JP2003066633A - Coating device for organic photoreceptor, method for coating and organic photoreceptor - Google Patents

Coating device for organic photoreceptor, method for coating and organic photoreceptor

Info

Publication number
JP2003066633A
JP2003066633A JP2001257725A JP2001257725A JP2003066633A JP 2003066633 A JP2003066633 A JP 2003066633A JP 2001257725 A JP2001257725 A JP 2001257725A JP 2001257725 A JP2001257725 A JP 2001257725A JP 2003066633 A JP2003066633 A JP 2003066633A
Authority
JP
Japan
Prior art keywords
coating
solvent vapor
solvent
charge transport
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001257725A
Other languages
Japanese (ja)
Inventor
Nobuaki Kobayashi
信昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2001257725A priority Critical patent/JP2003066633A/en
Publication of JP2003066633A publication Critical patent/JP2003066633A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coating device and method for coating an organic photoreceptor by which irregularity in the thickness of the coating film can be suppressed, and to provide an organic photoreceptor manufactured by the method. SOLUTION: In the coating device for an organic photoreceptor by dipping a cylindrical conductive base body in a coating liquid and drawing up to coat, the coating device is equipped with a coating tank which houses the coating liquid for charge transfer layer using a nonhalogen solvent, a solvent vapor reservoir disposed on the coating tank, and a drying hood disposed above the solvent vapor reservoir. The solvent vapor reservoir covers the upper part of the coating tank, and a discharge port is formed between the solvent vapor reservoir and the drying hood above the reservoir.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、有機感光体の塗布
装置、塗布方法、該塗布方法で製造された有機感光体に
関し、特に有機感光体の製造において円筒状導電性基体
の外周面に有機感光層を形成する塗布装置、塗布方法及
び該塗布方法により製造された有機感光体に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating device for an organic photoreceptor, a coating method, and an organic photoreceptor manufactured by the coating method. In particular, in the production of an organic photoreceptor, an organic material is formed on the outer peripheral surface of a cylindrical conductive substrate. The present invention relates to a coating device for forming a photosensitive layer, a coating method, and an organic photoconductor manufactured by the coating method.

【0002】[0002]

【従来の技術】従来、電子写真感光体の感光層を構成す
る光導電材料としては、セレン、硫化カドミウム、酸化
亜鉛等の無機化合物およびポリビニルカルバゾールに代
表される有機化合物が提案されており、また、感光層を
電荷発生層と電荷輸送層とに分離した積層型有機感光体
においては、電荷発生材料および電荷輸送材料として、
種々の有機化合物が提案され、有機感光体として実用化
されている。従来、このような有機感光体の塗布方法と
しては、浸漬塗布法、スプレー塗布法、スピン塗布法、
ビード塗布法、ワイヤーバー塗布法、ブレード塗布法、
ローラー塗布法、押出し塗布法、カーテン塗布法等の各
種塗布方法が知られているが、特に円筒状導電性基体の
外周面に均一な感光層を形成する方法としては、浸漬塗
布法が広く用いられている。
2. Description of the Related Art Heretofore, as a photoconductive material constituting a photosensitive layer of an electrophotographic photosensitive member, inorganic compounds such as selenium, cadmium sulfide and zinc oxide and organic compounds represented by polyvinylcarbazole have been proposed. In the laminated organic photoreceptor in which the photosensitive layer is separated into a charge generating layer and a charge transporting layer, as the charge generating material and the charge transporting material,
Various organic compounds have been proposed and put into practical use as organic photoconductors. Conventionally, as a coating method for such an organic photoreceptor, a dip coating method, a spray coating method, a spin coating method,
Bead coating method, wire bar coating method, blade coating method,
Various coating methods such as a roller coating method, an extrusion coating method, and a curtain coating method are known. Particularly, as a method for forming a uniform photosensitive layer on the outer peripheral surface of a cylindrical conductive substrate, a dip coating method is widely used. Has been.

【0003】近年、有機感光体が使用される複写機、プ
リンター、ファクシミリ等の装置に対しては、小型化、
軽量化の要求が強く、これに伴って有機感光体も年々小
径化がはかられている。有機感光体、特に小径の円筒状
導電性基体を使用した有機感光体を浸漬塗布法によって
製造する方法としては、生産性向上の観点から、特開平
5−88385号公報、特開平6−262113号公報
に記載されているように、複数の円筒状導電性基体を同
時に塗布液に浸漬し、引き上げる多数本同時浸漬塗布方
法が一般的に採用されている。特に、円筒状導電性基体
同士の間隔が狭くなれば、さらに生産性が上がり有利と
なるが、その際に、円筒状導電性基体引上げ時に形成さ
れる塗布膜から発生する溶媒蒸気や、塗布槽液面から発
生する溶媒蒸気の影響により、円筒状導電性基体上に形
成される塗布膜の指触乾燥速度がそれぞれの円筒状導電
性基体間、および円筒状導電性基体一本内で不均一とな
り、膜厚むらを発生してしまう。その回避策としては、
特開昭59−127049号公報等に記載されているよ
うに、円筒状導電性基体が塗布槽液面より引き上げられ
ていない時に、液受け槽近傍に外部よりエアーを送り込
み、液受け槽近傍より溶媒蒸気濃度を事前に低減し、指
触乾燥速度を促進させるもの、特開平3−151号公報
等に記載されているように、液受け槽近傍に溶媒蒸気排
出口を設け、ON−OFF機構を付与した強制排気装置
に連結し、塗布槽液面から引上げ時に円筒状導電性基体
周辺の溶媒蒸気濃度を制御するもの等により、膜厚むら
を抑制することが行われている。
In recent years, downsizing of devices such as copiers, printers and facsimiles using organic photoconductors has been proposed.
There is a strong demand for weight reduction, and along with this, the diameter of organic photoconductors is being reduced year by year. As a method for producing an organic photoconductor, particularly an organic photoconductor using a small-diameter cylindrical conductive substrate by a dip coating method, from the viewpoint of improving productivity, JP-A-5-88385 and JP-A-6-262113. As described in the publication, a multiple simultaneous dip coating method in which a plurality of cylindrical conductive substrates are simultaneously dipped in a coating solution and pulled up is generally adopted. In particular, if the space between the cylindrical conductive substrates is narrowed, the productivity is further increased, which is advantageous. At that time, the solvent vapor generated from the coating film formed when the cylindrical conductive substrate is pulled up, or the coating tank. Due to the influence of solvent vapor generated from the liquid surface, the touch-drying speed of the coating film formed on the cylindrical conductive substrate is non-uniform between the cylindrical conductive substrates and within one cylindrical conductive substrate. And film thickness unevenness occurs. As a workaround,
As described in JP-A-59-127049, etc., when the cylindrical conductive substrate is not pulled up from the liquid level of the coating tank, air is sent from the outside to the vicinity of the liquid receiving tank, and from the vicinity of the liquid receiving tank. An ON-OFF mechanism in which a solvent vapor discharge port is provided in the vicinity of a liquid receiving tank, as described in JP-A-3-151, etc., in which the solvent vapor concentration is reduced in advance to accelerate the touch drying speed. The unevenness of the film thickness is suppressed by controlling the solvent vapor concentration around the cylindrical conductive substrate at the time of pulling up from the liquid level of the coating tank by connecting to the forced exhaust device provided with.

【0004】しかしながら、上記のような技術ではエア
ー供給口近傍や強制排気装置に連結する溶媒蒸気排出口
近辺の円筒状導電性基体の周辺では、溶媒蒸気濃度は低
いが、離れた箇所のそれは高くなり、溶媒蒸気濃度の均
一化をはかることは困難であった。
However, in the above technique, the solvent vapor concentration is low near the air supply port and around the cylindrical conductive substrate in the vicinity of the solvent vapor discharge port connected to the forced evacuation device, but it is high in the distant place. Therefore, it was difficult to make the solvent vapor concentration uniform.

【0005】即ち、浸漬塗布時において、円筒状導電性
基体の周辺の溶媒蒸気濃度が不均一になるという課題に
対する従来技術での回避策では、未だ十分ではない。即
ち上記のような従来技術では、円筒状導電性基体塗布面
の溶媒蒸気濃度が場所により異なり、塗布面の乾燥ムラ
を引き起こし、その結果塗布膜厚のむらが発生しやす
い。
That is, the conventional workaround for the problem that the solvent vapor concentration around the cylindrical conductive substrate becomes non-uniform during dip coating is not sufficient. That is, in the conventional technique as described above, the solvent vapor concentration on the coated surface of the cylindrical conductive substrate varies depending on the location, which causes unevenness in drying of the coated surface, resulting in uneven coating film thickness.

【0006】上記溶媒蒸気濃度の不均一化に対する回避
策として、例えば、特開平8−220786号に示され
た図(図1)のように、リサイクル管8の途中で、且つ
塗布槽6の液面より低い位置に溶媒蒸気排出口12を設
けた塗布装置を用い、比重が空気より重く、飽和蒸気圧
が比較的低い溶媒を用いて、塗布槽液面上の溶媒蒸気濃
度を均一化する方法が提案されている。しかしながらこ
の方法では、飽和蒸気圧が低い溶媒を用いることによ
り、乾燥速度が遅く成りやすく、指触乾燥(指で触って
もべとつかない状態になること)に達するまでに、塗布
膜が流れやすくなり、塗布先端の塗布膜が薄くなる先頭
薄膜が長くなったり、膜厚むらを発生しやすい。特に、
塗布膜厚(塗布直後の溶媒を多量に含んだ膜厚)が厚い
電荷輸送層の塗布では指触乾燥に達するまでに膜厚むら
や先頭薄膜の増大が発生しやすい。
As a measure for avoiding the non-uniformity of the solvent vapor concentration, for example, as shown in FIG. 1 (see FIG. 1) of Japanese Patent Laid-Open No. 8-220786, the liquid in the coating tank 6 is in the middle of the recycle pipe 8. Method for uniformizing the solvent vapor concentration on the liquid surface of the coating tank by using a coating apparatus having a solvent vapor outlet 12 provided at a position lower than the surface and using a solvent having a specific gravity heavier than air and a relatively low saturated vapor pressure Is proposed. However, in this method, by using a solvent with a low saturated vapor pressure, the drying speed tends to be slow, and the coating film easily flows until it reaches dryness to the touch (because it does not become sticky to the touch with the finger). , The coating film at the coating tip becomes thin, the leading thin film becomes long, and unevenness in film thickness easily occurs. In particular,
In the case of coating a charge transport layer having a large coating thickness (thickness containing a large amount of solvent immediately after coating), unevenness in the thickness and increase of the leading thin film are likely to occur before touch-drying is reached.

【0007】一方、有機感光体の塗布溶媒としては、従
来バインダーや電荷輸送性物質の溶解性が良好なことか
らハロゲン溶媒が多用されてきたが、近年、地球環境の
破壊の懸念から、ハロゲン溶媒の使用は年々規制が強化
されている。そこで、ハロゲン溶媒に代わる溶媒として
ジオキソラン、ジオキサン等が提案されているが、これ
らの溶媒を用いて従来装置による多数本同時塗布を実施
したところ、膜厚むらの発生、先頭膜厚の増大が著しい
ことが見出された。これは、これらの溶媒が通常の塗布
温度では蒸気圧が低く、指触乾燥までの乾燥時間が長い
ことによるものと考えられる。
On the other hand, as a coating solvent for an organic photoreceptor, a halogen solvent has been widely used because of its good solubility of a binder and a charge transporting substance. In recent years, however, a halogen solvent has been feared because of the fear of destroying the global environment. The use of is being regulated more and more year by year. Therefore, dioxolane, dioxane, etc. have been proposed as a solvent instead of the halogen solvent. However, when a large number of simultaneous coatings by a conventional apparatus were performed using these solvents, unevenness in the film thickness and the increase of the leading film thickness were remarkable. It was found. It is considered that this is because these solvents have a low vapor pressure at a normal application temperature and a long drying time until touch drying.

【0008】[0008]

【発明が解決しようとする課題】そこで、本発明は、従
来の技術における上記のような問題を解決することを目
的としてなされたものである。すなわち、本発明の目的
は、円筒状導電性基体引上げ時に形成される塗布膜から
発生する溶媒蒸気、および塗布槽液面から蒸発する溶媒
蒸気を円筒状導電性基体周辺で、できるだけ均一に排出
し、常温では飽和蒸気圧が低い非ハロゲン溶剤を用い、
塗布膜厚が厚い電荷輸送層を塗布しても、均一に溶媒を
排出でき、且つ膜厚むらが小さく、先頭薄膜が短い有機
感光体の塗布装置を提供することにある。本発明の他の
目的は、前記塗布装置を用いて、円筒状導電性基体上に
膜厚むらのない感光層等を形成することができる有機感
光体の塗布方法を提供すること、及び該塗布方法を用い
て製造された有機感光体を提供することにある。
Therefore, the present invention has been made for the purpose of solving the above-mentioned problems in the prior art. That is, the object of the present invention is to discharge the solvent vapor generated from the coating film formed when the cylindrical conductive substrate is pulled up and the solvent vapor evaporated from the liquid surface of the coating tank as uniformly as possible around the cylindrical conductive substrate. , Using a non-halogen solvent with a low saturated vapor pressure at room temperature,
An object of the present invention is to provide an organic photoreceptor coating apparatus that can evenly discharge a solvent even when a charge transport layer having a large coating thickness is applied, has a small thickness variation, and has a short leading thin film. Another object of the present invention is to provide a method for coating an organic photoconductor, which is capable of forming a photosensitive layer or the like on a cylindrical conductive substrate using the coating apparatus, and the coating method. An object is to provide an organophotoreceptor manufactured by using the method.

【0009】[0009]

【課題を解決するための手段】本発明の上記課題は以下
のような構成により達成される。
The above object of the present invention can be achieved by the following constitution.

【0010】1.円筒状導電性基体を塗布液中に浸漬
し、引上げて塗布する有機感光体の塗布装置において、
該塗布装置は非ハロゲン溶媒を用いた電荷輸送層用塗布
液を収容する塗布槽、該塗布槽上に設けられた溶媒蒸気
溜室、該溶媒蒸気溜室上方に設けられた乾燥フードを有
し、該溶媒蒸気溜室は塗布槽上方を覆い、溶媒蒸気溜室
とその上の乾燥フードとの間に、排出口を設けてなるこ
とを特徴とする有機感光体の塗布装置。
1. In a coating device for an organic photoreceptor in which a cylindrical conductive substrate is dipped in a coating liquid and then pulled up and coated,
The coating apparatus has a coating tank containing a coating liquid for a charge transport layer using a non-halogen solvent, a solvent vapor storage chamber provided on the coating tank, and a drying hood provided above the solvent vapor storage chamber. An apparatus for coating an organic photoreceptor, wherein the solvent vapor storage chamber covers an upper portion of a coating tank, and a discharge port is provided between the solvent vapor storage chamber and a drying hood above the solvent vapor storage chamber.

【0011】2.前記排出口の間隙幅が0.1〜10m
mであることを特徴とする前記1に記載の有機感光体の
塗布装置。
2. The gap width of the discharge port is 0.1 to 10 m
The coating device for an organic photoconductor as described in 1 above, wherein the coating device is m.

【0012】3.前記排出口が乾燥フード周囲長の50
〜100%の開口比で形成されていることを特徴とする
前記2に記載の有機感光体の塗布装置。
3. The discharge port has a dry hood circumference of 50.
3. The coating device for an organic photoconductor according to the item 2, wherein the coating device is formed with an opening ratio of 100%.

【0013】4.前記溶媒蒸気溜室にはリサイクル管が
接続しており、オーバーフローする塗布液をリサイクル
管で回収して循環させることを特徴とする前記1〜3の
いずれか1項に記載の有機感光体の塗布装置。
4. A recycle pipe is connected to the solvent vapor storage chamber, and the overflowing coating liquid is collected by the recycle pipe and circulated, so as to coat the organic photoconductor according to any one of the above 1 to 3. apparatus.

【0014】5.前記非ハロゲン溶媒が環状エーテルで
あることを特徴とする前記1〜4のいずれか1項に記載
の有機感光体の塗布装置。
5. 5. The organophotoreceptor coating apparatus according to any one of 1 to 4 above, wherein the non-halogen solvent is a cyclic ether.

【0015】6.前記環状エーテルがジオキソラン、ジ
オキサン及びテトラヒドロフランの内から選択された少
なくとも1種であることを特徴とする前記1〜5のいず
れか1項に記載の有機感光体の塗布装置。
6. 6. The organophotoreceptor coating apparatus according to any one of 1 to 5 above, wherein the cyclic ether is at least one selected from dioxolane, dioxane, and tetrahydrofuran.

【0016】7.前記1〜6のいずれか1項に記載の塗
布装置を用いた有機感光体の塗布方法において、前記排
出口より非ハロゲン溶剤蒸気を排出させながら、円筒状
導電性基体を電荷輸送層用塗布液に浸漬し、引き上げ
て、電荷輸送層を形成することを特徴とする有機感光体
の塗布方法。
7. The coating method for an organic photoreceptor using the coating apparatus according to any one of 1 to 6 above, wherein a cylindrical conductive substrate is applied to a charge transport layer coating liquid while discharging a halogen-free solvent vapor from the outlet. A method for coating an organic photoreceptor, which comprises immersing in a substrate and pulling it up to form a charge transport layer.

【0017】8.前記電荷輸送層の塗布膜厚が30〜3
00μmであることを特徴とする前記6に記載の有機感
光体の塗布方法。
8. The coating thickness of the charge transport layer is 30 to 3
7. The method for applying an organic photoreceptor as described in 6 above, which has a thickness of 00 μm.

【0018】9.前記塗布溶液の溶媒として、常温の飽
和蒸気圧が1.3〜40kPaの溶媒を用いることを特
徴とする前記7又は8に記載の有機感光体の塗布方法。
9. 9. The method for coating an organic photoreceptor as described in 7 or 8 above, wherein a solvent having a saturated vapor pressure at room temperature of 1.3 to 40 kPa is used as a solvent for the coating solution.

【0019】10.複数の円筒状導電性基体を同時に塗
布液中に浸漬し、引上げて塗布層を形成することを特徴
とする前記7〜9のいずれか1項に記載の有機感光体の
塗布方法。
10. 10. The method for coating an organic photoconductor according to any one of 7 to 9 above, wherein a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution and pulled up to form a coating layer.

【0020】11.円筒状導電性基体上に電荷発生層、
電荷輸送層を有する有機感光体の電荷輸送層を前記7〜
10のいずれか1項に記載の有機感光体の塗布方法を用
いて製造することを特徴とする有機感光体。
11. A charge generation layer on a cylindrical conductive substrate,
The charge transport layer of the organic photoreceptor having the charge transport layer is the above
Item 10. An organic photoconductor manufactured by using the method for coating an organic photoconductor according to any one of items 10.

【0021】以下、本発明を詳細に説明する。即ち、円
筒状導電性基体を塗布液中に浸漬し、引上げて塗布する
有機感光体の塗布装置において、該塗布装置は非ハロゲ
ン溶媒を用いた電荷輸送層用塗布液を収容する塗布槽、
該塗布槽上に設けられた溶媒蒸気溜室、該溶媒蒸気溜室
上方に設けられた乾燥フードを有し、該溶媒蒸気溜室は
塗布槽上方を覆い、溶媒蒸気溜室とその上の乾燥フード
との間に、排出口を設けてなることを特徴とする。
The present invention will be described in detail below. That is, in a coating device for an organic photoreceptor in which a cylindrical conductive substrate is dipped in a coating liquid and pulled up for coating, the coating device is a coating tank containing a charge transport layer coating liquid using a non-halogen solvent,
It has a solvent vapor reservoir chamber provided on the coating tank and a drying hood provided above the solvent vapor reservoir chamber, the solvent vapor reservoir chamber covers the upper portion of the coating tank, and the solvent vapor reservoir chamber and the drying above it. A discharge port is provided between the hood and the hood.

【0022】又、本発明の塗布方法は上記有機感光体の
塗布装置を用いた有機感光体の製造方法において、前記
排出口より非ハロゲン溶剤蒸気を排出させながら、円筒
状導電性基体を電荷輸送層用塗布液に浸漬し、引き上げ
て、電荷輸送層を形成することを特徴とする。
Further, the coating method of the present invention is the same as the method for manufacturing an organic photoconductor using the above-mentioned apparatus for coating an organic photoconductor, while the non-halogen solvent vapor is discharged from the discharge port while the charge is transferred on the cylindrical conductive substrate. It is characterized in that the charge transport layer is formed by immersing in a layer coating liquid and pulling it up.

【0023】又、本発明の有機感光体は円筒状導電性基
体上に電荷発生層、電荷輸送層を有し、該電荷輸送層を
上記有機感光体の塗布方法を用いて製造することを特徴
とする。
Further, the organic photoreceptor of the present invention has a charge generation layer and a charge transport layer on a cylindrical conductive substrate, and the charge transport layer is produced by the above-mentioned coating method for the organic photoreceptor. And

【0024】本発明における塗布方法は、塗布槽の上に
設置される乾燥フードを溶媒蒸気溜室と乾燥フードに分
離し、且つ溶媒蒸気溜室と乾燥フードの間に排気口を設
けた塗布装置を用い、該排気口から溶媒蒸気を排出させ
ることにより、溶媒蒸気溜室全体の溶媒蒸気濃度を均一
にし、塗布直後の溶媒蒸気濃度を基体間、或いは基体の
円周方向による差をなくすことにより、膜厚むらを小さ
くする事が出来る。更に、溶媒蒸気溜室のすぐ上に排出
口を設けることにより、その上に続く乾燥フードに溶媒
蒸気が直接吸引されず、乾燥フード中の溶媒蒸気濃度を
低くすることができ、塗布膜の指触乾燥を速めることが
でき、乾燥速度の比較的遅い環状エーテル等の非ハロゲ
ン溶媒を用いた電荷輸送層塗布膜の場合でも、膜厚むら
及び先頭薄膜の増大を防止することが出来る。
The coating method in the present invention is a coating apparatus in which a drying hood installed on a coating tank is separated into a solvent vapor reservoir chamber and a drying hood, and an exhaust port is provided between the solvent vapor reservoir chamber and the drying hood. By discharging the solvent vapor from the exhaust port, the solvent vapor concentration in the entire solvent vapor reservoir is made uniform, and the solvent vapor concentration immediately after coating is eliminated between the substrates or by the circumferential direction of the substrate. The thickness unevenness can be reduced. Furthermore, by providing an outlet directly above the solvent vapor storage chamber, solvent vapor is not directly sucked into the drying hood that follows it, and the concentration of solvent vapor in the drying hood can be reduced, and the finger of the coating film can be reduced. Touch drying can be accelerated, and even in the case of a charge transport layer coating film using a non-halogen solvent such as a cyclic ether, which has a relatively low drying rate, it is possible to prevent unevenness in film thickness and increase in the leading thin film.

【0025】即ち、溶媒蒸気溜室の真上に排出口を設け
ることにより、溶媒蒸気の排出が容易となり、塗布直後
の大量の溶媒蒸気を排出できる。又、円筒状導電性基体
の周辺から均一に溶媒蒸気を排出出来るため、1本の塗
布装置においても、多数本の塗布装置においても溶媒蒸
気溜室中の溶媒濃度を全体に均一状態に保ちながら溶媒
を系外に排出できる。その結果、塗布膜厚(塗布直後の
溶媒を含んだ塗布液膜厚)が30〜300μmと厚い電
荷輸送層を塗布しても膜厚むらを小さくでき、且つ先頭
薄膜を短くすることが出来る。
That is, by providing the discharge port directly above the solvent vapor reservoir chamber, the solvent vapor can be easily discharged, and a large amount of solvent vapor immediately after coating can be discharged. In addition, since the solvent vapor can be uniformly discharged from the periphery of the cylindrical conductive substrate, the solvent concentration in the solvent vapor reservoir chamber can be kept uniform even in one coating apparatus or a large number of coating apparatuses. The solvent can be discharged out of the system. As a result, even if a thick charge transport layer having a coating film thickness (coating liquid film thickness containing a solvent immediately after coating) of 30 to 300 μm is applied, the unevenness of the film thickness can be reduced and the leading thin film can be shortened.

【0026】又、電荷輸送層の塗布溶媒として、常温
(20℃)の飽和蒸気圧が1.3〜40kPaの低い環
状エーテル等の非ハロゲン溶媒を選択しても、膜厚むら
及び先頭薄膜を短くする改良効果を持続することが出来
る。
Even if a non-halogen solvent such as a cyclic ether having a low saturated vapor pressure of 1.3 to 40 kPa at room temperature (20 ° C.) is selected as the coating solvent for the charge transport layer, the unevenness of the film thickness and the leading thin film can be obtained. The improvement effect of shortening can be maintained.

【0027】ここにおいて、先頭薄膜とは塗布直後の塗
布膜が重力の影響を受けて流下し、塗布先端部におい
て、膜厚が薄くなる現象を意味し、塗布膜厚が厚く、乾
燥速度が遅い電荷輸送層等で発生しやすい。図4に電荷
輸送層を塗布した感光体の膜厚プロフィールを示した。
aが先頭薄膜部を示す。
Here, the leading thin film means a phenomenon that the coating film immediately after coating flows down under the influence of gravity and the film thickness becomes thin at the tip of the coating, and the coating film thickness is large and the drying speed is slow. It is likely to occur in the charge transport layer. FIG. 4 shows the film thickness profile of the photoreceptor coated with the charge transport layer.
a indicates the leading thin film portion.

【0028】本発明において、有機感光体とは電子写真
感光体の構成に必要不可欠な電荷発生機能及び電荷輸送
機能のいずれか一方の機能を有機化合物に持たせて構成
された電子写真感光体を意味し、公知の有機電荷発生物
質又は有機電荷輸送物質から構成された感光体、電荷発
生機能と電荷輸送機能を高分子錯体で構成した感光体等
公知の有機電子写真感光体を全て含有する。
In the present invention, the organic photoconductor is an electrophotographic photoconductor having an organic compound having either one of the charge generating function and the charge transporting function, which are essential for the construction of the electrophotographic photoconductor. This means that it includes all known organic electrophotographic photoreceptors such as a photoreceptor composed of a known organic charge generating material or an organic charge transporting material and a photoreceptor composed of a polymer complex having a charge generating function and a charge transporting function.

【0029】本発明の有機感光体は円筒状導電性基体上
に電荷発生層、電荷輸送層を有するが、円筒状導電性基
体と電荷発生層の間に中間層を設ける層構成がより好ま
しい。以下、本発明に好ましく用いられる有機感光体の
層構成について記載する。
The organic photoreceptor of the present invention has a charge generation layer and a charge transport layer on a cylindrical conductive substrate, but a layer structure in which an intermediate layer is provided between the cylindrical conductive substrate and the charge generation layer is more preferable. Hereinafter, the layer structure of the organic photoreceptor preferably used in the present invention will be described.

【0030】円筒状導電性基体 円筒状導電性基体とは回転することによりエンドレスに
画像を形成できるに必要な円筒状の基体を意味し、真直
度で0.1mm以下、振れ0.1mm以下の範囲にある
導電性の基体が好ましい。この真円度及び振れの範囲を
超えると、良好な画像形成が困難になる。
Cylindrical Conductive Substrate The cylindrical conductive substrate means a cylindrical substrate necessary for endlessly forming an image by rotating, and has a straightness of 0.1 mm or less and a shake of 0.1 mm or less. Conductive substrates in the range are preferred. When the circularity and the shake range are exceeded, good image formation becomes difficult.

【0031】導電性の材料としてはアルミニウム、ニッ
ケルなどの金属ドラム、又はアルミニウム、酸化錫、酸
化インジュウムなどを蒸着したプラスチックドラム、又
は導電性物質を塗布した紙・プラスチックドラムを使用
することができる。導電性基体としては常温で比抵抗1
3Ωcm以下が好ましい。
As the conductive material, a metal drum of aluminum, nickel or the like, a plastic drum having aluminum, tin oxide, indium oxide or the like deposited thereon, or a paper / plastic drum coated with a conductive substance can be used. As a conductive substrate, the specific resistance is 1 at room temperature.
It is preferably 0 3 Ωcm or less.

【0032】本発明で用いられる導電性基体は、その表
面に封孔処理されたアルマイト膜が形成されたものを用
いても良い。アルマイト処理は、通常例えばクロム酸、
硫酸、シュウ酸、リン酸、硼酸、スルファミン酸等の酸
性浴中で行われるが、硫酸中での陽極酸化処理が最も好
ましい結果を与える。硫酸中での陽極酸化処理の場合、
硫酸濃度は100〜200g/L、アルミニウムイオン
濃度は1〜10g/L、液温は20℃前後、印加電圧は
約20Vで行うのが好ましいが、これに限定されるもの
ではない。又、陽極酸化被膜の平均膜厚は、通常20μ
m以下、特に10μm以下が好ましい。
The conductive substrate used in the present invention may have a surface on which a sealed alumite film is formed. Alumite treatment is usually, for example, chromic acid,
It is carried out in an acidic bath of sulfuric acid, oxalic acid, phosphoric acid, boric acid, sulfamic acid, etc., but anodizing in sulfuric acid gives the most favorable results. In the case of anodizing treatment in sulfuric acid,
It is preferable that the sulfuric acid concentration is 100 to 200 g / L, the aluminum ion concentration is 1 to 10 g / L, the liquid temperature is about 20 ° C., and the applied voltage is about 20 V, but the present invention is not limited thereto. The average thickness of the anodized film is usually 20μ.
m or less, and particularly preferably 10 μm or less.

【0033】中間層 本発明においては導電性基体と感光層の間に、有機樹脂
或いは有機金属化合物の反応により形成される樹脂層、
或いは有機樹脂中に酸化チタン等の半導体粒子を分散し
た中間層を設けることが好ましい。このような中間層を
設けることにより、導電性基体からの自由電荷の進入を
防止できる。中間層の関す膜厚は0.1〜20μmが好
ましい。
Intermediate layer In the present invention, a resin layer formed by a reaction of an organic resin or an organometallic compound between the conductive substrate and the photosensitive layer,
Alternatively, it is preferable to provide an intermediate layer in which semiconductor particles such as titanium oxide are dispersed in an organic resin. By providing such an intermediate layer, it is possible to prevent entry of free charges from the conductive substrate. The thickness of the intermediate layer is preferably 0.1 to 20 μm.

【0034】感光層 本発明の感光体の感光層構成は前記中間層上に電荷発生
機能と電荷輸送機能を1つの層に持たせた単層構造の感
光層構成でも良いが、より好ましくは感光層の機能を電
荷発生層(CGL)と電荷輸送層(CTL)に分離した
構成をとるのがよい。機能を分離した構成を取ることに
より繰り返し使用に伴う残留電位増加を小さく制御で
き、その他の電子写真特性を目的に合わせて制御しやす
い。負帯電用の感光体では中間層の上に電荷発生層(C
GL)、その上に電荷輸送層(CTL)の構成を取るこ
とが好ましい。正帯電用の感光体では前記層構成の順が
負帯電用感光体の場合の逆となる。本発明の最も好まし
い感光層構成は前記機能分離構造を有する負帯電感光体
構成である。
Photosensitive Layer The photosensitive layer structure of the photoconductor of the present invention may be a photosensitive layer structure of a single layer structure in which one layer has a charge generating function and a charge transporting function on the above-mentioned intermediate layer, but more preferably, it is photosensitive. It is preferable that the function of the layer is separated into a charge generation layer (CGL) and a charge transport layer (CTL). By adopting a constitution in which the functions are separated, the increase in residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negative charging photoreceptor, the charge generation layer (C
GL) and a charge transport layer (CTL) thereon. In the case of the photoconductor for positive charging, the order of the layers is the reverse of that of the photoconductor for negative charging. The most preferable photosensitive layer structure of the present invention is a negatively charged photosensitive member structure having the above-mentioned function separation structure.

【0035】以下に機能分離負帯電感光体の感光層構成
について説明する。 電荷発生層 電荷発生層には電荷発生物質(CGM)を含有する。そ
の他の物質としては必要によりバインダー樹脂、その他
添加剤を含有しても良い。
The constitution of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below. Charge Generation Layer The charge generation layer contains a charge generation material (CGM). If necessary, a binder resin and other additives may be contained as other substances.

【0036】電荷発生物質(CGM)としては公知の電
荷発生物質(CGM)を用いることができる。例えばフ
タロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニ
ウム顔料などを用いることができる。これらの中で繰り
返し使用に伴う残留電位増加を最も小さくできるCGM
は複数の分子間で安定な凝集構造をとりうる立体、電位
構造を有するものであり、具体的には特定の結晶構造を
有するフタロシアニン顔料、ペリレン顔料のCGMが挙
げられる。例えばCu−Kα線に対するブラッグ角2θ
が27.2°に最大ピークを有するチタニルフタロシア
ニン、同2θが12.4に最大ピークを有するベンズイ
ミダゾールペリレン等のCGMは繰り返し使用に伴う劣
化がほとんどなく、残留電位増加小さくすることができ
る。
As the charge generating substance (CGM), a known charge generating substance (CGM) can be used. For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azurenium pigment or the like can be used. Among these, CGM that can minimize the increase in residual potential with repeated use
Has a steric structure and a potential structure capable of forming a stable aggregation structure among a plurality of molecules, and specific examples thereof include a phthalocyanine pigment and a perylene pigment CGM having a specific crystal structure. For example, the Bragg angle 2θ with respect to Cu-Kα rays
CGMs such as titanyl phthalocyanine having a maximum peak at 27.2 ° and benzimidazole perylene having a maximum peak at 22.4 at 27.2 have almost no deterioration due to repeated use, and the residual potential increase can be reduced.

【0037】電荷発生層にCGMの分散媒としてバイン
ダーを用いる場合、バインダーとしては公知の樹脂を用
いることができるが、最も好ましい樹脂としてはホルマ
ール樹脂、ブチラール樹脂、シリコーン樹脂、シリコー
ン変性ブチラール樹脂、フェノキシ樹脂等が挙げられ
る。バインダー樹脂と電荷発生物質との割合は、バイン
ダー樹脂100質量部に対し20〜600質量部が好ま
しい。これらの樹脂を用いることにより、繰り返し使用
に伴う残留電位増加を最も小さくできる。電荷発生層の
膜厚は0.01μm〜2μmが好ましい。
When a binder is used as a CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferable resin is formal resin, butyral resin, silicone resin, silicone modified butyral resin, phenoxy resin. Resin etc. are mentioned. The ratio of the binder resin to the charge generating substance is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential due to repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 2 μm.

【0038】電荷輸送層 本発明の電荷輸送層とは少なくとも電荷輸送物質を含有
する層を意味する。該電荷輸送物質は電荷発生物質から
発生した正孔或いは電子を輸送する機能を有していれ
ば、公知、新規に係わらずいかなる有機化合物も利用で
きる。
Charge Transport Layer The charge transport layer of the present invention means a layer containing at least a charge transport substance. As long as the charge-transporting substance has a function of transporting holes or electrons generated from the charge-generating substance, any known or new organic compound can be used.

【0039】電荷輸送層には電荷輸送物質(CTM)及
びCTMを分散し製膜するバインダー樹脂を含有する。
その他の物質としては必要により酸化防止剤等の添加剤
を含有しても良い。
The charge transport layer contains a charge transport material (CTM) and a binder resin for dispersing CTM to form a film.
Other substances may optionally contain additives such as antioxidants.

【0040】電荷輸送物質(CTM)としては公知の電
荷輸送物質(CTM)を用いることができる。例えばト
リフェニルアミン誘導体、ヒドラゾン化合物、スチリル
化合物、ベンジジン化合物、ブタジエン化合物などを用
いることができる。これら電荷輸送物質は通常、適当な
バインダー樹脂中に溶解して層形成が行われる。これら
の中で繰り返し使用に伴う残留電位増加を最も小さくで
きるCTMは高移動度で、且つ組み合わされるCGMと
のイオン化ポテンシャル差が0.5(eV)以下の特性
を有するものであり、好ましくは0.25(eV)以下
である。
As the charge transport material (CTM), a known charge transport material (CTM) can be used. For example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound or the like can be used. These charge transport materials are usually dissolved in a suitable binder resin to form a layer. Among these, CTM that can minimize the increase in residual potential due to repeated use has high mobility and has a characteristic that the difference in ionization potential with CGM to be combined is 0.5 (eV) or less, and preferably 0. It is 0.25 (eV) or less.

【0041】CGM、CTMのイオン化ポテンシャルは
表面分析装置AC−1(理研計器社製)で測定される。
The ionization potentials of CGM and CTM are measured by a surface analyzer AC-1 (manufactured by Riken Keiki Co., Ltd.).

【0042】電荷輸送層(CTL)に用いられる樹脂と
しては、例えばポリスチレン、アクリル樹脂、メタクリ
ル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニル
ブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フ
ェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポ
リカーボネート樹脂、シリコーン樹脂、メラミン樹脂並
びに、これらの樹脂の繰り返し単位のうちの2つ以上を
含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−
N−ビニルカルバゾール等の高分子有機半導体が挙げら
れる。
Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd. Resins, polycarbonate resins, silicone resins, melamine resins, and copolymer resins containing two or more of the repeating units of these resins. In addition to these insulating resins, poly-
Examples include polymer organic semiconductors such as N-vinylcarbazole.

【0043】これらCTLのバインダーとして最も好ま
しいものはポリカーボネート樹脂である。ポリカーボネ
ート樹脂はCTMの分散性、電子写真特性を良好にする
ことにおいて、最も好ましい。バインダー樹脂と電荷輸
送物質との割合は、バインダー樹脂100質量部に対し
10〜200質量部が好ましい。又、電荷輸送層の膜厚
は10〜40μmが好ましい。
The most preferable binder for these CTLs is a polycarbonate resin. Polycarbonate resin is most preferable in improving dispersibility of CTM and electrophotographic characteristics. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin. The thickness of the charge transport layer is preferably 10-40 μm.

【0044】保護層 本発明の有機感光体は、低表面エネルギーの表面層を形
成する保護層を設けても良い。例えばシロキサン系樹脂
層の保護層、フッ素系樹脂を含有した保護層等を前記感
光層の上に設けてもよい。
Protective Layer The organic photoreceptor of the present invention may be provided with a protective layer forming a surface layer having a low surface energy. For example, a protective layer of a siloxane-based resin layer, a protective layer containing a fluorine-based resin, or the like may be provided on the photosensitive layer.

【0045】上記では本発明の最も好ましい感光体の層
構成を例示したが、本発明では上記以外の感光体層構成
でも良い。
Although the most preferable layer constitution of the photoconductor of the present invention has been exemplified above, a photoconductor layer constitution other than the above may be used in the present invention.

【0046】本発明の有機感光体を構成する各層を製造
する為の塗布液には上記各層の成分を溶解する溶媒が必
要である。本発明では電荷輸送層の溶媒を非ハロゲン溶
媒を用いることを特徴としているが、その他の各層も非
ハロゲン溶媒を用いることが好ましい。これら非ハロゲ
ン溶媒としてはアルコール類、ケトン類等各種の溶媒が
挙げられるが、本発明の電荷輸送層用の塗布液溶媒とし
てはジオキソラン、ジオキサン及びテトラヒドロフラン
等の環状エーテルが特に好ましい。これらの溶媒は公知
の電荷発生物質及び電荷発生層のバインダー樹脂の溶解
性が優れており、地球環境に対する環境負荷の点におい
ても、きわめて優れている。又、上記環状エーテルとア
ルコール類、ケトン類、芳香族系溶媒等を混合して用い
てもよい。
The coating liquid for producing each layer constituting the organic photoreceptor of the present invention requires a solvent capable of dissolving the components of each layer. Although the present invention is characterized in that a non-halogen solvent is used as the solvent of the charge transport layer, it is preferable to use a non-halogen solvent in each of the other layers. Examples of the non-halogen solvent include various solvents such as alcohols and ketones, and as the coating liquid solvent for the charge transport layer of the present invention, cyclic ethers such as dioxolane, dioxane and tetrahydrofuran are particularly preferable. These solvents are excellent in solubility of known charge generating substances and binder resins of the charge generating layer, and are also very excellent in terms of environmental load to the global environment. Further, the above cyclic ether may be mixed with alcohols, ketones, aromatic solvents and the like.

【0047】また、本発明の塗布装置、或いは塗布方法
は、有機感光体の下引き層、電荷発生層の形成にも好適
に適用することができる。しかしながら、特に塗布膜厚
が50μmを超え、膜厚むらや先頭薄膜の発生が大きい
電荷輸送層に本発明の塗布方法を適用すると好結果が得
られる。また、本発明は、複数の円筒状導電性基体の外
周面に同時に塗布膜を形成させる多数本同時塗布に特に
有効である。その際、塗布槽に配列する複数本の円筒状
導電性基体が均一な溶媒蒸気排出効果を上げるために、
各円筒状導電性基体の配置構成がそれぞれ等しい条件と
なるような塗布槽が好ましい。即ち、図5に示すような
4本同時塗布の円筒状の塗布槽が好ましく、5本以上の
塗布装置では互いに隣接する円筒状導電性基体の距離が
等しくなるように配置するのが好ましい。
Further, the coating apparatus or the coating method of the present invention can be suitably applied to the formation of the undercoat layer and the charge generation layer of the organic photoreceptor. However, particularly when the coating method of the present invention is applied to the charge transport layer in which the coating film thickness exceeds 50 μm and the unevenness of the film thickness and the occurrence of the leading thin film are large, good results are obtained. Moreover, the present invention is particularly effective for simultaneous coating of a large number of coating films in which coating films are simultaneously formed on the outer peripheral surfaces of a plurality of cylindrical conductive substrates. At that time, in order to improve the uniform solvent vapor discharge effect by the plurality of cylindrical conductive substrates arranged in the coating tank,
A coating tank is preferable in which the arrangement configurations of the respective cylindrical conductive substrates are the same. That is, a cylindrical coating tank for simultaneous coating of four as shown in FIG. 5 is preferable, and in a coating apparatus of five or more, it is preferable to arrange so that the distance between adjacent cylindrical conductive substrates is equal.

【0048】図2は、本発明の1本取り浸漬塗布装置の
一例の概略構成を示すものであり、円筒状導電性基体9
は塗布槽6で浸漬塗布をされた後、塗布槽から引き上げ
の途中にある。本発明において円筒状導電性基体は塗布
槽から引き上げられると、溶媒蒸気溜室11に入り、こ
こで塗布膜が大量の溶媒蒸気を放出し、次の乾燥フード
14に送られ指触乾燥の状態(指で触ってもべとつかな
い状態)に乾燥される。本発明では前記溶媒蒸気溜室1
1と乾燥フード14の間に排出口12を設けることによ
り、塗布液に高い飽和蒸気圧の溶媒を用いた場合でも、
又大量の溶媒蒸気を放出する50μm以上の塗布膜を形
成したときにも溶媒蒸気溜室11内の溶媒蒸気濃度を全
体に均一に維持しながら、大量の溶媒蒸気を放出するこ
とができ、塗布膜の指触乾燥むらの発生や、先頭薄膜の
増大を防止する。
FIG. 2 shows a schematic structure of an example of the single-dip dipping coating apparatus of the present invention. The cylindrical conductive substrate 9 is shown in FIG.
Is subjected to dip coating in the coating tank 6 and then is being pulled up from the coating tank. In the present invention, when the cylindrical conductive substrate is pulled up from the coating tank, it enters the solvent vapor reservoir chamber 11 where the coating film releases a large amount of solvent vapor and is sent to the next drying hood 14 to be dry to the touch. (It is not sticky to the touch with your fingers). In the present invention, the solvent vapor reservoir 1
By providing the discharge port 12 between the 1 and the drying hood 14, even when a solvent having a high saturated vapor pressure is used for the coating liquid,
Further, even when a coating film of 50 μm or more that releases a large amount of solvent vapor is formed, a large amount of solvent vapor can be released while maintaining a uniform solvent vapor concentration in the solvent vapor reservoir chamber 11 as a whole. It prevents the dryness of the film from being touched to the touch and the increase of the leading thin film.

【0049】ここで、溶媒蒸気溜室とは塗布層を覆い、
塗布液や塗布膜から発生する溶媒蒸気を一旦、よどま
せ、溶媒蒸気濃度が均一な雰囲気を保つための部屋であ
る。前記溶媒蒸気溜室の高さは1cm〜100cmが好
ましい。1cm未満では溶媒蒸気溜室を設けた効果が小
さく、膜厚むらの発生等の防止効果が小さい。一方10
0cmより大きくても、装置が大型化するに見合った効
果が得られない。
Here, the solvent vapor reservoir covers the coating layer,
This is a room for temporarily stagnating the solvent vapor generated from the coating liquid or coating film and maintaining an atmosphere with a uniform solvent vapor concentration. The height of the solvent vapor storage chamber is preferably 1 cm to 100 cm. If it is less than 1 cm, the effect of providing the solvent vapor reservoir is small, and the effect of preventing unevenness of film thickness is small. While 10
Even if it is larger than 0 cm, the effect commensurate with the increase in size of the apparatus cannot be obtained.

【0050】本発明の排出口は塗布された基体が引き上
げられたとき、円筒状導電性基体を取り巻くように溶媒
蒸気溜室と乾燥フードの間に形成されている。即ち、前
記排出口12は溶媒蒸気溜室と乾燥フードの間に0.1
〜10mmの間隙幅で設置するのが好ましい。0.1m
m未満では溶媒蒸気の排出量が十分でなく、10mm以
上だと溶媒蒸気の排出は十分であるが、溶媒蒸気溜室が
外部空気の流れの影響を受けやすく、溶媒蒸気溜室の溶
媒蒸気濃度の均一性が乱されやすい。
The outlet of the present invention is formed between the solvent vapor reservoir and the drying hood so as to surround the cylindrical conductive substrate when the coated substrate is pulled up. That is, the discharge port 12 has a space of 0.1 between the solvent vapor storage chamber and the drying hood.
It is preferable to install with a gap width of 10 mm. 0.1 m
If it is less than m, the solvent vapor discharge amount is not sufficient, and if it is 10 mm or more, the solvent vapor discharge amount is sufficient, but the solvent vapor reservoir chamber is easily affected by the flow of external air, and the solvent vapor concentration in the solvent vapor reservoir chamber is large. Is easily disturbed.

【0051】前記溶媒蒸気溜室の上部蓋部分には円筒状
導電性基体を通過させるに必要な開口部(穴)が設けら
れている。この開口部は円筒状導電性基体と同様に円形
が好ましい。
The upper lid portion of the solvent vapor storage chamber is provided with an opening (hole) necessary for passing the cylindrical conductive substrate. The opening is preferably circular like the cylindrical conductive substrate.

【0052】又、溶媒蒸気溜室の上部に設置される乾燥
フード(円筒状導電性基体を取り囲む構造を有する)の
長さは5cm〜300cmが好ましい。5cm未満では
乾燥フードの効果が小さく、膜厚むらの発生等の防止効
果が小さい。一方300cmより大きくても、装置が大
型化するに見合った効果が得られない。
The length of the dry hood (having a structure surrounding the cylindrical conductive substrate) installed in the upper part of the solvent vapor reservoir is preferably 5 cm to 300 cm. When it is less than 5 cm, the effect of the dry hood is small, and the effect of preventing the occurrence of uneven film thickness is small. On the other hand, if it is larger than 300 cm, the effect commensurate with the increase in size of the device cannot be obtained.

【0053】又、前記溶媒蒸気溜室にはリサイクル管を
設置し、塗布槽の液面を一定に保持することが好まし
い。即ち、図2に示すような構成とすることが好まし
い。即ち、塗布液1は、塗布液タンク2から供給配管3
を通してポンプ4によって圧送され、フィルター5を介
して塗布槽6内に供給される。塗布槽6に供給された塗
布液はオーバーフローし、溶媒蒸気溜室11の下端に連
続して設けられた塗布液受け槽7で補集されリサイクル
管8に流出し、塗布塗布液タンク2に回収される。この
浸漬塗布装置を用いて浸漬塗布を行う場合、円筒状導電
性基体9が塗布槽6に浸漬され、その後、引き上げられ
た時、塗布槽液面10を一定に保持する目的で、常にオ
ーバーフローするように塗布液循環手段によって塗布液
を循環する。さらに、溶媒蒸気溜室の上に溶媒蒸気を排
出する排出口12が設けられているが、排出口12は、
塗布槽液面10より高い位置に設けられている。また、
溶媒蒸気溜室11の上部には、外部空気の流れの影響を
防止するため乾燥フード14を設けている。ここで、排
出口12を設けない場合や、特開平8−220786の
ように排出口12を塗布槽液面10より低いリサイクル
管8の途中に設置した場合は、大量の溶媒蒸気を放出す
る50μm以上の塗布膜を形成したときには溶媒蒸気溜
室11内の溶媒蒸気濃度を十分に排出できず、溶媒蒸気
が円筒状導電性基体周辺に滞留し、円筒状導電性基体9
に形成される塗布膜の指触乾燥ムラを発生させ、先頭薄
膜を増大させる。しかしながら、本発明においては、溶
媒蒸気を排出する排出口12を溶媒蒸気溜室の上で塗布
槽液面10より高い位置に設けているから、例え50μ
m以上の塗布膜を形成しても円筒状導電性基体周辺の溶
媒蒸気を均一に排出することが可能となり、その効果に
より膜厚むらの発生や、先頭薄膜の増大を防止すること
ができる。
Further, it is preferable that a recycle pipe is installed in the solvent vapor reservoir to keep the liquid level in the coating tank constant. That is, it is preferable to have a configuration as shown in FIG. That is, the coating liquid 1 is supplied from the coating liquid tank 2 to the supply pipe 3
Is pumped by the pump 4 through the filter, and is supplied into the coating tank 6 through the filter 5. The coating liquid supplied to the coating tank 6 overflows, is collected by the coating liquid receiving tank 7 continuously provided at the lower end of the solvent vapor reservoir 11 and flows out to the recycle pipe 8, and is collected in the coating liquid tank 2. To be done. When performing dip coating using this dip coating device, when the cylindrical conductive substrate 9 is dipped in the coating tank 6 and then withdrawn, it constantly overflows for the purpose of keeping the liquid level 10 of the coating tank constant. Thus, the coating liquid is circulated by the coating liquid circulating means. Further, the discharge port 12 for discharging the solvent vapor is provided on the solvent vapor storage chamber.
It is provided at a position higher than the liquid level 10 of the coating tank. Also,
A drying hood 14 is provided above the solvent vapor storage chamber 11 to prevent the influence of the flow of external air. Here, when the discharge port 12 is not provided, or when the discharge port 12 is installed in the middle of the recycling pipe 8 which is lower than the liquid level 10 of the coating tank as in JP-A-8-220786, a large amount of solvent vapor of 50 μm is discharged. When the above coating film is formed, the solvent vapor concentration in the solvent vapor reservoir chamber 11 cannot be sufficiently discharged, and the solvent vapor stays around the cylindrical conductive substrate and the cylindrical conductive substrate 9
The unevenness of the coating film formed on the surface is caused by touch-drying, and the leading thin film is increased. However, in the present invention, since the discharge port 12 for discharging the solvent vapor is provided at a position higher than the coating tank liquid level 10 on the solvent vapor storage chamber, for example, 50 μm.
Even if a coating film having a thickness of m or more is formed, it is possible to uniformly discharge the solvent vapor around the cylindrical conductive substrate, and the effect thereof can prevent the occurrence of film thickness unevenness and the increase of the leading thin film.

【0054】図3は本発明の多数本同時浸漬塗布装置の
一例の概略構成を示すものであり、円筒状導電性基体を
塗布槽から引上げ途中の状態を示すものである。塗布液
1は、塗布液タンク2から供給配管3を通してポンプ4
によって圧送され、フィルター5を介して塗布槽6内に
供給される。塗布槽6は槽内塗布液流速均一性を得るた
めに下部にメッシュ15を挿入してある。塗布槽6内に
供給された塗布液はオーバーフローし、塗布槽6の上部
に設置された溶媒蒸気溜室11の下端で連続した塗布液
受け槽7で補集されリサイクル管8に流出し塗布塗布液
タンク2に回収される。この浸漬塗布装置を用いて浸漬
塗布を行う場合、円筒状導電性基体9が塗布槽6に浸漬
され、その後、引き上げられた時、塗布槽液面10を一
定に保持する目的で、常にオーバーフローするように循
環手段によって塗布液を循環する。さらに、塗布槽の上
方に溶媒蒸気溜室が設置され、更に溶媒蒸気溜室の上に
乾燥フードが設けられている。そして、溶媒蒸気溜室と
乾燥フードの間に溶媒蒸気を排出する排出口12が設け
られている。排出口12は、塗布槽液面10より高い位
置に設けられている。
FIG. 3 shows a schematic structure of an example of the multiple simultaneous dip coating apparatus of the present invention, showing a state where the cylindrical conductive substrate is being pulled up from the coating tank. The coating liquid 1 is pumped from the coating liquid tank 2 through the supply pipe 3 to the pump 4
It is pressure-fed by and is supplied into the coating tank 6 through the filter 5. A mesh 15 is inserted in the lower part of the coating tank 6 in order to obtain uniform coating liquid flow velocity in the tank. The coating liquid supplied into the coating tank 6 overflows and is collected in a continuous coating liquid receiving tank 7 at the lower end of a solvent vapor reservoir 11 installed at the upper portion of the coating tank 6 and flows out to a recycling pipe 8 for coating and coating. It is collected in the liquid tank 2. When performing dip coating using this dip coating device, when the cylindrical conductive substrate 9 is dipped in the coating tank 6 and then withdrawn, it constantly overflows for the purpose of keeping the liquid level 10 of the coating tank constant. Thus, the coating solution is circulated by the circulation means. Further, a solvent vapor storage chamber is installed above the coating tank, and a drying hood is provided on the solvent vapor storage chamber. An outlet 12 for discharging the solvent vapor is provided between the solvent vapor storage chamber and the drying hood. The discharge port 12 is provided at a position higher than the liquid level 10 of the coating tank.

【0055】乾燥フードは多数本塗布の場合には、溶媒
蒸気溜室の上に、溶媒蒸気溜室と同型の外壁構造で設置
する事も可能であるが、個々の円筒状導電性基体の周辺
の溶媒蒸気濃度を一定に維持するためには、乾燥フード
を個々の円筒状導電性基体に独立に設置することが好ま
しい。図3には多数の円筒状導電性基体にそれぞれ独立
に乾燥フードを設置した例を図示する。
In the case of applying a large number of dry hoods, it is possible to install the dry hood on the solvent vapor storage chamber with the same outer wall structure as the solvent vapor storage chamber, but in the periphery of each cylindrical conductive substrate. In order to maintain a constant solvent vapor concentration of, the dry hood is preferably installed independently on each cylindrical conductive substrate. FIG. 3 illustrates an example in which a drying hood is independently installed on a large number of cylindrical conductive substrates.

【0056】[0056]

【実施例】以下、本発明を実施例によって具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0057】実施例1 以下の様にして、円筒状導電性基体上に中間層を形成し
た。
Example 1 An intermediate layer was formed on a cylindrical conductive substrate as follows.

【0058】ポリアミド樹脂CM8000(東レ社製)
1質量部、メタノール10質量部を同一容器中に加え溶
解分散して、中間層塗布液1を作製した。該中間層塗布
液を図2の浸漬塗布装置を用いて円筒状アルミニウム基
体(1.0mmt×30mmφ×340mm)上に塗布
した。その時の塗布液温度は24℃とした。アルミニウ
ム基体を塗布液から引き上げる速度は480mm/mi
nとした。排出口12の位置としては、図2に示す溶媒
蒸気溜室と乾燥フードの間に間隙幅1mmで設置されて
いる。該排出口は塗布槽液面から10cmの高さに50
mmの円で形成されている。また、塗布液循環流量は1
L/min、リサイクル管8の径は、内径100mmφ
とした。塗布した基体は15cmの乾燥フードを経由し
風乾した後、乾燥機に入れ、70℃において、10分間
加熱乾燥し、膜厚0.1μmの中間層を形成した。
Polyamide resin CM8000 (manufactured by Toray)
1 part by mass and 10 parts by mass of methanol were added to the same container and dissolved and dispersed to prepare an intermediate layer coating liquid 1. The coating solution for the intermediate layer was coated on a cylindrical aluminum substrate (1.0 mmt × 30 mmφ × 340 mm) by using the dip coating apparatus shown in FIG. The coating liquid temperature at that time was 24 ° C. The speed of pulling up the aluminum substrate from the coating solution is 480 mm / mi
It was set to n. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor storage chamber and the drying hood shown in FIG. The outlet is 50 cm at a height of 10 cm from the surface of the coating tank.
It is formed by a circle of mm. The coating liquid circulation flow rate is 1
L / min, the diameter of the recycle pipe 8 is 100 mmφ
And The coated substrate was air-dried through a 15 cm dry hood, then placed in a drier and dried by heating at 70 ° C. for 10 minutes to form an intermediate layer having a film thickness of 0.1 μm.

【0059】次にY型チタニルフタロシアニン60質量
部、シリコーン変性ブチラール樹脂(信越化学社製)7
00質量部、2−ブタノン2000mlを混合し、サン
ドミルを用いて10時間分散し、電荷発生層塗布液を調
製した。この塗布液を図2の浸漬塗布装置を用いて、上
記実施例1により得られた中間層が形成されたアルミニ
ウム基体の上に塗布した。アルミニウム基体を塗布液か
ら引き上げる速度は480mm/minとした。その時
の塗布液温度は24℃とした。排出口12の位置として
は、図2に示す溶媒蒸気溜室と乾燥フードの間に間隙幅
1mmで設置されている。該排出口は塗布槽液面から1
0cmの高さに50mmの円で形成されている。また、
塗布液循環流量は1L/min、リサイクル管8の径
は、内径100mmφの条件で塗布を行った。塗布した
アルミニウム基体は15cmの乾燥フードを経由して風
乾した後、指触乾燥(指で触ってもべとつかない乾燥状
態)の電荷発生層(乾燥膜厚は0.5μm)を形成し
た。
Next, 60 parts by mass of Y-type titanyl phthalocyanine and a silicone-modified butyral resin (manufactured by Shin-Etsu Chemical Co., Ltd.) 7
00 parts by mass and 2000 ml of 2-butanone were mixed and dispersed for 10 hours using a sand mill to prepare a charge generation layer coating liquid. This coating solution was applied onto the aluminum substrate on which the intermediate layer obtained in Example 1 was formed by using the dip coating apparatus shown in FIG. The rate of pulling up the aluminum substrate from the coating solution was 480 mm / min. The coating liquid temperature at that time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor storage chamber and the drying hood shown in FIG. The discharge port is 1 from the liquid level of the coating tank.
It is formed with a circle of 50 mm at a height of 0 cm. Also,
The coating liquid was circulated at a flow rate of 1 L / min and the recycle tube 8 had an inner diameter of 100 mmφ. The applied aluminum substrate was air-dried through a 15 cm dry hood, and then a charge-generating layer (dry film thickness: 0.5 μm) that was dry to the touch (dry state that was not sticky to the touch with a finger) was formed.

【0060】次いで上記で形成された電荷発生層の上
に、電荷輸送層を形成した。電荷輸送物質〔N−(4−
メチルフェニル)−N−{4−(β−フェニルスチリ
ル)フェニル}−p−トルイジン〕225質量部、ポリ
カーボネート(粘度平均分子量20,000)300質
量部、酸化防止剤(例示化合物1−3)6質量部、ジオ
キソラン2000質量部を混合し、溶解して電荷輸送層
塗布液を調製した。この塗布液を前記電荷発生層の上に
浸漬塗布法で塗布し、塗布膜厚95μm、乾燥膜厚20
μmの電荷輸送層を形成した。アルミニウム基体を塗布
液から引き上げる速度は240mm/minとした。そ
の時の塗布液温度は24℃とした。排出口12の位置と
しては、図2に示す溶媒蒸気溜室と乾燥フードの間に間
隙幅1mmで設置されている。該排出口は塗布槽液面か
ら10cmの高さに50mmの円で形成されている。ま
た、塗布液循環流量は1L/min、リサイクル管の径
は、内径100mmφとした。塗布したアルミニウム基
体は、15cmの乾燥フードを経由して風乾した後、乾
燥機に入れ、90℃において、60分間加熱乾燥し、電
荷輸送層を形成し、有機感光体ドラムを作製した。その
条件で、4回繰り返し塗布を行った。それぞれの膜厚む
ら値を表1に示す。膜厚むら値は、塗布膜上端から20
mm、50mm、160mm、300mmのそれぞれの
箇所の円周方向(90°間隔)、合計16点の膜厚値の
最大値と最少値の差である。ここで、20℃におけるジ
オキソランの飽和蒸気圧は、9.3kPa、空気に対す
る比重は約1.067であった。
Next, a charge transport layer was formed on the charge generation layer formed above. Charge transport material [N- (4-
Methylphenyl) -N- {4- (β-phenylstyryl) phenyl} -p-toluidine] 225 parts by mass, polycarbonate (viscosity average molecular weight 20,000) 300 parts by mass, antioxidant (Exemplary compound 1-3) 6 By mass, 2000 parts by mass of dioxolane were mixed and dissolved to prepare a charge transport layer coating liquid. This coating solution is applied onto the charge generation layer by a dip coating method to obtain a coating film thickness of 95 μm and a dry film thickness of 20
A μm charge transport layer was formed. The speed of pulling up the aluminum substrate from the coating solution was 240 mm / min. The coating liquid temperature at that time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor storage chamber and the drying hood shown in FIG. The discharge port is formed as a circle of 50 mm at a height of 10 cm from the liquid level of the coating tank. The circulating flow rate of the coating liquid was 1 L / min, and the diameter of the recycle pipe was 100 mmφ. The coated aluminum substrate was air-dried via a 15 cm dry hood, then placed in a drier and dried by heating at 90 ° C. for 60 minutes to form a charge transport layer, and an organic photosensitive drum was produced. Under these conditions, coating was repeated 4 times. Table 1 shows the respective film thickness unevenness values. The thickness unevenness value is 20 from the upper end of the coating film.
mm, 50 mm, 160 mm, and 300 mm in the circumferential direction (intervals of 90 °), and the difference between the maximum value and the minimum value of the film thickness values at 16 points in total. Here, the saturated vapor pressure of dioxolane at 20 ° C. was 9.3 kPa, and the specific gravity with respect to air was about 1.067.

【0061】比較例1 比較のために、排出口を図1記載のように塗布液面より
下部に位置するリサイクル管8の途中に取り付けた以外
は、実施例1と同一の条件で前記電荷発生層の上に電荷
輸送層の塗布を行った。その結果を表1に示す。
Comparative Example 1 For comparison, the charge generation was performed under the same conditions as in Example 1 except that the discharge port was attached in the middle of the recycling pipe 8 located below the coating liquid surface as shown in FIG. A charge transport layer was applied on top of the layer. The results are shown in Table 1.

【0062】[0062]

【表1】 [Table 1]

【0063】実施例2 実施例1で用いた中間層塗布液を用いて、図3及び図5
に図示の4本同時塗布装置を用いて塗布を行った(図5
は4本同時塗布の基体の配列方法の図)。円筒状アルミ
ニウム基体を塗布液から引き上げる速度は400mm/
minとし、この時の塗布温度は24℃とした。排出口
12の位置としては、図3に示す溶媒蒸気溜室と乾燥フ
ードの間に間隙幅1mmで設置されている。該排出口は
塗布槽液面から10cmの高さに50mmの円で形成さ
れている。また、塗布液循環流量は5L/min、リサ
イクル管の径は、内径150mmφとした。塗布したア
ルミニウム基体は15cmの乾燥フードを経由して風乾
した後、乾燥機に入れ、70℃において、10分間加熱
乾燥し、膜厚0.1μmの中間層を形成した。
Example 2 FIG. 3 and FIG. 5 were prepared using the coating solution for the intermediate layer used in Example 1.
Coating was performed by using the four simultaneous coating device shown in FIG.
Is a diagram of a method of arranging four substrates simultaneously coated). The speed of pulling up the cylindrical aluminum substrate from the coating liquid is 400 mm /
The coating temperature at this time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor reservoir chamber and the drying hood shown in FIG. The discharge port is formed as a circle of 50 mm at a height of 10 cm from the liquid level of the coating tank. The circulating flow rate of the coating solution was 5 L / min, and the diameter of the recycle pipe was 150 mmφ. The coated aluminum substrate was air-dried through a 15 cm dry hood, then placed in a drier and dried by heating at 70 ° C. for 10 minutes to form an intermediate layer having a film thickness of 0.1 μm.

【0064】次に実施例1と同じ電荷発生層塗布液を用
いて、図3・図5に図示の4本同時塗布装置を用いて、
上記中間層が形成されたアルミニウム基体の上に塗布し
た。アルミニウム基体を塗布液から引き上げる速度は4
80mm/minとした。この時の塗布温度は24℃と
した。排出口12の位置としては、図3に示す溶媒蒸気
溜室と乾燥フードの間に間隙幅1mmで設置されてい
る。該排出口は塗布槽液面から10cmの高さに50m
mの円で形成されている。、また、塗布液循環流量は5
L/min、リサイクル管の径は、内径150mmφと
した。塗布したアルミニウム基体は15cmの乾燥フー
ドを経由して風乾した後、指触乾燥(指で触ってもべと
つかない乾燥状態)の電荷発生層(乾燥膜厚は0.5μ
m)を形成した。
Next, using the same charge generation layer coating solution as in Example 1, and using the four simultaneous coating apparatus shown in FIGS. 3 and 5,
It was applied on an aluminum substrate on which the above intermediate layer was formed. The speed of pulling up the aluminum substrate from the coating solution is 4
It was set to 80 mm / min. The coating temperature at this time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor reservoir chamber and the drying hood shown in FIG. The outlet is 50 m at a height of 10 cm from the liquid level of the coating tank.
It is formed by a circle of m. The coating liquid circulation flow rate is 5
L / min and the diameter of the recycle pipe were 150 mm in diameter. The coated aluminum substrate was air-dried through a 15 cm dry hood, and then dried by touch with a finger (dry state without being sticky to the touch with a finger) to generate a charge generation layer (dry film thickness: 0.5 μm).
m) was formed.

【0065】上記の電荷発生層の上に、実施例1と同じ
電荷輸送層塗布液を用いて前記電荷発生層の上に浸漬塗
布法で塗布し、塗布膜厚95μm、乾燥膜厚20μmの
電荷輸送層を形成した。アルミニウム基体を塗布液から
引き上げる速度は240mm/minとし、同時塗布本
数は4本とした。この時の塗布温度は24℃とした。排
出口12の位置としては、図3に示す溶媒蒸気溜室と乾
燥フードの間に間隙幅1mmで設置されている。該排出
口は塗布槽液面から10cmの高さに50mmの円で形
成されている。また、塗布液循環流量は5L/min、
リサイクル管の径は、内径150mmφとした。塗布し
たアルミニウム基体は15cmの乾燥フードを経由して
風乾した後、乾燥機に入れ、90℃において、60分間
加熱乾燥し、電荷輸送層を形成し、有機感光体ドラムを
作製した。その時の4本それぞれの膜厚むら値を表2に
示す。ここで、膜厚むら値は、塗布膜上端から20m
m、50mm、160mm、300mmのそれぞれの箇
所の円周方向4点(90°間隔)、合計16点の膜厚値
の最大値と最小値の差である。その結果を表2に示す。
The same charge transport layer coating liquid as in Example 1 was applied onto the above charge generating layer by dip coating to form a charge having a coating film thickness of 95 μm and a dry film thickness of 20 μm. A transport layer was formed. The rate of pulling up the aluminum substrate from the coating solution was 240 mm / min, and the number of simultaneous coatings was 4. The coating temperature at this time was 24 ° C. As the position of the discharge port 12, a gap width of 1 mm is installed between the solvent vapor reservoir chamber and the drying hood shown in FIG. The discharge port is formed as a circle of 50 mm at a height of 10 cm from the liquid level of the coating tank. The coating liquid circulation flow rate is 5 L / min,
The diameter of the recycle pipe was 150 mmφ. The coated aluminum substrate was air-dried through a 15 cm dry hood, then placed in a drier and dried by heating at 90 ° C. for 60 minutes to form a charge transport layer, and an organic photosensitive drum was produced. Table 2 shows the film thickness unevenness values of the four films at that time. Here, the thickness unevenness value is 20 m from the upper end of the coating film.
It is the difference between the maximum value and the minimum value of the film thickness value at four points (90 ° intervals) in the circumferential direction at each of m, 50 mm, 160 mm, and 300 mm, for a total of 16 points. The results are shown in Table 2.

【0066】比較例2 比較のために、排出口を塗布液面より下部に位置するリ
サイクル管8の途中に取り付けた以外は、実施例2と同
一条件で前記電荷発生層上に電荷輸送層の塗布を行っ
た。その結果を表2に示す。
Comparative Example 2 For comparison, a charge transport layer was formed on the charge generation layer under the same conditions as in Example 2 except that the discharge port was attached in the middle of the recycle pipe 8 located below the coating liquid surface. Application was performed. The results are shown in Table 2.

【0067】実施例3 排出口12の間隔幅を8mmとし、電荷輸送層塗布液の
溶媒をジオキソランからジオキサンに変更した以外は、
実施例2と同一の条件で前記電荷発生層上に電荷輸送層
の塗布を行ったその結果を表2に示す。尚、ジオキサン
の20℃の飽和蒸気圧は約4.0kPaである。
Example 3 Except that the distance between the outlets 12 was set to 8 mm and the solvent for the charge transport layer coating solution was changed from dioxolane to dioxane.
Table 2 shows the results of coating the charge transport layer on the charge generation layer under the same conditions as in Example 2. The saturated vapor pressure of dioxane at 20 ° C. is about 4.0 kPa.

【0068】実施例4 排出口12の間隔幅を0.2mmとし、電荷輸送層塗布
液の溶媒をジオキソランからテトラヒドロフランに変更
した以外は、実施例2と同一条件で前記電荷発生層上に
電荷輸送層の塗布を行った。その結果を表2に示す。
尚、テトラヒドロフランの20℃の飽和蒸気圧は約18
kPaである。
Example 4 The charge transport layer was formed on the charge generation layer under the same conditions as in Example 2 except that the distance between the discharge ports 12 was 0.2 mm and the solvent for the charge transport layer coating solution was changed from dioxolane to tetrahydrofuran. The layers were applied. The results are shown in Table 2.
The saturated vapor pressure of tetrahydrofuran at 20 ° C is about 18
It is kPa.

【0069】又、実施例2〜4、及び比較例2の各感光
体について先頭薄膜の評価を行った。結果を表3に示
す。 *先頭薄膜の評価 円筒状感光体のドラム軸に沿って任意に一本の直線を選
定する。該直線の塗布先頭部から10mm等間隔に感光
層の膜厚を測定し、図4に示したような感光層膜厚プロ
フィールを作成する。先頭薄膜の長さLは、感光体のド
ラム先端から先頭部膜厚立ち上がりの接線と飽和膜厚の
延長戦の交点迄の長さaと定義する。各感光体につい
て、先頭薄膜長さを測定し、その結果を表3に示した。
膜厚測定器は光検出方式の膜厚測定器MCPD−100
0(瞬間マルチ測光検出器:大塚電子(株))を用いて
行った。
Further, the leading thin film of each of the photoconductors of Examples 2 to 4 and Comparative Example 2 was evaluated. The results are shown in Table 3. * Evaluation of the leading thin film An arbitrary straight line is selected along the drum axis of the cylindrical photoreceptor. The film thickness of the photosensitive layer is measured at regular intervals of 10 mm from the leading portion of the coating on the straight line, and a photosensitive layer film thickness profile as shown in FIG. 4 is created. The length L of the leading thin film is defined as the length a from the drum tip of the photoconductor to the intersection of the tangent of the leading portion thickness rise and the extension of the saturated thickness. The leading thin film length was measured for each photoreceptor, and the results are shown in Table 3.
The film thickness measuring device is a photodetection type film thickness measuring device MCPD-100.
0 (instantaneous multi-photometric detector: Otsuka Electronics Co., Ltd.) was used.

【0070】[0070]

【表2】 [Table 2]

【0071】[0071]

【表3】 [Table 3]

【0072】表1、表2、表3から判るように塗布槽上
方に溶媒蒸気留室を設け、且つ、溶媒蒸気留室と乾燥フ
ードの間に溶媒蒸気の排出口を設けた本発明の有機感光
体の塗布装置は、比較例で示した従来のリサイクル管の
途中に溶媒蒸気の排出口を設けた塗布装置に比べ、非ハ
ロゲン溶媒を用いた電荷輸送層を塗布した後の膜厚むら
及び先頭薄膜の長さのいずれにおいても著しい改善効果
が見られる。
As can be seen from Table 1, Table 2 and Table 3, the organic solvent of the present invention is provided with a solvent vapor distillation chamber above the coating tank and a solvent vapor discharge port provided between the solvent vapor distillation chamber and the drying hood. The photoconductor coating device has unevenness in film thickness after coating the charge transport layer using a non-halogen solvent, as compared with the coating device provided with a solvent vapor outlet in the middle of the conventional recycling pipe shown in the comparative example. A remarkable improvement effect is seen in any of the lengths of the leading thin films.

【0073】[0073]

【発明の効果】上記の実施例からも明らかなように、本
発明の有機感光体の塗布装置及び塗布方法を用いれば、
各円筒状導電性基体に形成された感光層は膜厚むらが小
さく、先頭薄膜の長さも短いものを作製することがで
き、したがって性能が良好な円筒状の有機感光体を提供
することが可能である。
As is apparent from the above-mentioned embodiments, the use of the organic photoreceptor coating apparatus and coating method of the present invention
The photosensitive layer formed on each cylindrical conductive substrate can have a small thickness unevenness, and the length of the leading thin film can be made small. Therefore, it is possible to provide a cylindrical organic photosensitive member with good performance. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】リサイクル管の途中で、且つ塗布槽の液面より
低い位置に溶媒蒸気排出口を設けた塗布装置の図であ
る。
FIG. 1 is a view of a coating apparatus in which a solvent vapor discharge port is provided at a position lower than a liquid level of a coating tank in the middle of a recycling pipe.

【図2】本発明の1本取り浸漬塗布装置の一例の概略構
成を示す図である。
FIG. 2 is a diagram showing a schematic configuration of an example of a single-dip dipping coating device of the present invention.

【図3】本発明の多数本同時浸漬塗布装置の一例の概略
構成を示す図である。
FIG. 3 is a diagram showing a schematic configuration of an example of the multiple simultaneous dip coating apparatus of the present invention.

【図4】電荷輸送層を塗布した感光体の膜厚プロフィー
ルを示した図である。
FIG. 4 is a view showing a film thickness profile of a photoreceptor coated with a charge transport layer.

【図5】4本同時塗布の基体の配列方法の図である。FIG. 5 is a diagram showing a method of arranging four substrates simultaneously coated.

【符号の説明】[Explanation of symbols]

1 塗布液 2 塗布液タンク 3 供給配管 4 ポンプ 5 フィルター 6 塗布槽 7 塗布液受け槽 8 リサイクル管 9 円筒状導電性基体 10 塗布槽液面(オーバーフロー面) 11 溶媒蒸気溜室 12 排出口 14 乾燥フード 15 メッシュ 1 coating liquid 2 Coating liquid tank 3 supply piping 4 pumps 5 filters 6 coating tanks 7 Coating liquid receiving tank 8 recycling pipes 9 Cylindrical conductive substrate 10 Liquid level of coating tank (overflow surface) 11 Solvent vapor reservoir 12 outlet 14 Dry hood 15 mesh

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 円筒状導電性基体を塗布液中に浸漬し、
引上げて塗布する有機感光体の塗布装置において、該塗
布装置は非ハロゲン溶媒を用いた電荷輸送層用塗布液を
収容する塗布槽、該塗布槽上に設けられた溶媒蒸気溜
室、該溶媒蒸気溜室上方に設けられた乾燥フードを有
し、該溶媒蒸気溜室は塗布槽上方を覆い、溶媒蒸気溜室
とその上の乾燥フードとの間に、排出口を設けてなるこ
とを特徴とする有機感光体の塗布装置。
1. A cylindrical conductive substrate is dipped in a coating solution,
In an organic photoreceptor coating apparatus for pulling up and coating, the coating apparatus includes a coating tank for containing a charge transport layer coating solution using a non-halogen solvent, a solvent vapor reservoir provided on the coating tank, and the solvent vapor. It has a drying hood provided above the reservoir chamber, the solvent vapor reservoir chamber covers the upper part of the coating tank, and an outlet is provided between the solvent vapor reservoir chamber and the drying hood above it. Organic photoconductor coating device.
【請求項2】 前記排出口の間隙幅が0.1〜10mm
であることを特徴とする請求項1に記載の有機感光体の
塗布装置。
2. The gap width of the discharge port is 0.1 to 10 mm.
The coating device for an organic photoreceptor according to claim 1, wherein
【請求項3】 前記排出口が乾燥フード周囲長の50〜
100%の開口比で形成されていることを特徴とする請
求項2に記載の有機感光体の塗布装置。
3. The dry outlet has a perimeter of 50 to 50.
The coating device for an organic photoconductor according to claim 2, wherein the coating device is formed with an opening ratio of 100%.
【請求項4】 前記溶媒蒸気溜室にはリサイクル管が接
続しており、オーバーフローする塗布液をリサイクル管
で回収して循環させることを特徴とする請求項1〜3の
いずれか1項に記載の有機感光体の塗布装置。
4. The recycle pipe is connected to the solvent vapor storage chamber, and the overflowing coating liquid is collected by the recycle pipe and circulated. Organic photoconductor coating device.
【請求項5】 前記非ハロゲン溶媒が環状エーテルであ
ることを特徴とする請求項1〜4のいずれか1項に記載
の有機感光体の塗布装置。
5. The apparatus for coating an organophotoreceptor according to claim 1, wherein the non-halogen solvent is a cyclic ether.
【請求項6】 前記環状エーテルがジオキソラン、ジオ
キサン及びテトラヒドロフランの内から選択された少な
くとも1種であることを特徴とする請求項1〜5のいず
れか1項に記載の有機感光体の塗布装置。
6. The apparatus for coating an organic photoconductor according to claim 1, wherein the cyclic ether is at least one selected from dioxolane, dioxane, and tetrahydrofuran.
【請求項7】 請求項1〜6のいずれか1項に記載の塗
布装置を用いた有機感光体の塗布方法において、前記排
出口より非ハロゲン溶剤蒸気を排出させながら、円筒状
導電性基体を電荷輸送層用塗布液に浸漬し、引き上げ
て、電荷輸送層を形成することを特徴とする有機感光体
の塗布方法。
7. A method for coating an organic photoreceptor using the coating apparatus according to claim 1, wherein the cylindrical conductive substrate is formed while discharging the non-halogen solvent vapor from the discharge port. A method for coating an organic photoreceptor, which comprises immersing in a coating liquid for a charge transport layer and pulling it up to form a charge transport layer.
【請求項8】 前記電荷輸送層の塗布膜厚が30〜30
0μmであることを特徴とする請求項6に記載の有機感
光体の塗布方法。
8. The coating thickness of the charge transport layer is 30 to 30.
The coating method for an organic photoconductor according to claim 6, wherein the coating thickness is 0 μm.
【請求項9】 前記塗布溶液の溶媒として、常温の飽和
蒸気圧が1.3〜40kPaの溶媒を用いることを特徴
とする請求項7又は8に記載の有機感光体の塗布方法。
9. The method for coating an organic photoreceptor according to claim 7, wherein a solvent having a saturated vapor pressure at room temperature of 1.3 to 40 kPa is used as a solvent for the coating solution.
【請求項10】 複数の円筒状導電性基体を同時に塗布
液中に浸漬し、引上げて塗布層を形成することを特徴と
する請求項7〜9のいずれか1項に記載の有機感光体の
塗布方法。
10. The organophotoreceptor according to claim 7, wherein a plurality of cylindrical conductive substrates are simultaneously immersed in a coating solution and pulled up to form a coating layer. Application method.
【請求項11】 円筒状導電性基体上に電荷発生層、電
荷輸送層を有する有機感光体の電荷輸送層を請求項7〜
10のいずれか1項に記載の有機感光体の塗布方法を用
いて製造することを特徴とする有機感光体。
11. A charge transport layer of an organic photoreceptor having a charge generation layer and a charge transport layer on a cylindrical conductive substrate.
Item 10. An organic photoconductor manufactured by using the method for coating an organic photoconductor according to any one of items 10.
JP2001257725A 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor Pending JP2003066633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257725A JP2003066633A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257725A JP2003066633A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Publications (1)

Publication Number Publication Date
JP2003066633A true JP2003066633A (en) 2003-03-05

Family

ID=19085345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257725A Pending JP2003066633A (en) 2001-08-28 2001-08-28 Coating device for organic photoreceptor, method for coating and organic photoreceptor

Country Status (1)

Country Link
JP (1) JP2003066633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108230A (en) * 2004-10-01 2006-04-20 Utec:Kk Gasifier for cvd, solution vaporizing cvd apparatus and vaporization method for cvd
JP2009199699A (en) * 2008-02-25 2009-09-03 Fujitsu Ltd Lubricant applicator and applying method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108230A (en) * 2004-10-01 2006-04-20 Utec:Kk Gasifier for cvd, solution vaporizing cvd apparatus and vaporization method for cvd
JP2009199699A (en) * 2008-02-25 2009-09-03 Fujitsu Ltd Lubricant applicator and applying method

Similar Documents

Publication Publication Date Title
CN111198484B (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
JP6528596B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus
JP6520191B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus
US7560217B2 (en) Method of forming electrophotographic photoreceptor and method of drying coating film
US8741391B2 (en) Dip-coating process and method for making electrophotographic photosensitive member
JP2003066634A (en) Coating device for organic photoreceptor, method for coating and organic photoreceptor
JP2003066633A (en) Coating device for organic photoreceptor, method for coating and organic photoreceptor
JP2021098182A (en) Coating dryer and coating dry method
JP2002287396A (en) Electrophotographic photoreceptor, image forming apparatus, and process cartridge
JP4390409B2 (en) Electrophotographic photosensitive member coating apparatus, coating method, and electrophotographic photosensitive member
JP4175453B2 (en) Electrophotographic photosensitive member coating apparatus, coating method, and electrophotographic photosensitive member
JP2921431B2 (en) Electrophotographic photoreceptor manufacturing method and dip coating apparatus
JP2015221402A (en) Manufacturing method of rotor and manufacturing method of photoreceptor
JP2012108187A (en) Method for manufacturing electrophotographic photoreceptor
JPH10337514A (en) Dip coating device and device for manufacturing electrophotography photosensitive body
JP5341450B2 (en) Coating apparatus and method for producing electrophotographic photosensitive member
JP5653167B2 (en) Electrophotographic photosensitive member manufacturing apparatus and electrophotographic photosensitive member manufacturing method
JP2022148912A (en) Coating device and method
JPH01119373A (en) Coating method
JPS6275454A (en) Production of electrophotographic sensitive body
JP4134540B2 (en) Electrophotographic photosensitive member manufacturing system, manufacturing method, and electrophotographic photosensitive member manufactured by the manufacturing method
JP3556353B2 (en) Manufacturing method of electrophotographic photoreceptor
US9411251B2 (en) Photoconductor containing a charge transport layer having an arylamine hole transport material
JPH0480383B2 (en)
JP2021098183A (en) Coating dryer and coating dry method