KR101178903B1 - High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate - Google Patents

High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate Download PDF

Info

Publication number
KR101178903B1
KR101178903B1 KR1020100060956A KR20100060956A KR101178903B1 KR 101178903 B1 KR101178903 B1 KR 101178903B1 KR 1020100060956 A KR1020100060956 A KR 1020100060956A KR 20100060956 A KR20100060956 A KR 20100060956A KR 101178903 B1 KR101178903 B1 KR 101178903B1
Authority
KR
South Korea
Prior art keywords
uranium
leaching
sulfuric acid
iron sulfate
reaction
Prior art date
Application number
KR1020100060956A
Other languages
Korean (ko)
Other versions
KR20120000617A (en
Inventor
윤호성
남철우
김성돈
김철주
김준수
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020100060956A priority Critical patent/KR101178903B1/en
Publication of KR20120000617A publication Critical patent/KR20120000617A/en
Application granted granted Critical
Publication of KR101178903B1 publication Critical patent/KR101178903B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0234Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors sulfurated ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0208Obtaining thorium, uranium, or other actinides obtaining uranium preliminary treatment of ores or scrap

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

우라늄을 함유한 광물에 물, 황산, 산화제, 황산철을 첨가 혼합하여 우라늄을 침출 반응을 시키되, 상기 침출 반응시 pH를 1~2로 제어하고, 산화환원전이를 400~550mV로 제어하는 것인 우라늄 침출방법에 관한 것이다. 보다 자세하게는 본 발명은 a)우라늄이 함유된 흑색점판암을 입자크기가 45~200메시가 되도록 분쇄하는 단계;b)상기 분쇄된 우라늄이 함유된 흑색점판암에 물, 황산, 황산철을 첨가하고 pH를 1~2로 조절하는 단계;c)상기 b)단계 후 산화제를 첨가 혼합하여 우라늄 침출반응을 수행하는 단계; 를 포함하되 상기 침출 반응 시 상기 pH는 1~2로 유지하고, 산화환원전이는 400~550mV로 유지하여 이루어지는 것을 특징으로 하는 우라늄 침출방법에 관한 것이다.
본 발명에 따른 우라늄이 함유된 흑색점판암 광석으로부터 우라늄의 침출방법은 종래 발명에 비하여 공정시간을 단축시킬 수 있으며 우라늄의 침출률을 향상시키는 장점을 가지고 있다. 보다 자세하게는 우라늄이 함유된 흑색점판암 광석이 첨가된 황산수용액의 pH와 산화환원전위를 일정하게 유지시키면서 우라늄을 침출시키는 과정에서 종래의 발명과는 달리 황산철을 첨가함으로서 우라늄의 침출시간 단축 및 침출률을 향상시키는 장점이 있다.
Water, sulfuric acid, oxidizing agent, and iron sulfate are added to and mixed with minerals containing uranium to leach the uranium, and during the leaching reaction, the pH is controlled to 1 to 2 and the redox transition is controlled to 400 to 550 mV. Uranium leaching method. More specifically, the present invention comprises the steps of a) pulverizing the uranium-containing black slate rock to a particle size of 45 ~ 200 mesh; b) adding water, sulfuric acid, iron sulfate to the crushed uranium-containing black slate rock and pH Adjusting to 1 to 2; c) adding and mixing oxidizing agent after step b) to perform a uranium leaching reaction; To include, but the pH during the leaching reaction is maintained at 1 to 2, the redox transition relates to a uranium leaching method characterized in that it is maintained at 400 ~ 550mV.
The leaching method of uranium from black slate rock ore containing uranium according to the present invention can shorten the process time and improve the leaching rate of uranium compared to the conventional invention. More specifically, unlike the conventional invention, by adding iron sulfate in the process of leaching uranium while maintaining the pH and redox potential of sulfuric acid solution containing black slate rock ore containing uranium, the leaching time and leaching of uranium is shortened and leached. There is an advantage in improving the rate.

Description

우라늄이 함유된 흑색점판암 광석의 황산침출 시 황산철 첨가에 따른 고효율 우라늄 침출방법{High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate}High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate in sulphate leaching of black slate rock ore containing uranium

본 발명은 우라늄이 함유된 광물에 황산을 첨가하여 우라늄을 효율적으로 침출시키는 방법에 관한 것이다. The present invention relates to a method for efficiently leaching uranium by adding sulfuric acid to a mineral containing uranium.

우라늄광을 황산수용액에 침출시킬 경우, 우라늄광석에 함유되어 있는 산화우라늄(UO2)은 3가 철 이온(Fe3 +)에 의하여 산화우라늄 양이온(UO2 2 +)으로 산화되면서 수용액으로 침출된다.When uranium ore is leached into a sulfuric acid solution, uranium oxide (UO 2 ) contained in uranium ore is leached into an aqueous solution while being oxidized to uranium oxide cation (UO 2 2 + ) by trivalent iron ions (Fe 3 + ). .

그러나 우라늄이 함유된 흑색점판암 광석 200g을 황산수용액 200ml에 첨가하여 침출반응을 진행시키면, 우라늄을 침출시키기 위해서는 흑색점판암 광석에 함유되어 있는 철성분이 우선적으로 황산수용액에 용해되어야 철성분이 우라늄을 산화시켜 우라늄이 수용액에 침출되는데, 이 과정이 매우 느리기 때문에 우라늄 침출시간이 매우 길어지는 단점이 있다.However, if 200g of black slate rock ore containing uranium is added to 200 ml of sulfuric acid solution, and the leaching reaction proceeds, in order to leach uranium, the iron component of black slate ore should be dissolved in the sulfuric acid solution first to oxidize uranium. The uranium is leached into the aqueous solution, so this process is very slow, so the uranium leaching time is very long.

상기한 바와 같이 우라늄이 함유된 광물로부터 황산수용액을 이용한 우라늄을 침출하는 방법에 있어서, 광석에 함유되어 있는 철 성분을 이용하여 우라늄을 산화시키고 침출하는 과정은 시간이 많이 소요되고 또한 침출률이 낮은 한계가 있다. 또한 침출시간을 단축시키고 침출률을 높이기 위해서는 산화환원전위를 550 mV이상 유지시켜야 하는데, 이 경우에는 산화제인 이산화망간과 수용액의 pH를 1-2로 유지하기 위한 황산의 소모량이 급격히 늘어나는 단점이 있다. 그러므로 본 발명은 우라늄이 함유된 흑색점판암 광석을 황산수용액에 첨가하여 효과적으로 우라늄을 침출시키는 방법을 제공하는데 목적이 있다.In the method of leaching uranium using an aqueous sulfuric acid solution from a mineral containing uranium as described above, the process of oxidizing and leaching uranium using iron contained in the ore is time-consuming and has a low leaching rate. There is a limit. In addition, in order to shorten the leaching time and increase the leaching rate, the redox potential should be maintained at 550 mV or more. In this case, the consumption of sulfuric acid for rapidly maintaining the pH of the aqueous solution of manganese dioxide and the aqueous solution is 1-2. Therefore, an object of the present invention is to provide a method for effectively leaching uranium by adding black slate rock ore containing uranium to an aqueous sulfuric acid solution.

보다 구체적으로 본 발명은 우라늄이 함유된 흑색점판암 광석에 황산수용액을 첨가하여 우라늄 성분을 침출시킬 때 침출시간 단축과 침출률을 높이는데 목적이 있다. More specifically, the present invention aims to shorten the leaching time and increase the leaching rate when leaching the uranium component by adding sulfuric acid solution to the uranium-containing black slate rock ore.

본 발명은 우라늄을 함유한 광물에 물, 황산, 산화제, 황산철을 첨가 혼합하여 우라늄을 침출 반응을 시키되, 상기 침출 반응시 pH를 1~2로 제어하고, 산화환원전이를 400~550mV로 제어하는 것을 특징으로 하는 우라늄 침출방법에 관한 것이다. 본 발명에 따른 우라늄 침출방법은 황산철을 첨가하지 않고 침출할 때와 비교하였을 때 침출시간을 획기적으로 단축시킬 수 있고 침출률이 높은 장점이 있다.In the present invention, the leaching reaction of uranium by adding and mixing water, sulfuric acid, oxidizing agent and iron sulfate to minerals containing uranium, the pH of the leaching reaction is controlled to 1-2, the redox transition is controlled to 400 ~ 550mV It relates to a uranium leaching method characterized in that. The uranium leaching method according to the present invention can significantly shorten the leaching time compared to when leaching without adding iron sulfate and has a high leaching rate.

또한 비교적 낮은 산화환원전위를 유지하여도 황산철을 첨가함으로써 침출률을 높일 수 있으며, pH와 산화환원전위를 유지하기 위한 산화제와 황산의 투입량을 줄일 수 있어서 효과적이다. In addition, the leaching rate can be increased by adding iron sulfate even at a relatively low redox potential, and the amount of oxidizing agent and sulfuric acid for maintaining pH and redox potential can be reduced.

본 발명은 상기 침출 반응시 pH는 황산의 투입 양으로 제어하고, 산화환원전이는 산화제의 투입 양으로 제어하는 것을 특징으로 한다. 상기 황산철은 우라늄을 함유한 광물 100중량부에 대하여 0.1~1중량부 첨가하는 것이 바람직하다. The present invention is characterized in that the pH during the leaching reaction is controlled by the amount of sulfuric acid, the redox transition is controlled by the amount of the oxidizing agent. It is preferable to add 0.1-1 weight part of said iron sulfates with respect to 100 weight part of minerals containing uranium.

상기 침출 반응시 온도는 30~60℃인 것이 바람직하며, 상기 우라늄을 함유한 광물은 입자크기가 45~200메쉬가 되도록 분쇄된 것을 사용하는 것이 좋다. In the leaching reaction, the temperature is preferably 30 to 60 ° C., and the uranium-containing mineral may be pulverized to have a particle size of 45 to 200 mesh.

상기 침출 반응은 0.5~4시간 이루어지는 것이 바람직하고, 상기 혼합은 200~500rpm으로 교반하여 이루어지는 것이 침출반응에 효과적이다. 상기 산화제는 보다 바람직하게는 이산화망간을 사용하는 것이 좋으며, 보다 구체적으로 상기 우라늄을 함유한 광물은 우라늄을 함유한 흑색점판암인 것을 특징으로 한다. It is preferable that the said leaching reaction consists of 0.5-4 hours, and it is effective for the leaching reaction that the said mixing is made by stirring at 200-500 rpm. The oxidizing agent is more preferably to use manganese dioxide, more specifically, the mineral containing uranium is characterized in that the black slate containing black slate.

또한 본 발명은 a)우라늄이 함유된 흑색점판암을 입자크기가 45~200메시가 되도록 분쇄하는 단계;(110)In another aspect, the present invention is a) pulverizing the black slate plate containing uranium so that the particle size is 45 ~ 200 mesh; (110)

b)상기 분쇄된 우라늄이 함유된 흑색점판암에 물, 황산, 황산철을 첨가하고 pH를 1~2로 조절하는 단계;(120)b) adding water, sulfuric acid, and iron sulfate to the pulverized uranium-containing black slate rock and adjusting the pH to 1-2; 120

c)상기 b)단계 후 산화제를 첨가 혼합하여 우라늄 침출반응을 수행하는 단계;(130)를 포함하되 상기 침출반응시 상기 pH는 1~2로 유지하고, 산화환원전이는 400~550mV로 유지하여 이루어지는 것을 특징으로 하는 우라늄 침출방법을 제공한다. c) performing a uranium leaching reaction by adding and mixing the oxidizing agent after the step b); including 130, wherein the pH is maintained at 1 to 2 and the redox transition is maintained at 400 to 550 mV. It provides a uranium leaching method, characterized in that made.

이하 본 발명은 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail.

본 발명은 우라늄이 함유된 광물을 황산에 침출될 때 Fe+3에 의해 UO2가 UO2 +2로 산화될 수 있다. 이때 광물 속에 포함된 3가 철이온이 침출반응에 참여할 수 있다. 그러나 본 발명은 상기 3가 철이온을 황산철을 첨가하여 공급하는 것을 특징으로 하며, 본 발명에 따라 황산철을 공급 하였을 때 우라늄 침출률을 획기적으로 높일 수 있다. 상기 황산철은 우라늄을 함유한 광물 100중량부에 대하여 0.1~1중량부 첨가하는 것이 바람직하다. The present invention is by Fe +3 UO 2 can be oxidized to UO 2 +2 when leaching uranium minerals are contained in the sulfuric acid. At this time, trivalent iron ions contained in the mineral may participate in the leaching reaction. However, the present invention is characterized by supplying the trivalent iron ions by the addition of iron sulfate, it can significantly increase the uranium leaching rate when iron sulfate is supplied according to the present invention. It is preferable to add 0.1-1 weight part of said iron sulfates with respect to 100 weight part of minerals containing uranium.

본 발명에 따른 우라늄 침출방법은 우라늄을 함유한 광물에 물, 황산, 산화제, 황산철을 첨가 혼합한 혼합액에 공존하는 3가 철이온에 침출이 일어나는 것을 특징으로 하며, 공급된 황산철에 의해 하기와 같은 반응이 일어날 수 있다.The uranium leaching method according to the present invention is characterized in that leaching occurs in trivalent iron ions coexisting in a mixed solution in which water, sulfuric acid, an oxidizing agent, and iron sulfate are added and mixed with minerals containing uranium. Reactions such as

FeS + 4O2 + 2H2SO4 → FeSO4 + 2H2SO4 (1) FeS + 4O 2 + 2H 2 SO 4 → FeSO 4 + 2H 2 SO 4 (1)

2FeS2 + 7O2 + 2H2O → 2FeSO4 + 2H2SO4 (2)2FeS 2 + 7O 2 + 2H 2 O → 2FeSO 4 + 2H 2 SO 4 (2)

상기 용해된 황산 제일철은 상기 산화제에 의하여 황산제이철이 되고 하기 반응이 일어날 수 있다.The dissolved ferrous sulfate may be ferric sulfate by the oxidizing agent, and the following reaction may occur.

4FeSO4 + O2 + 2H2SO4 → 2Fe2(SO4)3 + 2H2O (3)4FeSO 4 + O 2 + 2H 2 SO 4 → 2Fe 2 (SO 4 ) 3 + 2H 2 O (3)

(2FeSO4 + MnO2 + 2H2SO4 → Fe2(SO4)3 + MnSO4 + 2H2O) (4)(2FeSO 4 + MnO 2 + 2H 2 SO 4 → Fe 2 (SO 4 ) 3 + MnSO 4 + 2H 2 O) (4)

UO2 + Fe2(SO4)3 → UO2SO4 + 2FeSO4 (5)UO 2 + Fe 2 (SO 4 ) 3 → UO 2 SO 4 + 2FeSO 4 (5)

그리고 우라늄의 침출반응은 다음식(6)과 같다. And the leaching reaction of uranium is shown in the following equation (6).

UO2 + 2 Fe3 + → UO2 2 + + 2 Fe2 + (6)UO 2 + 2 Fe 3 + → UO 2 2 + + 2 Fe 2 + (6)

상기 황산제이철은 우라늄을 용해하게 된다. 상기 침출반응시 pH는1~2인 것을 특징으로 하며, 상기 pH범위에서 최대 93%이상의 침출률을 보일 수 있다. 상기 pH가 2를 초과하게 되면, 침출반응이 원활하게 일어나지 않을 수 있다. The ferric sulfate dissolves uranium. When the leaching reaction is characterized in that the pH is 1 ~ 2, it can show a leaching rate of up to 93% or more in the pH range. When the pH exceeds 2, the leaching reaction may not occur smoothly.

본 발명은 상기 침출 반응 시 30~60℃에서 이루어지는 것이 바람직하며, 상기 반응범위에서 침출반응이 활발하게 일어나며 반응시간을 단축시킬 수 있다. 본 발명은 침출 반응시 산화환원전이가 400~550mV로 유지하여 반응하는 것을 특징으로 하며, 상기 범위에 있을 때 침출률이 최고치를 보일 수 있다. 보다 바람직하게는 400~500mV일 때 침출시간과 에너지 효율 면에서 우수하다. 본 발명에서 상기 우라늄을 함유한 광물은 입자크기가 45~200메시가 되도록 분쇄된 것을 사용하는 것이 침출효과가 우수하다.The present invention is preferably made at 30 ~ 60 ℃ during the leaching reaction, leaching reaction occurs actively in the reaction range can shorten the reaction time. The present invention is characterized in that the redox reaction during the leaching reaction is maintained at 400 ~ 550mV, the leaching rate can be seen when the above range. More preferably, it is excellent in terms of leaching time and energy efficiency when the 400 ~ 500mV. In the present invention, the mineral containing the uranium is excellent in the leaching effect to use a pulverized so that the particle size is 45 ~ 200 mesh.

본 발명에 따른 우라늄의 침출방법은 종래 발명에 비하여 공정시간을 단축시킬 수 있으며 우라늄의 침출률을 향상시키는 장점을 가지고 있다. 보다 자세하게는 우라늄이 함유된 흑색점판암 광석이 첨가된 황산수용액의 pH와 산화환원전위를 일정하게 유지시키면서 우라늄을 침출시키는 과정에서 종래의 발명과는 달리 황산철을 첨가함으로서 우라늄의 침출시간 단축 및 침출률을 향상시키는 장점이 있다. The leaching method of uranium according to the present invention can shorten the process time and improve the leaching rate of uranium as compared to the conventional invention. More specifically, unlike the conventional invention, by adding iron sulfate in the process of leaching uranium while maintaining the pH and redox potential of sulfuric acid solution containing black slate rock ore containing uranium, the leaching time and leaching of uranium is shortened and leached. There is an advantage in improving the rate.

본 발명은 침출률을 높이기 위하여 산화환원전위를 높게 하고, 이에 따라 황산과 산화제의 사용량이 많은 단점을 개선하여, 황산철을 첨가함으로써 황산과 산화제의 사용량을 줄이면서, 높은 침출률을 가질 수 있는 효과가 있다.The present invention is to increase the redox potential in order to increase the leaching rate, thereby improving the disadvantage of using a lot of sulfuric acid and oxidizing agent, by reducing the amount of sulfuric acid and oxidizing agent by adding iron sulfate, it can have a high leaching rate It works.

도1은 본 발명에 따른 우라늄 침출방법을 도식화하여 나타낸 것이다.
도2는 실시예1 내지 4 및 비교예1 내지 2의 방법에 따라 침출반응을 하였을때 침출시간에 따른 우라늄 침출률을 나타낸 그래프이다.
Figure 1 shows a schematic diagram of the uranium leaching method according to the present invention.
Figure 2 is a graph showing the uranium leaching rate according to leaching time when the leaching reaction according to the method of Examples 1 to 4 and Comparative Examples 1 to 2.

이하는 본 발명의 구체적인 설명을 위하여 일예를 들어 설명하는 바, 본 발명이 하기 실시예에 한정된 것은 아니다Hereinafter, the present invention will be described by way of example for specific description of the present invention, but the present invention is not limited to the following examples.

본 발명에서 사용한 우라늄을 포함한 흑색점판암은 금산의 옥천계 우라늄 광상 현장에서 2007, 2008년에 채취한 시추코아 시료 중 우라늄 및 바나듐 함량이 높은 부분을 선별하여 사용하였으며, 그 성분은 하기 표1과 같다. The black slate rock containing uranium used in the present invention was selected by using the high portion of uranium and vanadium in the drilling core samples collected in 2007, 2008 at the Okcheon-based uranium deposit site of Geumsan, the components are shown in Table 1 below. .

-황산철 유무에 따른 침출률의 효과를 위한 비교-Comparison for the Effect of Leaching Rate with or Without Iron Sulfate

[실시예1][Example 1]

우라늄을 포함한 흑색점판암 500g을 분쇄하여 48메쉬가 되도록 준비하였다. 증류수 500g을 넣고 황산철(Fe2(SO4)3)1.5g을 첨가하고, pH를 2.0로 조절하기 위해 황산을 첨가하여 혼합액A를 제조하였다. 상기 혼합액A에 우라늄을 포함한 흑색점판암을 500g을 투입하여 혼합액 B를 제조하고, 상기 혼합액B를 400rpm으로 교반하면서 4시간 동안 침출시켰다. 이때 침출을 수행하는 동안 반응온도는 30℃로 유지하고, 상기 혼합액B는 pH는 2.0, 산화환원전위가 450mV로 유지되도록 황산과 이산화망간을 첨가하였다. 총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. 500 g of black slate rock containing uranium was ground to prepare a 48 mesh. 500 g of distilled water was added, 1.5 g of iron sulfate (Fe 2 (SO 4 ) 3 ) was added, and sulfuric acid was added to adjust the pH to 2.0 to prepare a mixed solution A. 500 g of black slate rock containing uranium was added to the mixed solution A to prepare a mixed solution B, and the mixed solution B was leached for 4 hours while stirring at 400 rpm. At this time, while leaching, the reaction temperature was maintained at 30 ℃, the mixture B was added sulfuric acid and manganese dioxide so that the pH is 2.0, the redox potential is maintained at 450mV. The total leaching reaction was carried out for 4 hours, samples were taken every 30 minutes and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain the uranium leaching rate. 2 is shown.

[실시예2][Example 2]

상기 실시예1과 동일하게 실시하되 황산철(Fe2(SO4)3)을 0.5g을 투입한 것을 제외하고는 상기 실시예1과 동일하게 실시하였고, 총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. The same process as in Example 1 except that 0.5 g of iron sulfate (Fe 2 (SO 4 ) 3 ) was added, and the same procedure as in Example 1 was carried out, and the total leaching reaction was performed for 4 hours. Samples were taken every 30 minutes and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain a uranium leaching rate. The leaching rate was estimated and shown in FIG. 2.

[실시예3] [Example 3]

상기 실시예1과 동일하게 실시하되 황산철(Fe2(SO4)3)을 1.0g을 투입한 것을 제외하고는 상기 실시예1과 동일하게 실시하였고,총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. The same procedure as in Example 1 except that 1.0 g of iron sulfate (Fe 2 (SO 4 ) 3 ) was added thereto, and the same procedure as in Example 1 was carried out, and the total leaching reaction was performed for 4 hours. Samples were taken every 30 minutes and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain a uranium leaching rate. The leaching rate was estimated and shown in FIG. 2.

[실시예4] Example 4

상기 실시예1과 동일하게 실시하되 황산철(Fe2(SO4)3)을 2g을 투입한 것을 제외하고는 상기 실시예1과 동일하게 실시하였고, 총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. The same procedure as in Example 1 except that 2 g of iron sulfate (Fe 2 (SO 4 ) 3 ) was added in the same manner as in Example 1, and the total leaching reaction was performed for 4 hours, 30 Samples were taken every minute and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain a uranium leaching rate. The leaching rate was estimated and shown in FIG. 2.

[비교예1] [Comparative Example 1]

상기 실시예1과 동일하게 실시하되 황산철(Fe2(SO4)3)을 투입하지 않은 것을 제외하고 상기 실시예1과 동일하게 실시하였고, 총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. In the same manner as in Example 1 except that iron sulfate (Fe 2 (SO 4 ) 3 ) was not added, the same as in Example 1, the total leaching was carried out for 4 hours, every 30 minutes The sample was collected and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain a uranium leaching rate. The leaching rate was estimated as shown in FIG. 2.

[비교예2] [Comparative Example 2]

상기 실시예1과 동일하게 실시하되 황산철(Fe2(SO4)3)을 0.25g을 투입한 것을 제외하고는 상기 실시예1과 동일하게 실시하였고, 총 침출반응은 4시간동안 수행하였으며, 30분마다 샘플을 채취하여 여과한 후 용액을 ICP/MS (Perkin Elmer, DRC-2)로 분석하여 우라늄 침출률을 얻었다, 상기 침출률을 개산하여 하기 도2에 나타내었다. The same procedure as in Example 1 was conducted except that 0.25 g of iron sulfate (Fe 2 (SO 4 ) 3 ) was added, and the leaching reaction was performed for 4 hours. Samples were taken every 30 minutes and filtered, and the solution was analyzed by ICP / MS (Perkin Elmer, DRC-2) to obtain a uranium leaching rate. The leaching rate was estimated and shown in FIG. 2.

도2는 실시예1 내지 4 및 비교예1 내지 2의 방법에 따라 침출반응을 하였을 때 침출시간에 따른 우라늄 침출률을 나타낸 그래프이다. 황산철을 첨가하지 않았을 경우에는 4시간의 침출에도 우라늄 침출률이 5% 정도이었으나, 황산철을 첨가함에 따라 침출률이 증가하였으며, 특히 황산철을 2.0g 첨가하였을 때 우라늄 침출률은 70%에 도달하였다. 이 결과에 의하면, 우라늄 침출에 사용된 우라늄 함유 흑색점판암 광석에는 Fe2O3로 환산하여 약 5.9%의 철분이 함유되어 있지만 수행된 침출조건에서 초기에 원활히 용해되지 않았거나 용해된 철 이온이 적절한 형태로 침출반응에 참여하지 못한 것이다.
Figure 2 is a graph showing the uranium leaching rate according to leaching time when the leaching reaction according to the method of Examples 1 to 4 and Comparative Examples 1 to 2. When iron sulfate was not added, the uranium leaching rate was about 5% even after 4 hours of leaching, but the leaching rate was increased by adding iron sulfate, especially when 2.0g of iron sulfate was added. Reached. According to these results, the uranium-containing black slate rock ore used for uranium leaching contains about 5.9% of iron in terms of Fe 2 O 3 , but iron ions that were not readily dissolved or dissolved in the initial leaching conditions were adequate. It did not participate in the leaching reaction in the form.

-황산철의 유무에 따라 산화환원전이를 유지하는데 소모되는 산화제와 황산의 양 비교-Comparison of the amount of oxidant and sulfuric acid consumed to maintain redox transition with and without iron sulfate

[비교예3][Comparative Example 3]

우라늄을 포함한 흑색점판암 500g을 분쇄하여 48메쉬가 되도록 준비하였다. 증류수 500g을 넣고 황산철을 첨가하지 않고, pH를 2.0로 조절하기 위해 황산을 첨가하여 혼합액A를 제조하였다. 상기 혼합액A에 우라늄을 포함한 흑색점판암을 500g을 투입하여 혼합액 B를 제조하고, 상기 혼합액B를 400rpm으로 교반하면서 4시간 동안 침출시켰다. 이때 침출을 수행하는 동안 반응온도는 30℃로 유지하고, 상기 혼합액B는 pH는 2.0가 되고, 산화환원전위가 450mV로 유지되도록 황산과 이산화망간을 첨가하였다. 총 침출반응은 4시간동안 수행하였다. 4시간동안 산화환원전위와 pH를 유지하기위해 사용한 이산화망간의 소모량은9.8kg/ton 이고, 첨가된 황산의 양은 36.8kg/ton이었다. 4시간동안의 침출률은 15%였다.500 g of black slate rock containing uranium was ground to prepare a 48 mesh. 500 g of distilled water was added thereto, and iron sulfate was not added. In order to adjust the pH to 2.0, sulfuric acid was added to prepare a mixed solution A. 500 g of black slate rock containing uranium was added to the mixed solution A to prepare a mixed solution B, and the mixed solution B was leached for 4 hours while stirring at 400 rpm. At this time, while leaching, the reaction temperature was maintained at 30 ° C, and the mixture B was added with sulfuric acid and manganese dioxide to maintain a pH of 2.0 and maintain a redox potential of 450 mV. Total leaching was carried out for 4 hours. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 9.8 kg / ton and the amount of sulfuric acid added was 36.8 kg / ton. The leaching rate over 4 hours was 15%.

[비교예4][Comparative Example 4]

상기 비교예3과 동일하게 실시하되, 산화환원전위가 500mV가 유지되도록 하는 것에 차이가 있으며, 나머지는 비교예3과 동일하게 실시하였다. 4시간동안 산화환원전위와 pH를 유지하기위해 사용한 이산화망간의 소모량은25.8kg/ton 이고, 첨가된 황산의 양은 62.6kg/ton이었다. 4시간동안의 침출률은 50%였다.The same procedure as in Comparative Example 3 was carried out, except that the redox potential was maintained at 500 mV, and the rest was performed in the same manner as in Comparative Example 3. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 25.8 kg / ton and the amount of sulfuric acid added was 62.6 kg / ton. The leaching rate over 4 hours was 50%.

[비교예5][Comparative Example 5]

상기 비교예3과 동일하게 실시하되, 산화환원전위가 550mV가 유지되도록 하는 것에 차이가 있으며, 나머지는 비교예3과 동일하게 실시하였다. 4시간동안 산화환원전위와 pH를 유지하기위해 사용한 이산화망간의 소모량은33.18kg/ton 이고, 첨가된 황산의 양은 73.7kg/ton이었다. 4시간동안의 침출률은 93%였다.The same process as in Comparative Example 3, except that the redox potential is maintained at 550mV, the rest was carried out in the same manner as in Comparative Example 3. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 33.18 kg / ton, and the amount of sulfuric acid added was 73.7 kg / ton. The leaching rate over 4 hours was 93%.

[실시예5][Example 5]

우라늄을 포함한 흑색점판암 500g을 분쇄하여 48메쉬가 되도록 준비하였다. 증류수 500g을 넣고 황산철1.5g을 첨가하고, pH를 2.0로 조절하기 위해 황산을 첨가하여 혼합액A를 제조하였다. 상기 혼합액A에 우라늄을 포함한 흑색점판암을 500g을 투입하여 혼합액 B를 제조하고, 상기 혼합액B를 400rpm으로 교반하면서 4시간 동안 침출시켰다. 이때 침출을 수행하는 동안 반응온도는 30℃로 유지하고, 상기 혼합액B는 pH는 2.0이 되고, 산화환원전위가 450mV로 유지되도록 황산과 이산화망간을 첨가하였다. 총 침출반응은 4시간동안 수행하였다. 4시간동안 산화환원전위와 pH를 유지하기위해 사용한 이산화망간의 소모량은9.8kg/ton 이고, 첨가된 황산의 양은 36.8kg/ton이었다. 4시간동안의 침출률은 69.3%였다.500 g of black slate rock containing uranium was ground to prepare a 48 mesh. 500 g of distilled water was added thereto, 1.5 g of iron sulfate was added, and sulfuric acid was added to adjust the pH to 2.0 to prepare a mixed solution A. 500 g of black slate rock containing uranium was added to the mixed solution A to prepare a mixed solution B, and the mixed solution B was leached for 4 hours while stirring at 400 rpm. At this time, while leaching, the reaction temperature was maintained at 30 ° C, and the mixture B was added with sulfuric acid and manganese dioxide to maintain a pH of 2.0 and maintain a redox potential of 450 mV. Total leaching was carried out for 4 hours. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 9.8 kg / ton and the amount of sulfuric acid added was 36.8 kg / ton. The leaching rate over 4 hours was 69.3%.

[실시예6][Example 6]

상기 실시예5와 동일하게 실시하되, 산화환원전위가 500mV로 유지되도록 한 것에 차이가 있으며 나머지는 상기 실시예5와 동일하게 실시하였다. 4시간동안 산화환원전위와 pH를 유지하기 위해 사용한 이산화망간의 소모량은29.4kg/ton 이고, 첨가된 황산의 양은 77.34kg/ton이었다. 4시간동안의 침출률은 89.0%였다.The same process as in Example 5, except that the redox potential was maintained at 500 mV, and the rest was performed in the same manner as in Example 5. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 29.4 kg / ton, and the amount of sulfuric acid added was 77.34 kg / ton. The leaching rate over 4 hours was 89.0%.

[실시예7]Example 7

상기 실시예5와 동일하게 실시하되, 산화환원전위가 550mV로 유지되도록 한 것에 차이가 있으며 나머지는 상기 실시예5와 동일하게 실시하였다. 4시간동안 산화환원전위와 pH를 유지하기 위해 사용한 이산화망간의 소모량은38.6kg/ton 이고, 첨가된 황산의 양은 92.02kg/ton이었다. 4시간동안의 침출률은 95.3%였다.The same process as in Example 5 was performed except that the redox potential was maintained at 550 mV, and the rest was performed in the same manner as in Example 5. The consumption of manganese dioxide used to maintain the redox potential and pH for 4 hours was 38.6 kg / ton and the amount of sulfuric acid added was 92.02 kg / ton. The leaching rate over 4 hours was 95.3%.

상기 비교예3 내지 5와 실시예5 내지 7의 결과에 의해 다음을 알 수 있다.The following can be seen from the results of Comparative Examples 3 to 5 and Examples 5 to 7.

비교예5에서 볼수 있듯이 산화환원전위를 550mV로 하였을때 침출률을 높일 수 있으나, 이산화망간과 황산소모량이 급격히 늘어나는 단점이 있다. 그리고, 황산철을 첨가하였을때 황산철을 첨가하지 않았을 때에 비하여 같은 산화환원전위에서 침출률이 훨씬 높다는 것을 알 수 있다. 그리고 같은 비교적 낮은 산화환원전위 450mV에서도 황산철을 첨가하게 되면 첨가하지 않았을 때와 비교 하였을 때, 높은 침출률을 가지는 것을 알 수 있다. 따라서 황산철을 첨가하면 비교적 산화환원전위에서도 높은 침출률을 가질 수 있으며, 이산화망간과 황산의 소모량도 줄일 수 있는 장점이 있다. As can be seen in Comparative Example 5, the leaching rate can be increased when the redox potential is set at 550 mV, but there is a disadvantage in that the amount of manganese dioxide and sulfuric acid consumption is increased rapidly. Also, it can be seen that the leaching rate is much higher at the same redox potential than when iron sulfate is added when iron sulfate is added. And even at the same relatively low redox potential of 450mV when iron sulfate is added, it can be seen that it has a high leaching rate when compared to when not added. Therefore, the addition of iron sulfate can have a relatively high leaching rate even at a redox potential, and has the advantage of reducing the consumption of manganese dioxide and sulfuric acid.

표1 (단위 wt%)Table 1 (unit wt%)

Figure 112010041282103-pat00001
Figure 112010041282103-pat00001

Claims (10)

입자크기가 45~200메쉬인 우라늄을 함유한 광물에 물, 황산, 산화제, 황산철을 첨가 혼합하여 우라늄을 pH 1~2, 30~60℃에서 침출 반응을 시키되, 상기 황산철은 우라늄을 함유한 광물 100중량부에 대하여 0.1 내지 1중량부 첨가하고, 산화환원전위를 400~550mV로 제어하는 것을 특징으로 하는 우라늄 침출방법. Water, sulfuric acid, oxidizing agent and iron sulfate are mixed with minerals containing uranium having a particle size of 45 to 200 mesh to leach the uranium at a pH of 1 to 2 and 30 to 60 ° C., but the iron sulfate contains uranium. 0.1 to 1 parts by weight based on 100 parts by weight of a mineral is added, and the redox potential is controlled to 400 to 550 mV. 제1항에 있어서,
상기 침출 반응시 pH는 황산의 투입 양으로 제어하고, 산화환원전위는 산화제의 투입 양으로 제어하는 우라늄 침출방법.
The method of claim 1,
PH of the leaching reaction is controlled by the amount of sulfuric acid, redox potential is controlled by the amount of oxidizing agent uranium leaching method.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
상기 침출 반응은 0.5~4시간 이루어지는 것인 우라늄 침출방법.
The method of claim 1,
The leaching reaction is uranium leaching method made of 0.5 to 4 hours.
제1항에 있어서,
상기 혼합은 200~500rpm으로 교반하여 이루어지는 것인 우라늄 침출방법.
The method of claim 1,
The mixing is a uranium leaching method which is made by stirring at 200 ~ 500rpm.
제1항에 있어서,
상기 산화제는 이산화망간인 우라늄 침출방법.
The method of claim 1,
The oxidizing agent is a uranium leaching method of manganese dioxide.
제1항에 있어서,
상기 우라늄을 함유한 광물은 우라늄이 함유된 흑색점판암인 우라늄 침출방법.
The method of claim 1,
The uranium-containing mineral is a uranium leaching method that is black slate containing uranium.
삭제delete
KR1020100060956A 2010-06-28 2010-06-28 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate KR101178903B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100060956A KR101178903B1 (en) 2010-06-28 2010-06-28 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100060956A KR101178903B1 (en) 2010-06-28 2010-06-28 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate

Publications (2)

Publication Number Publication Date
KR20120000617A KR20120000617A (en) 2012-01-04
KR101178903B1 true KR101178903B1 (en) 2012-08-31

Family

ID=45608412

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100060956A KR101178903B1 (en) 2010-06-28 2010-06-28 High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate

Country Status (1)

Country Link
KR (1) KR101178903B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291146B1 (en) 2013-02-20 2013-08-07 한국지질자원연구원 Extraction method of uranium and vanadium from black shale ore using sequential leaching process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9367688B2 (en) 2012-06-22 2016-06-14 Intel Corporation Providing geographic protection to a system
KR101303959B1 (en) * 2013-02-20 2013-09-05 한국지질자원연구원 Sequential recovery method of uranium and vanadium separation from black shale ore
FR3034104B1 (en) * 2015-03-26 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR DISSOLVING A METAL OXIDE IN THE PRESENCE OF A REDUCING METAL.
FR3034105B1 (en) * 2015-03-26 2019-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives PROCESS FOR DISSOLVING A METAL OXIDE IN THE PRESENCE OF IRON
CN113151700B (en) * 2021-04-30 2022-04-22 中广核铀业发展有限公司 High-heap leaching method for uranium ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073750A (en) 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching sulfide ore containing copper pyrite
JP2004156123A (en) * 2002-11-08 2004-06-03 Sumitomo Metal Mining Co Ltd Process for leaching copper from copper sulfide ore

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073750A (en) 2001-08-27 2003-03-12 Mitsui Mining & Smelting Co Ltd Method for leaching sulfide ore containing copper pyrite
JP2004156123A (en) * 2002-11-08 2004-06-03 Sumitomo Metal Mining Co Ltd Process for leaching copper from copper sulfide ore

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
비철제련공학, 문운당, 이승이 외 1, pp.124~125, 435~436, (1999.1.25.)*
연구보고서, 옥천계 흑색점판암에서 바나듐 회수연구(II), (1991.12.)*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291146B1 (en) 2013-02-20 2013-08-07 한국지질자원연구원 Extraction method of uranium and vanadium from black shale ore using sequential leaching process

Also Published As

Publication number Publication date
KR20120000617A (en) 2012-01-04

Similar Documents

Publication Publication Date Title
KR101178903B1 (en) High efficient sulfuric acid leaching method of uranium ore by addition ferric sulfate
CN104762466B (en) Liquid preparation method for producing electrolytic manganese or manganese dioxide from low-grade manganese oxide ore
KR101047985B1 (en) High efficient uranium leaching method using ultrasonic wave
CN102614620B (en) Wet detoxification method of hexavalent chromium contained alkali waste residues
CN102649997B (en) The method that ammonia leaches
CN105219969B (en) Utilize vanadium wastewater and the method for tailings in vanadium extraction extraction manganese metal
CN103952560B (en) A kind of method of Leaching of Vanadium from Vanadium slag
CN103952572B (en) Method for optimizing zinc hydrometallurgy hot acid leaching process by pressure leaching
CN105714115B (en) A kind of carbonaceous siliceous-pelitic rock type U-ore stone Bioleaching Uranium method
CN103320628A (en) Method for reducing acid consumption by concentrated acid aging method in process of leaching vanadium from navajoite
CN103898329A (en) Method for extracting vanadium from vanadium slag through manganese roasting
CN105331801B (en) A kind of zinc concentrate cooperates with method of roasting with pyrite
CN103343242B (en) Method for interactively roasting bismuth sulfide ore and pyrolusite to extract bismuth and co-produce manganese sulfate
CN107435102B (en) A kind of non-cyanogen leaching agent and its method for Gold ore leaching
CN109536747B (en) Pretreatment method of low-grade uranium ore
CN104928464A (en) Method for extracting valuable metal in vanadium containing material by microwave heating preprocessing
CN113151700B (en) High-heap leaching method for uranium ore
CN105624420A (en) Method for leaching gold by thiosulfate through cobalt and ammonia catalysis
CN102010995B (en) Method for increasing copper recovery rate in zinc hydrometallurgy process
CN109930008B (en) Method for cleanly extracting vanadium from vanadium slag
CN102776370B (en) Technological method for leaching manganese ore with high spent acid
CN105018745A (en) Method for recovering zinc in oxygen and sulfur mixed zinc ore through synergistic coordination
CN105039730B (en) A kind of method that sulfur dioxide roasting fayalite class metallurgical slag reclaims iron
CN107287452A (en) A kind of titanizing oxidizing roasting acid-leaching vanadium-extracted method of vanadium slag
CN104060109A (en) Method for extracting vanadium by virtue of leaching

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 8