JP2003073750A - Method for leaching sulfide ore containing copper pyrite - Google Patents

Method for leaching sulfide ore containing copper pyrite

Info

Publication number
JP2003073750A
JP2003073750A JP2001256442A JP2001256442A JP2003073750A JP 2003073750 A JP2003073750 A JP 2003073750A JP 2001256442 A JP2001256442 A JP 2001256442A JP 2001256442 A JP2001256442 A JP 2001256442A JP 2003073750 A JP2003073750 A JP 2003073750A
Authority
JP
Japan
Prior art keywords
leaching
copper
sulfide ore
ore containing
chalcopyrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001256442A
Other languages
Japanese (ja)
Other versions
JP3460708B2 (en
Inventor
Hiroshi Miyagawa
博 宮川
Koji Hoshino
浩二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001256442A priority Critical patent/JP3460708B2/en
Publication of JP2003073750A publication Critical patent/JP2003073750A/en
Application granted granted Critical
Publication of JP3460708B2 publication Critical patent/JP3460708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for leaching a sulfide ore containing copper pyrite, in which the sulfide ore containing copper pyrite is chemically leached in versatile conditions in a practical operation level. SOLUTION: The method for leaching the sulfide ore containing copper pyrite by using sulfuric acid, comprises measuring a period for a potential of the pulp to reach 400 mV when measured with a saturated calomel electrode, and a leaching rate of copper, beforehand, charging a raw material containing a copper quantity leachable by the time when the electric potential calculated from the period and the leaching rate reaches 400 mV, and leaching it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、銅の主要な鉱石と
なる鉱物である黄銅鉱を含む硫化鉱を、ケミカル浸出す
る方法に関する。
TECHNICAL FIELD The present invention relates to a method for chemically leaching a sulfide ore containing chalcopyrite which is a mineral that becomes a major copper ore.

【0002】[0002]

【従来の技術】鉱石から銅(Cu)を得る場合、従来の
乾式製錬法に対して、湿式製錬法は、設備投資が少な
く、フレキシブルな操業が行え、山元で直接銅地金がで
きるなどの利点があり、酸化銅鉱から二次硫化銅鉱まで
適用されており、硫酸浸出の方法として、例えば、硫酸
酸性下で鉱石粒度や温度などを調整して行うケミカル浸
出と、常温で鉄酸化細菌を用いたバクテリア浸出とが挙
げられる。
2. Description of the Related Art In the case of obtaining copper (Cu) from an ore, the hydrometallurgical method requires less equipment investment and can be operated flexibly in comparison with the conventional dry metallurgical method, and the copper ingot can be directly produced at the mountainside. There are advantages such as copper oxide ore and secondary copper sulfide ore are applied, and as a method of sulfuric acid leaching, for example, chemical leaching performed by adjusting the ore grain size and temperature under sulfuric acid acidity, and iron oxidizing bacteria at room temperature Leaching with bacteria.

【0003】しかしながら、銅の資源として広く用いら
れている黄銅鉱を含む硫化鉱は、硫酸浸出困難な鉱物と
して知られており、高温、強酸、高圧などの過酷な条件
でなければ浸出しないため、種々の検討がなされてい
る。
However, sulfide ores containing chalcopyrite, which is widely used as a resource of copper, is known as a mineral that is difficult to leach with sulfuric acid, and it does not leach unless it is harsh conditions such as high temperature, strong acid, and high pressure. Various studies have been made.

【0004】例えば、米国特許第5730776号には
反応促進剤として石炭などの炭素質を添加する技術が提
案されている。しかしながら、浸出反応温度が90〜2
20℃、圧力が100〜3000kPaと厳しい条件で
あるという問題がある。
For example, US Pat. No. 5,730,776 proposes a technique of adding carbonaceous matter such as coal as a reaction accelerator. However, the leaching reaction temperature is 90 to 2
There is a problem that the conditions are severe at 20 ° C. and pressure of 100 to 3000 kPa.

【0005】例えば、米国特許第4343773号に
は、溶液の電気導電率を高めるために黒鉛などの炭素を
添加する技術が提案され、また、米国特許第41152
21号、米国特許第6159435号、特開2000−
515585などには、三価の鉄をリサイクルして継続
的に添加することにより、銅を浸出するという方法が提
案されている。
For example, US Pat. No. 4,343,773 proposes a technique of adding carbon such as graphite in order to increase the electric conductivity of a solution, and US Pat.
21, US Pat. No. 6,159,435, JP 2000-
In 515585 and the like, a method of leaching copper by recycling trivalent iron and continuously adding it has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た技術では、三価の鉄の濃度を上昇させると、銅の浸出
速度が途中で著しく低下し、浸出が最後まで維持されな
いという問題がある。
However, in the above-mentioned technique, when the concentration of trivalent iron is increased, there is a problem that the leaching rate of copper is remarkably decreased on the way and the leaching is not maintained until the end.

【0007】また、黒鉱型の複雑硫化鉱中の黄銅鉱は、
選鉱が難しく、高品位な銅精鉱が得られないものが多
い。このような精鉱は乾式精錬の原料としては使用でき
ず、これらを原料とする湿式精錬の開発が期待されてい
る。
Further, chalcopyrite in the Kuroko type complex sulfide ore is
Beneficiation is difficult and there are many cases in which high-quality copper concentrate cannot be obtained. Such concentrate cannot be used as a raw material for dry refining, and development of hydrometallurgy using these as raw materials is expected.

