JP2003073676A - Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio - Google Patents

Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio

Info

Publication number
JP2003073676A
JP2003073676A JP2001268986A JP2001268986A JP2003073676A JP 2003073676 A JP2003073676 A JP 2003073676A JP 2001268986 A JP2001268986 A JP 2001268986A JP 2001268986 A JP2001268986 A JP 2001268986A JP 2003073676 A JP2003073676 A JP 2003073676A
Authority
JP
Japan
Prior art keywords
twenty
fuel ratio
gasoline
air
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001268986A
Other languages
Japanese (ja)
Inventor
Yasuo Kaneko
靖雄 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPUTEI KK
Original Assignee
OPUTEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPUTEI KK filed Critical OPUTEI KK
Priority to JP2001268986A priority Critical patent/JP2003073676A/en
Publication of JP2003073676A publication Critical patent/JP2003073676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for strictly calculating a theoretical air/fuel ratio of gasoline, and a method for producing gasoline having a desired theoretical air/fuel ratio obtained by the calculation. SOLUTION: The theoretical air/fuel ratio is calculated by using the expression: 138.03 (A+B/2)/Wf (wherein A and B are the coefficients of a composition of combustion gas ACO2 +BH2 O; and Wf is the weight of gasoline).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ガソリンの理論
空燃比の算出方法および所望の理論空燃比を有するガソ
リンの製造方法、特に、ガソリンの理論空燃比を厳密に
求めることができるガソリンの理論空燃比の算出方法お
よびこの算出方法に基づいて所望の理論空燃比を有する
ガソリンを製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a stoichiometric air-fuel ratio of gasoline and a method for producing a gasoline having a desired stoichiometric air-fuel ratio, and more particularly to a stoichiometric air-fuel ratio of gasoline for which the stoichiometric air-fuel ratio of gasoline can be determined exactly. The present invention relates to a fuel ratio calculation method and a method for producing gasoline having a desired stoichiometric air-fuel ratio based on this calculation method.

【0002】[0002]

【従来の技術】ガソリンは、炭化水素CnHm燃料といわ
れ、炭素Cと水素Hとが結合してつくられている。約20
0種類もの炭化水素化合物CnHmの混合体である。決して
ガソリンは単一炭化水素CnHmではない。そういう意味で
はガソリンは非常に複雑な燃料である。
2. Description of the Related Art Gasoline is called a hydrocarbon C n H m fuel and is made by combining carbon C and hydrogen H. About 20
It is a mixture of zero hydrocarbon compounds C n H m . By no means is gasoline a single hydrocarbon C n H m . In that sense, gasoline is a very complex fuel.

【0003】一方、本質的にピストンエンジンは不完全
燃焼である。吸気、排気を交互にくり返すため、燃料の
燃焼に許される時間が短かすぎること、またスパークプ
ラグで点火された燃焼ガスの火炎が伝播して燃焼室表面
近くに達すると、燃焼室表面の薄い境界層内では燃焼火
炎が消炎して層内の燃料が燃えないためである。なぜ燃
焼室表面の境界層で消炎するかというと、燃料の燃焼温
度は約2000℃と極めて高温度に対し、燃焼室表面温
度が冷却水で冷却されてたかだか300℃前後と極めて
低温度に保たれるためである。このような不完全燃焼の
ため、排気ガス中にCO、未燃燃料のHC、そして燃焼温度
が2000℃という高温度のために生成されるNOXが排
出されてしまう。排ガス中のCO、HC、NOXの清浄化が必
要になる。
On the other hand, essentially a piston engine is an incomplete combustion. Since the intake and exhaust are repeated alternately, the time allowed for fuel combustion is too short, and when the flame of the combustion gas ignited by the spark plug propagates and reaches near the combustion chamber surface, the combustion chamber surface This is because the combustion flame is extinguished in the thin boundary layer and the fuel in the layer does not burn. The reason for quenching the flame in the boundary layer on the surface of the combustion chamber is that the combustion temperature of the fuel is about 2000 ° C, which is extremely high, while the temperature of the combustion chamber surface is maintained at an extremely low temperature of around 300 ° C, which was cooled by cooling water. This is because you are dripping. Due to such incomplete combustion, CO, HC of unburned fuel, and NO X generated due to the high combustion temperature of 2000 ° C. are discharged into the exhaust gas. Purification of CO, HC and NO X in exhaust gas is required.

【0004】CO、HCは、酸化反応によりCO2とH2Oに、NO
Xは、還元反応によってN2とO2になる。すなわち相反す
る酸化、還元反応を同時に行なってCO、HC、NOXの清浄
化を行わなければならないことになる。それが可能な3
元触媒が開発された。この3元触媒を使うためには、エ
ンジンを理論空燃比で運転する必要がでてくる。理論空
燃比で運転すると、その排気ガスは酸化雰囲気でも還元
雰囲気でもない中性雰囲気となり、3元触媒が機能を発
揮してCO、HC、NOXの3成分を低減することが可能にな
る。したがってガソリンエンジンの理論空燃比が重要に
なる。
CO and HC are converted into CO 2 and H 2 O by the oxidation reaction, and NO
X becomes N 2 and O 2 by the reduction reaction. That is, CO, HC, and NO X must be cleaned by simultaneously performing opposite oxidation and reduction reactions. It is possible 3
The original catalyst was developed. In order to use this three-way catalyst, it becomes necessary to operate the engine at the stoichiometric air-fuel ratio. When operated at the stoichiometric air-fuel ratio, the exhaust gas becomes a neutral atmosphere nor a reducing atmosphere in an oxidizing atmosphere, it is possible to three-way catalyst to exhibit the function CO, HC, reducing the three components of the NO X. Therefore, the stoichiometric air-fuel ratio of a gasoline engine becomes important.

【0005】空燃比の定義は、ある運転条件の場合の空
気と燃料重量との比である。そこでエンジンを設計する
に当って、たとえばレギュラーガソリンの理論空燃比は
14.7と仮定し、空燃比が14.7になるように燃料
の供給量を設定をする。ところが理論空燃比は、ガソリ
ンの約200種類にもなる炭化水素の混合割合によって
決められる。ガソリンの理論空燃比がエンジン設計時の
14.7と異なり14.5のガソリンを用いる場合に、
O2センサーを排気系に取り付けて空燃比を検出し、常に
そのガソリンの理論空燃比14.5になる燃料供給量に
制御しようとするものである。
The definition of air-fuel ratio is the ratio of air to fuel weight under certain operating conditions. Therefore, when designing the engine, for example, assuming that the stoichiometric air-fuel ratio of regular gasoline is 14.7, the fuel supply amount is set so that the air-fuel ratio becomes 14.7. However, the stoichiometric air-fuel ratio is determined by the mixing ratio of about 200 kinds of hydrocarbon hydrocarbons in gasoline. When the theoretical air-fuel ratio of gasoline is 14.5, which is different from 14.7 when the engine was designed,
The O 2 sensor is attached to the exhaust system to detect the air-fuel ratio, and always tries to control the fuel supply amount so that the theoretical air-fuel ratio of the gasoline becomes 14.5.

【0006】「レギュラーガソリンの理論空燃比は1
4.7と仮定して」と述べたが、エンジン設定の基準に
なるガソリンの理論空燃比はメーカーによって値が異な
っている。たとえばA社は、14.5、B社は、14.
7という具合である。14.5〜14.7と違いの幅は
狭いが、市販されるガソリンの理論空燃比がばらついて
いる証拠である。したがって使用されるガソリンの理論
空燃比を厳密に求めることが重要になる。これと同時に
市販されるガソリンの理論空燃比がすべて一定値に管理
できればそれに越したことはない。生産されたガソリン
の理論空燃比を厳密に計算する計算式の確立が望まれ
る。
"The theoretical air-fuel ratio of regular gasoline is 1
Assuming that the value is 4.7 ", the value of the stoichiometric air-fuel ratio of gasoline, which is the standard for setting the engine, differs depending on the manufacturer. For example, Company A has 14.5, Company B has 14.
It is 7 and so on. Although it is narrower than 14.5-14.7, it is evidence that the theoretical air-fuel ratio of commercially available gasoline varies. Therefore, it is important to exactly determine the stoichiometric air-fuel ratio of the gasoline used. At the same time, if all theoretical air-fuel ratios of commercially available gasoline can be controlled to a constant value, it would be better than that. It is desirable to establish a calculation formula that strictly calculates the theoretical air-fuel ratio of produced gasoline.

【0007】エンジン運転中の空燃比の計測法には2つ
ある。1つは吸入空燃比で、吸入空気重量と供給ガソリ
ン重量とから空燃比を求める方法。もう1つは排ガス空
燃比法である。吸入空燃比法は、旧来の方法で現在では
あまり使われない。排ガス分析技術が1970年代にス
タートした排気ガス規制法実施以来進歩し、エンジンの
排気ガスを精度よく計測できるようになったためであ
る。計測されたCO、CO2ならびに未燃燃料のHC濃度から
空燃比を計算によって求められる。
There are two methods for measuring the air-fuel ratio during engine operation. One is the intake air-fuel ratio, which is a method of obtaining the air-fuel ratio from the intake air weight and the supply gasoline weight. The other is the exhaust gas air-fuel ratio method. The intake air-fuel ratio method is a traditional method and is not used much at present. This is because the exhaust gas analysis technology has advanced since the enforcement of the Exhaust Gas Regulations Act that started in the 1970s, and it has become possible to measure engine exhaust gas with high accuracy. The air-fuel ratio can be calculated from the measured CO, CO 2 and HC concentration of unburned fuel.

【0008】1973年米国GMのWilliam H. Hollが
その計算法を発表した。その計算の仮定として、ガソリ
ンの水素/炭素比というものを仮定している。この水素
/炭素比とはガソリンを、代表的な一つの炭化水素CnHm
であらわすことにする。その炭化水素CnHmのm/n比であ
る。 Hollは、理論空燃比を1.85とした。ガソリン
は、前述したように約200種類の炭化水素の混合体で
あるが、一般的には、1種類の炭化水素CH1.85でガソリ
ンをあらわしてしまう。現実にこのような炭化水素は存
在しない。通常このように仮定したガソリンの理論空燃
比を計算で求めるときの燃焼化学反応式は、(5)式の
ようになる。
In 1973, William H. Holl of GM USA announced the calculation method. The assumption of the calculation is the hydrogen / carbon ratio of gasoline. This hydrogen / carbon ratio refers to gasoline as one of the typical hydrocarbons C n H m
I will represent it. It is the m / n ratio of the hydrocarbon C n H m . Holl set the theoretical air-fuel ratio to 1.85. As described above, gasoline is a mixture of about 200 kinds of hydrocarbons, but generally, one kind of hydrocarbon CH 1.85 represents gasoline. Actually, such hydrocarbon does not exist. Normally, the combustion chemical reaction equation for calculating the theoretical air-fuel ratio of gasoline, which is assumed in this way, is as shown in equation (5).

【0009】 CH1.85+1.463(O2+3.785N2) →CO2+0.925H2O+5.537N2 ---(5)CH 1.85 +1.463 (O 2 + 3.785N 2 ) → CO 2 + 0.925H 2 O + 5.537N 2 --- (5)

【0010】ここで、空気は(O2+3.785N2)と仮定し
た。ガソリンCH1.85が空気中の酸素O2と燃焼してCO2+0.
925H2Oに完全燃焼する。完全燃焼に必要な酸素O2の右辺
の数は1+(0.925/2)=1.463となる。したがって(5)式
の左辺の空気(O2+3.785N2)の係数は1.463となり
(5)式が成立する。(5)式で示される理論空燃比
は、C、Hの原子量、O2、N2の分子量が分かっているので
計算で求められる。
Here, it is assumed that the air is (O 2 + 3.785N 2 ). Gasoline CH 1.85 burns with oxygen O 2 in the air to produce CO 2 +0.
Completely burns to 925H 2 O. The number on the right side of oxygen O 2 required for complete combustion is 1+ (0.925 / 2) = 1.463. Therefore, the coefficient of air (O 2 + 3.785N 2 ) on the left side of equation (5) is 1.463, and equation (5) holds. The stoichiometric air-fuel ratio shown by the equation (5) can be calculated by knowing the atomic weights of C and H and the molecular weights of O 2 and N 2 .

【0011】空気の重量は、(5)式左辺の1.463(O2+
3.785N2)から、酸素O2の分子量32.00、窒素N2の分子量
28.014から1.463(32.00+3.785×28.014)=201.94とな
る。またガソリン重量は同じく左辺CH1.85から、炭素C
の原子量12.011、水素Hの原子量1.008から、12.011+1.8
5×1.008=13.87となる。したがって、この理論空燃比
は、201.94/13.87=14.55となる。この方法がガソリン
の理論空燃比を求める一般的な方法である。
The weight of air is 1.463 (O 2 +
3.785N 2 ), the molecular weight of oxygen O 2 is 32.00, the molecular weight of nitrogen N 2 is
From 28.014 to 1.463 (32.00 + 3.785 × 28.014) = 201.94. Also, the gasoline weight is the same as CH 1.85 on the left side and carbon C
Atomic weight of 12.011, hydrogen H atomic weight of 1.008, 12.011 + 1.8
5 x 1.008 = 13.87. Therefore, the stoichiometric air-fuel ratio is 201.94 / 13.87 = 14.55. This method is a general method for obtaining the stoichiometric air-fuel ratio of gasoline.

【0012】ちなみに、水素/炭素比を1.95と仮定すれ
ば、燃焼化学反応式は、 CH1.95+1.4875(O2+3.785N2) →CO2+0.975H2O+5.678N2 ---(6) となり、(5)式の場合と同様に理論空燃比を求めると
14.69となる。
Assuming that the hydrogen / carbon ratio is 1.95, the combustion chemical reaction formula is CH 1.95 +1.4875 (O 2 + 3.785N 2 ) → CO 2 + 0.975H 2 O + 5.678N 2 --- ( 6) becomes, and the theoretical air-fuel ratio is calculated in the same way as in the case of equation (5).
14.69.

【0013】[0013]

【発明が解決しようとする課題】すなわち、従来のガソ
リン理論空燃比計算法は、ガソリンを単一炭化水素とみ
なして、水素/炭素比をある値に仮定したときの理論空
燃比に過ぎない。そのガソリンが、単一炭化水素でしか
も、ある水素/炭素比であらわされるという保証はなに
もない。
That is, the conventional gasoline stoichiometric air-fuel ratio calculation method is merely the stoichiometric air-fuel ratio when the gasoline is regarded as a single hydrocarbon and the hydrogen / carbon ratio is assumed to be a certain value. There is no guarantee that the gasoline will be represented by a single hydrocarbon and at some hydrogen / carbon ratio.

【0014】従って、この発明の目的は、ガソリンの理
論空燃比を厳密に求めることができるガソリンの理論空
燃比の算出方法およびこの算出方法に基づいて所望の理
論空燃比を有するガソリンを製造する方法を提供するこ
とにある。
Therefore, an object of the present invention is to calculate a stoichiometric air-fuel ratio of gasoline capable of rigorously determining the stoichiometric air-fuel ratio of gasoline and a method for producing a gasoline having a desired stoichiometric air-fuel ratio based on this calculation method. To provide.

【0015】[0015]

【課題を解決するための手段】まず基準になるガソリン
の理論空燃比から明らかにする必要がある。ガソリン
は、メタンとかベンゼンなどのように単一物質ではな
く、炭素原子Cと水素原子Hが結び付いてできる炭化水素
CnHmが主体で成り立っている。その炭素数は、前述した
ように、4〜16前後にわたる約200種類の炭化水素
化合物の混合体である。そのCは4つの結合手をもち、
Hは1つの結合手をもっている。これらの結合手同士の
つながり方で石油系炭化水素CnHmはいくつかの系統に分
類される。
[Means for Solving the Problems] First, it is necessary to clarify the theoretical air-fuel ratio of gasoline as a reference. Gasoline is not a single substance like methane or benzene, but a hydrocarbon formed by combining carbon atom C and hydrogen atom H.
Mainly composed of C n H m . As described above, the carbon number is a mixture of about 200 kinds of hydrocarbon compounds ranging from 4 to 16 or so. The C has four bonds,
H has one bond. Petroleum hydrocarbons C n H m are classified into several systems depending on how these bonds are connected.

【0016】(1)パラフィン(Paraffin)系炭化水素 何個かのCとCが1つの結合手で、−C−C−のように鎖状
につながっている炭化水素の総称である。この炭化水素
は原油中に一般的には最も多く含まれる。たとえばオク
タン価の基準になる、ノックを起こしにくいオクタン価
100のイソオクタン(2,2,4−トリメチル ペンタン)
もノックを起こしやすいオクタン価0のノルマルヘプタ
ンもパラフィン系炭化水素である。
(1) Paraffin hydrocarbon A general term for hydrocarbons in which several Cs and Cs are linked by a single bond such as -C-C-. This hydrocarbon is generally the most abundant in crude oil. For example, isooctane (2,2,4-trimethylpentane) with an octane number of 100, which is the standard of octane number and is hard to cause knock,
Normal heptane with an octane number of 0, which is prone to knock, is also a paraffinic hydrocarbon.

【0017】(2)アロマテイック(Aromatic:芳香族
系)炭化水素 6個のCが1つおきに3個の2重結合をもって環状に結
合している状態をベンゼン核という。ベンゼン核をもつ
炭化水素をアロマテイック系炭化水素という。アロマテ
イック系炭化水素は原油中にはあまり含まれないが、接
触改質工程で製造される場合には多く含まれる。
(2) Aromatic (Aromatic) hydrocarbon A state in which 6 C's are cyclically bonded to each other with 3 double bonds every 3 is called a benzene nucleus. Hydrocarbons having a benzene nucleus are called aromatic hydrocarbons. Aromatic hydrocarbons are rarely contained in crude oil, but a large amount are contained when they are produced in the catalytic reforming process.

【0018】(3)オレフィン(Olefin)系炭化水素 CとCの結合のどこか1カ所が2つの結合手で、−C=C−
のように結合手でつながっている炭化水素を総称してい
う。
(3) Olefin-based hydrocarbon One of the bonds between C and C has two bonds at one place, and -C = C-
Hydrocarbons that are linked by bonds such as are collectively referred to.

【0019】(4)ナフテン(Naphthene)系炭化水素 2重結合をもたずにCが環状につながっている炭化水素
である。原油の産地により多く含まれているものとそう
でないものとがある。
(4) Naphthene type hydrocarbon It is a hydrocarbon in which C is cyclically connected without having a double bond. Some are more abundant and some are not, depending on the origin of the crude oil.

【0020】このようなガソリンの空燃比について考え
る場合は、表1のように炭化水素を表した方が考えやす
い。すなわち、
When considering the air-fuel ratio of such gasoline, it is easier to represent hydrocarbons as shown in Table 1. That is,

【表1】 のように分類することができる。[Table 1] Can be classified as.

【0021】(A)パラフィン系炭化水素CnH(2n+2)
理論空燃比 パラフィン系炭化水素CnH(2n+2)完全燃焼の化学反応式
は(7)式になる。
[0021] (A) paraffinic hydrocarbons C n H (2n + 2) stoichiometric ratio paraffinic hydrocarbons C n H (2n + 2) complete combustion chemical equation becomes (7).

【0022】 CnH(2n+2)+(1.5n+0.5)(O2+3.785N2)→nCO2+(n+1)H2O+3.785(1.5n+0.5)N2 ---(7)C n H (2n + 2) + (1.5n + 0.5) (O 2 + 3.785N 2 ) → nCO 2 + (n + 1) H 2 O + 3.785 (1.5n + 0.5) N 2- -(7)

【0023】左辺は、燃焼前のパラフィン系炭化水素と
空気を示し、右辺は燃焼後の燃焼生成ガスを示してい
る。燃焼により、炭化水素に含まれるCは炭酸がスCO
2に、Hは水蒸気H2Oになる。炭化水素に含まれるCはn
個、Hは(2n+2)個であるからH2としては(n+1)個になる。
したがって完全燃焼生成ガスはnCO2+(n+1)H2Oとなる。
空気に含まれる窒素N2は不活性ガスで、そのまま3.785
(1.5n+0.5)N2だけ排出される。(7)式右辺の燃焼生成
ガスに含まれる酸素O2の数はn+(n+1)/2 =1.5n+0.5とな
る。したがってパラフィン系炭化水素CnH(2n+2)の完全
燃焼に必要な空気量は、O 2の数から(1.5n+0.5)(O2+3.78
5N2)となり(7)式が成立する。
The left side shows the paraffinic hydrocarbon before combustion.
It shows air, and the right side shows the combustion product gas after combustion.
It As a result of combustion, carbon contained in hydrocarbons is carbon dioxide.
2, H is steam H2Become O. C contained in hydrocarbon is n
, H is (2n + 2), so H2Will be (n + 1).
Therefore, the complete combustion product gas is nCO2+ (n + 1) H2It becomes O.
Nitrogen N contained in air2Is an inert gas, as it is 3.785
(1.5n + 0.5) N2Only discharged. Combustion generation on the right side of equation (7)
Oxygen contained in gas O2Is n + (n + 1) / 2 = 1.5n + 0.5
It Therefore paraffinic hydrocarbon CnH(2n + 2)Full of
The amount of air required for combustion is O 2From the number of (1.5n + 0.5) (O2+3.78
5N2) And equation (7) holds.

【0024】パラフィン系炭化水素の完全燃焼に対する
空気重量と燃料重量との比がパラフィン系炭化水素の理
論空燃比である。(7)式左辺の空気重量は、(1.5n+0.
5)(O 2+3.785N2)から求められる。酸素、窒素分子量をそ
れぞれ32.00、28.014とすれば、空気重量は138.03(1.5n
+0.5)となる。一方燃料重量は、CnH(2n+2)から、炭素、
水素原子量をそれぞれ12.011、1.008とすれば、(14.027
n+2.016)となる。
For complete combustion of paraffinic hydrocarbons
The ratio of air weight to fuel weight is the reason for paraffinic hydrocarbons.
The air-fuel ratio. The air weight on the left side of equation (7) is (1.5n + 0.
5) (O 2+ 3.785N2) Is required. Oxygen and nitrogen molecular weight
Assuming 32.00 and 28.014 respectively, the air weight is 138.03 (1.5n
+0.5). On the other hand, the fuel weight is CnH(2n + 2)From carbon,
If the atomic weights of hydrogen are 12.011 and 1.008, respectively, (14.027
n + 2.016).

【0025】したがって、理論空燃比は、 理論空燃比=138.03×(1.5n+0.5)/(14.027n+2.018) ---(8) となる。(8)式から明らかなように、パラフィン系炭
化水素の理論空燃比はnの関数になる。ということは、
炭素数nによって理論空燃比が異なることを意味する。
炭素数C1〜C16に対する理論空燃比を求めると表2の
ようになる。
Therefore, the theoretical air-fuel ratio is theoretical air-fuel ratio = 138.03 × (1.5n + 0.5) / (14.027n + 2.018)-(8). As is clear from the equation (8), the theoretical air-fuel ratio of paraffinic hydrocarbon is a function of n. That means
This means that the theoretical air-fuel ratio differs depending on the carbon number n.
Table 2 shows the theoretical air-fuel ratio for carbon numbers C1 to C16.

【0026】[0026]

【表2】 [Table 2]

【0027】表2から明らかなように、炭素数の増加と
ともに理論空燃比は小さな値になる。
As is clear from Table 2, the theoretical air-fuel ratio becomes smaller as the carbon number increases.

【0028】ガソリンの理論空燃比は14.6前後であ
るから、パラフィン系炭化水素の理論空燃比はガソリン
の理論空燃比より約3%大きい値を示す。すなわちパラ
フィン系炭化水素は、ガソリンを構成する小さい値の理
論空燃比の炭化水素の理論空燃比を補正するものであ
る。
Since the stoichiometric air-fuel ratio of gasoline is around 14.6, the stoichiometric air-fuel ratio of paraffin hydrocarbons is about 3% larger than the stoichiometric air-fuel ratio of gasoline. That is, the paraffinic hydrocarbon corrects the stoichiometric air-fuel ratio of the hydrocarbon that constitutes the gasoline and has a small stoichiometric air-fuel ratio.

【0029】(B)アロマテイック系炭化水素CnH
(2n-6)の理論空燃比 アロマテイック系炭化水素CnH(2n-6)の完全燃焼の化学
反応式は(9)式になる。
(B) Aromatic hydrocarbon C n H
Chemical equation complete combustion of (2n-6) of the stoichiometric air-fuel ratio Aromateikku hydrocarbons C n H (2n-6) becomes equation (9).

【0030】 CnH(2n-6)+(1.5n-1.5)(O2+3.785N2)→nCO2+(n-3)H2O+3.785(1.5n-1.5)N2 ---(9)C n H (2n-6) + (1.5n-1.5) (O 2 + 3.785N 2 ) → nCO 2 + (n-3) H 2 O + 3.785 (1.5n-1.5) N 2- -(9)

【0031】燃焼により、n個の炭化水素Cは炭酸ガスnC
O2に、(2n-6)個のHは水蒸気(n-3)H2Oになる。したがっ
て、(9)式右辺の燃焼生成ガスはnCO2+(n-3)H2Oとな
る。空気に含まれる窒素N2はそのまま3.785(1.5n-1.5)N
2だけ排出される。燃焼生成ガスに含まれる酸素O2の数
はn+(n-3)/2 =1.5n-1.5となる。したがってアロマテイ
ック系炭化水素CnH(2n-6)の完全燃焼に必要な空気量
は、(1.5n-1.5)(O2+3.785N2)となり(9)式が成立す
る。
By burning, n hydrocarbons C are carbon dioxide gas nC
In O 2 , (2n-6) H becomes steam (n-3) H 2 O. Therefore, the combustion product gas on the right side of the equation (9) is nCO 2 + (n-3) H 2 O. Nitrogen N 2 contained in air is 3.785 (1.5n-1.5) N as it is
Only 2 is discharged. The number of oxygen O 2 contained in the combustion product gas is n + (n-3) /2=1.5n-1.5. Therefore, the amount of air required for complete combustion of the aromatic hydrocarbon C n H (2n-6) is (1.5n-1.5) (O 2 + 3.785N 2 ) and the equation (9) is established.

【0032】アロマテイック系炭化水素の完全燃焼に対
するする空気重量は(1.5n-1.5)(O2+3.785N2)から求めら
れる。 酸素、窒素分子量から、空気重量は138.03(1.5n
-1.5)となる。一方、燃料重量はCnH(2n-6)から、(14.02
7n-6.048)となる。
The air weight for complete combustion of aromatic hydrocarbons is calculated from (1.5n-1.5) (O 2 + 3.785N 2 ). From the molecular weight of oxygen and nitrogen, the weight of air is 138.03 (1.5n
-1.5). On the other hand, the fuel weight is calculated from C n H (2n-6) to (14.02
7n-6.048).

【0033】したがって、理論空燃比は、 理論空燃比=138.03×(1.5n-1.5)/(14.027n-6.048) ---(10) となる。(10)式から明らかなように、アロマテイッ
ク系炭化水素の理論空燃比もパラフィン系炭化水素と同
様にnの関数になる。炭素数C6〜C12に対するする理論空
燃比を求めると表3のようになる。
Therefore, the theoretical air-fuel ratio is theoretical air-fuel ratio = 138.03 × (1.5n-1.5) / (14.027n-6.048) --- (10). As is clear from the equation (10), the theoretical air-fuel ratio of the aromatic hydrocarbon also becomes a function of n, like the paraffinic hydrocarbon. Table 3 shows the theoretical air-fuel ratio for carbon numbers C6 to C12.

【0034】[0034]

【表3】 [Table 3]

【0035】アロマテイック系炭化水素の理論空燃比
は、ガソリンの理論空燃比14.6より約10%小さな
値となり、炭素数の増加と共に理論空燃比は大きい値を
示している。アロマテイック系炭化水素はベンゼン核が
あり不完全燃焼のとき、有害なベンゼン核を排出する。
したがってアロマテイック系炭化水素のガソリンに占め
る容量%はあまり大きくない。
The theoretical air-fuel ratio of the aromatic hydrocarbon is about 10% smaller than the theoretical air-fuel ratio of gasoline, and the theoretical air-fuel ratio shows a large value as the carbon number increases. Aromatic hydrocarbons have benzene nuclei and emit harmful benzene nuclei when incomplete combustion occurs.
Therefore, the volume% of aromatic hydrocarbons in gasoline is not so large.

【0036】(C)オレフィンとナフテン系炭化水素Cn
H2nの理論空燃比 オレフィンとナフテン系炭化水素CnH2n完全燃焼の化学
反応式は、パラフィン系炭化水素、アロマテイック系炭
化水素と同様にして得られ(11)式のようになる。
(C) Olefin and naphthenic hydrocarbon C n
The stoichiometric air-fuel ratio of H 2n and the naphthenic hydrocarbon C n H 2n The complete chemical reaction formula is obtained by the same formula as that of the paraffinic hydrocarbon and the aromatic hydrocarbon, and is represented by the formula (11).

【0037】 CnH2n+1.5n(O2+3.785N2)→ nCO2+nH2O+3.785×1.5nN2 ---(11)C n H 2n + 1.5n (O 2 + 3.785N 2 ) → nCO 2 + nH 2 O + 3.785 × 1.5nN 2 --- (11)

【0038】(11)式右辺の燃焼生成ガスに含まれる
酸素O2の数はn+0.5n=1.5nとなる。したがってオレフィ
ンとナフテン系炭化水素CnH2nの完全燃焼に必要な空気
量は1.5n(O2+3.785N2)となり(11)式が成立する。
The number of oxygen O 2 contained in the combustion product gas on the right side of the equation (11) is n + 0.5n = 1.5n. Thus the amount of air required for complete combustion of the olefin and naphthene hydrocarbons C n H 2n is 1.5n (O 2 + 3.785N 2) becomes (11) is established.

【0039】(11)式左辺の空気重量は1.5n(O2+3.78
5N2)から求められる。酸素、窒素分子量から、空気重量
は138.03×1.5nとなる。一方、燃料重量はCnH2nから、
炭素、水素原子量をそれぞれ12.011、1.008とすれば、1
4.027nとなる。したがって、理論空燃比は、 理論空燃比=138.03×1.5n/14.02n=14.77 ---(12) となる。すなわち、オレフィン、ナフテン系炭化水素の
理論空燃比は炭素数nに関係なく一定値14.77になる。ガ
ソリンの理論空燃比に近い値を示している。
The air weight on the left side of the equation (11) is 1.5n (O 2 +3.78).
5N 2 ). From the molecular weight of oxygen and nitrogen, the weight of air is 138.03 × 1.5n. On the other hand, the fuel weight is from C n H 2n ,
If the carbon and hydrogen atomic weights are 12.011 and 1.008 respectively, 1
It becomes 4.027n. Therefore, the theoretical air-fuel ratio is 138.03 × 1.5n / 14.02n = 14.77 --- (12). That is, the stoichiometric air-fuel ratio of olefins and naphthenic hydrocarbons is a constant value of 14.77 regardless of the carbon number n. The value is close to the theoretical air-fuel ratio of gasoline.

【0040】ガソリンを構成する炭化水素の炭素数と理
論空燃比の関係は、パラフィン系炭化水素は表2に、ア
ロマテイック系炭化水素は表3に、オレフィンとナフテ
ン系炭化水素の理論空燃比は炭素数に関係なく14.77の
一定値を示すことがわかった。これらの関係を炭素数と
理論空燃比の関係で示すと図1のようになる。
The relationship between the carbon number of hydrocarbons constituting the gasoline and the theoretical air-fuel ratio is shown in Table 2 for paraffinic hydrocarbons, Table 3 for aromatic hydrocarbons, and the theoretical air-fuel ratio of olefins and naphthenic hydrocarbons as carbon. It was found to show a constant value of 14.77 regardless of the number. FIG. 1 shows these relationships by the relationship between the carbon number and the theoretical air-fuel ratio.

【0041】レギュラーガソリンの理論空燃比は14.
6前後であるから、オレフィンとナフテン系炭化水素の
理論空燃比はレギュラーガソリンのそれにほぼ近く、パ
ラフィン系炭化水素はレギュラーガソリンより大きい
値、アロマテイック系炭化水素は小さい値になる。それ
らがある割合で混合して、レギュラーガソリンの理論空
燃比は14.6前後になる。
The theoretical air-fuel ratio of regular gasoline is 14.
Since it is around 6, the theoretical air-fuel ratios of olefin and naphthenic hydrocarbons are almost similar to those of regular gasoline, paraffinic hydrocarbons are larger than regular gasoline, and aromatic hydrocarbons are small. When they are mixed at a certain ratio, the stoichiometric air-fuel ratio of regular gasoline becomes around 14.6.

【0042】パラフィン系炭化水素、アロマテイック系
炭化水素、オレフィンとナフテン系炭化水素の理論空燃
比の特性が明らかになった。これらの特性は理論空燃比
の調整にとって有力な情報を提供する。たとえばすでに
製品化されたガソリンの理論空燃比が14.5のものを
14.7にする方法は、パラフィン系炭化水素を増やす
ことによって、それが可能になる。また精製途中のガソ
リンの場合には、アロマテイック系炭化水素の添加割合
を絞ることを併用することも考えられる。その逆の場合
も、明らかにされた理論空燃比の特性から容易に対策が
考えられる。
The characteristics of the theoretical air-fuel ratio of paraffinic hydrocarbons, aromatic hydrocarbons, olefins and naphthenic hydrocarbons have been clarified. These properties provide powerful information for stoichiometric adjustment. For example, a method of changing the already commercialized gasoline having a theoretical air-fuel ratio of 14.5 to 14.7 can be achieved by increasing the paraffinic hydrocarbon. Further, in the case of gasoline in the process of refining, it may be possible to use it together with narrowing the addition ratio of aromatic hydrocarbons. In the opposite case, a countermeasure can be easily considered from the revealed characteristic of the theoretical air-fuel ratio.

【0043】この発明は、上述の知見に基づきなされた
ものであって、下記を特徴とするものである。
The present invention has been made on the basis of the above-mentioned findings, and is characterized by the following.

【0044】請求項1記載の発明は、ガソリンの理論空
燃比を、下記(1)式によって算出することに特徴を有
するものである。
The invention according to claim 1 is characterized in that the theoretical air-fuel ratio of gasoline is calculated by the following equation (1).

【0045】 理論空燃比=138.03(A+B/2)/Wf---(1)[0045]   Theoretical air-fuel ratio = 138.03 (A + B / 2) / Wf --- (1)

【0046】但し、上記(1)式において、 A=α1+2α2+3α3+4α4+5α5+6α6+7α7+8α8+9α9+10α10+11α11+12α12 +13α13+14α14+15α15+16α16+17α17+18α18+19α19+20α20+21α21+22α22+2 3α23+24α24+25α25+6β6+7β7+8β8+9β9+10β10+11β11+12β12+13β13+14β 14 +15β15+16β16+17β17+18β18+19β19+20β20+21β21+22β22+23β23+24β24 +25β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+ 8(γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13+ δ13)+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ18 18 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323 )+24(γ2424)+25(γ2525) ---(2)However, in the above equation (1),     A = α1+ 2α2+ 3α3+ 4αFour+ 5αFive+ 6α6+ 7α7+ 8α8+ 9α9+ 10αTen+ 11α11+ 12α12 + 13α13+ 14α14+ 15α15+ 16α16+ 17α17+ 18α18+ 19α19+ 20α20+ 21αtwenty one+ 22αtwenty two+2 3αtwenty three+ 24αtwenty four+ 25αtwenty five+ 6β6+ 7β7+ 8β8+ 9β9+ 10βTen+ 11β11+ 12β12+ 13β13+ 14β 14 + 15β15+ 16β16+ 17β17+ 18β18+ 19β19+ 20β20+ 21βtwenty one+ 22βtwenty two+ 23βtwenty three+ 24βtwenty four + 25βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) + 8 (γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ13) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ 18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three ) +24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (2)

【0047】 B=2α1+3α2+4α3+5α4+6α5+7α6+8α7+9α8+10α9+11α10+12α11+13α 12 +14α13+15α14+16α15+17α16+18α17+19α18+20α19+21α20+22α21+23α22 +24α23+25α24+26α25+3β6+4β7+5β8+6β9+7β10+8β11+9β12+10β13+11β1 4 +12β15+13β16+14β17+15β18+16β19+17β20+18β21+19β22+20β23+21β24+ 22β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+8 (γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13+ δ13)+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ18 18 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323 )+24(γ2424)+25(γ2525) ---(3)[0047]     B = 2α1+ 3α2+ 4α3+ 5αFour+ 6αFive+ 7α6+ 8α7+ 9α8+ 10α9+ 11αTen+ 12α11+ 13α 12 + 14α13+ 15α14+ 16α15+ 17α16+ 18α17+ 19α18+ 20α19+ 21α20+ 22αtwenty one+ 23αtwenty two + 24αtwenty three+ 25αtwenty four+ 26αtwenty five+ 3β6+ 4β7+ 5β8+ 6β9+ 7βTen+ 8β11+ 9β12+ 10β13+ 11β1 Four + 12β15+ 13β16+ 14β17+ 15β18+ 16β19+ 17β20+ 18βtwenty one+ 19βtwenty two+ 20βtwenty three+ 21βtwenty four+ 22βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) +8 (γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ13) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ 18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three ) +24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (3)

【0048】 Wf=α1CH42C2H63C3H84C4H105C5H126C6H147C7H168 C8H189C9H2010C10H2211C11H2412C12H2613C13H2814C14H30 15 C15H3216C16H3417C17H3618C18H3819C19H4020C20H4221C21H 4422C22H4623C23H4824C24H5025C25H526C6H67C7H88C8H109C9H1210C10H1411C11H1612C12H1813C13H2014C14H2215C15 H2416C16H2617C17H2818C18H3019C19H3220C20H3421C21H36 22 C22H3823C23H4024C24H4225C25H441CH22C2H4+(γ33)C3H6+( γ44)C4H8+(γ55)C5H10+(γ66)C6H12+(γ77)C7H14+(γ88)C8H16 +(γ99)C9H18+(γ1010)C10H20+(γ1111)C11H22+(γ1212)C12H24+( γ1313)C13H26+(γ1414)C14H28+(γ1515)C15H30+(γ1616)C16H32+( γ1717)C17H34+(γ1818)C18H36+(γ1919)C19H38+(γ2020)C20H40+( γ2121)C21H42+(γ2222)C22H44+(γ2323)C23H46+(γ2424)C24H48+( γ2525)C25H50 ---(4)[0048]     Wf = α1CHFour+ α2C2H6+ α3C3H8+ αFourCFourHTen+ αFiveCFiveH12+ α6C6H14+ α7C7H16+ α8 C8H18+ α9C9H20+ αTenCTenHtwenty two+ α11C11Htwenty four+ α12C12H26+ α13C13H28+ α14C14H30+ α 15 C15H32+ α16C16H34+ α17C17H36+ α18C18H38+ α19C19H40+ α20C20H42+ αtwenty oneCtwenty oneH 44 + αtwenty twoCtwenty twoH46+ αtwenty threeCtwenty threeH48+ αtwenty fourCtwenty fourH50+ αtwenty fiveCtwenty fiveH52+ β6C6H6+ β7C7H8 + β8C8HTen + β9C9H12+ βTenCTenH14+ β11C11H16+ β12C12H18+ β13C13H20+ β14C14Htwenty two+ β15C15 Htwenty four+ β16C16H26+ β17C17H28+ β18C18H30+ β19C19H32+ β20C20H34+ βtwenty oneCtwenty oneH36+ β twenty two Ctwenty twoH38+ βtwenty threeCtwenty threeH40+ βtwenty fourCtwenty fourH42+ βtwenty fiveCtwenty fiveH44+ γ1CH2+ γ2C2HFour+ (γ3+ δ3) C3H6+ ( γFour+ δFour) CFourH8+ (γFive+ δFive) CFiveHTen+ (γ6+ δ6) C6H12+ (γ7+ δ7) C7H14+ (γ8+ δ8) C8H16 + (γ9+ δ9) C9H18+ (γTen+ δTen) CTenH20+ (γ11+ δ11) C11Htwenty two+ (γ12+ δ12) C12Htwenty four+ ( γ13+ δ13) C13H26+ (γ14+ δ14) C14H28+ (γ15+ δ15) C15H30+ (γ16+ δ16) C16H32+ ( γ17+ δ17) C17H34+ (γ18+ δ18) C18H36+ (γ19+ δ19) C19H38+ (γ20+ δ20) C20H40+ ( γtwenty one+ δtwenty one) Ctwenty oneH42+ (γtwenty two+ δtwenty two) Ctwenty twoH44+ (γtwenty three+ δtwenty three) Ctwenty threeH46+ (γtwenty four+ δtwenty four) Ctwenty fourH48+ ( γtwenty five+ δtwenty five) Ctwenty fiveH50--- (4)

【0049】但し、上記(2)、(3)および(4)式
において、 αn:パラフィン系炭化水素の容量含有率(%) βn:アロマテイック系炭化水素の容量含有率(%) γn:オレフィン系炭化水素の容量含有率(%) δn:ナフテン系炭化水素の容量含有率(%)
However, in the above equations (2), (3) and (4), α n : volume content of paraffinic hydrocarbon (%) β n : volume content of aromatic hydrocarbon (%) γ n : Capacity content of olefinic hydrocarbons (%) δ n : Capacity content of naphthenic hydrocarbons (%)

【0050】請求項2記載の発明は、ガソリンを構成す
る炭化水素の含有率を、上記(1)式に基づいて調整す
ることによって、所望の理論空燃比を有するガソリンを
製造することに特徴を有するものである。
The invention according to claim 2 is characterized in that a gasoline having a desired stoichiometric air-fuel ratio is produced by adjusting the content ratio of hydrocarbons constituting the gasoline based on the above formula (1). I have.

【0051】請求項3記載の発明は、ガソリンの理論空
燃比を大きくする場合は、パラフィン系炭化水素の容量
含有率を増加させ、アロマテイック系炭化水素の容量含
有率を減少させることに特徴を有するものである。
The invention according to claim 3 is characterized in that when the stoichiometric air-fuel ratio of gasoline is increased, the content ratio of paraffinic hydrocarbons is increased and the content ratio of aromatic hydrocarbons is decreased. It is a thing.

【0052】[0052]

【発明の実施の形態】ガソリンを各炭化水素系に別け,
炭素数別に分析すると、パラフィン系炭化水素は炭素C
の数C1〜C25の25種類、アロマテイック系はC6〜C
25の20種類、オレフィン系はC1〜C25の25種
類、ナフテン系はC3〜C25の23種類の容量含有率が
分析される。すべての炭化水素が完全燃焼して炭素Cは
炭酸ガスCO2になり、水素Hは水蒸気H2Oになると仮定
し、それらの完全燃焼の化学反応式から理論空燃比を求
める一般式が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Dividing gasoline into hydrocarbon systems,
When analyzed by carbon number, paraffin hydrocarbons are carbon C
Number of C1 to C25 of 25 types, Aromatic system is C6 to C
The capacity contents of 20 kinds of 25, 25 kinds of C1 to C25 for olefins, and 23 kinds of C3 to C25 for naphthenes are analyzed. Assuming that all hydrocarbons are completely combusted and carbon C becomes carbon dioxide CO 2 and hydrogen H becomes steam H 2 O, a general formula for obtaining the theoretical air-fuel ratio can be obtained from the chemical reaction formulas of these complete combustion. .

【0053】パラフィン系炭化水素、アロマテイック系
炭化水素、オレフィン系炭化水素、ナフテン系炭化水素
の容量含有率をそれぞれαn、βn、γn、δnとすれば、
完全燃焼の化学反応式は(13)式のようになる。
If the volume contents of paraffinic hydrocarbons, aromatic hydrocarbons, olefinic hydrocarbons and naphtheneic hydrocarbons are α n , β n , γ n and δ n , respectively,
The chemical reaction equation for complete combustion is as shown in equation (13).

【0054】 [α1CH42C2H63C3H84C4H105C5H126C6H147C7H168C8H18+ α9C9H2010C10H2211C11H2412C12H2613C13H2814C14H3015C15H 3216C16H3417C17H3618C18H3819C19H4020C20H4221C21H442 2 C22H4623C23H4824C24H5025C25H52+β6C6H6+β7C7H8+β8C8H10+β9C9H 12 +β10C10H14+β11C11H16+β12C12H18+β13C13H20+β14C14H22+β15C15H24+β1 6C16H26+β17C17H28+β18C18H30+β19C19H32+β20C20H34+β21C21H36+β22C22H3 8 +β23C23H40+β24C24H42+β25C25H441CH22C2H4+(γ33)C3H6+(γ44 )C4H8+(γ55)C5H10+(γ66)C6H12+(γ77)C7H14+(γ88)C8H16+(γ9+ δ9)C9H18+(γ1010)C10H20+(γ1111)C11H22+(γ1212)C12H24+(γ13 13 )C13H26+(γ1414)C14H28+(γ1515)C15H30+(γ1616)C16H32+(γ17 17 )C17H34+(γ1818)C18H36+(γ1919)C19H38+(γ2020)C20H40+(γ21 21 )C21H42+(γ2222)C22H44+(γ2323)C23H46+(γ2424)C24H48+(γ25 25 )C25H50]+y(O2+3.785N2) →ACO2+BH2O+3.785yN2 ---(13)[0054]   [Α1CHFour+ α2C2H6+ α3C3H8+ αFourCFourHTen+ αFiveCFiveH12+ α6C6H14+ α7C7H16+ α8C8H18+ α9C9H20+ αTenCTenHtwenty two+ α11C11Htwenty four+ α12C12H26+ α13C13H28+ α14C14H30+ α15C15H 32 + α16C16H34+ α17C17H36+ α18C18H38+ α19C19H40+ α20C20H42+ αtwenty oneCtwenty oneH44+ α2 2 Ctwenty twoH46+ αtwenty threeCtwenty threeH48+ αtwenty fourCtwenty fourH50+ αtwenty fiveCtwenty fiveH52+ β6C6H6+ β7C7H8+ β8C8HTen+ β9C9H 12 + β10CTenH14+ β11C11H16+ β12C12H18+ β13C13H20+ β14C14Htwenty two+ β15C15Htwenty four+ β1 6C16H26+ β17C17H28+ β18C18H30+ β19C19H32+ β20C20H34+ β21Ctwenty oneH36+ β22Ctwenty twoH3 8 + β23Ctwenty threeH40+ β24Ctwenty fourH42+ β25Ctwenty fiveH44+ γ1CH2+ γ2C2HFour+ (γ3+ δ3) C3H6+ (γFour+ δFour ) CFourH8+ (γFive+ δFive) CFiveHTen+ (γ6+ δ6) C6H12+ (γ7+ δ7) C7H14+ (γ8+ δ8) C8H16+ (γ9+ δ9) C9H18+ (γTen+ δTen) CTenH20+ (γ11+ δ11) C11Htwenty two+ (γ12+ δ12) C12Htwenty four+ (γ13+ δ 13 ) C13H26+ (γ14+ δ14) C14H28+ (γ15+ δ15) C15H30+ (γ16+ δ16) C16H32+ (γ17+ δ 17 ) C17H34+ (γ18+ δ18) C18H36+ (γ19+ δ19) C19H38+ (γ20+ δ20) C20H40+ (γtwenty one+ δ twenty one ) Ctwenty oneH42+ (γtwenty two+ δtwenty two) Ctwenty twoH44+ (γtwenty three+ δtwenty three) Ctwenty threeH46+ (γtwenty four+ δtwenty four) Ctwenty fourH48+ (γtwenty five+ δ twenty five ) Ctwenty fiveH50] + Y (O2+ 3.785N2) → ACO2+ BH2O + 3.785yN2                           --- (13)

【0055】(13)式において、燃料のガソリンは、
左辺の α1CH42C2H63C3H84C4H105C5H126C6H147C7H168C8H18 9 C9H2010C10H2211C11H2412C12H2613C13H2814C14H3015C15H3216C16H3417C17H3618C18H3819C19H4020C20H4221C21H4422C 22 H4623C23H4824C24H5025C25H52+β6C6H6+β7C7H8+β8C8H10+β9C9H12 +β10C10H14+β11C11H16+β12C12H18+β13C13H20+β14C14H22+β15C15H24+β16C 16 H26+β17C17H28+β18C18H30+β19C19H32+β20C20H34+β21C21H36+β22C22H38+ β23C23H40+β24C24H42+β25C25H441CH22C2H4+(γ33)C3H6+(γ44)C 4 H8+(γ55)C5H10+(γ66)C6H12+(γ77)C7H14+(γ88)C8H16+(γ99 )C9H18+(γ1010)C10H20+(γ1111)C11H22+(γ1212)C12H24+(γ1313) C13H26+(γ1414)C14H28+(γ1515)C15H30+(γ1616)C16H32+(γ1717) C17H34+(γ1818)C18H36+(γ1919)C19H38+(γ2020)C20H40+(γ2121) C21H42+(γ2222)C22H44+(γ2323)C23H46+(γ2424)C24H48+(γ2525) C25H50 ---(14) で示され、y(O2+3.785N2)は、そのガソリンを完全燃焼
させるに必要な空気量をあらわしている。そして右辺は
ガソリンの完全燃焼によって生成された燃焼生成ガスAC
O2+BH2Oならびに燃焼には関与しない不活性ガスの窒素
ガス3.785yN2である。
In equation (13), the fuel gasoline is
On the left   α1CHFour+ α2C2H6+ α3C3H8+ αFourCFourHTen+ αFiveCFiveH12+ α6C6H14+ α7C7H16+ α8C8H18+ α 9 C9H20+ αTenCTenHtwenty two+ α11C11Htwenty four+ α12C12H26+ α13C13H28+ α14C14H30+ α15C15H32 + α16C16H34+ α17C17H36+ α18C18H38+ α19C19H40+ α20C20H42+ αtwenty oneCtwenty oneH44+ αtwenty twoC twenty two H46+ αtwenty threeCtwenty threeH48+ αtwenty fourCtwenty fourH50+ αtwenty fiveCtwenty fiveH52+ β6C6H6+ β7C7H8+ β8C8HTen+ β9C9H12 + β10CTenH14+ β11C11H16+ β12C12H18+ β13C13H20+ β14C14Htwenty two+ β15C15Htwenty four+ β16C 16 H26+ β17C17H28+ β18C18H30+ β19C19H32+ β20C20H34+ β21Ctwenty oneH36+ β22Ctwenty twoH38+ β23Ctwenty threeH40+ β24Ctwenty fourH42+ β25Ctwenty fiveH44+ γ1CH2+ γ2C2HFour+ (γ3+ δ3) C3H6+ (γFour+ δFour) C Four H8+ (γFive+ δFive) CFiveHTen+ (γ6+ δ6) C6H12+ (γ7+ δ7) C7H14+ (γ8+ δ8) C8H16+ (γ9+ δ9 ) C9H18+ (γTen+ δTen) CTenH20+ (γ11+ δ11) C11Htwenty two+ (γ12+ δ12) C12Htwenty four+ (γ13+ δ13) C13H26+ (γ14+ δ14) C14H28+ (γ15+ δ15) C15H30+ (γ16+ δ16) C16H32+ (γ17+ δ17) C17H34+ (γ18+ δ18) C18H36+ (γ19+ δ19) C19H38+ (γ20+ δ20) C20H40+ (γtwenty one+ δtwenty one) Ctwenty oneH42+ (γtwenty two+ δtwenty two) Ctwenty twoH44+ (γtwenty three+ δtwenty three) Ctwenty threeH46+ (γtwenty four+ δtwenty four) Ctwenty fourH48+ (γtwenty five+ δtwenty five) Ctwenty fiveH50  --- (14) , Y (O2+ 3.785N2) Completely burns its gasoline
It represents the amount of air needed to get it to work. And the right side is
Combustion product gas AC produced by complete combustion of gasoline
O2+ BH2O and nitrogen, an inert gas that does not participate in combustion
Gas 3.785yN2Is.

【0056】燃焼生成ガスACO2+BH2Oの係数A、Bなら
びに完全燃焼させるに必要な空気量の係数yは(13)
式から次のようになる。
The coefficients A and B of the combustion product gas ACO 2 + BH 2 O and the coefficient y of the amount of air required for complete combustion are (13)
From the formula,

【0057】 A=α1+2α2+3α3+4α4+5α5+6α6+7α7+8α8+9α9+10α10+11α11+12α12+1 3α13+14α14+15α15+16α16+17α17+18α18+19α19+20α20+21α21+22α22+23 α23+24α24+25α25+6β6+7β7+8β8+9β9+10β10+11β11+12β12+13β13+14β1 4 +15β15+16β16+17β17+18β18+19β19+20β20+21β21+22β22+23β23+24β24+ 25β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+8 (γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13+ δ13)+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ18 18 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323 )+24(γ2424)+25(γ2525) ---(2)[0057]   A = α1+ 2α2+ 3α3+ 4αFour+ 5αFive+ 6α6+ 7α7+ 8α8+ 9α9+ 10αTen+ 11α11+ 12α12+1 3α13+ 14α14+ 15α15+ 16α16+ 17α17+ 18α18+ 19α19+ 20α20+ 21αtwenty one+ 22αtwenty two+23 αtwenty three+ 24αtwenty four+ 25αtwenty five+ 6β6+ 7β7+ 8β8+ 9β9+ 10βTen+ 11β11+ 12β12+ 13β13+ 14β1 Four + 15β15+ 16β16+ 17β17+ 18β18+ 19β19+ 20β20+ 21βtwenty one+ 22βtwenty two+ 23βtwenty three+ 24βtwenty four+ 25βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) +8 (γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ13) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ 18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three ) +24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (2)

【0058】 B=2α1+3α2+4α3+5α4+6α5+7α6+8α7+9α8+10α9+11α10+12α11+13α12 +14α13+15α14+16α15+17α16+18α17+19α18+20α19+21α20+22α21+23α22+2 4α23+25α24+26α25+3β6+4β7+5β8+6β9+7β10+8β11+9β12+10β13+11β14+ 12β15+13β16+14β17+15β18+16β19+17β20+18β21+19β22+20β23+21β24+22 β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+8( γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13 13 )+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ1818 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323)+ 24(γ2424)+25(γ2525) ---(3)[0058]   B = 2α1+ 3α2+ 4α3+ 5αFour+ 6αFive+ 7α6+ 8α7+ 9α8+ 10α9+ 11αTen+ 12α11+ 13α12 + 14α13+ 15α14+ 16α15+ 17α16+ 18α17+ 19α18+ 20α19+ 21α20+ 22αtwenty one+ 23αtwenty two+2 4αtwenty three+ 25αtwenty four+ 26αtwenty five+ 3β6+ 4β7+ 5β8+ 6β9+ 7βTen+ 8β11+ 9β12+ 10β13+ 11β14+ 12β15+ 13β16+ 14β17+ 15β18+ 16β19+ 17β20+ 18βtwenty one+ 19βtwenty two+ 20βtwenty three+ 21βtwenty four+22 βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) +8 ( γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ 13 ) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three) + 24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (3)

【0059】 y =A + B/2 ---(15)[0059]   y = A + B / 2 --- (15)

【0060】空気の重量は、(13)、(15)式の空
気量y(O2+3.785N2)から求められる。酸素O2の分子量3
2.00、窒素N2の分子量28.014から、空気重量は、 y×(31.998+3.785×28.014)= 138.03 y = 138.03(A+B/ 2) ---(16) となる。
The weight of air can be obtained from the air amount y (O 2 + 3.785N 2 ) in the equations (13) and (15). Molecular weight of oxygen O 2 3
From 2.00 and the molecular weight of nitrogen N 2 of 28.014, the air weight is y × (31.998 + 3.785 × 28.014) = 138.03 y = 138.03 (A + B / 2) --- (16).

【0061】またガソリン重量Wfは、αn、βn
γn、δnの分析結果から与えられ、炭素Cの原子量12.01
1、水素Hの原子量1.008から、(14)式より Wf=α1CH42C2H63C3H84C4H105C5H126C6H147C7H168C8 H189C9H2010C10H2211C11H2412C12H2613C13H2814C14H3015 C15H3216C16H3417C17H3618C18H3819C19H4020C20H4221C21H4422C22H4623C23H4824C24H5025C25H526C6H67C7H88C8H10+ β9C9H1210C10H1411C11H1612C12H1813C13H2014C14H2215C15H 2416C16H2617C17H2818C18H3019C19H3220C20H3421C21H362 2 C22H3823C23H4024C24H4225C25H441CH22C2H4+(γ33)C3H6+( γ44)C4H8+(γ55)C5H10+(γ66)C6H12+(γ77)C7H14+(γ88)C8H16 +(γ99)C9H18+(γ1010)C10H20+(γ1111)C11H22+(γ1212)C12H24+( γ1313)C13H26+(γ1414)C14H28+(γ1515)C15H30+(γ1616)C16H32+( γ1717)C17H34+(γ1818)C18H36+(γ1919)C19H38+(γ2020)C20H40+( γ2121)C21H42+(γ2222)C22H44+(γ2323)C23H46+(γ2424)C24H48+( γ2525)C25H50 ---(4) から求められる。したがって、この理論空燃比は、 理論空燃比=138.03(A+B/2)/Wf ---(1) となる。この方法がガソリン理論空燃比計算の厳密解で
ある。
The gasoline weight Wf is αn, Βn,
γn, ΔnThe atomic weight of carbon C given by the analysis result of 12.01
1, from the atomic weight of hydrogen H 1.008, from equation (14)   Wf = α1CHFour+ α2C2H6+ α3C3H8+ αFourCFourHTen+ αFiveCFiveH12+ α6C6H14+ α7C7H16+ α8C8 H18+ α9C9H20+ αTenCTenHtwenty two+ α11C11Htwenty four+ α12C12H26+ α13C13H28+ α14C14H30+ α15 C15H32+ α16C16H34+ α17C17H36+ α18C18H38+ α19C19H40+ α20C20H42+ αtwenty oneCtwenty oneH44 + αtwenty twoCtwenty twoH46+ αtwenty threeCtwenty threeH48+ αtwenty fourCtwenty fourH50+ αtwenty fiveCtwenty fiveH52+ β6C6H6+ β7C7H8 + β8C8HTen+ β9C9H12+ βTenCTenH14+ β11C11H16+ β12C12H18+ β13C13H20+ β14C14Htwenty two+ β15C15H twenty four + β16C16H26+ β17C17H28+ β18C18H30+ β19C19H32+ β20C20H34+ βtwenty oneCtwenty oneH36+ β2 2 Ctwenty twoH38+ βtwenty threeCtwenty threeH40+ βtwenty fourCtwenty fourH42+ βtwenty fiveCtwenty fiveH44+ γ1CH2+ γ2C2HFour+ (γ3+ δ3) C3H6+ ( γFour+ δFour) CFourH8+ (γFive+ δFive) CFiveHTen+ (γ6+ δ6) C6H12+ (γ7+ δ7) C7H14+ (γ8+ δ8) C8H16 + (γ9+ δ9) C9H18+ (γTen+ δTen) CTenH20+ (γ11+ δ11) C11Htwenty two+ (γ12+ δ12) C12Htwenty four+ ( γ13+ δ13) C13H26+ (γ14+ δ14) C14H28+ (γ15+ δ15) C15H30+ (γ16+ δ16) C16H32+ ( γ17+ δ17) C17H34+ (γ18+ δ18) C18H36+ (γ19+ δ19) C19H38+ (γ20+ δ20) C20H40+ ( γtwenty one+ δtwenty one) Ctwenty oneH42+ (γtwenty two+ δtwenty two) Ctwenty twoH44+ (γtwenty three+ δtwenty three) Ctwenty threeH46+ (γtwenty four+ δtwenty four) Ctwenty fourH48+ ( γtwenty five+ δtwenty five) Ctwenty fiveH50--- (4) Required from. Therefore, this theoretical air-fuel ratio is     Theoretical air-fuel ratio = 138.03 (A + B / 2) / Wf --- (1) Becomes This method is an exact solution of gasoline theoretical air-fuel ratio calculation
is there.

【0062】ガソリンを構成する炭化水素の含有率を、
上記(1)式に基づいて調整することによって、所望の
理論空燃比を有するガソリンを製造することができる。
The content ratio of hydrocarbons constituting gasoline is
By adjusting based on the above formula (1), gasoline having a desired stoichiometric air-fuel ratio can be manufactured.

【0063】[0063]

【実施例】レギュラーガソリンを各炭化水素系に別け、
炭素数別に分析した1例を表4に示す。表4に示されて
いるレギュラーガソリンについて、この一般式を適用し
理論空燃比を計算すると、次のようになる。
[Example] Separate regular gasoline into each hydrocarbon system,
Table 4 shows an example of analysis by carbon number. The regular air-fuel ratio of the regular gasoline shown in Table 4 is calculated as follows by applying this general formula.

【0064】[0064]

【表4】 [Table 4]

【0065】パラフィン系炭化水素は炭素Cの数C3〜C
13の11種類、アロマテイック系はC6〜C12の7種
類、オレフィンとナフテン系は同じくC4〜C11の8種
類、計26種類すべての炭化水素が完全燃焼して炭素C
は炭酸ガスCO2になり、水素Hは水蒸気H2Oになると仮定
して燃焼化学反応式を求めると(17)式のようにな
る。
The paraffinic hydrocarbon has a carbon number C3 to C.
13 types, 13 types of aromatic compounds, 7 types of C6 to C12 types, 8 types of olefins and naphthenes of 8 types of C4 to C11 types, total 26 types of hydrocarbons are completely burned and carbon C
Is converted into carbon dioxide gas CO 2 and hydrogen H is converted into steam H 2 O, the combustion chemical reaction formula is obtained as shown in formula (17).

【0066】 0.03C3H8+2.55C4H10+15.35C5H12+15.90C6H14+8.91C7H16+3.45C8H18+2.31C9H20+1 .78C10H22+0.32C11H24+0.14C12H26+0.04C13H28+0.62C6H6+10.87C7H8+4.38C8H10+ 5.94C9H12+3.63C10H14+0.30C11H16+0.12C12H18+2.04C4H8+5.97C5H10+4.30C6H12+ 5.47C7H14+2.41C8H16+2.69C9H18+0.37C10H20+0.10C11H22+y(O2+3.785N2) →ACO2+BH2O+3.785yN2 ---(17)0.03C 3 H 8 + 2.55C 4 H 10 + 15.35C 5 H 12 + 15.90C 6 H 14 + 8.91C 7 H 16 + 3.45C 8 H 18 + 2.31C 9 H 20 + 1.78C 10 H 22 + 0.32C 11 H 24 + 0.14C 12 H 26 + 0.04C 13 H 28 + 0.62C 6 H 6 + 10.87C 7 H 8 + 4.38C 8 H 10 + 5.94C 9 H 12 + 3.63C 10 H 14 + 0.30C 11 H 16 + 0.12C 12 H 18 + 2.04C 4 H 8 + 5.97C 5 H 10 + 4.30C 6 H 12 + 5.47C 7 H 14 + 2.41C 8 H 16 + 2.69C 9 H 18 + 0.37C 10 H 20 + 0.10C 11 H 22 + y (O 2 + 3.785N 2 ) → ACO 2 + BH 2 O + 3.785yN 2 --- (17)

【0067】理論空燃比を求めるための係数A、B、y
は、 (2)式から、A=676.46 (3)式から、B=649.66 (15)式から、y=676.46 + 649.66 / 2 = 1001.29
Coefficients A, B, y for obtaining the theoretical air-fuel ratio
From Equation (2), A = 676.46 Equation (3), B = 649.66 From Equation (15), y = 676.46 + 649.66 / 2 = 1001.29

【0068】したがって、空気重量は、1001.29(O2+3.7
85N2)=1001.29×(32.00+3.785×28.014)=138209.05
Therefore, the air weight is 1001.29 (O 2 +3.7
85N 2 ) = 1001.29 × (32.00 + 3.785 × 28.014) = 138209.05

【0069】また、燃料重量Wfは、 (4)式から、Wf=9434.680The fuel weight Wf is From equation (4), Wf = 9434.680

【0070】したがって、表4に示したレギュラーガソ
リンの厳密に求めた理論空燃比は、 理論空燃比=138209.05/9434.680=14.65 となる。
Therefore, the strictly determined theoretical air-fuel ratio of the regular gasoline shown in Table 4 is theoretical air-fuel ratio = 138209.05 / 9434.680 = 14.65.

【0071】ガソリンの理論空燃比を修正法について説
明する。
A method of correcting the stoichiometric air-fuel ratio of gasoline will be described.

【0072】表4に示したレギュラーガソリンの理論空
燃比は14.65である。このガソリンの理論空燃比を14.70
にすることを考えてみよう。空燃比を大きくする場合
は、定性的には理論空燃比の大きいパラフィン系炭化水
素を増加、小さいアロマテイック系炭化水素を減少させ
ればよい。
The stoichiometric air-fuel ratio of regular gasoline shown in Table 4 is 14.65. The theoretical air-fuel ratio of this gasoline is 14.70
Let's think about. When increasing the air-fuel ratio, qualitatively, the paraffinic hydrocarbon having a large stoichiometric air-fuel ratio may be increased and the small aromatic hydrocarbon may be decreased.

【0073】いま、表4においてパラフィン系炭化水素
C6、C7の容量%をそれぞれ1.00、2.00%増やして15.90
を16.90、8.91を10.91%とし、逆にアロマテイック系炭
化水素C7、C9の容量%をそれぞれ2.00、1.00%減らして
10.87を8.87、5.94を4.94%とし、上述と同じように理
論空燃比を求めると、 A=667.48 B=652.98 y=993.97
Now, in Table 4, paraffin hydrocarbons
Increase the capacity% of C6 and C7 by 1.00% and 2.00% respectively to 15.90
To 16.91 and 8.91 to 10.91%, and conversely reduce the volume% of aromatic hydrocarbons C7 and C9 by 2.00 and 1.00%, respectively.
If 10.87 is set to 8.87 and 5.94 is set to 4.94% and the theoretical air-fuel ratio is calculated in the same manner as above, A = 667.48 B = 652.98 y = 993.97

【0074】したがって空気重量は993.97(O2+3.785N2)
=993.97×(32.00+3.785×28.014)=137200.65となる。ガ
ソリン重量はWf=9333.51となる。
Therefore, the air weight is 993.97 (O 2 + 3.785N 2 ).
= 993.97 × (32.00 + 3.785 × 28.014) = 137200.65. The gasoline weight is Wf = 9333.51.

【0075】この理論空燃比は A/Fc = 137200.65/9333.51=14.70 となり理論空燃比の調整が可能になる。This theoretical air-fuel ratio is A / Fc = 137200.65 / 9333.51 = 14.70 The stoichiometric air-fuel ratio can be adjusted.

【0076】このようにして、ガソリンを構成する炭化
水素の含有率を、上記(1)式に基づいて調整すること
によって、所望の理論空燃比を有するガソリンを製造す
ることが可能となる。
In this way, by adjusting the content ratio of hydrocarbons constituting gasoline based on the above equation (1), it becomes possible to produce gasoline having a desired theoretical air-fuel ratio.

【0077】[0077]

【発明の効果】以上説明したように、この発明によれ
ば、ガソリンの理論空燃比を厳密に求めることができ、
この算出方法に基づいて所望の理論空燃比を有するガソ
リンを製造することができるといった有用な効果がもた
らされる。
As described above, according to the present invention, the stoichiometric air-fuel ratio of gasoline can be determined exactly,
Based on this calculation method, a useful effect such that gasoline having a desired stoichiometric air-fuel ratio can be produced is brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】炭素数と理論空燃比との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between carbon number and stoichiometric air-fuel ratio.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガソリンの理論空燃比を、下記(1)式
によって算出することを特徴とする、ガソリンの理論空
燃比の算出方法。 理論空燃比=138.03(A+B/2)/Wf ---(1) 但し、上記(1)式において、 A=α1+2α2+3α3+4α4+5α5+6α6+7α7+8α8+9α9+10α10+11α11+12α12 +13α13+14α14+15α15+16α16+17α17+18α18+19α19+20α20+21α21+22α22+2 3α23+24α24+25α25+6β6+7β7+8β8+9β9+10β10+11β11+12β12+13β13+14β 14 +15β15+16β16+17β17+18β18+19β19+20β20+21β21+22β22+23β23+24β24 +25β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+ 8(γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13+ δ13)+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ18 18 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323 )+24(γ2424)+25(γ2525) ---(2) B=2α1+3α2+4α3+5α4+6α5+7α6+8α7+9α8+10α9+11α10+12α11+13α 12 +14α13+15α14+16α15+17α16+18α17+19α18+20α19+21α20+22α21+23α22 +24α23+25α24+26α25+3β6+4β7+5β8+6β9+7β10+8β11+9β12+10β13+11β1 4 +12β15+13β16+14β17+15β18+16β19+17β20+18β21+19β22+20β23+21β24+ 22β251+2γ2+3(γ33)+4(γ44)+5(γ55)+6(γ66)+7(γ77)+8 (γ88)+9(γ99)+10(γ1010)+11(γ1111)+12(γ1212)+13(γ13+ δ13)+14(γ1414)+15(γ1515)+16(γ1616)+17(γ1717)+18(γ18 18 )+19(γ1919)+20(γ2020)+21(γ2121)+22(γ2222)+23(γ2323 )+24(γ2424)+25(γ2525) ---(3) Wf=α1CH42C2H63C3H84C4H105C5H126C6H147C7H168 C8H189C9H2010C10H2211C11H2412C12H2613C13H2814C14H30 15 C15H3216C16H3417C17H3618C18H3819C19H4020C20H4221C21H 4422C22H4623C23H4824C24H5025C25H526C6H67C7H88C8H109C9H1210C10H1411C11H1612C12H1813C13H2014C14H2215C15 H2416C16H2617C17H2818C18H3019C19H3220C20H3421C21H36 22 C22H3823C23H4024C24H4225C25H441CH22C2H4+(γ33)C3H6+( γ44)C4H8+(γ55)C5H10+(γ66)C6H12+(γ77)C7H14+(γ88)C8H16 +(γ99)C9H18+(γ1010)C10H20+(γ1111)C11H22+(γ1212)C12H24+( γ1313)C13H26+(γ1414)C14H28+(γ1515)C15H30+(γ1616)C16H32+( γ1717)C17H34+(γ1818)C18H36+(γ1919)C19H38+(γ2020)C20H40+( γ2121)C21H42+(γ2222)C22H44+(γ2323)C23H46+(γ2424)C24H48+( γ2525)C25H50 ---(4) 但し、上記(2)、(3)および(4)式において、 αn:パラフィン系炭化水素の容量含有率(%) βn:アロマテイック系炭化水素の容量含有率(%) γn:オレフィン系炭化水素の容量含有率(%) δn:ナフテン系炭化水素の容量含有率(%)
1. The theoretical air-fuel ratio of gasoline is calculated by the following equation (1).
The theoretical sky of gasoline, characterized by being calculated by
Calculation method of fuel ratio.   Theoretical air-fuel ratio = 138.03 (A + B / 2) / Wf --- (1) However, in the above formula (1),     A = α1+ 2α2+ 3α3+ 4αFour+ 5αFive+ 6α6+ 7α7+ 8α8+ 9α9+ 10αTen+ 11α11+ 12α12 + 13α13+ 14α14+ 15α15+ 16α16+ 17α17+ 18α18+ 19α19+ 20α20+ 21αtwenty one+ 22αtwenty two+2 3αtwenty three+ 24αtwenty four+ 25αtwenty five+ 6β6+ 7β7+ 8β8+ 9β9+ 10βTen+ 11β11+ 12β12+ 13β13+ 14β 14 + 15β15+ 16β16+ 17β17+ 18β18+ 19β19+ 20β20+ 21βtwenty one+ 22βtwenty two+ 23βtwenty three+ 24βtwenty four + 25βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) + 8 (γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ13) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ 18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three ) +24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (2)     B = 2α1+ 3α2+ 4α3+ 5αFour+ 6αFive+ 7α6+ 8α7+ 9α8+ 10α9+ 11αTen+ 12α11+ 13α 12 + 14α13+ 15α14+ 16α15+ 17α16+ 18α17+ 19α18+ 20α19+ 21α20+ 22αtwenty one+ 23αtwenty two + 24αtwenty three+ 25αtwenty four+ 26αtwenty five+ 3β6+ 4β7+ 5β8+ 6β9+ 7βTen+ 8β11+ 9β12+ 10β13+ 11β1 Four + 12β15+ 13β16+ 14β17+ 15β18+ 16β19+ 17β20+ 18βtwenty one+ 19βtwenty two+ 20βtwenty three+ 21βtwenty four+ 22βtwenty five+ γ1+ 2γ2+3 (γ3+ δ3) +4 (γFour+ δFour) +5 (γFive+ δFive) +6 (γ6+ δ6) +7 (γ7+ δ7) +8 (γ8+ δ8) +9 (γ9+ δ9) +10 (γTen+ δTen) +11 (γ11+ δ11) +12 (γ12+ δ12) +13 (γ13+ δ13) +14 (γ14+ δ14) +15 (γ15+ δ15) +16 (γ16+ δ16) +17 (γ17+ δ17) +18 (γ18+ δ 18 ) +19 (γ19+ δ19) +20 (γ20+ δ20) +21 (γtwenty one+ δtwenty one) +22 (γtwenty two+ δtwenty two) +23 (γtwenty three+ δtwenty three ) +24 (γtwenty four+ δtwenty four) +25 (γtwenty five+ δtwenty five) --- (3)     Wf = α1CHFour+ α2C2H6+ α3C3H8+ αFourCFourHTen+ αFiveCFiveH12+ α6C6H14+ α7C7H16+ α8 C8H18+ α9C9H20+ αTenCTenHtwenty two+ α11C11Htwenty four+ α12C12H26+ α13C13H28+ α14C14H30+ α 15 C15H32+ α16C16H34+ α17C17H36+ α18C18H38+ α19C19H40+ α20C20H42+ αtwenty oneCtwenty oneH 44 + αtwenty twoCtwenty twoH46+ αtwenty threeCtwenty threeH48+ αtwenty fourCtwenty fourH50+ αtwenty fiveCtwenty fiveH52+ β6C6H6+ β7C7H8 + β8C8HTen + β9C9H12+ βTenCTenH14+ β11C11H16+ β12C12H18+ β13C13H20+ β14C14Htwenty two+ β15C15 Htwenty four+ β16C16H26+ β17C17H28+ β18C18H30+ β19C19H32+ β20C20H34+ βtwenty oneCtwenty oneH36+ β twenty two Ctwenty twoH38+ βtwenty threeCtwenty threeH40+ βtwenty fourCtwenty fourH42+ βtwenty fiveCtwenty fiveH44+ γ1CH2+ γ2C2HFour+ (γ3+ δ3) C3H6+ ( γFour+ δFour) CFourH8+ (γFive+ δFive) CFiveHTen+ (γ6+ δ6) C6H12+ (γ7+ δ7) C7H14+ (γ8+ δ8) C8H16 + (γ9+ δ9) C9H18+ (γTen+ δTen) CTenH20+ (γ11+ δ11) C11Htwenty two+ (γ12+ δ12) C12Htwenty four+ ( γ13+ δ13) C13H26+ (γ14+ δ14) C14H28+ (γ15+ δ15) C15H30+ (γ16+ δ16) C16H32+ ( γ17+ δ17) C17H34+ (γ18+ δ18) C18H36+ (γ19+ δ19) C19H38+ (γ20+ δ20) C20H40+ ( γtwenty one+ δtwenty one) Ctwenty oneH42+ (γtwenty two+ δtwenty two) Ctwenty twoH44+ (γtwenty three+ δtwenty three) Ctwenty threeH46+ (γtwenty four+ δtwenty four) Ctwenty fourH48+ ( γtwenty five+ δtwenty five) Ctwenty fiveH50                                              --- (4) However, in the above equations (2), (3) and (4), αn: Paraffin hydrocarbon content by volume (%) βn: Volume content of aromatic hydrocarbons (%) γn: Volume content of olefinic hydrocarbons (%) δn: Capacity content of naphthene hydrocarbons (%)
【請求項2】 ガソリンを構成する炭化水素の含有率
を、上記(1)式に基づいて調整することによって、所
望の理論空燃比を有するガソリンを製造することを特徴
とする、ガソリンの製造方法。
2. A method for producing gasoline, which comprises producing a gasoline having a desired stoichiometric air-fuel ratio by adjusting the content ratio of hydrocarbons constituting the gasoline based on the above formula (1). .
【請求項3】 ガソリンの理論空燃比を大きくする場合
は、パラフィン系炭化水素の容量含有率を増加させ、ア
ロマテイック系炭化水素の容量含有率を減少させること
を特徴とする、請求項2記載の、ガソリンの製造方法。
3. The method according to claim 2, wherein when the stoichiometric air-fuel ratio of gasoline is increased, the content ratio of paraffinic hydrocarbons is increased and the content ratio of aromatic hydrocarbons is decreased. , Method of manufacturing gasoline.
JP2001268986A 2001-09-05 2001-09-05 Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio Pending JP2003073676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001268986A JP2003073676A (en) 2001-09-05 2001-09-05 Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001268986A JP2003073676A (en) 2001-09-05 2001-09-05 Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio

Publications (1)

Publication Number Publication Date
JP2003073676A true JP2003073676A (en) 2003-03-12

Family

ID=19094889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001268986A Pending JP2003073676A (en) 2001-09-05 2001-09-05 Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio

Country Status (1)

Country Link
JP (1) JP2003073676A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007620A (en) * 2011-09-05 2012-01-12 Toyota Motor Corp Control apparatus of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007620A (en) * 2011-09-05 2012-01-12 Toyota Motor Corp Control apparatus of internal combustion engine

Similar Documents

Publication Publication Date Title
Peng et al. Gasoline aromatics: a critical determinant of urban secondary organic aerosol formation
JP4490912B2 (en) System and method of use for vaporizing liquid fuel for combustion
JP2693101B2 (en) A method for reducing the amount of nitrogen oxides generated during combustion
Yahyaoui et al. Experimental and modeling study of 1-hexene oxidation behind reflected shock waves
JP2014156864A (en) Ignition advance angle controlling method
JP2003073676A (en) Method for calculating theoretical air/fuel ratio of gasoline and method for producing gasoline with desired theoretical air/fuel ratio
JP2003529717A (en) Gas-driven engine with improved emissions
AU768771B2 (en) Method for improving fuel efficiency in combustion chambers
Min et al. Effects of gas composition on the performance and emissions of compressed natural gas engines
JP4054288B2 (en) Methods and compositions for improving fuel economy
JP2003113384A (en) Method for calculating theoretical air to fuel ratio in mixed fuel of gasoline, alcohol and ether, and method for producing the same mixed fuel
CN113025398B (en) Method for realizing kerosene-based fuel for scramjet engine started at low Mach number
HUP0300084A2 (en) Gasoline-oxygenate blend
JPH10121070A (en) Gas composition
US6007589A (en) E-gasoline II a special gasoline for modified spark ignited internal combustion engines
EP3402864A1 (en) Method and composition for improving the combustion of aviation fuels
JP4294519B2 (en) Gasoline composition
JP4659380B2 (en) Gasoline composition
JP2007182579A (en) Method for producing fuel composition for lean burn engine
JP3846824B2 (en) Fuel for gasoline engine and method for producing the same
CN1798906A (en) Method and apparatus for determining the activity and aging behavior of a catalyst
Westbrook Recent advances in chemical kinetics of jet fuels
JPH08109385A (en) Gasoline
JP6448688B2 (en) Method of using fuel oil in an internal combustion engine
JP3995765B2 (en) Method for producing fuel composition for lean burn engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004