鋼管杭(鋼管杭) 1a…螺旋状の羽根 2…中鋼管杭或いは上鋼管杭 3…ドライバ 4…地盤 5…下鋼管杭(鋼管杭) 5a…螺旋状の羽根 6…中鋼管杭或いは上鋼管杭(鋼管杭) 6a…螺旋状の羽根 7…中間層 8…下部支持層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a method for constructing a steel pipe pile according to the present invention, in which a spiral blade of a steel pipe pile having a spiral blade only at its tip is buried in a lower support layer, and a full length is placed in an intermediate layer. FIG. 5 is a soil column diagram showing a state in which a spiral blade of a steel pipe pile having a spiral blade provided in an intermediate portion extending over the same is buried, and a straight steel pipe pile is connected and buried in another soil. FIG. 2 shows a state in which a spiral blade of a steel pipe pile having a spiral blade only at a tip portion is buried in a lower support layer by a conventional construction method, and a straight steel pipe pile is buried in another soil. FIG. FIG. 3 As a comparative example, a spiral wing of a steel pipe pile having a spiral wing provided at a tip portion and an intermediate portion over the entire length of a lower support layer is buried, and a straight steel pipe pile is connected to other soils. It is a soil column figure which shows a mode that it was buried. FIG. 4 is a diagram showing a state in which a steel pipe pile provided with spiral blades is rotatably propelled and buried in the ground. FIG. 5 is a diagram showing a configuration of a steel pipe pile provided with spiral blades only at the tip. FIG. 6 is a view showing a configuration of a steel pipe pile provided with spiral blades at an intermediate portion over the entire length. [Description of Signs] 1 ... Lower steel pipe pile (steel pipe pile) 1a ... spiral blade 2 ... middle steel pipe pile or upper steel pipe pile 3 ... driver 4 ... ground 5 ... lower steel pipe pile (steel pipe pile) 5a ... spiral blade 6: Middle steel pipe pile or upper steel pipe pile (steel pipe pile) 6a: spiral blade 7: middle layer 8: lower support layer

Claims (1)

【特許請求の範囲】 【請求項1】 先端部に螺旋状の羽根を設けた鋼管杭を
回転推進させて先端部及び中間部の所定位置に螺旋状の
羽根を設けた鋼管杭を地盤に埋設する鋼管杭の施工方法
であって、 前記鋼管杭の先端部に設けられた螺旋状の羽根を標準貫
入試験によるN値が中間層の平均N値+5以上のN値を
有する下部支持層に埋設し、該鋼管杭の中間部に設けら
れた螺旋状の羽根をN値が10以上、且つ30以下の中
間層に埋設することを特徴とする鋼管杭の施工方法。
Claims: 1. A steel pipe pile provided with a spiral blade at a tip portion is rotationally propelled to bury a steel pipe pile provided with a spiral blade at a predetermined position at a tip portion and an intermediate portion in the ground. A method for constructing a steel pipe pile, comprising: burying a spiral blade provided at a tip of the steel pipe pile in a lower support layer having an N value obtained by a standard penetration test whose average N value is equal to or greater than an average N value of an intermediate layer + 5. A method for constructing a steel pipe pile, comprising: burying a spiral blade provided at an intermediate portion of the steel pipe pile in an intermediate layer having an N value of 10 or more and 30 or less.
JP2001270271A 2001-09-06 2001-09-06 Execution method of steel pipe pile Pending JP2003074057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270271A JP2003074057A (en) 2001-09-06 2001-09-06 Execution method of steel pipe pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270271A JP2003074057A (en) 2001-09-06 2001-09-06 Execution method of steel pipe pile

Publications (1)

Publication Number Publication Date
JP2003074057A true JP2003074057A (en) 2003-03-12

Family

ID=19095943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270271A Pending JP2003074057A (en) 2001-09-06 2001-09-06 Execution method of steel pipe pile

Country Status (1)

Country Link
JP (1) JP2003074057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110044766A1 (en) * 2009-08-18 2011-02-24 Crux Subsurface, Inc. Micropile Foundation Matrix
US9828739B2 (en) 2015-11-04 2017-11-28 Crux Subsurface, Inc. In-line battered composite foundations
KR20240029557A (en) 2021-08-05 2024-03-05 제이에프이 스틸 가부시키가이샤 Rotation penetration steel pipe piles, construction method of rotation penetration steel pipe piles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318238U (en) * 1989-07-05 1991-02-22
JPH08284160A (en) * 1995-04-17 1996-10-29 Sumitomo Metal Ind Ltd Steel pipe pile with spiral blade

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318238U (en) * 1989-07-05 1991-02-22
JPH08284160A (en) * 1995-04-17 1996-10-29 Sumitomo Metal Ind Ltd Steel pipe pile with spiral blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110044766A1 (en) * 2009-08-18 2011-02-24 Crux Subsurface, Inc. Micropile Foundation Matrix
US8974150B2 (en) * 2009-08-18 2015-03-10 Crux Subsurface, Inc. Micropile foundation matrix
US9290901B2 (en) 2009-08-18 2016-03-22 Crux Subsurface, Inc. Micropile foundation matrix
US9828739B2 (en) 2015-11-04 2017-11-28 Crux Subsurface, Inc. In-line battered composite foundations
KR20240029557A (en) 2021-08-05 2024-03-05 제이에프이 스틸 가부시키가이샤 Rotation penetration steel pipe piles, construction method of rotation penetration steel pipe piles

Similar Documents

Publication Publication Date Title
JP5265500B2 (en) Pile digging method, foundation pile structure
JP4713297B2 (en) Foundation structure and construction method of foundation structure
JP2004270440A (en) Construction method for foundation pile, and prefabricated pile
JP2003074057A (en) Execution method of steel pipe pile
JPH01142122A (en) Small-diameter steel tubular pile
JP4207263B2 (en) Threaded steel pipe pile and construction method of screwed steel pipe pile
JP5133625B2 (en) Steel pipe pile
JP4085492B2 (en) Winged screw pile
CN201843077U (en) Pile casing used on high-oblique rocky river bed of shallow soil covering layer
JP3989224B2 (en) Pile burial equipment
JP2003074056A (en) Execution method of steel pipe pile
JP4584512B2 (en) Ready-made pile with soil cement synthetic blade
JP2590157Y2 (en) Multi-wing conical steel pipe pile
JP3661863B2 (en) Expanded bottom plate for rotating buried steel pipe pile, and method of attaching the expanded plate to the rotated buried steel pipe pile
JP2002201638A (en) Soil-cement composite pile and construction method thereof
JP4408757B2 (en) Embedded pile
JP4156313B2 (en) Rotating method for ready-made piles
JP6810231B2 (en) Ready-made pile
JPS6351209B2 (en)
JP2001303563A (en) Method for constructing concrete pile combined with soil cement
JP2003336254A (en) Concrete pile and construction method of foundation structure by use thereof
JP7168328B2 (en) Slope reinforcement work and construction method of slope reinforcement work
JPH0627405B2 (en) Ready-made pile burying method
JP2001303561A (en) Method for constructing outer-shell steel-pipe concrete pile combined with soil cement
JP2000080649A (en) Rotary press-in pile and execution control method therefor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20080131

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A02