【0008】本発明は、このような事情に鑑み、黄銅鉱
を含む硫化鉱を実操業レベルで汎用性ある条件でケミカ
ル浸出する黄銅鉱を含む硫化鉱の浸出方法を提供するこ
とを課題とする。
In view of such circumstances, it is an object of the present invention to provide a method for leaching a sulfide ore containing chalcopyrite which chemically leaches a sulfide ore containing chalcopyrite under practical and versatile conditions. .

【0009】[0009]

【課題を解決するための手段】前記課題を解決する本発
明の第1の態様は、黄銅鉱を含む硫化鉱を硫酸を用いて
浸出する方法であって、飽和カロメル電極で測定したパ
ルプの電位が400mVになるまでの期間と銅の浸出速
度を予め測定し、前記期間及び浸出速度から算出される
前記電位が400mVになるまでに浸出可能な銅量の原
料を仕込んで浸出を行うことを特徴とする黄銅鉱を含む
硫化鉱の浸出方法にある。
A first aspect of the present invention for solving the above-mentioned problems is a method of leaching sulfide ore containing chalcopyrite with sulfuric acid, which is a potential of pulp measured with a saturated calomel electrode. Is measured in advance and the leaching rate of copper is measured, and leaching is performed by charging a raw material in an amount of copper that can be leached until the potential calculated from the period and the leaching rate becomes 400 mV. It is a method of leaching sulfide ores containing chalcopyrite.

【0010】かかる第1の態様では、浸出反応が最後ま
で低下することなく迅速に且つ継続的に進み、銅材料が
残存することがない。
In the first aspect, the leaching reaction proceeds rapidly and continuously without lowering to the end, and the copper material does not remain.

【0011】本発明の第2の態様は、第1の態様におい
て、黄鉄鉱が共存する硫化鉱を用いることを特徴とする
黄銅鉱を含む硫化鉱の浸出方法にある。
A second aspect of the present invention is the method for leaching sulfide ore containing chalcopyrite, which is characterized in that, in the first aspect, sulfide ore coexisting with pyrite is used.

【0012】かかる第2の態様では、黄銅鉱と黄鉄鉱の
ガルバニック効果により、銅浸出反応が促進される。
In the second aspect, the copper leaching reaction is promoted by the galvanic effect of chalcopyrite and pyrite.

【0013】本発明の第3の態様は、第1又は2の態様
において、銅品位が5〜10%の硫化鉱を用いることを
特徴とする黄銅鉱を含む硫化鉱の浸出方法にある。
A third aspect of the present invention is the method for leaching sulfide ore containing chalcopyrite, characterized in that the sulfide ore having a copper grade of 5 to 10% is used in the first or second aspect.

【0014】かかる第3の態様では、選鉱困難な複雑硫
化鉱などに対しても適用可能となる。
The third aspect can be applied to complex sulfide ores that are difficult to be processed.

【0015】本発明の第4の態様は、第1〜3の何れか
の態様において45℃〜55℃で浸出を行うことを特徴
とする黄銅鉱を含む硫化鉱の浸出方法にある。
A fourth aspect of the present invention is a leaching method for sulfide ore containing chalcopyrite, which is characterized in that leaching is performed at 45 ° C. to 55 ° C. in any one of the first to third aspects.

【0016】かかる第4の態様では、比較的低温で浸出
反応が迅速に且つ最後まで維持される。
In the fourth aspect, the leaching reaction is maintained quickly and completely at a relatively low temperature.

【0017】かかる本発明では、銅品位5〜10%の精
鉱を用いても、1000mg/L/day以上で銅を浸
出させることができ、途中で浸出が停止することがな
く、原料を無駄にすることなく、最後まで浸出すること
ができる。
According to the present invention, copper can be leached at 1000 mg / L / day or more even if a concentrate having a copper grade of 5 to 10% is used, and the leaching does not stop midway, and the raw material is wasted. Can be leached to the end without having to.

【0018】以下、本発明の構成をさらに詳細に説明す
る。
The structure of the present invention will be described in more detail below.

【0019】本発明は、黄銅鉱(化学式:CuFe
)を含む硫化鉱を、硫酸浸出する際には、下記反応
式(1)〜(3)に示される反応が生じ、(1)〜
(3)の反応がバランスよく進行すると、銅浸出速度が
早くなり、継続的に浸出が進むという知見に基づく。
The present invention relates to chalcopyrite (chemical formula: CuFe
When the sulfide ore containing S 2 ) is leached with sulfuric acid, the reactions represented by the following reaction formulas (1) to (3) occur, and (1) to (3)
It is based on the knowledge that when the reaction of (3) progresses in a well-balanced manner, the copper leaching rate becomes faster and the leaching proceeds continuously.

【0020】すなわち、黄銅鉱の浸出では、黄銅鉱に対
して浸出液中のFe3+が酸化剤として働き、(1)の
反応式に従ってCuが浸出される。
That is, in the leaching of chalcopyrite, Fe 3+ in the leachate acts on the chalcopyrite as an oxidizing agent, and Cu is leached according to the reaction formula (1).

【0021】(1)式において酸化剤となるFe
3+は、(2)の反応式で表されるエアレーションによ
りFe2+が酸化されることにより、供給される。
Fe as an oxidizer in the formula (1)
3+ is supplied by oxidizing Fe 2+ by aeration represented by the reaction formula (2).

【0022】また、(1)式のCuの浸出反応によって
生成したS等は、例えば、(3)の反応式により酸化
される。
Further, S 0 and the like produced by the Cu leaching reaction of the formula (1) are oxidized by the reaction formula of the (3), for example.

【0023】[0023]

【化1】 CuFeS+4Fe3+ → Cu2++5Fe2++2S (1)Embedded image CuFeS 2 + 4Fe 3+ → Cu 2+ + 5Fe 2+ + 2S 0 (1)

【0024】[0024]

【化2】 Fe2++1/2O+2H → Fe3++HO (2)Embedded image Fe 2+ + 1 / 2O 2 + 2H + → Fe 3+ + H 2 O (2)

【0025】[0025]

【化3】 S+3/2O+HO → HSO (3)Embedded image S 0 + 3 / 2O 2 + H 2 O → H 2 SO 4 (3)

【0026】ここで、(1)〜(3)に示される反応を
バランスよく進行させるためには、飽和カロメル電極で
測定したパルプの電位(以下「酸化還元電位」という)
が400mVを越えないように反応を維持するのが好ま
しいことを知見した。すなわち、Fe3+を添加しすぎ
ると、酸化還元電位が400mVを越えてしまい、銅浸
出速度が著しく低下することがわかった。
Here, in order to proceed the reactions shown in (1) to (3) in a well-balanced manner, the pulp potential measured by a saturated calomel electrode (hereinafter referred to as "oxidation-reduction potential").
It was found that it is preferable to maintain the reaction so that the voltage does not exceed 400 mV. That is, it was found that if Fe 3+ is added too much, the oxidation-reduction potential exceeds 400 mV, and the copper leaching rate is significantly reduced.

【0027】前述の(1)〜(3)の銅浸出反応が進む
に従い、酸化還元電位が高くなっていくが、酸化還元電
位と銅浸出量は、図1に示すように酸化還元電位が38
0〜400mV程度のときに銅浸出量が最大となる。
As the copper leaching reaction of the above (1) to (3) progresses, the redox potential increases, but the redox potential and the copper leaching amount are as shown in FIG.
The amount of copper leaching becomes maximum when it is about 0 to 400 mV.

【0028】酸化還元電位が400mVより高くなる
と、前記(1)式の反応が速く進むが、S等の反応生
成物量も増え、S等の反応生成物に黄銅鉱表面が覆わ
れるため、(1)式の反応が遅くなり、Cuの浸出量が
少なくなると考えられる。
When the redox potential is higher than 400 mV, the reaction of the above formula (1) proceeds rapidly, but the amount of reaction products such as S 0 also increases and the surface of chalcopyrite is covered with the reaction products such as S 0 . It is considered that the reaction of the equation (1) becomes slow and the amount of Cu leached out becomes small.

【0029】また、浸出液中に酸化剤であるFe3+
多すぎると、(1)式の反応が急激に進み反応生成物に
黄銅鉱表面が覆われるためCuが浸出されにくくなる。
なお、酸素による硫黄の酸化反応は(1)、(2)式の
反応に比べて遅いので、コーティングした硫黄は溶けな
い。
If the leaching solution contains too much Fe 3+ as the oxidant, the reaction of the formula (1) will proceed rapidly and the surface of the chalcopyrite will be covered with the reaction product, so that Cu will not be leached easily.
Since the oxidation reaction of sulfur with oxygen is slower than the reactions of the equations (1) and (2), the coated sulfur is not dissolved.

【0030】従って、本発明では、酸化還元電位が40
0mVになるまでに、浸出可能な銅の原料を仕込み、銅
の浸出を行う。これにより、銅の浸出速度が高度に維持
され、また、銅の浸出速度が低下する頃には銅が残存せ
ず、無駄なく次の仕込みを行うことができる。
Therefore, in the present invention, the redox potential is 40%.
By the time of reaching 0 mV, a leaching copper raw material is charged and copper leaching is performed. As a result, the copper leaching rate is maintained at a high level, and the copper does not remain when the copper leaching rate decreases, and the next preparation can be performed without waste.

【0031】このような仕込みは、浸出設備によっても
異なるが、浸出終了後の浸出液の銅濃度が、4〜6g/
L程度となるように浮選精鉱の銅品位及びパルプ濃度を
調整するようにすればよい。
Although such preparation differs depending on the leaching equipment, the copper concentration in the leaching solution after the leaching is 4 to 6 g /
The copper grade and pulp concentration of the flotation concentrate may be adjusted so as to be about L.

【0032】このように、酸化還元電位が400mVに
なるまでに、浸出可能な銅の原料を仕込むと、銅の浸出
を効果的に行うことができる。なお、本発明の浸出方法
では、他の条件は特に限定されない。
As described above, when the raw material of copper that can be leached is charged before the redox potential reaches 400 mV, the leaching of copper can be effectively performed. In the leaching method of the present invention, other conditions are not particularly limited.

【0033】本発明では、黄鉄鉱が共存する状態で浸出
を行うのが好ましい。一般的には、黄鉄鉱が共存しない
ように銅の精鉱を行うが、黄鉄鉱を除去するのは困難で
あった。しかしながら、本発明では、黄鉄鉱が共存した
方が浸出速度が向上することを知見した。
In the present invention, it is preferable that the leaching is carried out in the presence of pyrite. Generally, copper is concentrated so that pyrite does not coexist, but it is difficult to remove the pyrite. However, in the present invention, it has been found that the coexistence of pyrite improves the leaching rate.

【0034】このように、黄鉄鉱混入量(以下「鉄品
位」という)が高くなるに従い、銅浸出速度が大きくな
るのは、黄鉄鉱は黄銅鉱よりも自然電位が高いため、黄
銅鉱と接触した際に、ガルバニック効果により銅の浸出
が促進されると考えられる。
As described above, the higher the content of pyrite (hereinafter referred to as "iron grade"), the higher the copper leaching rate is because the natural potential of pyrite is higher than that of chalcopyrite. Moreover, it is thought that the galvanic effect promotes the leaching of copper.

【0035】つまり、銅の浸出速度は電位の影響によ
り、鉄品位が高いほど早くなるので、わざわざ選鉱せず
に黄鉄鉱が共存する状態で浸出するのが好ましい。従っ
て、本発明では銅品位が5〜10%程度の複雑硫化鉱で
あっても、1000mg/L/day以上で銅を浸出さ
せることができる。
That is, since the leaching rate of copper becomes faster as the iron quality becomes higher due to the influence of the electric potential, it is preferable to leach in the state where pyrite coexists without purposely selecting. Therefore, in the present invention, copper can be leached at 1000 mg / L / day or more even for complex sulfide ore having a copper grade of about 5 to 10%.

【0036】一方、閃亜鉛鉱は、黄銅鉱より多くない方
が好ましい。すなわち、閃亜鉛鉱は黄銅鉱に優先して浸
出され、溶液中のFe3+や硫酸を消化してしまい、黄
銅鉱の浸出を阻害し、遅延させるからである。しかしな
がら、Zn品位がCu品位より低いと影響はないので、
Zn品位がCu品位より低いものを用いるのが好まし
い。
On the other hand, it is preferable that the amount of sphalerite is not more than that of chalcopyrite. That is, sphalerite is leached preferentially to chalcopyrite and digests Fe 3+ and sulfuric acid in the solution to inhibit and delay leaching of chalcopyrite. However, if the Zn quality is lower than the Cu quality, there is no effect, so
It is preferable to use one having a Zn quality lower than that of Cu.

【0037】本発明は、一般的なケミカル浸出と同様
に、硫酸を添加して加熱しながらエアレーションを行う
ことにより、銅を浸出する。一般的には温度が高いほど
浸出速度が高いといわれているが、本発明では、浸出温
度は45℃〜55℃とするのが好ましい。これは、温度
があまり高いと、前記(1)式の反応が早く進みすぎて
硫黄等のコーティングの影響を受けてしまうため、浸出
速度は遅くなるからだと推測される。従って、本発明で
は、45℃〜55℃、特に、50℃前後で浸出するのが
好ましい。
In the present invention, similarly to general chemical leaching, copper is leached by adding sulfuric acid and performing aeration while heating. It is generally said that the higher the temperature, the higher the leaching rate, but in the present invention, the leaching temperature is preferably 45 ° C to 55 ° C. It is presumed that this is because if the temperature is too high, the reaction of the above formula (1) proceeds too fast and is affected by the coating of sulfur or the like, so that the leaching rate becomes slow. Therefore, in the present invention, it is preferable that the leaching is performed at 45 ° C to 55 ° C, particularly around 50 ° C.

【0038】本発明では、硫酸濃度は0.2〜0.6N
とし、特に、0.3〜0.4N程度とするのが好まし
い。この程度の硫酸濃度で、例えば、80%パスサイズ
(以下、P80と表記する)が20〜30μmと比較的
粗い粒度の精鉱も十分な速度で浸出することができ、こ
れ以上高濃度としても浸出速度等の点で差はみられない
からである。なお、P80=20〜30μmの精鉱を原
料とすることができると、ボールミル等の汎用の粉砕機
を用いることができ、P80=20μm以下に微粉砕す
る必要がないという利点がある。また、硫酸濃度を必要
以上に高くすると、機器類の耐酸性の面で問題が発生し
やすいという点で好ましくない。
In the present invention, the sulfuric acid concentration is 0.2 to 0.6 N.
And it is particularly preferable to set it to about 0.3 to 0.4N. With a sulfuric acid concentration of this level, for example, a concentrate having a relatively coarse grain size of 80% pass size (hereinafter referred to as P 80 ) of 20 to 30 μm can be leached at a sufficient rate, and if the concentration is higher than this. This is because there is no difference in terms of leaching speed. In addition, if a concentrate of P 80 = 20 to 30 μm can be used as a raw material, a general-purpose crusher such as a ball mill can be used, and there is an advantage that it is not necessary to pulverize P 80 = 20 μm or less. Further, if the sulfuric acid concentration is made higher than necessary, it is not preferable in that the acid resistance of the equipment tends to cause a problem.

【0039】本発明の浸出方法を適用できる湿式製錬の
一例を図2に示す。
An example of hydrometallurgy to which the leaching method of the present invention can be applied is shown in FIG.

【0040】図2に示すように、まず、選鉱廃滓又は低
品位鉱石などの鉱石1を必要に応じて破砕し(ステップ
S1)、粉砕した(ステップS2)後、浮選する(ステ
ップS3)ことにより、廃滓2とフロス3とに分離す
る。次に、フロス3を再粉砕した(ステップS4)後、
本発明の浸出(ステップS5)を行った後、浸出溶液を
濾過し(ステップS6)、濾液4と残留物5とに分離す
る。次いで、濾液4を溶媒抽出し(ステップS7)、ス
トリッピングし(ステップS8)、さらに電解採取する
(ステップS9)ことにより、電気銅6を得る。溶媒抽
出(ステップS7)の抽残液7は、一部を浸出工程(ス
テップS5)へ戻し、残りはバクテリアにより酸化し
(ステップS10)、続いてpH4程度にpH調整し
(ステップS11)濾過する(ステップS12)ことに
より、鉄ケーク8を得る。この濾過(ステップS12)
の濾液9を再びpH10程度にpH調整し(ステップS
13)、濾過する(ステップS14)。この残渣が固体
堆積物である亜鉛ケーク10であり、濾液11はpH調
整(ステップS15)により中和して廃液12とする。
As shown in FIG. 2, first, an ore 1 such as a beneficiated slag or a low-grade ore is crushed if necessary (step S1), crushed (step S2), and then floated (step S3). As a result, the waste 2 and the froth 3 are separated. Next, after re-milling the floss 3 (step S4),
After performing the leaching of the present invention (step S5), the leaching solution is filtered (step S6) to separate the filtrate 4 and the residue 5. Next, the filtrate 4 is solvent-extracted (step S7), stripped (step S8), and electrolytically collected (step S9) to obtain electrolytic copper 6. A part of the raffinate 7 of the solvent extraction (step S7) is returned to the leaching step (step S5), the rest is oxidized by bacteria (step S10), and then the pH is adjusted to about pH 4 (step S11) and filtered. By (step S12), the iron cake 8 is obtained. This filtration (step S12)
The pH of the filtrate 9 is adjusted again to about pH 10 (step S
13) and filter (step S14). The residue is the zinc cake 10 which is a solid deposit, and the filtrate 11 is neutralized by the pH adjustment (step S15) to form the waste liquid 12.

【0041】[0041]

【発明の実施の形態】次に本発明を実施例に基づいてさ
らに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention will be described in more detail with reference to Examples.

【0042】(実施例1)浸出に用いた鉱石は、カザフ
スタン共和国ジェズケント鉱山の選鉱廃滓を浮選して得
た黄銅鉱を含む硫化鉱精鉱である。品位はCu3%、Z
n3%、Fe37%であり、精鉱中の銅はほぼ黄銅鉱の
形で存在している。この精鉱をボールミルで粉砕し、粒
度をP80=10μm程度にしたものを用いた。
(Example 1) The ore used for leaching is a sulfide ore concentrate containing chalcopyrite obtained by flotation of a beneficiated slag of the Jezkent mine, Republic of Kazakhstan. Quality is Cu 3%, Z
The copper content in the concentrate is almost in the form of chalcopyrite. This concentrate was crushed with a ball mill and used with a particle size of P 80 = 10 μm.

【0043】0.2Nの硫酸500mLに鉱石50gを
加え、エアレーションは0.5L/minの速度で浸出
を行った。浸出温度を、30℃、40℃、50℃、60
℃、70℃とした。1日、2日及び3日間の銅浸出量の
測定結果を図3に示す。
50 g of ore was added to 500 mL of 0.2 N sulfuric acid, and aeration was carried out at a rate of 0.5 L / min. The leaching temperature is 30 ° C, 40 ° C, 50 ° C, 60
℃ and 70 ℃. The measurement results of the amount of copper leached for one day, two days, and three days are shown in FIG.

【0044】この結果30〜50℃では温度の上昇とと
もに銅浸出量も増えたが、50℃を越えると上昇は止ま
り、むしろ浸出量が低下した。これにより、浸出温度は
50℃前後が良いことが分かった。
As a result, at 30 to 50 ° C., the amount of copper leaching increased as the temperature increased, but when it exceeded 50 ° C., the increase stopped and the amount of leaching decreased rather. From this, it was found that the leaching temperature is preferably around 50 ° C.

【0045】(実施例2)浸出に用いた鉱石は実施例1
と同様の方法で得られた黄銅鉱を含む硫化鉱精鉱であ
る。この精鉱を実施例1と同様に、ボールミルで粉砕
し、粒度をP80=10μm程度にしたものを用いた。
(Example 2) The ore used for leaching is the same as in Example 1.
It is a sulfide concentrate containing chalcopyrite obtained in the same manner as in. This concentrate was crushed with a ball mill in the same manner as in Example 1 to have a particle size of P 80 = 10 μm.

【0046】初期濃度を0.2N、0.4N、0.6N
と変化させた硫酸500mLに、鉱石50gを加え、温
度50℃で浸出を行った。エアレーションは0.5L/
minの速度で行った。このときの1日、2日及び3日
間の銅浸出量の測定結果を図4に示す。
Initial density is 0.2N, 0.4N, 0.6N
50 g of ore was added to 500 mL of the sulfuric acid changed to, and leaching was performed at a temperature of 50 ° C. Aeration is 0.5L /
It was performed at a speed of min. FIG. 4 shows the measurement results of the amount of copper leaching for one day, two days, and three days at this time.

【0047】初期硫酸濃度が0.4Nまでは、硫酸濃度
が高いほど銅浸出量が多くなるが、0.4N以上では、
硫酸濃度が高くなっても銅浸出量は変化しないことが分
かった。 (実施例3)浸出に用いた鉱石は、カザフスタン共和国
ジェズケント鉱山の選鉱廃滓を浮選して得た黄銅鉱を含
む硫化鉱精鉱である。品位はCu2%、Zn2%、Fe
40%であり、精鉱中の銅はほぼ黄銅鉱の形で存在して
いる。この精鉱をボールミルで磨鉱する時間を変化させ
て粉砕し、粒度をP80=10、20、30μm程度の
3段階とした。
Up to an initial sulfuric acid concentration of 0.4 N, the higher the sulfuric acid concentration, the greater the amount of copper leaching.
It was found that the amount of copper leaching did not change even when the sulfuric acid concentration increased. (Example 3) The ore used for leaching is a sulfide ore concentrate containing chalcopyrite obtained by flotation of a beneficiated slag of the Jezkent mine, Republic of Kazakhstan. Quality is Cu2%, Zn2%, Fe
40%, and the copper in the concentrate is almost in the form of chalcopyrite. This concentrate was ground by a ball mill while changing the time for grinding, and the particle size was adjusted to three levels of P 80 = 10, 20, 30 μm.

【0048】硫酸500mLに各粒度の鉱石50gを加
え、温度50℃にて、エアレーションを0.5L/mi
nの速度で行いながら浸出を行った。なお、硫酸濃度
は、0.3N及び0.4Nとしてそれぞれ実施した。こ
のときの1日、2日及び3日間の銅浸出量の測定結果を
図5に示す。
50 g of ore of each particle size was added to 500 mL of sulfuric acid, and aeration was carried out at a temperature of 50 ° C. to 0.5 L / mi.
The leaching was performed at a rate of n. The sulfuric acid concentration was 0.3N and 0.4N, respectively. FIG. 5 shows the measurement results of the amount of copper leached for 1 day, 2 days, and 3 days at this time.

【0049】粒度が細かいほど、銅浸出速度が速くなる
が、硫酸濃度を0.3Nから0.4Nに上げると、粒度
が銅浸出速度に与える影響は小さくなることが分かっ
た。したがって、硫酸濃度を0.4Nとすると粒度が比
較的粗いものを使用できることが分かった。
It was found that the finer the grain size, the faster the copper leaching rate, but increasing the sulfuric acid concentration from 0.3N to 0.4N has a smaller effect on the copper leaching rate. Therefore, it was found that when the sulfuric acid concentration was 0.4 N, the one having a relatively coarse particle size could be used.

【0050】(実施例4)黄銅鉱を含む硫化鉱精鉱、黄
鉄鉱精鉱、石英を混ぜ、銅品位はほぼ4%で、鉄品位は
それぞれ6%、23%、36%とした鉱石を用いて浸出
を行った。
(Example 4) A sulfide ore concentrate containing chalcopyrite, pyrite concentrate, and quartz were mixed, and copper ore having a copper grade of about 4% and iron grades of 6%, 23%, and 36%, respectively, was used. Was leached.

【0051】0.2Nの硫酸500mLに、各鉱石50
gをそれぞれ加え、温度50℃にて、エアレーションを
0.5L/minの速度で行いながら浸出を行った。銅
浸出量の測定結果を図6に示す。
50 mL of each ore in 500 mL of 0.2N sulfuric acid
Leaching was performed, and leaching was performed at a temperature of 50 ° C. while performing aeration at a rate of 0.5 L / min. The measurement result of the copper leaching amount is shown in FIG.

【0052】この結果、鉄品位が高くなるに従い、銅浸
出速度が速くなることが分かった。
As a result, it was found that the copper leaching rate became higher as the iron quality became higher.

【0053】このように、黄銅鉱を含む硫化鉱において
は、むしろ黄鉄鉱の存在には銅の浸出促進効果があるの
で、選鉱して銅品位を高めることなく銅を浸出できるこ
とが分かった。
As described above, in the sulfide ore containing chalcopyrite, the presence of pyrite rather has an effect of promoting the leaching of copper, so it was found that copper can be leached without beneficiation to improve the copper grade.

【0054】(実施例5)浸出に用いた鉱石は、カザフ
スタン共和国ジェズケント鉱山の選鉱廃滓を浮選して得
た黄銅鉱を含む硫化鉱精鉱である。品位はCu2%、Z
n2%、Fe39%であり、精鉱中の銅はほぼ黄銅鉱の
形で存在している。この精鉱をボールミルで粉砕し、粒
度をP80=30μm程度にしたものを用いた。
(Example 5) The ore used for leaching is a sulfide ore concentrate containing chalcopyrite obtained by flotation of a beneficiated slag of the Jezkent mine, Republic of Kazakhstan. Quality is Cu2%, Z
n2% and Fe39%, and the copper in the concentrate is almost in the form of chalcopyrite. The concentrate was crushed with a ball mill and the particle size was adjusted to P 80 = 30 μm.

【0055】浸出する鉱石量を50g、100g、15
0gと変化させて、0.3Nの硫酸500mLに添加
し、浸出を行った。これらは、パルプ濃度PDとしてそ
れぞれ10%、20%、30%となる。浸出温度50℃
とし、エアレーションを0.5L/minの速度で行い
ながら浸出を行った。測定結果を図7に示す。
The amount of ore leached is 50 g, 100 g, 15
Leaching was performed by changing the amount to 0 g and adding to 500 mL of 0.3 N sulfuric acid. These have a pulp concentration PD of 10%, 20%, and 30%, respectively. Leaching temperature 50 ° C
And leaching was performed while performing aeration at a rate of 0.5 L / min. The measurement result is shown in FIG. 7.

【0056】パルプ濃度が高いほど、銅浸出速度は大き
くなるが、20%と30%とでは浸出速度があまり変わ
らないことから、30%では浸出効率が悪くなることが
わかった。
The higher the pulp concentration, the higher the copper leaching rate, but it was found that the leaching efficiency was poor at 30% because the leaching rate did not change so much between 20% and 30%.

【0057】(実施例6)浸出に用いた鉱石は、カザフ
スタン共和国ジェズケント鉱山の選鉱廃滓を浮選して得
た黄銅鉱を含む硫化鉱精鉱である。品位はCu5%、Z
n4%、Fe39%であり、精鉱中の銅はほぼ黄銅鉱の
形で存在している。この精鉱をボールミルで再磨鉱し、
粒度をP80=25μm程度にしたものを用いた。
(Example 6) The ore used for leaching is a sulfide ore concentrate containing chalcopyrite obtained by flotation of a beneficiated slag of the Jezkent mine, Republic of Kazakhstan. Grade is Cu 5%, Z
n4%, Fe39%, and copper in the concentrate is present in the form of chalcopyrite. This concentrate is re-ground with a ball mill,
The particles having a particle size of P 80 = 25 μm were used.

【0058】5mの浸出槽に、0.4Nの硫酸約4m
及び鉱石約430kgを加え、温度50℃で浸出を行
った。インペラーで70rpmの攪拌を行い、循環ポン
プを運転して、鉱石がスピゴットパイプに停滞しないよ
うにした。またエアレーションはブロワーで2.2m
/minの流量で浸出槽内に吹き込んだ。図8に結果を
示す。
Approximately 4 m of 0.4 N sulfuric acid was added to a 5 m 3 leaching tank.
3 and about 430 kg of ore were added, and leaching was performed at a temperature of 50 ° C. The impeller was stirred at 70 rpm and the circulation pump was operated to prevent the ore from stagnation in the spigot pipe. The aeration is 2.2m 3 with a blower.
It was blown into the leaching tank at a flow rate of / min. The results are shown in FIG.

【0059】浸出開始から5日間で、Cuが5g/L浸
出された。浸出反応は4日でほぼ完了したものと思われ
る。酸化還元電位の変化をみると、3日目くらいまでは
380〜400mVの範囲にあり、一日当たり1g/L
以上の銅浸出量を示し、4日目には酸化還元電位が42
0mVを越え、浸出が終了した。
5 g / L of Cu was leached within 5 days from the start of leaching. The leaching reaction appears to be nearly complete in 4 days. Looking at the change in redox potential, it was in the range of 380 to 400 mV until about the third day, and 1 g / L per day.
The above copper leaching amount was shown, and the redox potential was 42% on the 4th day.
The leaching was completed when the voltage exceeded 0 mV.

【0060】したがって、このプラントでは3日間で浸
出を完了する銅量の原料を仕込むのが良いことが分かっ
た。
Therefore, it was found that in this plant, it is preferable to charge the raw material in the amount of copper that completes the leaching in 3 days.

【0061】[0061]

【発明の効果】以上に示したように、黄銅鉱を含む硫化
鉱を、硫酸を用いてケミカル浸出する方法において、原
料中の銅量及び温度の調整により、銅浸出に適した酸化
還元電位を維持することで、銅の浸出速度を速くできる
ため、温度、酸性度、圧力に関して、穏やかな条件で浸
出することができるという効果を奏する。また、銅の浸
出速度は自然電位の影響で黄鉄鉱が多いほど早いので、
わざわざ選鉱せずに黄鉄鉱が共存する状態で浸出するの
が好ましく、また、複雑硫化鉱に対しても適用可能であ
るという効果を奏する。
As described above, in the method of chemically leaching sulfide ore containing chalcopyrite with sulfuric acid, the redox potential suitable for copper leaching is adjusted by adjusting the amount of copper in the raw material and the temperature. By maintaining the rate, the leaching rate of copper can be increased, so that there is an effect that leaching can be performed under mild conditions with respect to temperature, acidity, and pressure. Also, the leaching rate of copper is faster as the amount of pyrite is higher due to the effect of the natural potential, so
It is preferable to leach in the state where pyrite coexists without purposely selecting, and it is also applicable to complex sulfide ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化還元電位と銅浸出量の関係を示す図であ
る。
FIG. 1 is a diagram showing a relationship between a redox potential and a copper leaching amount.

【図2】本発明の浸出方法を適用できる湿式製錬の一例
を示す図である。
FIG. 2 is a diagram showing an example of hydrometallurgy to which the leaching method of the present invention can be applied.

【図3】実施例1の結果を示す図である。FIG. 3 is a diagram showing a result of Example 1.

【図4】実施例2の結果を示す図である。FIG. 4 is a diagram showing the results of Example 2.

【図5】実施例3の結果を示す図である。5 is a diagram showing the results of Example 3. FIG.

【図6】実施例4の結果を示す図である。FIG. 6 is a diagram showing the results of Example 4.

【図7】実施例5の結果を示す図である。FIG. 7 is a diagram showing the results of Example 5.

【図8】実施例6の結果を示す図である。FIG. 8 is a diagram showing the results of Example 6.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 黄銅鉱を含む硫化鉱を硫酸を用いて浸出
する方法であって、飽和カロメル電極で測定したパルプ
の電位が400mVになるまでの期間と銅の浸出速度を
予め測定し、前記期間及び浸出速度から算出される前記
電位が400mVになるまでに浸出可能な銅量の原料を
仕込んで浸出を行うことを特徴とする黄銅鉱を含む硫化
鉱の浸出方法。
1. A method of leaching sulfide ore containing chalcopyrite using sulfuric acid, wherein the period until the pulp potential measured with a saturated calomel electrode reaches 400 mV and the leaching rate of copper are measured in advance, and A method for leaching a sulfide ore containing chalcopyrite, characterized in that a leaching is performed by charging a raw material in an amount of copper that can be leached until the electric potential calculated from the period and the leaching rate reaches 400 mV.
【請求項2】 請求項1において、黄鉄鉱が共存する硫
化鉱を用いることを特徴とする黄銅鉱を含む硫化鉱の浸
出方法。
2. The method for leaching sulfide ore containing chalcopyrite according to claim 1, wherein sulfide ore coexisting with pyrite is used.
【請求項3】 請求項1又は2において、銅品位が5〜
10%の硫化鉱を用いることを特徴とする黄銅鉱を含む
硫化鉱の浸出方法。
3. The copper grade according to claim 1 or 2,
A method for leaching sulfide ore containing chalcopyrite, which comprises using 10% of sulfide ore.
【請求項4】 請求項1〜3の何れかにおいて、45℃
〜55℃で浸出を行うことを特徴とする黄銅鉱を含む硫
化鉱の浸出方法。
4. The method according to claim 1, wherein the temperature is 45 ° C.
A method for leaching a sulfide ore containing chalcopyrite, which comprises leaching at 55 ° C.
JP2001256442A 2001-08-27 2001-08-27 Leaching method of sulfide ore containing chalcopyrite Expired - Fee Related JP3460708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001256442A JP3460708B2 (en) 2001-08-27 2001-08-27 Leaching method of sulfide ore containing chalcopyrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001256442A JP3460708B2 (en) 2001-08-27 2001-08-27 Leaching method of sulfide ore containing chalcopyrite

Publications (2)

Publication Number Publication Date
JP2003073750A true JP2003073750A (en) 2003-03-12
JP3460708B2 JP3460708B2 (en) 2003-10-27

Family

ID=19084255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001256442A Expired - Fee Related JP3460708B2 (en) 2001-08-27 2001-08-27 Leaching method of sulfide ore containing chalcopyrite

Country Status (1)

Country Link
JP (1) JP3460708B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422621B2 (en) * 2003-07-28 2008-09-09 Sumitomo Metal Mining Co., Ltd. Method for concentrating precious metals contained in leaching residue discharged from copper hydrometallurgical process
KR101178903B1 (en) 2010-06-28 2012-08-31 한국지질자원연구원 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7422621B2 (en) * 2003-07-28 2008-09-09 Sumitomo Metal Mining Co., Ltd. Method for concentrating precious metals contained in leaching residue discharged from copper hydrometallurgical process
KR101178903B1 (en) 2010-06-28 2012-08-31 한국지질자원연구원 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate

Also Published As

Publication number Publication date
JP3460708B2 (en) 2003-10-27

Similar Documents

Publication Publication Date Title
JP4352823B2 (en) Method for refining copper raw materials containing copper sulfide minerals
CN102051478B (en) Wet process for treating lead copper matte
IE43684L (en) Recovery of lead.
JP2008001993A (en) Treatment of sulfur-containing material using high temperature pressure leaching for formation of sulfuric acid and for recovery of metal
CN105349791B (en) A kind of method of selective extraction copper in copper matte regulus material from iron
CN106460089A (en) Process for recovery of copper from arsenic-bearing and/or antimony-bearing copper sulphide concentrates
JPH059495B2 (en)
CN107523694A (en) A kind of method of Bellamya aeruginosa roasting Strengthen education
CN104017991A (en) Process for efficiently and selectively separating copper in lead copper matte
CN104726717A (en) Method for recovering cobalt from inverse antimony purified cobalt residue
AU2001278015A1 (en) Processing elemental sulfur-bearing materials using high temperature pressure leaching for sulfuric acid production and metal recovery
CN109890988B (en) Integrated hydrometallurgical and pyrometallurgical process for treating ores
JP4365124B2 (en) Zinc concentrate leaching process
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
CN102010995B (en) Method for increasing copper recovery rate in zinc hydrometallurgy process
CN105018726B (en) A kind of lead zinc mineral intergrowth processing method
JP3460708B2 (en) Leaching method of sulfide ore containing chalcopyrite
AU2004257842B2 (en) Method for smelting copper concentrates
JP4904836B2 (en) Leaching method of copper sulfide ores containing chalcopyrite
JP3487592B2 (en) Leaching method of sulfide ore containing chalcopyrite
CN111074073B (en) Method for purifying and removing cobalt in zinc hydrometallurgy
CA2844095C (en) Treatment of sulphidic materials
JP5423046B2 (en) Method for leaching copper raw materials containing copper sulfide minerals
JP2007113084A (en) Method for reducing cupric chloride ion
Olper et al. Simplified copper production from primary concentrates: The direct electrorefining of white metal/copper matte

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3460708

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees