JP2003070485A - Alanine: glyoxylic acid aminotransferase gene and method for diagnosis of type i primary hyperoxaluria using the gene - Google Patents

Alanine: glyoxylic acid aminotransferase gene and method for diagnosis of type i primary hyperoxaluria using the gene

Info

Publication number
JP2003070485A
JP2003070485A JP2001271224A JP2001271224A JP2003070485A JP 2003070485 A JP2003070485 A JP 2003070485A JP 2001271224 A JP2001271224 A JP 2001271224A JP 2001271224 A JP2001271224 A JP 2001271224A JP 2003070485 A JP2003070485 A JP 2003070485A
Authority
JP
Japan
Prior art keywords
polynucleotide
leu
gly
gene
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001271224A
Other languages
Japanese (ja)
Other versions
JP4117358B2 (en
Inventor
Shinichi Hirose
伸一 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001271224A priority Critical patent/JP4117358B2/en
Publication of JP2003070485A publication Critical patent/JP2003070485A/en
Application granted granted Critical
Publication of JP4117358B2 publication Critical patent/JP4117358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To clarify the mutation of alanine: glyoxylic acid aminotransferase (AGT) gene causing type I primary hyperoxaluria (PH1) and provide a method for the diagnosis of PH1 using the gene. SOLUTION: PH1 is diagnosed by using a polynucleotide having a structure of cDNA of AGT gene provided that the 751st thymine is changed to adenine and the 752nd guanine to adenine by missense mutation, a part of the polynucleotide, a polypeptide coded by the polynucleotide or a part of the polypeptide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、遺伝子診断の技術
分野に属し、特に、原発性高蓚酸尿症I型の病因遺伝子
となるアラニン:グリオキシル酸アミノトランスフェラ
ーゼをコードする異常遺伝子とそれを利用する原発性高
蓚酸尿症I型の診断方法に関する。
TECHNICAL FIELD The present invention belongs to the technical field of gene diagnosis, and in particular, it utilizes an abnormal gene encoding alanine: glyoxylate aminotransferase, which is a causative gene of primary hyperoxaluria type I, and the use thereof. The present invention relates to a method for diagnosing primary hyperoxaluria type I.

【0002】[0002]

【従来の技術とその課題】原発性高蓚酸尿症I型(以
下、PH1と略記することがある)は、比較的稀な常染
色体劣性遺伝のグリオキシル酸代謝異常であり、蓚酸や
グリコール酸の産生と尿中排泄の増加により、不溶性の
蓚酸カルシウムが、腎臓をはじめとする全身に蓄積する
疾患である。その臨床症状は多彩であるが、多くの罹患
者は腎不全その他により予後不良となる。原因はグリコ
ール酸の代謝産物であるグリオキシル酸がペルオキシゾ
ーム酵素のアラニン:グリオキシル酸トランスフェラー
ゼ(AGT)異常によりグリシンに代謝されず、グリオ
キシル酸の酸化物の蓚酸とグリコール酸が過剰に産生、
排出されることによる。AGT遺伝子の異常に関して
は、既に幾つかの病因変異が知られている。例えば、A
GT遺伝子のcDNAの第33位と第34位の間にシト
シンが挿入され、premature stopコドンが出現するナン
センス変異(Q12fs×167)が見出されている。
PH1は発症前に肝移植して治療できる病気であるの
で、発症前の早期診断が重要であり、このためにはPH
1の発症の可能性の有無を確実に知ることができるよう
にAGTに関する遺伝子レベルでの更なる検討が望まれ
ている。
2. Description of the Related Art Primary hyperoxaluria type I (hereinafter sometimes abbreviated as PH1) is a relatively rare autosomal recessive inherited glyoxylic acid metabolism abnormality, and is associated with oxalic acid and glycolic acid. It is a disease in which insoluble calcium oxalate accumulates throughout the body including the kidneys due to increased production and excretion in urine. Although its clinical manifestations are diverse, many sufferers have a poor prognosis due to renal failure and other factors. The cause is that glyoxylic acid, which is a metabolite of glycolic acid, is not metabolized to glycine due to alanine: glyoxylate transferase (AGT) abnormality of the peroxisome enzyme, and oxalic acid and glycolic acid, which are oxides of glyoxylic acid, are excessively produced.
Due to being discharged. Regarding the abnormality of the AGT gene, several pathogenic mutations are already known. For example, A
A nonsense mutation (Q12fs × 167) in which cytosine is inserted between the 33rd and 34th positions of the GT gene cDNA and a premature stop codon appears has been found.
Since PH1 is a disease that can be treated by liver transplantation before the onset, early diagnosis before the onset is important.
Further investigation is required at the gene level regarding AGT so that it can be surely known whether or not the onset of No. 1 is possible.

【0003】[0003]

【課題を解決するための手段】本発明者は、このたび、
PH1の病因となる新たなAGT遺伝子の変異を見出し
た。すなわち、後にも詳述するように、PH1と確定診
断された患者とその両親の遺伝子を用い、AGT遺伝子
のcDNAの異常を検索したところ、患者の遺伝子では
第751位がチミンではなくアデニンに、また、第75
2位がグアニンではなくアデニンに変異していることを
見つけ、これが母親由来であり、比較検索した健常者2
00名の遺伝子にはこの変異は見られないことから、こ
れらの変異が病因であることを確認した。
The present inventor has now found that
We found a new mutation in the AGT gene that causes PH1. That is, as will be described later in detail, when the abnormality of the cDNA of the AGT gene was searched using the gene of the patient definitely diagnosed with PH1 and its parents, the 751th position in the patient's gene was adenine instead of thymine, Also, the 75th
We found that the second position was mutated to adenine instead of guanine, which was derived from the mother, and was compared and searched for healthy subjects 2
Since this mutation was not found in the genes of 00, it was confirmed that these mutations were the etiological factors.

【0004】本発明は、このような知見を基礎に導かれ
たものであり、この出願は、前述の課題を解決するもの
として、以下の(1)〜(15)の発明を提供する。 (1) アラニン:グリオキシル酸アミノトランスフェ
ラーゼをコードする遺伝子のポリヌクレオチドであっ
て、配列番号1のDNA配列において第751位のt
(チミン)がa(アデニン)に且つ第752位のg(グ
アニン)がa(アデニン)に塩基置換しているポリヌク
レオチドまたはその相補配列。 (2) 前記発明(1)のポリヌクレオチドの一部であ
って、配列番号1の第751位置換塩基aおよび第75
2位置換塩基aを含む20〜100の連続したDNA配
列から成るオリゴヌクレオチドまたはその相補配列。 (3) 前記発明(1)のポリヌクレオチドもしくは前
記発明(2)のオリゴヌクレオチド、またはそれらの相
補配列とストリンジェントな条件下でハイブリダイズす
るヒト染色体DNA由来のポリヌクレオチド。 (4) 前記発明(3)のポリヌクレオチドとその相補
配列からなる二本鎖ポリヌクレオチド、または前記発明
(3)のポリヌクレオチドから転写されるmRNAをP
CR増幅するためのプライマーセットであって、一方の
プライマーが配列番号1の第751位置換塩基aおよび
第752位置換塩基aを含む15〜30の連続したDN
A配列またはその相補配列からなるオリゴヌクレオチド
であるプライマーセット。 (5) 前記発明(1)または(3)のポリヌクレオチ
ドにコードされるか、または該ポリヌクレオチドの発現
によって得られるポリペプチドであって、配列番号2の
アミノ酸配列において、第251位のTrp(トリプト
ファン)がLys(リジン)にアミノ酸置換されている
ポリペプチド。 (6) 前記発明(5)のポリペプチドの一部であっ
て、配列番号2の第251位置換アミノ酸Lysを含む
5〜30の連続したアミノ酸配列からなるオリゴペプチ
ド。 (7) 前記発明(6)のオリゴペプチドを抗原として
作製された抗体。 (8) 原発性高蓚酸尿症I型の診断方法であって、被
験者から単離した染色体DNA中に前記発明(3)のポ
リヌクレオチドが存在するか否かを検出することを特徴
とする方法。 (9) 被験者から単離した染色体DNAまたはそのm
RNAと、前記発明(1)のポリヌクレオチドもしくは
前記発明(2)のオリゴヌクレオチド、またはそれらの
相補配列がストリンジェントな条件下でハイブリダイズ
するか否かを検出する前記発明(8)の方法。 (10) 被験者から単離した染色体DNAまたはmR
NAを鋳型とし、前記発明(4)のプライマーセットを
用いてPCRを行った場合のPCR産物の有無を検出す
る前記発明(8)の方法。 (11) 原発性高蓚酸尿症I型の診断方法であって、
被験者から単離した生体試料中に前記発明(5)のポリ
ペプチドが存在するか否かを検出することを特徴とする
方法。 (12) 被験者から単離した生体試料中に、前記発明
(7)の抗体と反応するポリペプチドが存在するか否か
を検出する前記発明(11)の方法。 (13) 前記発明(2)のオリゴヌクレオチドを標識
化したことを特徴とするDNAプローブ。 (14) 前記発明(2)のオリゴヌクレオチドを含む
ことを特徴とするDNAチップ。 (15) 前記発明(7)の抗体を標識化したことを特
徴とする標識化抗体。
The present invention is based on such knowledge, and this application provides the following inventions (1) to (15) as a solution to the above-mentioned problems. (1) A polynucleotide of a gene encoding alanine: glyoxylate aminotransferase, which is the t at the 751 position in the DNA sequence of SEQ ID NO: 1.
A polynucleotide in which (thymine) is replaced with a (adenine) and g (guanine) at the 752 position is replaced with a (adenine), or a complementary sequence thereof. (2) A part of the polynucleotide of the invention (1), which comprises the 751st substitution base a and the 75th position of SEQ ID NO: 1
An oligonucleotide consisting of 20 to 100 continuous DNA sequences containing a 2-position substitution base a or a complementary sequence thereof. (3) A polynucleotide derived from human chromosomal DNA which hybridizes with the polynucleotide of the invention (1) or the oligonucleotide of the invention (2), or a complementary sequence thereof under stringent conditions. (4) A double-stranded polynucleotide consisting of the polynucleotide of the invention (3) and its complementary sequence, or the mRNA transcribed from the polynucleotide of the invention (3) is added to P
A primer set for CR amplification, wherein one primer contains 15 to 30 consecutive DNs containing the 751st substitution base a and the 752nd substitution base a of SEQ ID NO: 1.
A primer set which is an oligonucleotide consisting of an A sequence or its complementary sequence. (5) A polypeptide encoded by the polynucleotide of the invention (1) or (3), or obtained by expression of the polynucleotide, wherein the Trp (251) position in the amino acid sequence of SEQ ID NO: 2 is Tryptophan) is a polypeptide in which Lys (lysine) is amino acid substituted. (6) An oligopeptide which is a part of the polypeptide of the invention (5) and comprises 5 to 30 continuous amino acid sequences containing the 251st-substituted amino acid Lys of SEQ ID NO: 2. (7) An antibody produced using the oligopeptide of the invention (6) as an antigen. (8) A method for diagnosing primary hyperoxaluria type I, which comprises detecting whether or not the polynucleotide of the invention (3) is present in chromosomal DNA isolated from a subject. . (9) Chromosomal DNA isolated from a subject or m thereof
The method of the above-mentioned invention (8), which detects whether RNA is hybridized with the polynucleotide of the above-mentioned invention (1) or the oligonucleotide of the above-mentioned invention (2), or a complementary sequence thereof under stringent conditions. (10) Chromosomal DNA or mR isolated from a subject
The method according to the invention (8), wherein the presence or absence of a PCR product is detected when PCR is performed using NA as a template and the primer set according to the invention (4). (11) A method for diagnosing primary hyperoxaluria type I, comprising:
A method comprising detecting whether or not the polypeptide of the invention (5) is present in a biological sample isolated from a subject. (12) The method of the above-mentioned invention (11), which detects whether or not a polypeptide that reacts with the antibody of the above-mentioned invention (7) is present in a biological sample isolated from a subject. (13) A DNA probe obtained by labeling the oligonucleotide of the invention (2). (14) A DNA chip comprising the oligonucleotide of the invention (2). (15) A labeled antibody, which is obtained by labeling the antibody of the invention (7).

【0005】以下、これらの各発明の実施形態について
詳しく説明する。なお、本明細書においては、101個
以上のヌクレオチドの連続配列をポリヌクレオチド、2
〜100個の連続ヌクレオチド配列をオリゴヌクレオチ
ドと定義する。また、31個以上のアミノ酸連続配列を
ポリペプチド、2〜30個の連続アミノ酸配列をオリゴ
ペプチドと定義する。
The embodiments of each of these inventions will be described in detail below. In the present specification, a continuous sequence of 101 or more nucleotides is a polynucleotide,
An oligonucleotide is defined as a sequence of ~ 100 contiguous nucleotides. Further, a continuous sequence of 31 or more amino acids is defined as a polypeptide, and a continuous amino acid sequence of 2 to 30 is defined as an oligopeptide.

【0006】[0006]

【発明の実施の形態】この出願の発明(1)は、AGT
遺伝子のcDNA(配列番号1)の変異DNA配列であ
り、配列番号1のDNA配列において第751位のt
(チミン)がa(アデニン)に且つ第752位のg(グ
アニン)がa(アデニン)に塩基置換しているポリヌク
レオチドまたはその相補配列である。なお、配列番号1
で示されるAGT遺伝子のDNA配列は、GenBankにAcc
essin No. NM 000030として登録されている。既述した
ように、本発明に係る異常遺伝子は、この正常(野生
型)AGT遺伝子のcDNAの751位および第752
位の2つの塩基が変異したミスセンス変異(missense m
utation)に因るものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention (1) of this application is based on AGT.
It is a mutant DNA sequence of the cDNA of the gene (SEQ ID NO: 1), which is the t at position 751 in the DNA sequence of SEQ ID NO: 1.
(Thymine) is a (adenine) and g (guanine) at the 752 position is a (adenine) base-substituted or a complementary sequence thereof. In addition, SEQ ID NO: 1
The DNA sequence of the AGT gene shown by is AccGen in GenBank.
Registered as essin No. NM 000030. As described above, the abnormal gene according to the present invention includes the 751th position and the 752nd position of the cDNA of this normal (wild type) AGT gene.
Missense mutation (missense m
utation).

【0007】発明(1)のポリヌクレオチドは、例え
ば、後記の発明(2)のオリゴヌクレオチドをプローブ
として、PH1患者の全mRNAから調製したcDNA
ライブラリーをスクリーニングすることによって単離す
ることができ得る。また後記の発明(4)のプライマー
セットを用い、PH1患者のmRNAを鋳型とするRT
−PCRによって単離することもできる。あるいは、野
生型(正常)AGT遺伝子のcDNAに、市販のミュー
テーションキット等を用いて前記の塩基置換を導入する
ことによって取得することもできる。
The polynucleotide of the invention (1) is, for example, a cDNA prepared from the total mRNA of a PH1 patient using the oligonucleotide of the invention (2) described below as a probe.
It can be isolated by screening the library. Further, RT using the primer set of the invention (4) described below and using the mRNA of PH1 patient as a template
-It can also be isolated by PCR. Alternatively, it can also be obtained by introducing the above base substitution into the cDNA of the wild type (normal) AGT gene using a commercially available mutation kit or the like.

【0008】この出願の発明(2)は、前記発明(1)
のポリヌクレオチドの一部であって、上記の置換塩基を
含む20〜100の連続したDNA配列からなるオリゴ
ヌクレオチドまたはその相補配列である。発明(2)の
オリゴヌクレオチドは、公知の方法によって化学的に合
成して作製することができる。また、発明(1)のポリ
ヌクレオチドを適当な制限酵素で切断するなどの方法に
よって作製することもできる。発明(2)のポリヌクレ
オチドは、後記の発明(8)のPH1の診断方法等に使
用することができる。
The invention (2) of this application is the above invention (1).
Which is a part of the above polynucleotide and is an oligonucleotide consisting of 20 to 100 continuous DNA sequences containing the above-mentioned substituted bases or a complementary sequence thereof. The oligonucleotide of the invention (2) can be produced by chemically synthesizing it by a known method. Alternatively, the polynucleotide of the invention (1) can be prepared by a method such as cutting with a suitable restriction enzyme. The polynucleotide of the invention (2) can be used in the method for diagnosing PH1 of the invention (8) described below and the like.

【0009】この出願の発明(3)は、前記発明(1)
のポリヌクレオチドもしくは前記発明(2)のオリゴヌ
クレオチド、またはそれらの相補配列とストリンジェン
トな条件下でハイブリダイズするヒト染色体DNA由来
のポリヌクレオチド(ゲノムDNA)である。ここで、
ストリンジェント(stringent)な条件とは、それらの
ポリヌクレオチドまたはオリゴヌクレオチドと、染色体
由来のゲノムDNAとの選択的かつ検出可能な特異的結
合を可能とする条件である。よく知られているように、
ストリンジェント条件は、塩濃度、温度、およびその他
の条件によって決まり、例えば、塩濃度が低いほど、温
度が高いほど、ストリンジェンシー(stringency)は高
くなり、ハイブリダイズしにくくなる。塩濃度は、一般
に、SSC溶液(NaCl+クエン酸三ナトリウム)の
濃度を調節することによって調節され、ストリンジェン
トな塩濃度は、例えば、NaCl約250mM以下およ
びクエン酸三ナトリウム約25mM以下である。ストリ
ンジェントな温度は、一般に、完全ハイブリッドの融解
温度(Tm)より15〜25℃低い温度であり、例え
ば、約30℃以上である。溶液に有機溶媒(例えばホル
ムアミド)を加えることにより、温度を下げることがで
きる。その他の条件としては、ハイブリダイゼーション
時間、洗浄剤(例えば、SDS)の濃度、およびキャリ
アーDNAの存否等であり、これらの条件を組み合わせ
ることによって、様々なストリンジェンシーを設定する
ことができる。1つの好ましい例として、250mM
NaCl、25mMクエン酸三ナトリウム、1%SD
S、50%ホルムアミド、200μg/mlの変性サケ
精子DNAの条件で、42℃の温度によりハイブリダイ
ゼーションを行う。また、ハイブリダイゼーション後の
洗浄の条件もストリンジェンシーに影響する。この洗浄
条件もまた、塩濃度と温度によって定義され、塩濃度の
減少と温度の上昇によって洗浄のストリンジェンシーは
増加する。1つの好ましい例として、15mM NaC
l、1.5mMクエン酸三ナトリウムおよび0.1%S
DSの条件で、68℃の温度により洗浄を行う。ストリ
ンジェントな条件については、例えば、J. Sambrookら
による「Molecular Cloning, A Laboratory Mannual, S
econd Edition, Cold Spring Harbor Laboratory Press
(1989)、特に11.45節“Conditions for Hybridiz
ation of Oligonucleotide Probes”」に詳述されてお
り、それらの記載を参照することによって容易に適切な
条件を使用することができる。発明(3)のポリヌクレ
オチドは、例えば、発明(2)のオリゴヌクレオチドを
プローブとして、上述したようなストリンジェントなハ
イブリダイゼーションおよび洗浄処理により、PH1患
者の染色体DNAから調製したゲノムライブラリーをス
クリーニングすることによって単離することができる。
これらの発明(3)のポリヌクレオチドは、後記の発明
(8)のPH1の診断方法において検出対象等となるも
のである。
The invention (3) of this application relates to the above invention (1).
Or a polynucleotide of the invention (2) or a polynucleotide derived from human chromosomal DNA (genomic DNA) which hybridizes with the complementary sequence thereof under stringent conditions. here,
Stringent conditions are conditions that allow selective and detectable specific binding of those polynucleotides or oligonucleotides to genomic DNA derived from a chromosome. As is well known,
Stringent conditions are determined by salt concentration, temperature, and other conditions. For example, the lower the salt concentration and the higher the temperature, the higher the stringency and the less likely it is to hybridize. The salt concentration is generally adjusted by adjusting the concentration of the SSC solution (NaCl + trisodium citrate) and the stringent salt concentration is, for example, about 250 mM NaCl or less and about 25 mM trisodium citrate or less. The stringent temperature is generally 15 to 25 ° C. lower than the melting temperature (Tm) of the perfect hybrid, for example, about 30 ° C. or higher. The temperature can be lowered by adding an organic solvent (eg formamide) to the solution. Other conditions include hybridization time, detergent (eg, SDS) concentration, presence or absence of carrier DNA, and the like, and various stringencies can be set by combining these conditions. As one preferred example, 250 mM
NaCl, 25 mM trisodium citrate, 1% SD
Hybridization is carried out at a temperature of 42 ° C. under the conditions of S, 50% formamide and 200 μg / ml denatured salmon sperm DNA. In addition, washing conditions after hybridization also affect stringency. This wash condition is also defined by salt concentration and temperature, with decreasing salt concentration and increasing temperature increasing wash stringency. As one preferred example, 15 mM NaC
1, 1.5 mM trisodium citrate and 0.1% S
Washing is performed at a temperature of 68 ° C. under the condition of DS. For the stringent conditions, see, for example, J. Sambrook et al., “Molecular Cloning, A Laboratory Mannual, S.
econd Edition, Cold Spring Harbor Laboratory Press
(1989), especially Section 11.45 “Conditions for Hybridiz
ation of Oligonucleotide Probes "", and appropriate conditions can be easily used by referring to those descriptions. The polynucleotide of the invention (3) is screened, for example, by using the oligonucleotide of the invention (2) as a probe to perform a stringent hybridization and washing treatment as described above to screen a genomic library prepared from the chromosomal DNA of a PH1 patient. It can be isolated by
The polynucleotide of the invention (3) is to be detected in the method for diagnosing PH1 of the invention (8) described below.

【0010】この出願の発明(4)は、前記発明(3)
のポリヌクレオチドとその相補配列からなる二本鎖ポリ
ヌクレオチド(ゲノムDNA)、または前記発明(3)
のポリヌクレオチドから転写されるmRNAをPCR増
幅するためのプライマーセットである。そしてこれらの
プライマーセットは、一方のオリゴヌクレオチドプライ
マーが、配列番号1の置換塩基を含む15〜30の連続
したDNA配列またはその相補配列からなっている。他
方のプライマーは、配列番号1の置換塩基の5’側また
は3’側の任意の連続DNA配列またはその相補配列と
することができる。これらのプライマーセットは、それ
ぞれの置換塩基を含む配列番号1に基づいて公知のDN
A合成法により作製することができる。また、プライマ
ーの端部にはリンカー配列等を付加することもできる。
発明(4)のプライマーセットは、後記の発明(8)の
PH1の診断方法等に使用することができる。
The invention (4) of this application is the above invention (3).
Double-stranded polynucleotide (genomic DNA) comprising the polynucleotide of claim 1 and its complementary sequence, or the invention (3)
Is a set of primers for PCR amplification of mRNA transcribed from the polynucleotide. In these primer sets, one of the oligonucleotide primers is composed of 15 to 30 continuous DNA sequences containing the substitution base of SEQ ID NO: 1 or its complementary sequence. The other primer can be any continuous DNA sequence 5'or 3'to the substituted base of SEQ ID NO: 1 or its complementary sequence. These primer sets are known DN based on SEQ ID NO: 1 containing the respective substituted bases.
It can be produced by the A synthesis method. Further, a linker sequence or the like can be added to the end of the primer.
The primer set of the invention (4) can be used for the method for diagnosing PH1 of the invention (8) described below and the like.

【0011】この出願の発明(5)は、発明(1)また
は(3)のポリヌクレオチドにコードされるか、または
該ポリヌクレオチドの発現によって得られるポリペプチ
ドであって、配列番号2のアミノ酸配列において、第2
51位のTrp(トリプトファン)がLys(リジン)
にアミノ酸置換されているポリペプチドである。すなわ
ち、既述したように、発明(1)のポリヌクレオチドに
おける塩基置換は、ミスセンス変異であり、2個の塩基
置換によって正常(野生型)ポリペプチドのアミノ酸が
上記のように変異している。これらのポリペプチドは、
PH1患者の生体試料から公知の方法に従って単離する
方法、それぞれの置換アミノ酸残基を含む配列番号2の
アミノ酸配列に基づき化学合成によってペプチドを調製
する方法、あるいは発明(1)のポリヌクレオチド(変
異cDNA)を用いて組換えDNA技術で生産する方法
などにより取得することができる。これらの発明(5)
ポリペプチドは、例えば、後記の発明(11)のPH1
の診断方法の検査対象とすることができる。
The invention (5) of this application is a polypeptide encoded by the polynucleotide of the invention (1) or (3) or obtained by the expression of the polynucleotide, wherein the amino acid sequence of SEQ ID NO: 2 is present. In the second
The 51st position Trp (tryptophan) is Lys (lysine)
It is a polypeptide in which the amino acid has been replaced. That is, as described above, the base substitution in the polynucleotide of the invention (1) is a missense mutation, and the amino acid of the normal (wild-type) polypeptide is mutated by the two base substitutions as described above. These polypeptides are
A method of isolating from a biological sample of a PH1 patient according to a known method, a method of preparing a peptide by chemical synthesis based on the amino acid sequence of SEQ ID NO: 2 containing each substituted amino acid residue, or the polynucleotide (mutation of the invention (1) It can be obtained by a method of producing by recombinant DNA technology using cDNA). These inventions (5)
The polypeptide is, for example, PH1 of the invention (11) described below.
It can be the inspection target of the diagnostic method.

【0012】この出願の発明(6)は、前記の発明
(5)のポリペプチドの一部であって、置換アミノ酸を
含む5〜30の連続したアミノ酸配列を有するオリゴペ
プチドである。これらのオリゴペプチドは、所定のアミ
ノ酸配列に基づいて化学的に合成する方法、あるいは発
明(5)のポリペプチドを適当なプロテアーゼによって
消化する方法等によって作製することができる。これら
のオリゴペプチドは、例えば、後記の発明(7)の抗体
作製のための抗原として使用することができる。
The invention (6) of this application is a part of the polypeptide of the invention (5), which is an oligopeptide having a continuous amino acid sequence of 5 to 30 including a substituted amino acid. These oligopeptides can be produced by a method of chemically synthesizing based on a predetermined amino acid sequence, a method of digesting the polypeptide of the invention (5) with an appropriate protease, or the like. These oligopeptides can be used, for example, as an antigen for producing the antibody of the invention (7) described below.

【0013】発明(7)の抗体は、前記の発明(6)の
オリゴポリペプチドを抗原として作製されたポリクロー
ナル抗体またはモノクローナル抗体である。これらの抗
体は公知の抗体作製法により作製することができる。ま
た、この抗体は、発明(5)のポリペプチドを特異的に
認識することができ、後記の発明(11)のPH1の診
断方法等に使用することができる。
The antibody of the invention (7) is a polyclonal antibody or a monoclonal antibody prepared by using the oligopolypeptide of the invention (6) as an antigen. These antibodies can be produced by known antibody production methods. Further, this antibody can specifically recognize the polypeptide of the invention (5), and can be used for the method of diagnosing PH1 of the invention (11) described below.

【0014】この出願の発明(8)は、被験者がPH1
を発症する可能性があるか否かを診断する方法である。
すなわち、被験者の生体試料から染色体DNAを単離
し、このDNA中に、発明(3)のポリヌクレオチドが
存在する場合に、この被験者をPH1に関してハイリス
クと判定する。ポリヌクレオチドの検出は公知の様々な
方法によって行うことができるが、発明(9)または
(10)の方法が好ましい。
In the invention (8) of this application, the subject is PH1.
It is a method of diagnosing whether there is a possibility of developing.
That is, chromosomal DNA is isolated from a biological sample of a subject, and when the polynucleotide of the invention (3) is present in this DNA, this subject is determined to be high risk for PH1. The polynucleotide can be detected by various known methods, but the method of the invention (9) or (10) is preferable.

【0015】発明(9)の方法では、被験者から単離し
た染色体DNAまたはそのmRNAと、前記発明(1)
のポリヌクレオチドまたは発明(2)のオリゴヌクレオ
チドがストリンジェントな条件下でハイブリダイズする
か否かを検出する。被験者がPH1に関連した遺伝子変
異を有している場合には、染色体DNAまたはそのmR
NAとポリヌクレオチドまたはオリゴヌクレオチドは、
ストリンジェントな条件下でもハイブリダイズする。ハ
イブリダイゼーションは公知の方法によって検出するこ
とができ、例えば、発明(13)のDNAプローブや、
発明(14)のDNAチップを用いて、例えば、ASO
(allele specific oligomer)法によるハイブリダイゼ
ーションを行うことにより、簡便かつ高精度で行うこと
ができる。
In the method of the invention (9), the chromosomal DNA or mRNA thereof isolated from the subject and the above-mentioned invention (1) are used.
It is detected whether the polynucleotide of 1) or the oligonucleotide of the invention (2) hybridizes under stringent conditions. If the subject has a PH1-related gene mutation, chromosomal DNA or its mR
NA and the polynucleotide or oligonucleotide are
It hybridizes even under stringent conditions. Hybridization can be detected by a known method. For example, the DNA probe of the invention (13),
Using the DNA chip of the invention (14), for example, ASO
By performing hybridization by the (allele specific oligomer) method, it can be performed easily and with high accuracy.

【0016】また発明(10)の方法では、被験者から
単離した染色体DNAまたはmRNAを鋳型とし、前記
の発明(4)のプライマーセットを用いて、公知の方法
に従いPCR(RT−PCRを含む)を行った場合のP
CR産物の有無を検出する。被験者がPH1に関連した
遺伝子変異を有している場合には、プライマーセットに
よって規定されるポリヌクレオチドのPCR産物が得ら
れる。PCR産物の分析も公知の方法に従って実施する
ことができる。例えば、正常(野生型)AGT遺伝子の
cDNA(配列番号1)の第743位から第753位に
は制限酵素Van91Iによって認識、切断される「CCANNNN
NTGG」に相当する配列があるが、既述のように変異した
AGT遺伝子の対応する部位にはこの配列はないので、
このような酵素を用いるRFLP(restriction fragme
nt length polymorphism)法により、PCR産物の分析
を行うことができる。
In the method of the invention (10), PCR (including RT-PCR) is performed according to a known method using the chromosomal DNA or mRNA isolated from the subject as a template and the primer set of the invention (4). P when performing
The presence or absence of CR products is detected. When the subject has a PH1-related gene mutation, a PCR product of the polynucleotide defined by the primer set is obtained. The analysis of PCR products can also be performed according to known methods. For example, "CCANNNN" which is recognized and cleaved by the restriction enzyme Van91I at positions 743 to 753 of the cDNA of normal (wild type) AGT gene (SEQ ID NO: 1).
Although there is a sequence corresponding to "NTGG", this sequence is not present at the corresponding site of the mutated AGT gene as described above.
RFLP (restriction fragme) using such an enzyme
The PCR product can be analyzed by the nt length polymorphism method.

【0017】この出願の発明(11)も、被験者がPH
1を発症する可能性があるか否かを診断する方法であ
り、被験者から単離した生体試料中に、発明(5)のポ
リペプチドが存在する場合に、その被験者をPH1に関
してハイリスクと判定する。ポリペプチドの存在は様々
な公知方法によって行うことができるが、発明(12)
の方法が好ましい。発明(12)の方法は、発明(7)
抗体を用いる方法であって、特に発明(15)の標識化
抗体を用いることによって、簡便かつ高精度の検出が可
能となる。標識は、酵素、アイソトープ、蛍光色素等の
公知の各種のものを使用することができる。なお、発明
(8)や発明(11)に従ってPH1を診断するに当た
っては、従来からの既知のAGT遺伝子変異、例えば、
既述したようなAGTのcDNAの第33位と第34位
の間にシトシンが挿入されpremature stopコドンが出現
する変異に基づく同様の方法を併用することにより、P
H1の信頼性の高い診断が確保できる。
Also in the invention (11) of this application, the subject is PH
1 is a method for diagnosing whether or not there is a possibility of developing 1. When the polypeptide of the invention (5) is present in a biological sample isolated from a subject, the subject is determined to be high risk for PH1. To do. The presence of the polypeptide can be achieved by various known methods, but the invention (12)
Is preferred. The method of the invention (12) is the invention (7).
This is a method using an antibody, and particularly, by using the labeled antibody of the invention (15), simple and highly accurate detection becomes possible. As the label, various known labels such as enzymes, isotopes, and fluorescent dyes can be used. In diagnosing PH1 according to the invention (8) or the invention (11), a conventionally known AGT gene mutation, for example,
By combining the same method as described above based on the mutation in which cytosine is inserted between the 33rd position and the 34th position of the AGT cDNA and the premature stop codon appears, P
A highly reliable diagnosis of H1 can be secured.

【0018】以下に、本発明の基礎となった遺伝子変異
を確認した研究内容について説明する。研究は、臨床像
が異なるPH1の日本人姉妹例でのAGTの分子生物学
的および酵素学的検討を行うことを目的として実施し
た。方法 発端者の妹、その姉、その家族および健常対照者末梢血
より調製したDNAを遺伝子解析の材料とした。患者、
その両親より腹腔鏡にて肝臓の一部を生検し、AGT酵
素活性の測定に使用した。患者および両親のAGT遺伝
子の全エクソンと隣接イントロンをGenBankの情報に基
づき、PCRで増幅し、直接シークエンスを行った。変
異と思われる塩基置換は健常対照者100名のアレルで
の検索を行った。解析はインフォームドコンセントを得
て行われ、倫理委員会で承認された。
The following are the gene mutations on which the present invention is based.
I will explain the research content that was confirmed. Research, clinical picture
Biology of AGT in Japanese sisters with different PH1
Conducted for the purpose of
It wasMethod Peripheral blood of the proband's sister, her sister, her family and healthy controls
The prepared DNA was used as a material for gene analysis. patient,
A part of the liver was biopsied from the parents with a laparoscope, and AGT fermentation was performed.
Used for measuring elementary activity. AGT inheritance in patients and parents
All exons and adjacent introns of the offspring are based on the information of GenBank.
Then, it was amplified by PCR and directly sequenced. Strange
The base substitution that seems to be different is an allele of 100 healthy controls.
Was searched. Analysis provided informed consent
And was approved by the Ethics Committee.

【0019】症例 発端者は妹で診断時5才であり、妊娠分娩歴に異常がな
く、非血縁の無症状の両親の間に生まれた。新生児期よ
りおむつに「砂のようなもの」が排泄されることに気付
いていたが、放置していた。5才時外陰部痛を機に外尿
道孔での結石嵌頓とサンゴ状の腎結石が発見された。7
才の姉は、腎結石を含め全く症状は認められなかった。
GC/MS分析法により姉妹の尿中で蓚酸とグリコール
酸が同程度著増しており、PH1と化学診断した。
[0019]Case The proband was a younger sister, who was 5 years old at the time of diagnosis, and had no abnormal pregnancy and delivery history.
Born between unrelated, asymptomatic parents. Newborn
Aware that "things like sand" are excreted in Rio diapers
It was, but it was left alone. External urine with vulvar pain at the age of 5
An incarcerated stone in the tunnel and coral-shaped renal stones were found. 7
The old sister had no symptoms including kidney stones.
Oxalic acid and glycol in sister urine by GC / MS analysis
Acid was increased to the same degree, and PH1 was chemically diagnosed.

【0020】成績 まず、生検肝臓中AGTのアラニンおよびグリオキシル
酸に対するミカエリス定数(Km)を測定した。病理解
剖から得られた正常肝臓を対照とした。アラニンに対す
るKmは対照および両親のAGTでは7.5mMであっ
たが娘達のそれは25mMであった。グリオキシル酸に
対するKmは対照および両親では0.3mMであった
が、姉妹のそれは50mM以上であった。続いて、ビタ
ミンBに対するホロ酵素活性を検討したところ、正常
肝は5%がホロ酵素であったのに対し、両親はほぼ50
%、姉妹は90%以上がホロ酵素であった。すなわち、
患者、両親のAGT活性低下はビタミンB欠乏による
ものではないことを示した。AGT遺伝子の解析の結
果、姉妹ともエクソン1での1塩基挿入c.33−34
insC(第33位と第34位の間にシトシンが挿入)
とエクソン7での2塩基置換c.751T>A;c.7
52G>A(第751位がt→a、第752位がg→a
に置換)の複合へテロ接合体であることがわかった。前
者はpremature stopをもたらすナンセンス変異Q12f
s×167(グルタミンQから始まる12個の異常アミノ
酸が出現して停止する、全体で167個のアミノ酸)で
あり、後者は251位アミノ酸Trpのコドンの1,2
番目に位置しTrpからLysへのアミノ酸置換をもた
らすミスセンス変異(c.751T>A;c.752G
>A;c.752G>A:W251K)であった。家族
のゲノム解析を行ったところ、父親はQ12fs×16
7を、母親と母方祖母はW251Kをヘテロ接合体とし
て有していた。生ずる制限酵素Van91I切断を用いて、
c.751T>A;c.752G>A:W251K変異
の検索を100名の健常対照者のDNAで行ったが、本
変異は見出されなかった。
[0020]Grade First, biopsy liver AGT alanine and glyoxyl
The Michaelis constant (Km) for acid was measured. Understanding
Normal liver obtained from autopsy was used as a control. Against alanine
Km was 7.5 mM in control and parent AGT.
However, that of the daughters was 25 mM. To glyoxylic acid
Km for the controls and parents was 0.3 mM
However, that of the sisters was over 50 mM. Next, Vita
Min B6Holoenzyme activity against
The liver had 5% holoenzyme, while the parents had almost 50
%, 90% or more of the sisters were holoenzymes. That is,
Vitamin B decreases AGT activity in patients and parents6Due to deficiency
It is not a thing. Conclusion of analysis of AGT gene
As a result, both sisters insert a single base at exon 1 c. 33-34
insC (cytosine is inserted between the 33rd and 34th positions)
And 2 base substitutions at exon 7 c. 751T> A; c. 7
52G> A (751st is t → a, 752nd is g → a)
It was found to be a composite heterozygote. Previous
Nonsense mutation Q12f that causes premature stop
s × 167 (12 abnormal amino acids starting from glutamine Q
167 amino acids in total)
Yes, the latter is 1,2 of the codons of the 251st amino acid Trp.
Located at the th position and has an amino acid substitution of Trp to Lys
Russ missense mutation (c.751T> A; c.752G
> A; c. 752G> A: W251K). family
Genome analysis showed that the father was Q12fs × 16
7, mother and maternal grandmother using W251K as a heterozygote
Had. Using the resulting restriction enzyme Van91I digestion,
c. 751T> A; c. 752G> A: W251K mutation
Was performed on the DNA of 100 healthy controls.
No mutation was found.

【0021】結論 本姉妹のAGTはアラニンに対する親和性が対照に比べ
3倍も低く、グリオキシル酸に対する親和性に至っては
170倍以上も低いことが分かった。すなわち、インビ
ボでは姉妹の酵素は殆ど活性を発揮していないと考えら
れた。姉妹はともにAGT遺伝子に父親由来のQ12f
s×167と、母親由来のW251Kを複合ヘテロ接合
体として有していた。既述したように、c.33−34
insC:Q12fs×167はPH1ですでに報告がある
が、c.751T>A;c.752G>A;c.752
G>A:W251K変異の報告はない。しかしながら、
251位のアミノ酸Trpは数種の哺乳動物のAGTに
保存されている領域に位置していること、さらに健常対
照の200アレルに見出されなかったことから、c.7
51T>A;c.752G>A;c.752G>A:W
251Kを、PH1をもたらす新規のAGT病因遺伝子
異常と判断した。本姉妹は、AGTに同じ遺伝子異常、
同様な酵素学的異常を有し、しかもその結果としての尿
中の蓚酸とグリコール酸の排泄が同程度にもかかわら
ず、臨床的に明らかに異なっており、PH1の表現型の
多様性が分子生物学的、酵素学的に実証された。
[0021]Conclusion This sister's AGT has a higher affinity for alanine than the control.
3 times lower than that of the affinity for glyoxylic acid
It turned out to be 170 times lower. I.e.
In Bo, it was thought that the sisters' enzymes had little activity
It was Both sisters have Q12f derived from the father in the AGT gene.
sx167 and W251K derived from mother are heterozygous
Had as a body. As already mentioned, c. 33-34
insC: Q12fs 167 has already been reported in PH1
But c. 751T> A; c. 752G> A; c. 752
There is no report of G> A: W251K mutation. However,
The amino acid Trp at position 251 is present in several mammalian AGTs.
Being located in a preserved area,
Since it was not found in the Teru 200 allele, c. 7
51T> A; c. 752G> A; c. 752G> A: W
251K is a novel AGT pathogenic gene that causes PH1
It was judged abnormal. This sister has the same genetic abnormality in AGT,
Urine with similar enzymatic abnormalities and the resulting
Excretion of oxalic acid and glycolic acid in the same amount
, Clinically distinct, with a PH1 phenotype
Diversity was demonstrated molecularly and enzymatically.

【0022】[0022]

【発明の効果】以上詳述したように、本発明は、原発性
高蓚酸尿症I型(PH1)の病因遺伝子となる新規なア
ラニン:グリオキシル酸アミノトランスフェラーゼ遺伝
子と、それを利用するPH1の診断方法を提供するもの
であり、遺伝子レベルでのPH1の早期診断と治療の発
展に資することができる。
INDUSTRIAL APPLICABILITY As described above in detail, the present invention provides a novel alanine: glyoxylate aminotransferase gene which is a causative gene of primary hyperoxaluria type I (PH1), and diagnosis of PH1 using the gene. The present invention provides a method and can contribute to the development of early diagnosis and treatment of PH1 at the gene level.

【0023】[0023]

【配列表】 SEQUENCE LISTING <100> Japan Science and Technology Corporation <120> A alanine : glyoxylate aminotransferase-endoding gene and a diagn osis of type I primary hyperoxaluria utilizing the same <130> P0476T <160> 2 <210> 1 <211> 1179 <212> DNA <213> Homo sapiens <400> 1 atg gcc tct cac aag ctg ctg gtg acc ccc ccc aag gcc ctg ctc 45 Met Ala Ser His Lys Leu Leu Val Thr Pro Pro Lys Ala Leu Leu 5 10 15 aag ccc ctc tcc atc ccc aac cag ctc ctg ctg ggg cct ggt cct 90 Lys Pro Leu Ser Ile Pro Asn Gln Leu Leu Leu Gly Pro Gly Pro 20 25 30 tcc aac ctg cct cct cgc atc atg gca gcc ggg ggg ctg cag atg 135 Ser Asn Leu Pro Pro Arg Ile Met Ala Ala Gly Gly Leu Gln Met 35 40 45 atc ggg tcc atg agc aag gat atg tac cag atc atg gac gag atc 180 Ile Gly Ser Met Ser Lys Asp Met Tyr Gln Ile Met Asp Glu Ile 50 55 60 aag gaa ggc atc cag tac gtg ttc cag acc agg aac cca ctc aca 225 Lys Glu Gly Ile Gln Tyr Val Phe Gln Thr Arg Asn Pro Leu Thr 65 70 75 ctg gtc atc tct ggc tcg gga cac tgt gcc ctg gag gcc gcc ctg 270 Leu Val Ile Ser Gly Ser Gly His Cys Ala Leu Glu Ala Ala Leu 80 85 90 gtc aat gtg ctg gag cct ggg gac tcc ttc ctg gtt ggg gcc aat 315 Val Asn Val Leu Glu Pro Gly Asp Ser Phe Leu Val Gly Ala Asn 95 100 105 ggc att tgg ggg cag cga gcc gtg gac atc ggg gag cgc ata gga 360 Gly Ile Trp Gly Gln Arg Ala Val Asp Ile Gly Glu Arg Ile Gly 110 115 120 gcc cga gtg cac ccg atg acc aag gac cct gga ggc cac tac aca 405 Ala Arg Val His Pro Met Thr Lys Asp Pro Gly Gly His Tyr Thr 125 130 135 ctg cag gag gtg gag gag ggc ctg gcc cag cac aag cca gtg ctg 450 Leu Gln Glu Val Glu Glu Gly Leu Ala Gln His Lys Pro Val Leu 140 145 150 ctg ttc tta acc cac ggg gag tcg tcc acc ggc gtg ctg cag ccc 495 Leu Phe Leu Thr His Gly Glu Ser Ser Thr Gly Val Leu Gln Pro 155 160 165 ctt gat ggc ttc ggg gaa ctc tgc cac agg tac aag tgc ctg ctc 540 Leu Asp Gly Phe Gly Glu Leu Cys His Arg Tyr Lys Cys Leu Leu 170 175 180 ctg gtg gat tcg gtg gca tcc ctg ggc ggg acc ccc ctt tac atg 585 Leu Val Asp Ser Val Ala Ser Leu Gly Gly Thr Pro Leu Tyr Met 185 190 195 gac cgg caa ggc atc gac atc ctg tac tcg ggc tcc cag aag gcc 630 Asp Arg Gln Gly Ile Asp Ile Leu Tyr Ser Gly Ser Gln Lys Ala 200 205 210 ctg aac gcc cct cca ggg acc tcg ctc atc tcc ttc agt gac aag 675 Leu Asn Ala Pro Pro Gly Thr Ser Leu Ile Ser Phe Ser Asp Lys 215 220 225 gcc aaa aag aag atg tac tcc cgc aag acg aag ccc ttc tcc ttc 720 Ala Lys Lys Lys Met Tyr Ser Arg Lys Thr Lys Pro Phe Ser Phe 230 235 240 tac ctg gac atc aag tgg ctg gcc aac ttc tgg ggc tgt gac gac 765 Tyr Leu Asp Ile Lys Trp Leu Ala Asn Phe Trp Gly Cys Asp Asp 245 250 255 cag ccc agg atg tac cat cac aca atc ccc gtc atc agc ctg tac 810 Gln Pro Arg Met Tyr His His Thr Ile Pro Val Ile Ser Leu Tyr 260 265 270 agc ctg aga gag agc ctg gcc ctc att gcg gaa cag ggc ctg gag 855 Ser Leu Arg Glu Ser Leu Ala Leu Ile Ala Glu Gln Gly Leu Glu 275 280 285 aac agc tgg cgc cag cac cgc gag gcc gcg gcg tat ctg cat ggg 900 Asn Ser Trp Arg Gln His Arg Glu Ala Ala Ala Tyr Leu His Gly 290 295 300 cgc ctg cag gca ctg ggg ctg cag ctc ttc gtg aag gac ccg gcg 945 Arg Leu Gln Ala Leu Gly Leu Gln Leu Phe Val Lys Asp Pro Ala 305 310 315 ctc cgg ctt ccc aca gtc acc act gtg gct gta ccc gct ggc tat 990 Leu Arg Leu Pro Thr Val Thr Thr Val Ala Val Pro Ala Gly Tyr 320 325 330 gac tgg aga gac atc gtc agc tac gtc ata gac cac ttc gac att 1035 Asp Trp Arg Asp Ile Val Ser Tyr Val Ile Asp His Phe Asp Ile 335 340 345 gag atc atg ggt ggc ctt ggg ccc tcc acg ggg aag gtg ctg cgg 1080 Glu Ile Met Gly Gly Leu Gly Pro Ser Thr Gly Lys Val Leu Arg 350 355 360 atc ggc ctg ctg ggc tgc aat gcc acc cgc gag aat gtg gac cgc 1125 Ile Gly Leu Leu Gly Cys Asn Ala Thr Arg Glu Asn Val Asp Arg 365 370 375 gtg acg gag gcc ctg agg gcg gcc ctg cag cac tgc ccc aag aag 1170 Val Thr Glu Ala Leu Arg Ala Ala Leu Gln His Cys Pro Lys Lys 380 385 390 aag ctg tga 1179 Lys Leu <210> 2 <211> 392 <212> PRT <213> Homo sapiens <400> 2 Met Ala Ser His Lys Leu Leu Val Thr Pro Pro Lys Ala Leu Leu 5 10 15 Lys Pro Leu Ser Ile Pro Asn Gln Leu Leu Leu Gly Pro Gly Pro 20 25 30 Ser Asn Leu Pro Pro Arg Ile Met Ala Ala Gly Gly Leu Gln Met 35 40 45 Ile Gly Ser Met Ser Lys Asp Met Tyr Gln Ile Met Asp Glu Ile 50 55 60 Lys Glu Gly Ile Gln Tyr Val Phe Gln Thr Arg Asn Pro Leu Thr 65 70 75 Leu Val Ile Ser Gly Ser Gly His Cys Ala Leu Glu Ala Ala Leu 80 85 90 Val Asn Val Leu Glu Pro Gly Asp Ser Phe Leu Val Gly Ala Asn 95 100 105 Gly Ile Trp Gly Gln Arg Ala Val Asp Ile Gly Glu Arg Ile Gly 110 115 120 Ala Arg Val His Pro Met Thr Lys Asp Pro Gly Gly His Tyr Thr 125 130 135 Leu Gln Glu Val Glu Glu Gly Leu Ala Gln His Lys Pro Val Leu 140 145 150 Leu Phe Leu Thr His Gly Glu Ser Ser Thr Gly Val Leu Gln Pro 155 160 165 Leu Asp Gly Phe Gly Glu Leu Cys His Arg Tyr Lys Cys Leu Leu 170 175 180 Leu Val Asp Ser Val Ala Ser Leu Gly Gly Thr Pro Leu Tyr Met 185 190 195 Asp Arg Gln Gly Ile Asp Ile Leu Tyr Ser Gly Ser Gln Lys Ala 200 205 210 Leu Asn Ala Pro Pro Gly Thr Ser Leu Ile Ser Phe Ser Asp Lys 215 220 225 Ala Lys Lys Lys Met Tyr Ser Arg Lys Thr Lys Pro Phe Ser Phe 230 235 240 Tyr Leu Asp Ile Lys Trp Leu Ala Asn Phe Trp Gly Cys Asp Asp 245 250 255 Gln Pro Arg Met Tyr His His Thr Ile Pro Val Ile Ser Leu Tyr 260 265 270 Ser Leu Arg Glu Ser Leu Ala Leu Ile Ala Glu Gln Gly Leu Glu 275 280 285 Asn Ser Trp Arg Gln His Arg Glu Ala Ala Ala Tyr Leu His Gly 290 295 300 Arg Leu Gln Ala Leu Gly Leu Gln Leu Phe Val Lys Asp Pro Ala 305 310 315 Leu Arg Leu Pro Thr Val Thr Thr Val Ala Val Pro Ala Gly Tyr 320 325 330 Asp Trp Arg Asp Ile Val Ser Tyr Val Ile Asp His Phe Asp Ile 335 340 345 Glu Ile Met Gly Gly Leu Gly Pro Ser Thr Gly Lys Val Leu Arg 350 355 360 Ile Gly Leu Leu Gly Cys Asn Ala Thr Arg Glu Asn Val Asp Arg 365 370 375 Val Thr Glu Ala Leu Arg Ala Ala Leu Gln His Cys Pro Lys Lys 380 385 390 Lys Leu [Sequence list]                 SEQUENCE LISTING <100> Japan Science and Technology Corporation <120> A alanine: glyoxylate aminotransferase-endoding gene and a diagn osis of type I primary hyperoxaluria utilizing the same <130> P0476T <160> 2 <210> 1 <211> 1179 <212> DNA <213> Homo sapiens <400> 1 atg gcc tct cac aag ctg ctg gtg acc ccc ccc aag gcc ctg ctc 45 Met Ala Ser His Lys Leu Leu Val Thr Pro Pro Lys Ala Leu Leu                   5 10 15 aag ccc ctc tcc atc ccc aac cag ctc ctg ctg ggg cct ggt cct 90 Lys Pro Leu Ser Ile Pro Asn Gln Leu Leu Leu Gly Pro Gly Pro                 20 25 30 tcc aac ctg cct cct cgc atc atg gca gcc ggg ggg ctg cag atg 135 Ser Asn Leu Pro Pro Arg Ile Met Ala Ala Gly Gly Leu Gln Met                 35 40 45 atc ggg tcc atg agc aag gat atg tac cag atc atg gac gag atc 180 Ile Gly Ser Met Ser Lys Asp Met Tyr Gln Ile Met Asp Glu Ile                 50 55 60 aag gaa ggc atc cag tac gtg ttc cag acc agg aac cca ctc aca 225 Lys Glu Gly Ile Gln Tyr Val Phe Gln Thr Arg Asn Pro Leu Thr                 65 70 75 ctg gtc atc tct ggc tcg gga cac tgt gcc ctg gag gcc gcc ctg 270 Leu Val Ile Ser Gly Ser Gly His Cys Ala Leu Glu Ala Ala Leu                 80 85 90 gtc aat gtg ctg gag cct ggg gac tcc ttc ctg gtt ggg gcc aat 315 Val Asn Val Leu Glu Pro Gly Asp Ser Phe Leu Val Gly Ala Asn                 95 100 105 ggc att tgg ggg cag cga gcc gtg gac atc ggg gag cgc ata gga 360 Gly Ile Trp Gly Gln Arg Ala Val Asp Ile Gly Glu Arg Ile Gly                 110 115 120 gcc cga gtg cac ccg atg acc aag gac cct gga ggc cac tac aca 405 Ala Arg Val His Pro Met Thr Lys Asp Pro Gly Gly His Tyr Thr                 125 130 135 ctg cag gag gtg gag gag ggc ctg gcc cag cac aag cca gtg ctg 450 Leu Gln Glu Val Glu Glu Gly Leu Ala Gln His Lys Pro Val Leu                 140 145 150 ctg ttc tta acc cac ggg gag tcg tcc acc ggc gtg ctg cag ccc 495 Leu Phe Leu Thr His Gly Glu Ser Ser Thr Gly Val Leu Gln Pro                 155 160 165 ctt gat ggc ttc ggg gaa ctc tgc cac agg tac aag tgc ctg ctc 540 Leu Asp Gly Phe Gly Glu Leu Cys His Arg Tyr Lys Cys Leu Leu                 170 175 180 ctg gtg gat tcg gtg gca tcc ctg ggc ggg acc ccc ctt tac atg 585 Leu Val Asp Ser Val Ala Ser Leu Gly Gly Thr Pro Leu Tyr Met                 185 190 195 gac cgg caa ggc atc gac atc ctg tac tcg ggc tcc cag aag gcc 630 Asp Arg Gln Gly Ile Asp Ile Leu Tyr Ser Gly Ser Gln Lys Ala                 200 205 210 ctg aac gcc cct cca ggg acc tcg ctc atc tcc ttc agt gac aag 675 Leu Asn Ala Pro Pro Gly Thr Ser Leu Ile Ser Phe Ser Asp Lys                 215 220 225 gcc aaa aag aag atg tac tcc cgc aag acg aag ccc ttc tcc ttc 720 Ala Lys Lys Lys Met Tyr Ser Arg Lys Thr Lys Pro Phe Ser Phe                 230 235 240 tac ctg gac atc aag tgg ctg gcc aac ttc tgg ggc tgt gac gac 765 Tyr Leu Asp Ile Lys Trp Leu Ala Asn Phe Trp Gly Cys Asp Asp                 245 250 255 cag ccc agg atg tac cat cac aca atc ccc gtc atc agc ctg tac 810 Gln Pro Arg Met Tyr His His Thr Ile Pro Val Ile Ser Leu Tyr                 260 265 270 agc ctg aga gag agc ctg gcc ctc att gcg gaa cag ggc ctg gag 855 Ser Leu Arg Glu Ser Leu Ala Leu Ile Ala Glu Gln Gly Leu Glu                 275 280 285 aac agc tgg cgc cag cac cgc gag gcc gcg gcg tat ctg cat ggg 900 Asn Ser Trp Arg Gln His Arg Glu Ala Ala Ala Tyr Leu His Gly                 290 295 300 cgc ctg cag gca ctg ggg ctg cag ctc ttc gtg aag gac ccg gcg 945 Arg Leu Gln Ala Leu Gly Leu Gln Leu Phe Val Lys Asp Pro Ala                 305 310 315 ctc cgg ctt ccc aca gtc acc act gtg gct gta ccc gct ggc tat 990 Leu Arg Leu Pro Thr Val Thr Thr Val Ala Val Pro Ala Gly Tyr                 320 325 330 gac tgg aga gac atc gtc agc tac gtc ata gac cac ttc gac att 1035 Asp Trp Arg Asp Ile Val Ser Tyr Val Ile Asp His Phe Asp Ile                 335 340 345 gag atc atg ggt ggc ctt ggg ccc tcc acg ggg aag gtg ctg cgg 1080 Glu Ile Met Gly Gly Leu Gly Pro Ser Thr Gly Lys Val Leu Arg                 350 355 360 atc ggc ctg ctg ggc tgc aat gcc acc cgc gag aat gtg gac cgc 1125 Ile Gly Leu Leu Gly Cys Asn Ala Thr Arg Glu Asn Val Asp Arg                 365 370 375 gtg acg gag gcc ctg agg gcg gcc ctg cag cac tgc ccc aag aag 1170 Val Thr Glu Ala Leu Arg Ala Ala Leu Gln His Cys Pro Lys Lys                 380 385 390 aag ctg tga 1179 Lys Leu <210> 2 <211> 392 <212> PRT <213> Homo sapiens <400> 2 Met Ala Ser His Lys Leu Leu Val Thr Pro Pro Lys Ala Leu Leu                   5 10 15 Lys Pro Leu Ser Ile Pro Asn Gln Leu Leu Leu Gly Pro Gly Pro                 20 25 30 Ser Asn Leu Pro Pro Arg Ile Met Ala Ala Gly Gly Leu Gln Met                 35 40 45 Ile Gly Ser Met Ser Lys Asp Met Tyr Gln Ile Met Asp Glu Ile                 50 55 60 Lys Glu Gly Ile Gln Tyr Val Phe Gln Thr Arg Asn Pro Leu Thr                 65 70 75 Leu Val Ile Ser Gly Ser Gly His Cys Ala Leu Glu Ala Ala Leu                 80 85 90 Val Asn Val Leu Glu Pro Gly Asp Ser Phe Leu Val Gly Ala Asn                 95 100 105 Gly Ile Trp Gly Gln Arg Ala Val Asp Ile Gly Glu Arg Ile Gly                 110 115 120 Ala Arg Val His Pro Met Thr Lys Asp Pro Gly Gly His Tyr Thr                 125 130 135 Leu Gln Glu Val Glu Glu Gly Leu Ala Gln His Lys Pro Val Leu                 140 145 150 Leu Phe Leu Thr His Gly Glu Ser Ser Thr Gly Val Leu Gln Pro                 155 160 165 Leu Asp Gly Phe Gly Glu Leu Cys His Arg Tyr Lys Cys Leu Leu                 170 175 180 Leu Val Asp Ser Val Ala Ser Leu Gly Gly Thr Pro Leu Tyr Met                 185 190 195 Asp Arg Gln Gly Ile Asp Ile Leu Tyr Ser Gly Ser Gln Lys Ala                 200 205 210 Leu Asn Ala Pro Pro Gly Thr Ser Leu Ile Ser Phe Ser Asp Lys                 215 220 225 Ala Lys Lys Lys Met Tyr Ser Arg Lys Thr Lys Pro Phe Ser Phe                 230 235 240 Tyr Leu Asp Ile Lys Trp Leu Ala Asn Phe Trp Gly Cys Asp Asp                 245 250 255 Gln Pro Arg Met Tyr His His Thr Ile Pro Val Ile Ser Leu Tyr                 260 265 270 Ser Leu Arg Glu Ser Leu Ala Leu Ile Ala Glu Gln Gly Leu Glu                 275 280 285 Asn Ser Trp Arg Gln His Arg Glu Ala Ala Ala Tyr Leu His Gly                 290 295 300 Arg Leu Gln Ala Leu Gly Leu Gln Leu Phe Val Lys Asp Pro Ala                 305 310 315 Leu Arg Leu Pro Thr Val Thr Thr Val Ala Val Pro Ala Gly Tyr                 320 325 330 Asp Trp Arg Asp Ile Val Ser Tyr Val Ile Asp His Phe Asp Ile                 335 340 345 Glu Ile Met Gly Gly Leu Gly Pro Ser Thr Gly Lys Val Leu Arg                 350 355 360 Ile Gly Leu Leu Gly Cys Asn Ala Thr Arg Glu Asn Val Asp Arg                 365 370 375 Val Thr Glu Ala Leu Arg Ala Ala Leu Gln His Cys Pro Lys Lys                 380 385 390 Lys Leu

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12Q 1/68 G01N 33/53 M G01N 33/53 33/532 A 33/566 33/532 C12N 15/00 ZNAA 33/566 F Fターム(参考) 4B024 AA01 AA11 BA10 CA04 CA12 HA11 HA17 4B029 AA07 FA12 4B050 CC03 DD11 LL03 4B063 QA13 QA17 QQ42 QQ52 QR32 QR35 QR55 QR62 QS25 QS34 4H045 AA11 AA30 DA75 EA50 FA74─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C12Q 1/68 G01N 33/53 M G01N 33/53 33/532 A 33/566 33/532 C12N 15/00 ZNAA 33/566 FF term (reference) 4B024 AA01 AA11 BA10 CA04 CA12 HA11 HA17 4B029 AA07 FA12 4B050 CC03 DD11 LL03 4B063 QA13 QA17 QQ42 QQ52 QR32 QR35 QR55 QR62 QS25 QS34 4H045 AA11 AA74 DA75 FA75

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 アラニン:グリオキシル酸アミノトラン
スフェラーゼをコードする遺伝子のポリヌクレオチドで
あって、配列番号1のDNA配列において第751位の
t(チミン)がa(アデニン)に且つ第752位のg
(グアニン)がa(アデニン)に塩基置換しているポリ
ヌクレオチドまたはその相補配列。
1. A polynucleotide of a gene encoding alanine: glyoxylate aminotransferase, wherein t (thymine) at the 751st position is a (adenine) and g at the 752nd position in the DNA sequence of SEQ ID NO: 1.
A polynucleotide in which (guanine) has a base substitution with a (adenine), or a complementary sequence thereof.
【請求項2】 請求項1のポリヌクレオチドの一部であ
って、配列番号1の第751位置換塩基aおよび第75
2位置換塩基aを含む20〜100の連続したDNA配
列から成るオリゴヌクレオチドまたはその相補配列。
2. A part of the polynucleotide according to claim 1, wherein the 751st substitution base a and the 75th substitution base a of SEQ ID NO: 1 are used.
An oligonucleotide consisting of 20 to 100 continuous DNA sequences containing a 2-position substitution base a or a complementary sequence thereof.
【請求項3】 請求項1のポリヌクレオチドもしくは請
求項2のオリゴヌクレオチド、またはそれらの相補配列
とストリンジェントな条件下でハイブリダイズするヒト
染色体DNA由来のポリヌクレオチド。
3. A polynucleotide derived from human chromosomal DNA which hybridizes with the polynucleotide according to claim 1 or the oligonucleotide according to claim 2 or a complementary sequence thereof under stringent conditions.
【請求項4】 請求項3のポリヌクレオチドとその相補
配列からなる二本鎖ポリヌクレオチド、または請求項3
のポリヌクレオチドから転写されるmRNAをPCR増
幅するためのプライマーセットであって、一方のプライ
マーが配列番号1の第751位置換塩基aおよび第75
2位置換塩基aを含む15〜30の連続したDNA配列
またはその相補配列からなるオリゴヌクレオチドである
プライマーセット。
4. A double-stranded polynucleotide comprising the polynucleotide of claim 3 and its complementary sequence, or claim 3.
Is a primer set for PCR-amplifying mRNA transcribed from the polynucleotide of SEQ ID NO.
A primer set which is an oligonucleotide consisting of 15 to 30 continuous DNA sequences containing the 2-position substitution base a or its complementary sequence.
【請求項5】 請求項1または3のポリヌクレオチドに
コードされるか、または該ポリヌクレオチドの発現によ
って得られるポリペプチドであって、配列番号2のアミ
ノ酸配列において、第251位のTrp(トリプトファ
ン)がLys(リジン)にアミノ酸置換されているポリ
ペプチド。
5. A polypeptide encoded by the polynucleotide according to claim 1 or 3 or obtained by expression of said polynucleotide, wherein Trp (tryptophan) at position 251 in the amino acid sequence of SEQ ID NO: 2. Is a polypeptide in which the amino acid is substituted with Lys (lysine).
【請求項6】 請求項5のポリペプチドの一部であっ
て、配列番号2の第251位置換アミノ酸Lysを含む
5〜30の連続したアミノ酸配列からなるオリゴペプチ
ド。
6. An oligopeptide, which is a part of the polypeptide of claim 5 and comprises 5 to 30 consecutive amino acid sequences including the 251st-substituted amino acid Lys of SEQ ID NO: 2.
【請求項7】 請求項6のオリゴペプチドを抗原として
作製された抗体。
7. An antibody produced by using the oligopeptide of claim 6 as an antigen.
【請求項8】 原発性高蓚酸尿症I型の診断方法であっ
て、被験者から単離した染色体DNA中に請求項3のポ
リヌクレオチドが存在するか否かを検出することを特徴
とする方法。
8. A method for diagnosing primary hyperoxaluria type I, which comprises detecting whether or not the polynucleotide of claim 3 is present in chromosomal DNA isolated from a subject. .
【請求項9】 被験者から単離した染色体DNAまたは
そのmRNAと、請求項1のポリヌクレオチドもしくは
請求項2のオリゴヌクレオチド、またはそれらの相補配
列がストリンジェントな条件下でハイブリダイズするか
否かを検出する請求項8の方法。
9. It is determined whether the chromosomal DNA isolated from a subject or its mRNA is hybridized with the polynucleotide of claim 1 or the oligonucleotide of claim 2 or a complementary sequence thereof under stringent conditions. 9. The method of claim 8 to detect.
【請求項10】 被験者から単離した染色体DNAまた
はmRNAを鋳型とし、請求項4のプライマーセットを
用いてPCRを行った場合のPCR産物の有無を検出す
る請求項8の方法。
10. The method according to claim 8, wherein presence or absence of a PCR product is detected when PCR is performed using the chromosomal DNA or mRNA isolated from a subject as a template and using the primer set according to claim 4.
【請求項11】 原発性高蓚酸尿症I型の診断方法であ
って、被験者から単離した生体試料中に請求項5のポリ
ペプチドが存在するか否かを検出することを特徴とする
方法。
11. A method for diagnosing primary hyperoxaluria type I, which comprises detecting whether or not the polypeptide of claim 5 is present in a biological sample isolated from a subject. .
【請求項12】 被験者から単離した生体試料中に、請
求項7の抗体と反応するポリペプチドが存在するか否か
を検出する請求項11の方法。
12. The method according to claim 11, which comprises detecting whether or not a polypeptide reactive with the antibody according to claim 7 is present in a biological sample isolated from a subject.
【請求項13】 請求項2のオリゴヌクレオチドを標識
化したことを特徴とするDNAプローブ。
13. A DNA probe obtained by labeling the oligonucleotide of claim 2.
【請求項14】 請求項2のオリゴヌクレオチドを含む
ことを特徴とするDNAチップ。
14. A DNA chip comprising the oligonucleotide according to claim 2.
【請求項15】 請求項7の抗体を標識化したことを特
徴とする標識化抗体。
15. A labeled antibody obtained by labeling the antibody of claim 7.
JP2001271224A 2001-09-07 2001-09-07 Alanine: glyoxylate aminotransferase gene and diagnostic method for primary hyperoxaluria type I using the gene Expired - Fee Related JP4117358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001271224A JP4117358B2 (en) 2001-09-07 2001-09-07 Alanine: glyoxylate aminotransferase gene and diagnostic method for primary hyperoxaluria type I using the gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001271224A JP4117358B2 (en) 2001-09-07 2001-09-07 Alanine: glyoxylate aminotransferase gene and diagnostic method for primary hyperoxaluria type I using the gene

Publications (2)

Publication Number Publication Date
JP2003070485A true JP2003070485A (en) 2003-03-11
JP4117358B2 JP4117358B2 (en) 2008-07-16

Family

ID=19096759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001271224A Expired - Fee Related JP4117358B2 (en) 2001-09-07 2001-09-07 Alanine: glyoxylate aminotransferase gene and diagnostic method for primary hyperoxaluria type I using the gene

Country Status (1)

Country Link
JP (1) JP4117358B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910360B2 (en) 2003-08-19 2011-03-22 Japan As Represented By President Of National Cardiovascular Center Device and method for uniformly inoculating a substrate having three-dimensional surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7910360B2 (en) 2003-08-19 2011-03-22 Japan As Represented By President Of National Cardiovascular Center Device and method for uniformly inoculating a substrate having three-dimensional surfaces

Also Published As

Publication number Publication date
JP4117358B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
CA2697031C (en) Detection and treatment of polycystic kidney disease
US7851162B2 (en) Determining a predisposition to cancer
US20020192647A1 (en) Diagnostic method
CA2344978A1 (en) Genes, proteins and biallelic markers related to central nervous system disease
US20050233321A1 (en) Identification of novel polymorphic sites in the human mglur8 gene and uses thereof
JP2003070485A (en) Alanine: glyoxylic acid aminotransferase gene and method for diagnosis of type i primary hyperoxaluria using the gene
EP1863926A2 (en) Compositions and methods for treating inflammatory cns disorders
US8178297B2 (en) Method of detecting canine exercise-induced collapse
JP3998934B2 (en) Electron transfer flavin protein dehydrogenase gene and diagnostic method of glutaric aciduria type II using the same
WO2007028631A1 (en) Genetic risk factor for neurodevelopmental disorders and their complications
WO2007028655A2 (en) Drug discovery for neurodevelopmental disorders and their complications
JP3914402B2 (en) Succinic semialdehyde dehydrogenase gene and diagnostic method for 4-hydroxybutyric aciduria using the gene
JP3718555B2 (en) Method for diagnosing bovine factor XIII abnormality
US20040191774A1 (en) Endothelin-1 promoter polymorphism
JP2000316577A (en) Diagnosis of citrullinemia type ii onset in adult
JP4056212B2 (en) GEFS + related genes and GEFS + diagnostic methods
JP2001286288A (en) Method for diagnosis
EP1100962A1 (en) Genetic polymorphisms in the human neurokinin 1 receptor gene and their uses in diagnosis and treatment of diseases
JP2003159074A (en) Cancer-related gene
JP2005073626A (en) Variation of electron transfer flavin protein dehydrogenase gene and method for diagnosis of glutaric aciduria type ii using the variation
US7598029B2 (en) Method for identifying HIV-1 protease inhibitors with reduced metabolic affects
US6913885B2 (en) Association of dopamine beta-hydroxylase polymorphisms with bipolar disorder
EP1264841A1 (en) DNA encoding a mutant peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1), detection methods and test kits therefor
JP2005505272A (en) CAP-2 genes and proteins expressed in the brain associated with bipolar disorder
WO2008061672A2 (en) Genetic risk factor for cancer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080321

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees