JP2003068448A - Organic el element and its manufacturing method - Google Patents

Organic el element and its manufacturing method

Info

Publication number
JP2003068448A
JP2003068448A JP2001261018A JP2001261018A JP2003068448A JP 2003068448 A JP2003068448 A JP 2003068448A JP 2001261018 A JP2001261018 A JP 2001261018A JP 2001261018 A JP2001261018 A JP 2001261018A JP 2003068448 A JP2003068448 A JP 2003068448A
Authority
JP
Japan
Prior art keywords
organic
film
moisture
proof film
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001261018A
Other languages
Japanese (ja)
Inventor
Hideo Daimon
英夫 大門
Akito Sakamoto
章人 酒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001261018A priority Critical patent/JP2003068448A/en
Publication of JP2003068448A publication Critical patent/JP2003068448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new moisture proof film, which prevents invasion of moisture and oxygen into an organic EL element. SOLUTION: In at least a part of an exposed surface of a thin film organic EL element, the moisture proof film, which consists of SiMx Oy (M is at least one kind of element chosen from the group which consists of C, N, and B, and it is 0.05<=x<=0.5, and is 1.5<=y<=1.95), is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は有機エレクトロ・ル
ミネセンス(EL)に関する。更に詳細には、本発明は
有機ELの防湿膜に関する。
FIELD OF THE INVENTION The present invention relates to organic electroluminescence (EL). More specifically, the present invention relates to a moisture-proof film for organic EL.

【0002】[0002]

【従来の技術】次世代の表示素子として有機ELに関す
る研究開発が行われている。有機ELは自発光で輝度が
高く、また低消費電力であることから将来有望な表示素
子である。
2. Description of the Related Art Research and development have been conducted on organic EL as a next-generation display element. Organic EL is a promising display device in the future because it emits light by itself, has high brightness, and consumes low power.

【0003】しかし、有機ELに使用されている有機材
料は水分に対する耐性が弱く、実用化の大きな問題とな
っている。また、有機固体層上に設けられる電極は酸化
により特性が劣化しやすい。このため、従来の有機EL
素子を大気中で駆動させると発光特性が急激に劣化す
る。従って、実用的有機EL素子や有機ELデバイスを
得るためには、有機固体層に水分や酸素が侵入しないよ
うに、また、電極が酸化されないように素子を封止して
素子の長寿命化を図る必要がある。
However, the organic material used for the organic EL has a weak resistance to moisture, which poses a serious problem in practical use. In addition, the characteristics of the electrode provided on the organic solid layer are likely to deteriorate due to oxidation. Therefore, conventional organic EL
When the device is driven in the atmosphere, the light emission characteristics deteriorate rapidly. Therefore, in order to obtain a practical organic EL element or organic EL device, the element is sealed so that moisture or oxygen does not enter the organic solid layer and the electrode is not oxidized, thereby extending the life of the element. It is necessary to plan.

【0004】有機ELの封止方法としては、膜厚0.1
〜20μmのパラキシレン薄膜を気相重合法により有機
EL素子の上に設ける方法や、ポリブタジエン等の有機
物の膜またはSiO等の無機物の膜を蒸着法やスパッ
タ法により有機EL素子上に設ける方法が提案されてい
るが、これらの方法による封止は未だ不十分である。
As a method of sealing an organic EL, a film thickness of 0.1
A method of providing a para-xylene thin film having a thickness of up to 20 μm on an organic EL element by a vapor phase polymerization method, or a method of providing an organic material film such as polybutadiene or an inorganic material film such as SiO 2 on the organic EL element by a vapor deposition method or a sputtering method. However, the sealing by these methods is still insufficient.

【0005】[0005]

【発明が解決しようとする課題】従って、本発明の目的
は、有機EL素子内への水分と酸素の侵入を阻止する新
規な防湿膜を提供することである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel moisture-proof film which prevents moisture and oxygen from entering the organic EL device.

【0006】[0006]

【課題を解決するための手段】前記課題は、薄膜有機E
L素子の露出面の少なくとも一部分に、SiM
(但しMはC、N及びBからなる群から選択される少
なくとも一種類の元素であり、0.05≦x≦0.5で
あり、1.5≦y≦1.95である)からなる防湿膜を
設けることにより解決される。
[Means for Solving the Problems] The above-mentioned problems are the thin film organic E
SiM x O on at least a part of the exposed surface of the L element
y (provided that M is at least one element selected from the group consisting of C, N and B, and 0.05 ≦ x ≦ 0.5 and 1.5 ≦ y ≦ 1.95) It is solved by providing a moisture-proof film.

【0007】[0007]

【発明の実施の形態】図1は本発明による有機ELの一
例の概要断面図である。ガラス基板3の一方の上面にI
TO(インジウム錫酸化物)電極5が被着されており、
この電極5の上面に、発光層7をサンドイッチ状に狭持
するホール輸送層9と電子輸送層11からなる三層構造
層を配設し、電子輸送層11の上面に背面電極13を被
着させる。ITO電極5と背面電極13は電源15に接
続されている。本発明による有機ELでは、有機EL素
子1が外気と接する最外周部に光学的に透明な防湿膜1
7を有する。
FIG. 1 is a schematic sectional view of an example of an organic EL device according to the present invention. I on one upper surface of the glass substrate 3
A TO (indium tin oxide) electrode 5 is deposited,
A three-layer structure layer composed of a hole transport layer 9 and an electron transport layer 11 sandwiching the light emitting layer 7 in a sandwich shape is provided on the upper surface of the electrode 5, and a back electrode 13 is deposited on the upper surface of the electron transport layer 11. Let The ITO electrode 5 and the back electrode 13 are connected to the power supply 15. In the organic EL device according to the present invention, the organic EL element 1 is an optically transparent moisture-proof film 1 at the outermost peripheral portion in contact with the outside air.
Have 7.

【0008】防湿膜17は、SiM(但しMは
C,N,Bから選ばれる少なくとも一種類の元素であ
り、0.05≦x≦0.5であり、1.5≦y≦1.9
5である)からなる組成を有する材料により形成されて
いる。防湿膜の形成材料に炭素、窒素又はホウ素を配合
することにより、単純なSiO膜よりも、曲げに対す
る耐性に優れた防湿膜が得られる。
The moisture-proof film 17 is made of SiM x O y (where M is at least one element selected from C, N and B, and 0.05 ≦ x ≦ 0.5 and 1.5 ≦ y ≦ 1.9
5)). By adding carbon, nitrogen or boron to the material for forming the moisture-proof film, a moisture-proof film having better resistance to bending than a simple SiO 2 film can be obtained.

【0009】ハードディスクの無機保護膜としてシリコ
ン酸化物(SiO、但し、1.5≦x≦2.0)を用
いることは特開平6−12568号公報に開示されてい
る。しかし、伸縮や曲げなどの外力が加わる薄膜有機E
L素子の場合、SiO保護膜はこれら外力によりミク
ロ的な割れを生じる。本発明者らは、この問題を解決す
るために、シリコン酸化物に伸縮性を付与する検討を行
い、SiM(但しMはC,N,Bから選ばれる少
なくとも一種類の元素であり、0.05≦x≦0.5で
あり、1.5≦y≦1.95である)からなる保護膜が
従来のSiO、に比べて高い伸縮性と柔軟性が発現す
ることを発見した。従って、SiM 保護膜は薄膜
有機EL素子にも適用できる。
Silicon as an inorganic protective film for hard disks
Oxide (SiOxHowever, for 1.5 ≦ x ≦ 2.0)
Is disclosed in JP-A-6-12568.
It However, thin-film organic E to which external force such as expansion and contraction or bending is applied
For L element, SiOxThe protective film is mixed by these external forces.
B-like cracking occurs. We have solved this problem
In order to improve the elasticity of silicon oxide,
I, SiMxOy(However, M is a small number selected from C, N and B.
At least one element, if 0.05 ≦ x ≦ 0.5
And a protective film consisting of 1.5 ≦ y ≦ 1.95)
Conventional SiOxExhibits higher elasticity and flexibility than
I discovered that. Therefore, SiMxO yThe protective film is a thin film
It can also be applied to organic EL devices.

【0010】本発明のSiM防湿膜におけるMの
配合量は0.05≦x≦0.5の範囲内であることが好
ましい。xが0.05未満の場合、防湿膜に柔軟性が発
現しない。一方、xが0.5超の場合、防湿膜が硬化し
すぎて柔軟性が失われる。Mの配合量は0.1≦x≦
0.2の範囲内であることが一層好ましい。
The compounding amount of M in the SiM x O y moisture-proof film of the present invention is preferably in the range of 0.05 ≦ x ≦ 0.5. When x is less than 0.05, the moisture-proof film does not exhibit flexibility. On the other hand, when x exceeds 0.5, the moisture-proof film is excessively hardened and loses flexibility. The amount of M is 0.1 ≦ x ≦
More preferably, it is within the range of 0.2.

【0011】本発明のSiM防湿膜におけるOの
配合量は1.5≦y≦1.95の範囲内であることが好
ましい。yの値が1.5未満の場合、防湿膜の十分な硬
度が得られない。一方、yの値が1.95超の場合、酸
素含有量が過剰となって防湿膜が脆くなる。
The compounding amount of O in the SiM x O y moisture-proof film of the present invention is preferably within the range of 1.5 ≦ y ≦ 1.95. When the value of y is less than 1.5, sufficient hardness of the moisture-proof film cannot be obtained. On the other hand, when the value of y exceeds 1.95, the oxygen content becomes excessive and the moisture-proof film becomes brittle.

【0012】本発明のSiM防湿膜17の厚さは
10nm〜50nmの範囲内であることが好ましい。防
湿膜17の膜厚が10nm未満の場合、十分な被覆性が
得られない。一方、防湿膜17の膜厚が50nm超の場
合、吸湿効果が飽和し、不経済となる。
The thickness of the SiM x O y moisture-proof film 17 of the present invention is preferably in the range of 10 nm to 50 nm. When the film thickness of the moisture-proof film 17 is less than 10 nm, sufficient coverage cannot be obtained. On the other hand, when the film thickness of the moisture-proof film 17 exceeds 50 nm, the moisture absorption effect is saturated, which is uneconomical.

【0013】本発明のSiM防湿膜17はプラズ
マCVD法により成膜することができる。プラズマCV
D法は真空蒸着法やスパッタ法に比べ、分子の指向性が
低いため、つき回り性に優れており、緻密で欠陥のない
薄膜が得られる。プラズマCVD法による成膜に使用す
るモノマーガスは、Si−C−O用として、SiH
とOに気化性の炭化水素混合したもの、RvH−v
Si−O−SiH−vRv(但し、Rは炭素数1〜6
の炭化水素であり、vは1〜3の整数である)とO
混合したもの、Si(OCH或いはSi(OC
とOを混合したものを使用することができ
る、Si−N−O用として、SiHとOにN
混合したもの、RvH−vSi−O−SiH−vR
v(但し、Rは炭素数1〜6の炭化水素であり、vは1
〜3の整数である)とOにNを混合したもの、Si
(OCH或いはSi(OCとOにN
を混合したものを使用することができる、Si−B
−O用として、SiHとO にBを混合したし
たもの、RvH−vSi−O−SiH−vRv(但
し、Rは炭素数1〜6の炭化水素であり、vは1〜3の
整数である)とOにBを混合したもの、Si
(OCH或いはSi(OCとO にB
を混合したものが使用できる。
SiM of the present inventionxOyMoisture-proof film 17 is plasm
The film can be formed by the CVD method. Plasma CV
The D method has a higher molecular directivity than the vacuum evaporation method or the sputtering method.
Since it is low, it has excellent throwing power, is dense and has no defects.
A thin film is obtained. Used for film formation by plasma CVD method
The monomer gas used is SiH for Si-C-O. Four
And OTwoMixed with vaporizable hydrocarbons, RvHThree-V
Si-O-SiHThree-VRv (provided that R has 1 to 6 carbon atoms)
And v is an integer of 1 to 3) and OTwoTo
Mixture, Si (OCHThree)FourOr Si (OCTwo
H5)FourAnd OTwoYou can use a mixture of
SiH for Si-NOFourAnd OTwoTo NTwoTo
Mixed, RvHThree-VSi-O-SiHThree-VR
v (provided that R is a hydrocarbon having 1 to 6 carbon atoms, and v is 1
~ Is an integer of 3) and OTwoTo NTwoA mixture of Si,
(OCHThree)FourOr Si (OCTwoH5)FourAnd OTwoTo N
TwoA mixture of Si and B can be used.
For -O, SiHFourAnd O TwoTo BTwoH6Mixed
Tata, RvHThree-VSi-O-SiHThree-VRv (however
R is a hydrocarbon having 1 to 6 carbon atoms, and v is 1 to 3
Is an integer) and OTwoTo BTwoH6A mixture of Si,
(OCHThree)FourOr Si (OCTwoH5)FourAnd O TwoTo B
TwoH6A mixture of can be used.

【0014】成膜用ガスのキャリヤーにはHe、Ne、
Ar及びKr或いはこれらの不活性ガス中に水素
(H)を加えて用い、全圧を5〜200mTorrに
制御する。プラズマの発生には10kHz〜13.56
MHzの交流を単独で使用しても、或いはこれらの交流
にマイクロ波(2.54GHz)を併用しても良い。
He, Ne, and
Hydrogen (H 2 ) is added to Ar and Kr or their inert gas, and the total pressure is controlled to 5 to 200 mTorr. 10 kHz to 13.56 for plasma generation
The alternating current of MHz may be used alone, or microwaves (2.54 GHz) may be used together with these alternating currents.

【0015】本発明のSiM防湿膜17の成膜
は、例えば、ガラス基板3にITO電極5、ホール輸送
層9、発光層7、電子輸送層11及び背面電極13が形
成されたモジュールをプラズマCVD装置(図示されて
いない)の成膜チャンバ内に配置し、チャンバ内に成膜
ガスを送入し、高周波を印加してプラズマを発生させる
ことにより行われる。このようなプラズマCVD法によ
り成膜処理自体は当業者に公知であり、これ以上の説明
は必要ないと思われる。
The SiM x O y moisture-proof film 17 of the present invention is formed by, for example, a module in which the ITO electrode 5, the hole transport layer 9, the light emitting layer 7, the electron transport layer 11 and the back electrode 13 are formed on the glass substrate 3. Is placed in a deposition chamber of a plasma CVD apparatus (not shown), a deposition gas is fed into the chamber, and high frequency is applied to generate plasma. The film forming process itself by such a plasma CVD method is known to those skilled in the art, and further explanation is not necessary.

【0016】図2に示されるように、SiM防湿
膜17上に、光学的に透明で吸湿性の追加薄膜19を更
に設けると防湿効果を一層高める事ができる。このよう
な材料としては非磁性NaCl型のCoO或いはNiO
薄膜が適する。これらの材料は水との親和性が高く、こ
のため大気中の水分と反応して水酸化物を生成し、緻密
な膜を形成する。SiM膜と、この緻密で透明な
膜とを併用する事で、防湿効果をいっそう高める事がで
きる。非磁性NaCl型のCoO或いはNiO薄膜の厚
さは10〜50nmの範囲内であることが好ましい。追
加薄膜の膜厚が10nm未満では十分な吸湿性が得られ
ず、一方、50nmを越えると吸湿効果が飽和する。追
加薄膜は例えば、高周波(RF)スパッタ法などにより
成膜することができる。例えば、CoO膜の場合、Co
をターゲットとし、O圧力5×10−4TorrにA
rを加えて、合計5×10−3Torrの雰囲気でRF
スパッタすることにより得られる。
As shown in FIG. 2, the moisture-proof effect can be further enhanced by further providing an additional thin film 19 which is optically transparent and hygroscopic on the SiM x O y moisture-proof film 17. As such a material, non-magnetic NaCl type CoO or NiO is used.
Thin films are suitable. These materials have a high affinity with water, so that they react with moisture in the atmosphere to form hydroxides and form a dense film. By using the SiM x O y film in combination with this dense and transparent film, the moisture-proof effect can be further enhanced. The thickness of the nonmagnetic NaCl type CoO or NiO thin film is preferably in the range of 10 to 50 nm. If the thickness of the additional thin film is less than 10 nm, sufficient hygroscopicity cannot be obtained, while if it exceeds 50 nm, the hygroscopic effect is saturated. The additional thin film can be formed by, for example, a radio frequency (RF) sputtering method. For example, in the case of a CoO film, Co
Target and O 2 pressure of 5 × 10 −4 Torr
RF in a total atmosphere of 5 × 10 −3 Torr including r
Obtained by sputtering.

【0017】通常、有機EL素子はガラス基板上に形成
されるが、可撓性の透明フィルム上に形成することもで
きる。この場合、本発明のSiM防湿膜17で可
撓性透明フィルム基板も含めて有機EL素子全体を被覆
することにより、フレキシブルな有機EL素子の防湿性
を高めることができる。
The organic EL device is usually formed on a glass substrate, but it may be formed on a flexible transparent film. In this case, by covering the entire organic EL element including the flexible transparent film substrate with the SiM x O y moisture-proof film 17 of the present invention, the moisture resistance of the flexible organic EL element can be enhanced.

【0018】[0018]

【実施例】以下、実施例により本発明を更に具体的に例
証する。 (1)有機EL素子の作製 50mm×50mm×1mmサイズのガラス基板上にI
TO膜を100nmの厚さで成膜したものを透明支持基
板として用い、この透明支持基板をイソプロピルアルコ
ールで30分間超音波洗浄した後、純水で30分間洗浄
し、最後に再びイソプロピルアルコールで30分間超音
波洗浄した。洗浄後の透明支持基板を真空蒸着装置の基
板ホルダーに固定し、モリブデン製抵抗加熱ボートに
N,N’−ジフェニル−N,N’−ビス−(3−メチル
フェニル)−[1,1’−ビフェニル]−4,4’−ジ
アミン(以下TPDと記す)を200mg入れ、別のモ
リブデン製抵抗加熱ボートにトリス(8−キノリノー
ル)アルミニウム(以下Alqと記す)を200mg入
れて、真空チャンバーを1×10−6Torrまで減圧
した。次に、TPDを入れた前記抵抗加熱ボートを22
0℃まで加熱しTPDを蒸着速度0.1〜0.3nm/
sでITO膜上に堆積させて、膜厚60nmの正孔注入
層を成膜した。この時の基板温度は室温であった。次い
で、正孔注入層が成膜された透明支持基板を真空チャン
バーから取り出すことなく、正孔注入層の成膜に引き続
いて発光層の成膜を行った。発光層の成膜は、Alqを
入れた前記抵抗加熱ボートを275℃まで加熱し、Al
qを蒸着速度0.1〜0.2nm/sで正孔注入層上に
堆積させて、膜厚60nmのAlq層を成膜した。この
時の基板温度も室温であった。次に、モリブデン製抵抗
加熱ボートにマグネシウムを1g入れ、別のモリブデン
製抵抗加熱ボートにインジウム500mgを入れて、真
空チャンバーを1×10−6Torrまで減圧した。そ
して、マグネシウムを入れた前記抵抗加熱ボートを50
0℃程度に加熱してマグネシウムを1.7〜2.8nm
/sの蒸着速度で蒸発させると共に、インジウムを入れ
た前記抵抗加熱ボートを800℃程度に加熱してインジ
ウムを0.03〜0.08nm/sの蒸着速度で蒸発さ
せて、マグネシウムとインジウムとの混合金属からなる
膜厚150nmの電極(対向電極)を発光層上に設け
た。
EXAMPLES The present invention will be more specifically illustrated by the following examples. (1) Fabrication of organic EL device I on a glass substrate of 50 mm × 50 mm × 1 mm size
A TO film having a thickness of 100 nm was used as a transparent supporting substrate. The transparent supporting substrate was ultrasonically cleaned with isopropyl alcohol for 30 minutes, then with pure water for 30 minutes, and finally with isopropyl alcohol again. Ultrasonic cleaning was performed for a minute. The transparent supporting substrate after cleaning was fixed to a substrate holder of a vacuum vapor deposition apparatus, and N, N'-diphenyl-N, N'-bis- (3-methylphenyl)-[1,1'- was placed in a molybdenum resistance heating boat. Biphenyl] -4,4'-diamine (hereinafter referred to as TPD) was placed in an amount of 200 mg, and another molybdenum resistance heating boat was charged with 200 mg of tris (8-quinolinol) aluminum (hereinafter referred to as Alq) in a vacuum chamber of 1 ×. The pressure was reduced to 10 −6 Torr. Next, the resistance heating boat containing TPD
Heat up to 0 ° C and deposit TPD at a deposition rate of 0.1 to 0.3 nm /
s to deposit on the ITO film to form a hole injection layer having a film thickness of 60 nm. The substrate temperature at this time was room temperature. Next, the light-emitting layer was formed subsequent to the formation of the hole-injection layer without taking out the transparent support substrate on which the hole-injection layer was formed, from the vacuum chamber. The light emitting layer is formed by heating the resistance heating boat containing Alq to 275 ° C.
q was deposited on the hole injection layer at a vapor deposition rate of 0.1 to 0.2 nm / s to form an Alq layer having a film thickness of 60 nm. The substrate temperature at this time was also room temperature. Next, 1 g of magnesium was put in a resistance heating boat made of molybdenum, 500 mg of indium was put in another resistance heating boat made of molybdenum, and the vacuum chamber was depressurized to 1 × 10 −6 Torr. Then, the resistance heating boat containing magnesium is set to 50.
Magnesium is heated to about 0 ° C to obtain 1.7 to 2.8 nm
While vaporizing at a vapor deposition rate of / s, the resistance heating boat containing indium is heated to about 800 ° C. to vaporize indium at a vapor deposition rate of 0.03 to 0.08 nm / s, so that magnesium and indium An electrode (counter electrode) made of a mixed metal and having a film thickness of 150 nm was provided on the light emitting layer.

【0019】このようにして、素子構成が陽極(ITO
膜)/正孔注入層/発光層/陰極(In・Mg)の有機
EL素子をガラス基板上に作製した後、銅製のリード線
を取り付けた。この有機EL素子の初期性能は、電圧
6.5V、電流密度3mA/cmの条件で発光輝度は
100cd/mであった。
In this way, the element structure is the anode (ITO).
Film) / hole injection layer / light emitting layer / cathode (In.Mg) organic EL device was prepared on a glass substrate, and then a copper lead wire was attached. The initial performance of this organic EL device was such that the light emission luminance was 100 cd / m 2 under the conditions of a voltage of 6.5 V and a current density of 3 mA / cm 2 .

【0020】(2)防湿膜の作製 実施例1 前記の(1)で作製した有機EL素子上に、プラズマC
VD法によりSi−C−O防湿膜を30nm成膜した。
成膜の条件は、(CHSi−O−Si(CH
:20ml/分、O:40ml/分、He:150
ml/分、H:30ml/分に成膜ガスを制御し、5
0kHz、1kWの高周波電源を用いた。
(2) Preparation of moisture-proof film Example 1 Plasma C was formed on the organic EL device prepared in (1) above.
A Si—C—O moisture barrier film was formed to a thickness of 30 nm by the VD method.
The conditions for film formation are (CH 3 ) 3 Si—O—Si (CH 3 ).
3 : 20 ml / min, O 2 : 40 ml / min, He: 150
ml / min, H 2 : 30 ml / min, the deposition gas was controlled to 5
A high frequency power source of 0 kHz and 1 kW was used.

【0021】実施例2 前記の(1)で作製した有機EL素子上に、プラズマC
VD法によりSi−N−O防湿膜を30nm成膜した。
成膜の条件は、(CHSi−O−Si(CH
:20ml/分、O:40ml/分、N:10m
l/分、He:150ml/分、H:30ml/分に
成膜ガスを制御し、50kHz、1kWの高周波電源を
用いた。
Example 2 On the organic EL device produced in the above (1), plasma C
A Si—N—O moisture barrier film was formed to a thickness of 30 nm by the VD method.
The conditions for film formation are (CH 3 ) 3 Si—O—Si (CH 3 ).
3 : 20 ml / min, O 2 : 40 ml / min, N 2 : 10 m
The film forming gas was controlled at 1 / min, He: 150 ml / min, and H 2 : 30 ml / min, and a high-frequency power source of 50 kHz and 1 kW was used.

【0022】実施例3 前記の(1)で作製した有機EL素子上に、プラズマC
VD法によりSi−B−O防湿膜を30nm成膜した。
成膜の条件は、(CHSi−O−Si(CH
:20ml/分、O:40ml/分、B:1
0ml/分、He:150ml/分、H:30ml/
分に成膜ガスを制御し、50kHz、1kWの高周波電
源を用いた。
Example 3 A plasma C was formed on the organic EL device prepared in (1) above.
A Si—B—O moisture barrier film was formed to a thickness of 30 nm by the VD method.
The conditions for film formation are (CH 3 ) 3 Si—O—Si (CH 3 ).
3 : 20 ml / min, O 2 : 40 ml / min, B 2 H 6 : 1.
0 ml / min, He: 150 ml / min, H 2 : 30 ml /
The film-forming gas was controlled accordingly, and a high frequency power source of 50 kHz and 1 kW was used.

【0023】比較例1 前記の(1)で作製した有機EL素子上に防湿膜を全く
設けなかった。
Comparative Example 1 No moisture-proof film was provided on the organic EL device prepared in (1) above.

【0024】比較例2 前記の(1)で作製した有機EL素子上にSiO防湿
膜を真空蒸着法で30nm設けた。
Comparative Example 2 A SiO x moisture-proof film was provided on the organic EL device manufactured in the above (1) by a vacuum deposition method to a thickness of 30 nm.

【0025】比較例3 前記の(1)で作製した有機EL素子上にSiO防湿
膜をスパッタ法で30nm設けた。
Comparative Example 3 A SiO x moisture-proof film was formed on the organic EL device manufactured in the above (1) by a sputtering method to a thickness of 30 nm.

【0026】比較例4 前記の(1)で作製した有機EL素子上に、プラズマC
VD法によりSi−C−O防湿膜を30nm成膜した。
成膜の条件は、(CHSi−O−Si(CH
:20ml/分、O:100ml/分、He:15
0ml/分、H :30ml/分に成膜ガスを制御し、
50kHz、1kWの高周波電源を用いた。
Comparative Example 4 Plasma C is formed on the organic EL element produced in (1) above.
A Si—C—O moisture barrier film was formed to a thickness of 30 nm by the VD method.
The conditions for film formation are (CHThree)ThreeSi-O-Si (CHThree)
Three: 20 ml / min, OTwo: 100 ml / min, He: 15
0 ml / min, H Two: Control the film forming gas to 30 ml / min,
A high frequency power source of 50 kHz and 1 kW was used.

【0027】比較例5 前記の(1)で作製した有機EL素子上に、プラズマC
VD法によりSi−C−O防湿膜を30nm成膜した。
成膜の条件は、(CHSi−O−Si(CH
:100ml/分、O:40ml/分、He:15
0ml/分、H :30ml/分に成膜ガスを制御し、
50kHz、1kWの高周波電源を用いた。
Comparative Example 5 Plasma C is formed on the organic EL element produced in (1) above.
A Si—C—O moisture barrier film was formed to a thickness of 30 nm by the VD method.
The conditions for film formation are (CHThree)ThreeSi-O-Si (CHThree)
Three: 100 ml / min, OTwo: 40 ml / min, He: 15
0 ml / min, H Two: Control the film forming gas to 30 ml / min,
A high frequency power source of 50 kHz and 1 kW was used.

【0028】実施例1〜3及び比較例1〜5の有機EL
素子の半減寿命(輝度が50cd/mに低下するまで
の時間)及び破壊寿命(輝度が0cd/mに低下する
までの時間)を測定した。表1に示すように、実施例1
〜3では比較例1〜3と比較し、半減寿命及び破壊寿命
共に長く、優れた防湿効果がある事が判る。
Organic EL of Examples 1 to 3 and Comparative Examples 1 to 5
The half-life of the device (time until the luminance drops to 0 cd / m 2) and breakdown lifetime (time until the luminance drops to 50 cd / m 2) was measured. As shown in Table 1, Example 1
It can be seen that in Comparative Examples 1 to 3, both the half life and the breaking life are longer than those of Comparative Examples 1 to 3 and there is an excellent moistureproof effect.

【0029】[0029]

【表1】 半減寿命(時間) 破壊寿命(時間) 実施例1 C 0.15 1.85 1500 ≧10000 実施例2 N 0.12 1.88 1400 ≧10000 実施例3 B 0.13 1.87 1400 ≧10000 比較例1 − − − 20 200 比較例2 − − − 60 450 比較例3 − − − 70 500 比較例4 C 0.03 1.97 120 450 比較例5 C 0.65 1.35 80 500[Table 1] M x y Half life (hours) Fracture life (hours) Example 1 C 0.15 1.85 1500 ≧ 10000 Example 2 N 0.12 1.88 1400 ≧ 10000 Example 3 B 0.13 1.87 1400 ≧ 10000 Comparative Example 1 − − − 20 200 Comparative Example 2 − − − 60 450 Comparative Example 3 − − − 70 500 Comparative Example 4 C 0.03 1.97 120 450 Comparative Example 5 C 0.65 1.35 80 500

【0030】実施例4 実施例1で得られたSi−C−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Coをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のCoOをSi−C−O防湿膜上に
30nm成膜した。
Example 4 The organic EL device with Si—C—O moisture barrier film obtained in Example 1 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
After that, metal Co is used as a target and oxygen gas is 5 ×.
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Non-magnetic NaCl-type CoO was deposited to a thickness of 30 nm on the Si—C—O moisture proof film by RF magnetron sputtering method at 0 −3 Torr.

【0031】実施例5 実施例2で得られたSi−N−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Coをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のCoOをSi−N−O防湿膜上に
30nm成膜した。
Example 5 The organic EL device with Si—N—O moisture barrier film obtained in Example 2 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
After that, metal Co is used as a target and oxygen gas is 5 ×.
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Nonmagnetic NaCl-type CoO was deposited to a thickness of 0 to 3 Torr on the Si—N—O moisture-proof film by RF magnetron sputtering to a thickness of 30 nm.

【0032】実施例6 実施例3で得られたSi−B−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Coをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のCoOをSi−B−O防湿膜上に
30nm成膜した。
Example 6 The organic EL device with Si—B—O moisture barrier film obtained in Example 3 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
After that, metal Co is used as a target and oxygen gas is 5 ×.
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Non-magnetic NaCl-type CoO was formed to a thickness of 30 nm on the Si—B—O moisture-proof film by RF magnetron sputtering at 0 −3 Torr.

【0033】実施例7 実施例1で得られたSi−C−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Niをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のNiOをSi−C−O防湿膜上に
30nm成膜した。
Example 7 The organic EL device with Si—C—O moisture barrier film obtained in Example 1 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
Then, using metallic Ni as a target and oxygen gas at 5 ×
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Non-magnetic NaCl-type NiO was deposited at a thickness of 30 nm on the Si—C—O moisture-proof film by RF magnetron sputtering method at 0 −3 Torr.

【0034】実施例8 実施例2で得られたSi−N−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Niをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のNiOをSi−N−O防湿膜上に
30nm成膜した。
Example 8 The organic EL device with Si—N—O moisture barrier film obtained in Example 2 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
Then, using metallic Ni as a target and oxygen gas at 5 ×
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Non-magnetic NaCl-type NiO was deposited on the Si—N—O moisture-proof film to a thickness of 30 nm by RF magnetron sputtering at 0 −3 Torr.

【0035】実施例9 実施例3で得られたSi−B−O防湿膜付き有機EL素
子を真空槽に入れ1×10−6Torrまで減圧した。
その後、金属Niをターゲットに用い、酸素ガスを5×
10−4Torr導入後、Arを導入して全圧を5×1
−3Torrとし、RFマグネトロンスパッタ法によ
り非磁性NaCl型のNiOをSi−B−O防湿膜上に
30nm成膜した。
Example 9 The organic EL device with Si—B—O moisture barrier film obtained in Example 3 was placed in a vacuum chamber and the pressure was reduced to 1 × 10 −6 Torr.
Then, using metallic Ni as a target and oxygen gas at 5 ×
After introducing 10 −4 Torr, Ar is introduced to adjust the total pressure to 5 × 1.
Non-magnetic NaCl-type NiO was deposited at a thickness of 30 nm on the Si—B—O moisture-proof film by RF magnetron sputtering at 0 −3 Torr.

【0036】実施例4〜9の有機EL素子の半減寿命
(輝度が50cd/mに低下するまでの時間)及び破
壊寿命(輝度が0cd/mに低下するまでの時間)を
測定した。表2に示すように、実施例4〜9では実施例
1〜3と比較し、半減寿命が長く、非磁性NaCl型の
CoO或いはNiO膜と併用する事で優れた防湿効果が
発揮される事が判る。
The measured half-life (time until the luminance drops to 50 cd / m 2) and breakdown lifetime of the organic EL device of Example 4-9 (the time until the luminance decreases to 0cd / m 2). As shown in Table 2, Examples 4 to 9 have a longer half-life than Examples 1 to 3, and when used in combination with a non-magnetic NaCl type CoO or NiO film, an excellent moistureproof effect is exhibited. I understand.

【0037】[0037]

【表2】 半減寿命(時間) 破壊寿命(時間) 実施例4 2500 ≧10000 実施例5 2400 ≧10000 実施例6 2400 ≧10000 実施例7 2400 ≧10000 実施例8 2500 ≧10000 実施例9 2500 ≧10000Table 2 Half life (hours) Fracture life (hours) Example 4 2500 ≧ 10000 Example 5 2400 ≧ 10000 Example 6 2400 ≧ 10000 Example 7 2400 ≧ 10000 Example 8 2500 ≧ 10000 Example 9 2500 ≧ 10000

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
有機EL素子の最外周をプラズマCVD法により成膜し
たSiM(但し、MはC、N及びBからなる群か
ら選択される少なくとも一種類の元素であり、0.05
≦x≦0.5であり、1.5≦y≦1.95である)膜
で覆うことにより優れた防湿効果が得られ、有機EL素
子の長寿命化が図れる。また、SiM防湿膜と、
非磁性NaCl型のCoO或いはNiO膜と併用するこ
とにより、更に一層優れた防湿効果を得ることができ
る。
As described above, according to the present invention,
SiM x O y (where M is at least one element selected from the group consisting of C, N and B, and is 0.05
(≦ x ≦ 0.5, 1.5 ≦ y ≦ 1.95) By covering with a film, an excellent moisture-proof effect can be obtained, and the life of the organic EL element can be extended. Also, a SiM x O y moisture-proof film,
When used in combination with a non-magnetic NaCl type CoO or NiO film, an even more excellent moistureproof effect can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の有機EL素子の一例の概要断面図であ
る。
FIG. 1 is a schematic sectional view of an example of an organic EL device of the present invention.

【図2】本発明の有機EL素子の別の例の概要断面図で
ある。
FIG. 2 is a schematic sectional view of another example of the organic EL element of the present invention.

【符号の説明】[Explanation of symbols]

1 本発明の有機EL素子 3 ガラス基板 5 ITO電極 7 発光層 9 ホール輸送層 11 電子輸送層 13 背面電極 15 電源 17 防湿層 19 追加層 1 Organic EL device of the present invention 3 glass substrates 5 ITO electrode 7 Light-emitting layer 9 hole transport layer 11 Electron transport layer 13 Back electrode 15 power supply 17 Moisture barrier 19 additional layers

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 透明な基板の一方の主要面上に、電極
と、ホール輸送層と、発光層と、電子輸送層と対向電極
とをこの順に積層した有機EL素子において、前記有機
EL素子の露出面のうちの少なくとも一部分が、SiM
(但しMはC、N及びBからなる群から選択され
る少なくとも一種類の元素であり、0.05≦x≦0.
5であり、1.5≦y≦1.95である)からなる防湿
膜で被覆されていることを特徴とする有機EL素子
1. An organic EL device in which an electrode, a hole transport layer, a light emitting layer, an electron transport layer and a counter electrode are laminated in this order on one main surface of a transparent substrate. At least a portion of the exposed surface is SiM
x O y (where M is at least one element selected from the group consisting of C, N and B, and 0.05 ≦ x ≦ 0.
5 and 1.5 ≦ y ≦ 1.95), and is covered with a moisture-proof film.
【請求項2】 前記防湿膜の膜厚が10nm〜50nm
の範囲内であることを特徴とする請求項1に記載の有機
EL素子。
2. The film thickness of the moisture-proof film is 10 nm to 50 nm.
The organic EL element according to claim 1, wherein the organic EL element is in the range of.
【請求項3】 前記防湿膜の外表面に、光学的に透明な
非磁性NaCl型のCoO或いはNiOからなる追加薄
膜が更に被覆されていることを特徴とする請求項1に記
載の有機EL素子。
3. The organic EL device according to claim 1, wherein the outer surface of the moisture-proof film is further covered with an additional thin film of optically transparent non-magnetic NaCl type CoO or NiO. .
【請求項4】 前記追加薄膜の膜厚が10nm〜50n
mの範囲内であることを特徴とする請求項3に記載の有
機EL素子。
4. The film thickness of the additional thin film is 10 nm to 50 n.
It is in the range of m, The organic EL element of Claim 3 characterized by the above-mentioned.
【請求項5】 (a)透明な基板の一方の主要面上に、電
極と、ホール輸送層と、発光層と、電子輸送層と対向電
極とをこの順に積層した有機EL素子を準備するステッ
プと、 (b)前記有機EL素子をプラズマCVD装置のチャンバ
内に配置するステップと、 (c)前記チャンバ内で前記有機EL素子の露出面のうち
の少なくとも一部分に、SiM(但しMはC、N
及びBからなる群から選択される少なくとも一種類の元
素であり、0.05≦x≦0.5であり、1.5≦y≦
1.95である)からなる防湿膜を成膜するステップと
からなることを特徴とする有機EL素子の製造方法。
5. (a) A step of preparing an organic EL device in which an electrode, a hole transport layer, a light emitting layer, an electron transport layer and a counter electrode are laminated in this order on one main surface of a transparent substrate. (B) disposing the organic EL element in a chamber of a plasma CVD apparatus, and (c) at least a part of the exposed surface of the organic EL element in the chamber, SiM x O y (however, M Is C, N
And at least one element selected from the group consisting of B and 0.05 ≦ x ≦ 0.5, and 1.5 ≦ y ≦
1.95) is formed, and a step of forming a moisture-proof film is formed.
【請求項6】 前記防湿膜の膜厚が10nm〜50nm
の範囲内であることを特徴とする請求項5に記載の有機
EL素子の製造方法。
6. The film thickness of the moisture-proof film is 10 nm to 50 nm.
The method for producing an organic EL element according to claim 5, wherein the method is within the range.
JP2001261018A 2001-08-30 2001-08-30 Organic el element and its manufacturing method Pending JP2003068448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001261018A JP2003068448A (en) 2001-08-30 2001-08-30 Organic el element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001261018A JP2003068448A (en) 2001-08-30 2001-08-30 Organic el element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003068448A true JP2003068448A (en) 2003-03-07

Family

ID=19088124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001261018A Pending JP2003068448A (en) 2001-08-30 2001-08-30 Organic el element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003068448A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223280A (en) * 1999-02-01 2000-08-11 Minolta Co Ltd Organic electroluminescent display element
JP2001068264A (en) * 1999-08-24 2001-03-16 Tdk Corp Organic el element, and manufacture thereof
JP2001185348A (en) * 1999-12-27 2001-07-06 Toppan Printing Co Ltd Photoelectric conversion element and its manufacturing method
JP2001217072A (en) * 1999-09-17 2001-08-10 Semiconductor Energy Lab Co Ltd El display device and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223280A (en) * 1999-02-01 2000-08-11 Minolta Co Ltd Organic electroluminescent display element
JP2001068264A (en) * 1999-08-24 2001-03-16 Tdk Corp Organic el element, and manufacture thereof
JP2001217072A (en) * 1999-09-17 2001-08-10 Semiconductor Energy Lab Co Ltd El display device and its manufacturing method
JP2001185348A (en) * 1999-12-27 2001-07-06 Toppan Printing Co Ltd Photoelectric conversion element and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3797317B2 (en) Target for transparent conductive thin film, transparent conductive thin film and manufacturing method thereof, electrode material for display, organic electroluminescence element
KR100875099B1 (en) Organic light emitting device and method for manufacturing same
JP3524711B2 (en) Organic electroluminescence device and method of manufacturing the same
JPWO2003045115A1 (en) EL element
JP4269986B2 (en) Oxide sintered compact target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive substrate, display device, and organic electroluminescence element
JP3918721B2 (en) Transparent conductive thin film, its production method and sintered compact target for production, organic electroluminescence element and its production method
WO1998024272A1 (en) Organic el element
Chen et al. DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode
JP2005319678A (en) Laminate, light emitting element and its use
JPH10255987A (en) Manufacture of organic el element
WO2002094965A1 (en) Organic electroluminescence element
JP4310843B2 (en) Method for manufacturing organic electroluminescent device
WO1998024273A1 (en) Organic el element and method of producing the same
KR100236011B1 (en) Organic electroluminescence device and method for fabricating the same
JPH11329746A (en) Organic el element
JP4337567B2 (en) Method for manufacturing organic electroluminescence element
JP2000223265A (en) Light-emitting device
JP2003068448A (en) Organic el element and its manufacturing method
KR100806704B1 (en) The manufacturing method of transparent conducting electrode for organic light emitting diode
JPH077713B2 (en) Thin film EL device
JP2000208253A (en) Organic electroluminescent element and manufacture thereof
WO2003101158A1 (en) Substrate with transparent conductive film and organic el device
JP4072369B2 (en) Organic light emitting device and light emitting compound
JP2001203075A (en) Organic electroluminescent element and its manufacturing method
JP2002134278A (en) Organic electroluminescence element and display equipment using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026